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Authors response to the comments by Anonymous Referee #1 

The manuscript describes an improved cloud detection algorithm for MERIS, 
developed especially for a sequential retrieval of melt pond fraction (MPF) in the 
summer Arctic, denoted as MECOSI. A clear improvement with respect to the 
previously used algorithm is demonstrated. That is, a significant progress is reported. 
On the other hand, the study needs to be motivated and presented more clearly. 

The authors appreciate the effort of the Anonymous Referee, the positive review and 
constructive comments! 

First of all, the cloud mask from AATSR is here used as reference and is assumed to 
have a 100detection algorithm for MERIS seems to be an increase in the swath width 
for the MPF retrievals, with respect to if the cloud masking would have solely been 
based on AATSR. The application of retrieved MPF is not stated. If the aim is to derive 
climate data, I would say that close to perfect retrievals (AATSR is assumed to give 
perfect cloud masking) over the smaller swath is to prefer, than significantly less 
accurate data over the broader swath. That is, I found the motivation to be weak, or 
unclear. 

This certainly is a valid concern. One needs to note that not only AATSR has 512km wide 
swath as compared to 1150km MERIS swath, but also AATSR coverage in the polar region 
is limited (compared AATSR and MERIS in Fig. 9 of the manuscript). That is, MERIS does 
provide a better global coverage and is preferable for the presented study. The motivation 
behind is twofold: 

1.    To the knowledge of the authors, at the time of writing no climate model includes melt 
ponds on top of sea ice. Although field measurements of melt ponds have been performed 
and published since a long time, i.e. an assimilation into a climate model within a limited 
spatial range as the referee suggests would have been long possible, melt ponds 
nevertheless present a challenge for climate modeling due to unknown global spatial 
distribution. Although air temperature at the surface is available also over sea ice covered 
Arctic ocean, melt pond fraction is not linearly linked to the air temperature but also depends 
on the ice topography and its internal macrophysical properties as density, porosity etc. 
Satellite datasets of possibly global coverage help understand not only local events but 
spatial dynamics in general, which may eventually lead to successful inclusion of melt ponds 
into climate models. 

2.    Although most of the field campaigns and in situ measurements of the sea ice 
covered Arctic ocean are available during Arctic summer, the links and feedbacks between 
the rapidly evolving sea ice surface, the atmosphere and the underice ecosystem are not yet 
fully understood. The appearance of melt ponds on sea ice during melt onset causes a 
drastic change of its albedo and transmittance which affects the surface energy balance and 
facilitates lateral, top, bottom and internal sea ice melt, i.e. affects the sea ice volume. Only 
recently the suggestion that melt ponds during melt onset might be connected to the sea ice 
area during the sea ice minimum has been published (Schröder et al., 2014). In order to 
understand these processes, a long-term global coverage record of sea ice parameters, 
among others also melt pond fraction, needs to be available to the community. That is, the 
presented cloud screening routine and the resulting melt pond fraction dataset can be used 
in independent studies of sea ice processes and not only in climate models. 



The corresponding explanation and motivation are added into the Introduction to the text, see 
P2 L12-30 of the new version of the text.. 

OLCI seems to be used as motivation in the abstract, but this sensor is not discussed 
at all in the text. 

As both sensors MERIS and OLCI are similar with OLCI being a successor of MERIS, OLCI 
is mentioned as means to provide a long-term melt pond fraction data record as continuation 
to that of MERIS. However, the presented cloud screening method has been developed 
specifically for MERIS sensor and the authors like to highlight that the general problem of 
cloud screening over snow for ENVISAT sensors, e.g. SCHIAMACHY (see e.g. Schlundt et 
al., 2011), has now been updated and advanced. 

The corresponding explanation is added in the new version of the manuscript P3, L1-8.. 

That AATSR should give a perfect cloud masking sounds to good to be true. The 
limitations of the AATSR cloud detection should be discussed. And presumably, the 
error of the AATSR retrievals should be considered, both when setting up the MERIS 
Bayesian scheme and when evaluating the performance of MECOSI. 

Indeed, no cloud screening routine is 100% reliable. The AATSR cloud mask, its limitations 
and validation are presented by Istomina et al. (2010). They highlight the challenge of cloud 
screening validation, with in situ point measurements (e.g. lidars) being precise but giving 
very limited spatial coverage, and with comparisons to other cloud masks being 
compromised by the time difference between the satellite overflights. The comparison of the 
AATSR cloud mask to the lidar data has proven its robustness (95% correct cloudy/clear 
detections with remaining 5% of cases connected to thin clouds on a sample of ~100 
scenes). 

The authors agree that this has not been addressed enough in the manuscript and add the 
corresponding explanation into the text, P 8, L1-4.. 

Sections 1 and 2 needs to be restructured. At least I fail to see a clear logic in these 
sections. The introduction should more clearly focus on motivation and goal of the 
study. For example, objective/goal is now formulated in the middle of Sec. 1 and at 
start of Sec 2. The information around line 21 on page 1 and line 17 on page 2 is very 
similar, that indicates that the order is not optimal. 

The review of available cloud screening approaches (Sec 1.1) is nice, but causes 
distraction as placed now. I would suggest to reformulate the title of Sec. 2 somewhat, 
and then move the review to Sec. 2. 

The authors are grateful for this comment and agree that the manuscript can be better 
structured. In the new version of the manuscript, we take special care to avoid repetitions 
and keep the text concise and clearly structured, the Sections 1 and 2 have been 
reformulated as suggested, see P3 L 23 onwards. 

There is a quite heavy use of acronyms, and you assume that many are understood by 
everybody. Note that this includes all names of satellite sensors. Is needed to use VIS 
and NIR? What is SGSP? Is RMSD the same RMS? MPF is defined in the abstract, but I 
would say that it needs to be defined in the Introduction as well. 

This problem has also been highlighted by the second referee and the authors agree that the 
usage of the acronyms has to be reconsidered. In the new version of the manuscript, we 
define MPF also in the abstract, and take care to spell out all the remaining acronyms. VIS 
and NIR are removed. 



The corresponding changes have been added throughout the text. 

Minor comments: 

Page 4, line 18: "R11/R10<0.27" This needs further explanation. 

This is a manually derived threshold which stems from the visual analysis of several dozen of 
MERIS scenes and was described and used in Zege et al 2015 (Eq 17 therein). The 
corresponding explanation and reference are added into the new version of the manuscript 
P6, L8-9. 

Page 4, line 19: Writing "small fraction" is misleading as cloud systems in the Arctic 
typically are very shallow. In fact, are not low clouds a special problem for using 
oxygen A-band in this way? Probably what you mean on page 7, line 11, but this 
requires a more careful discussion/analysis. 

Of course, what is meant here is “short path length” and not “small fraction”. This has been 
corrected in the new version of the text P6, L1. 

Also, the following text has been added on P5, L25-28: “and clouds with a low top height 
would generally also have a weaker effect onto the oxygen ratio. Fortunately, as in our case 
the Arctic sea ice surface lies uniformly at sea level and displays no relief, there is no 
confusion possible between clouds and surface in the terms of optical path length and the 
only uncertainty might come from the sensor specific features, i.e. the smile effect.” 

Page 5: Add information about resolution of AATSR. 

The text “The spatial resolution of AATSR is 1km at nadir.” is added on Page 5 Line 30P7, 
L29. 

Page 6, line 5: What is the maximum distance of mismatch in position. That is, what is 
the maximum nearest neighbour interpolation? 

The mentioned here regridding has been done with the python package pyresample. The 
radius of influence for the nearest neighbour interpolation is 1.5km. This value has been 
added to the text, P8, L9. 

Page 6, line 6: This sentence needs further explanation. 

The following text has been added as explanation: “As the AATSR and MERIS data have 
different spatial resolution, the two datasets have been gridded to a single grid (the coarser 
grid of MERIS). This might have affected the pixels at the borders of clouds in a way that 
earlier fully covered pixels now become partly covered which the binary AATSR cloud mask 
cannot fully reflect. Therefore we exclude the 2 pixel border from the study.” P8, L9-12. 

Start of Sec 3.3.1: Seems to be quite some repetition from Sec 2.1. Can be avoided. 

Indeed, the authors agree that the beginning of Sec. 3.3.1 has already been mentioned in 
Sec 2.1The sections 2.1 and 3.3.1 have been now restructured correspondingly. Text on P9, 
L12-28 has been partially moved to Sec 2.1.  

Page 9, line 10: The equation below defines b as a mean, not an integrated value. 

For the sake of clarity, the sentence at Page 9 line 10 has been changed correspondingly: 



“The brightness b is a spectral integral over the reflectance. As the spectral resolution of the 
sensor is quite coarse with only 13 used channels, the brightness can be represented by the 
following equation:” P11, L26-27. 

Page 9, line 14: I don’t understand what "I = [1, 14] {11" means. 

The authors meant “in ascending order from 1 to 14 except for 11”. As the same is basically 
said in words in the corresponding sentence, this equation is obsolete and for the sake of 
clarity is removed in the new version of the manuscript. P12, L2. 

First paragraph of Sec 3.4: This needs further/better explanation. 

The first paragraph of Sec. 3.4 has been rewritten, with the following text as a substitute: 

“The cloud probabilities for each given set of features (Section 3.2) were compiled into binary 
masks in order to compare the results to the binary AATSR masks. The masks are created 
by normalizing the cloud probability P(F,C) to the range [0,1] and splitting the dataset at a 
probability threshold 0.45 to introduce binary values. An operation of morphological closing 
and opening was then applied to the cloud and snow/ice pixels in order to remove single 
pixels.” P12, L8-12. 

 

Authors response to the comments by Anonymous Referee #2 

General comments: 

The authors presented a new cloud detection method for MERIS. The method adopts 
the Bayesian concept with the feature vector including three parameters: O2 A-band 
ratio, MERIS differential snow index, and brightness and whiteness. The authors also 
developed a new method to correct the smile effect. It is found that the new method 
improves the current one significantly. The paper is relevant to the community. I 
recommend publication after addressing the issues listed below. 

The authors are grateful for the positive review and appreciate the effort of the reviewer! 

When applying the O2 A-band ratio for cloud detection, as the authors pointed out, rox 
is dependent on the reflectance at 779 nm, but I didn’t see where this is reflected. It 
seems the data were not binned by the 779nm reflectance. How is it taken into account 
in the cloud detection algorithm? 

The reviewer has probably meant the text on Page 7 Line 26-29 of the old version. In this 
part, we present the correction of the systematic offset due to the smile effect and not yet the 
cloud screening itself. The text on Page 7 Line 26-29 describes the dependencies of rox which 
were considered to try and remove the systematic offset so that rox can be further used to 
derive cloud probabilities. The authors thank the reviewer for noticing this writing mishap. 
This part of the text stems from a draft version of the manuscript and needs to be updated. 
Indeed, the dependence on 779nm reflectance has not been considered in the current 
version of the manuscript, as can also be seen in the following equations. The problem with 
taking the surface reflectance into account by using the 779nm channel lies in the fact that 
the statistical majority of cases where the correction has to be performed is located in a 
relatively narrow range of surface reflectances (corresponding to wet ice/bare ice with ~20% 
melt ponds, a widespread situation during Arctic summer), which would correspond to only 
one or two bins when binning over 779nm. The sample size for the other bins (darker or 
brighter surface types) is orders of magnitude smaller, unevenly distributed and is not 
sufficient to develop a statistical correction. This can be seen in Fig. 2 where a discrepancy 



of less than 2% of rox value is shown when comparing corrections for the entire summer 
(black curve) with averaged May or July (red and blue curves). One can say, the 
dependence on the surface albedo is not so pronounced for the rox ratio, which of course is 
only valid for the ratio and would not be the case for a single oxygen absorption band R11. 
However, as our purpose was the relative correction of the smile effect for effective usage of 
cloud screening thresholds and not (as e.g. in Jäger, 2013) an absolute calibration of the 
R11 reflectance distorted by the smile effect, the achieved accuracy of the correction of a few 
percent (as shown in Fig. 2) justifies the selected approach. 

In turn, the sum of the solar and viewing zenith angles turned out to give a better reflection of 
the daily cycle in comparison to the detector index and solar angle alone, so that the viewing 
angle has been included into the correction scheme. 

In the new version of the manuscript, the text at Page 7 lines 25-32 (old version) or P10, L1-9 
(new version). 

was therefore updated as follows: 

“We assume that rox depends on three parameters: the detector index Id which corresponds to 
the position of the pixel in the detector array, the sun zenith angle θs and the viewing zenith 
angle θv. Id gives a pixel’s position in the sensor array and allows to compensate for the 
spectral smile effect. The sun zenith angle θs and the viewing angle θv allows estimating the 
optical path in the atmosphere which is in direct dependence with the oxygen absorption. 
The seasonal nature of rox dependence on surface reflectance e.g. at channel 779nm presents 
a challenge of statistically non-uniform bins of very different sample size and was not 
included into the correction scheme. The residual rox dependence on the surface reflectance 
is less than 2% (Fig. 2) and does not prevent the application of the cloud screening routine.”  

The indices in Eq 3-54 were corrected to θsum= θs+ θv 

 

There are many acronyms not having the fully spelt version. Please check. 

This is also the point highlighted by the other reviewer and the new version of the manuscript 
has fewer and clearly defined acronyms. 

The corresponding changes have been added throughout the text. 

Specific comments: 

P2, L14-16: why would “the retrievals of MPF and albedo discussed in this work 
misinterpret the cloud contamination as melting sea ice”? Doesn’t melting sea ice 
have very different spectral signature with cloud? 

The melting sea ice displays a variety of spectral behaviors in the entire range from white ice 
to dark melt ponds (e.g. see Istomina et al., 2012, PANGAEA dataset of sea ice spectral 
albedo during Arctic summer). The specifics of the MPF and albedo retrieval is such that not 
only this large range of surfaces but also their subpixel mixtures in various fractions have to 
be represented. This requires a versatile forward model and retrieval which can account for 
sea ice variability at a global spatial scale (see Zege et al 2015). In the given spectral range 
of the MERIS (412.5 - 900nm) clouds do not differ from the variety of surfaces available 
during Arctic summer to the point of clear distinction. So that e.g. warm water clouds look 
similar to white ice throughout most of the available spectral range (same for cirrus and fresh 
fine snow). This results in the fact that the retrieval does confuse their reflectances and relies 
on additional cloud screening. 



The corresponding explanation has been added in the text, P3, L11-18. 

P4, L1: Since MERIS does not have SWIR channels, how is NDSI derived? 

What is meant here is that the NDSI-like threshold is used, in this case the MDSI - MERIS 
Differential Snow Index. It is derived using two channels (865nm and 885nm) and utilizes the 
specific grain size feature of snow which is absent in other surfaces. The MDSI of this kind 
has been used e.g. by Schlundt et al (2011) and is also used in the presented work (see Eq. 
8) 

The corresponding sentence has been corrected on P5, L7-8.: “The currently available cloud 

masks for MERIS (Zege et al., 2015, Schlundt et al., 2011, etc.) are based on NDSI-like 

(Normalized Difference Snow Index) indices, e.g. MDSI (MERIS Differential Snow Index).”  

P7, L6: Please consider changing “uniformly distributed” to “well mixed” 

Thank you for this remark, the text has been changed accordingly. P5, L19 

P9, L5: “Clear sky pixels that show open water are excluded during this step”. Is there 
a pre-step that determines clear vs cloudy? How does this work inside the cloud 
detection algorithm? 

Indeed, there is a pre-step that removes all open water pixels from the correction dataset. 
The latter is done as described by Schundt et al (2011) using thresholds on reflectances at 
channels 12 and 13, with the threshold values 0.09 and 0.08, respectively. The result is that 
the correction values for each detector index are then produced excluding the dark pixels. 
There is no distinction of clear and cloudy at this point as it is only the step to remove the 
systematic across-track variability so that the MDSI feature is not affected by it, and we can 
apply this feature more effectively. 

The sentence: “Open water pixels have been removed using two thresholds on channels 12 
and 13 as described by Schlundt et al. (2011)” has been added into the text as clarification 
P11, L20-21. 
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Abstract. The historic MERIS (Medium Resolution Imaging Spectrometer) sensor onboard Envisat (Environmental 

Satellite, operation 2002-2012) provides valuable remote sensing data for the retrievals of the summer sea ice in the Arctic. 

MERIS data together with the data of recently launched successor OLCI (Ocean and Land Colour Instrument) onboard 10 

Sentinel 3A and 3B (2016 onwards) can be used to assess the long-term change of the Arctic summer sea ice. An important 

prerequisite to a high-quality remote sensing dataset is an accurate separation of cloudy and clear pixels to ensure lowest 

cloud contamination of the resulting product. The presence of 15 visible and near infrared VIS and NIR spectral channels of 

MERIS allow high quality retrievals of sea ice albedo and melt pond fraction, but make cloud screening a challenge as snow, 

sea ice and clouds have similar optical features in the available spectral range of 412.5 - 900nm. 15 

In this paper, we present a new cloud screening method MECOSI (MERIS Cloud Sscreening Over Sea Ice) for the retrievals 

of spectral albedo and melt pond fraction (MPF) from MERIS. The method utilizes all 15 MERIS channels, including the 

oxygen A absorption band. For the latter, a smile effect correction has been developed to ensure high quality screening 

throughout the whole swath. Three years of reference cloud mask from AATSR (Advanced Along Track Scanning 

Radiometer) (Istomina et al., 2010) have been used to train the Bayesian cloud screening for the available limited MERIS 20 

spectral range. Whiteness and brightness criteria as well as normalized difference thresholds have been used as well. 

The comparison of the developed cloud mask to the operational AATSR and MODIS (Moderate Resolution Imaging 

Spectroradiometer) cloud masks shows a considerable improvement in the detection of clouds over snow and sea ice, with 

about 10% false clear detections during May-July and less than 5% false clear detections in the rest of the melting season. 

This seasonal behaviour is expected as the sea ice surface is generally brighter and more challenging for cloud detection in 25 

the beginning of the melting season. 

The effect of the improved cloud screening on the MPF/albedo datasets is demonstrated on both temporal and spatial scales. 

In the absence of cloud contamination, the time sequence of MPFs displays a greater range of values throughout the whole 

summer. The daily maps of the MPF now show spatially uniform values without cloud artefacts, which were clearly visible 

in the previous version of the dataset.  30 
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The resulting cloud mask for the MERIS operating time, as well as the improved MPF/albedo datasets are available as swath 

data and daily means averages on the ftp server of the University of Bremen https://seaice.uni-

bremen.de/data/meris/gridded_cldscr/. 

1 Introduction 

No other surface type of satellite imagery has the unique features of bright reflecting, white snow surface. The task of snow 5 

detection therefore would be an easy task in the absence of clouds. However, the snow spectral signature (e.g. Warren, 1982) 

is also a feature of water and especially of ice clouds (Kokhanovsky, 2006). Possible snow impurities, snow grain size 

differences, and liquid water content create fine differences between many snow types (Warren, 1982), but in general the 

spectra of snow and cloud are similar in the visible and near infraredVIS and NIR, with the difference occurring beyond 1µm 

(e.g. channels at 1.6, 3.7, 11 and 12 µm).  10 

For MERIS data with a spectral range from 412.5nm to 900nm, cloud detection over snow and sea ice a challenging task. 

However, the advantage of MERIS - its 15 spectral bands within this relatively small spectral range - makes it especially 

suitable for the melt pond fraction (MPF) retrieval over the Arctic sea ice, which needs a quality cloud screening routine.  

Although most of the field campaigns and in situ measurements of the sea ice covered Arctic ocean are performed during 

Arctic summer (e.g. an overview in Istomina et al., 2015), the links and feedbacks between the rapidly evolving sea ice 15 

surface, the atmosphere and the underice ecosystem are multifold (Curry et al., 1996) and not yet fully understood. The 

appearance of melt ponds on sea ice during melt onset causes a drastic change of its albedo and transmittance (Nicolaus et 

al., 2012) which affects the surface energy balance and facilitates lateral, top, bottom and internal sea ice melt, i.e. affects the 

sea ice volume. Only recently the suggestion that melt ponds during melt onset might be connected to the sea ice area during 

the sea ice minimum has been published (Schröder et al., 2014). In order to understand these processes, a long-term global 20 

coverage record of sea ice parameters, among others also MPF, needs to be available to the community. That is, the 

presented cloud screening routine and the resulting MPF dataset can be used in studies of sea ice processes and feedbacks. 

To the knowledge of the authors, at the time of writing no climate model includes melt ponds on top of sea ice. One of the 

reasons is that melt ponds, although observed in situ during many campaigns, still present a challenge for climate modeling 

due to unknown global spatial distribution. Although reanalysis air temperature at the surface is available also over sea ice 25 

covered Arctic ocean (e.g. Kalnay et al., 1996), MPF is not linearly linked to the air temperature but also depends on the ice 

topography and its internal macrophysical properties as density, porosity etc. Satellite MPF datasets of possibly global 

coverage are the only way to understand not only local events but also global spatial dynamics, which may eventually lead to 

successful inclusion of melt ponds into climate models. 

Besides cloud screening for the remote sensingMPF retrievals using MERIS data, correct a robust cloud detection from 30 

MERIS in the Arctic region may be important for 1) synergy with the other sensors onboard ENVISATEnvisat and 2) might 
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be applicable to sensors similar to MERIS, e.g. OLCI., e.g. as an accurate cloud fraction for the hyperspectral sensor of 

coarser spatial resolution SCIAMACHY. 

The cloud screening for OLCI, which is a successor of MERIS without thermal infrared bands, presents challenges similar to 

those of MERIS. OLCI data are important as continuation of MERIS in order to provide long-term data records of e.g. MPF. 

Nevertheles, the cloud screening presented here has been developed specifically for MERIS and thus addresses the issue of 5 

cloud screening over snow for ENVISAT sensors, e.g. SCIAMACHY (Scanning Imaging Absorption Spectrometer for 

atmospheric Chartography) (see e.g. Schlundt et al., 2011). Of course, the approach presented here can be applied to OLCI 

data as well. 

Depending on the retrieved parameter and sensor, the effect of a compromised cloud screening may be moderate (retrievals 

of albedo and snow grain size within, SGSP (Snow Grain Size and Pollution Amount Retrieval), Wiebe et al., 2013) to 10 

drastic (aerosol retrieval, Istomina et al., 2011; MPF melt pond fraction retrieval, Zege et al. 2015). As the melting sea ice 

displays a variety of spectral behaviors in the entire range from white ice to dark melt ponds (e.g. Istomina et al., 2013), a 

versatile forward model and retrieval which can account for such a variability at a global spatial scale are needed. Such a 

retrieval (Melt Pond Detector, MPD) has been developed by Zege et al., (2015). The MPD is a pixelwise retrieval and only 

utilizes the spectral information without additional morphological or statistical criteria. As clouds do not spectrally differ 15 

from most of the surfaces available during Arctic summer, so that e.g. warm water clouds may appear similar to white ice 

throughout most of the available spectral range (same for cirrus and fresh fine snow), tThe retrievals of MPF and 

albedoMPD can thereforediscussed in this work  misinterpret the cloud contamination as sea ice melt. as melting sea ice 

surface which cannot be distinguished from the true melting surface and overlays the true values in the daily and weekly 

means. The resulting MPF and albedo datasets are thus strongly affected by the residual cloud contamination. The objective 20 

of this work is to resolve this issue by means of a better reliable cloud discrimination over snow for MERIS and to provide 

the datasets of MPF, albedo and cloud mask datasets of a better quality than currently available. 

2 Cloud screening for MERISSensor specific cloud screening in remote sensing 

1.1 Available cloud screening approaches 

Some sensors are better suited for the task of cloud screening but are not suitable for the given MPD retrieval due to other 25 

limitations. E.g. the MODIS cloud mask (Ackermann et al., 1998; Liu et al., 2004) is one of the most comprehensive 

classification algorithms, however, as the MODIS sensor experiences saturation in some of the visible bands (Madhavan et 

al., 2012), it is impossible to use these data for the given sea ice albedo and melt pond fractionMPF retrieval (Zege et al., 

2015). As the MERIS sensor onboard ENVISAT Envisat does not have these limitations, it has been chosen for the retrievals 

of MPF and albedo. However, the choice of methodology to perform cloud screening over snow and ice with MERIS is not a 30 

trivial task. MERIS is located on the same platform as AATSR and SCIAMACHY, contains an Oxygen A band, and 
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provides total Arctic coverage every three days with its swath width of 1150km. Synergy of AATSR and MERIS is used in 

this work to train and test the developed cloud screening routine. 

Three basic cloud screening approaches applicable to a spectroradiometer data can be distinguished among the available 

algorithms:  

- Analysis of time-sequences of data, under the assumption that the short-term changes of the scene can be only introduced 5 

by clouds (e.g. Key and Barry, 1989; Diner et al., 1999; Lyapustin et al., 2008; Lyapustin and Wang, 2009; Gafurov and 

Bárdossy, 2009). Such an approach assumes surfaces with a constant and pronounced structure (Lyapustin et al., 2008; 

Lyapustin and Wang, 2009). Although the approach proved to be effective for various natural and artificial surfaces, it is not 

applicable within this work due to the fast-evolving nature of melt ponds and the sea ice. 

- Applying a reflectance or brightness temperature absolute threshold or their combination, e.g. ratio of reflectances in the 10 

form of NDVI. In this case, only a few channels are used (e.g. Minnis et al., 2001; Bréon and Colzy, 1999; Lotz et al., 2009; 

Allen et al., 1990; Spangenberg et al., 2001; Trepte et al., 2001). The optical properties of snow in the visible spectral range 

VIS show weak spectral dependency. In the NIR near infrared and IRinfrared, however, the snow spectrum shows the typical 

“snow signature”, i.e. values decreasing due to water absorption in the NIRnear infrared, which also causes the dependence 

on the snow grain size due to different pathlength and absorption in the grains of different size. These features aid the snow-15 

cloud discrimination. Therefore, it is a common practice to use IR infrared channels in addition to VIS visible for such 

retrievals (Spangenberg et al., 2001). In the current task, the limited spectral range of MERIS does not allow effective usage 

of this approach.  

- Image processing and spatial variability analysis (e.g. Martins et al, 2002). In the case of white clouds over white surface, 

the spatial variability would mainly come from the difference in grain/particle size, surface roughness, different water phase 20 

(ice surface vs water cloud, melting surface vs ice cloud), and cloud shadows. Given the great natural variability of these 

parameters in both Arctic clouds and surface and the similarity of their optical properties in the given spectral range, this 

approach is prone to false detections. 

Combinations of the above methods together with additional thresholds and additional meteorological/reanalysis data are 

also available. E.g. the MODIS cloud detection scheme (Ackerman et al., 1998; Liu et al., 2004) is one of the most 25 

comprehensive among the available cloud detection schemes and is based on such combination. This algorithm uses 19 out 

of 36 MODIS channels along with additional inputs, e.g. topography and illumination observation geometry for each 1-km 

pixel, land /water mask, ecosystem maps, and daily operational snow/ice products (taken from the NOAA, National Oceanic 

and Atmospheric Administration and NSIDC, National Ssnow and Ice Data Center). The resulting MODIS cloud mask 

contains 4 confidence levels (confident cloudy, uncertain, probably clear, confident clear) and is available as a separate daily 30 

averaged product. Unfortunately, due to the time lag between EnvisatNVISAT and Terra/Aqua, MODIS cloud mask product 

cannot be used for swathwise screening for the melt ponds fraction retrieval. 
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Most of the cloud screening approaches do not focus on the case of the snow surface; among those who do (Allen et al., 

1990; Spangenberg et al., 2001; Trepte et al., 2001; Istomina et al., 2010; Istomina et al., 2011), even smaller fraction utilizes 

MERIS sensor for this task (Kokhanovsky et al., 2009, Schlundt et al., 2011, Zege et al., 2015, Istomina et al., 2015, Krijger 

et al, 2011). 

2 Cloud screening for MERIS 5 

The goal of the current work is to produce a reliable cloud screening method for MERIS data over the Arctic sea ice in 

summer. The currently available cloud masks for MERIS (Zege et al., 2015, Schlundt et al., 2011, etc.) are based on the 

normalized indices like NDSI-like (Normalized Difference Snow Index) indices, e.g. and MDSI (MERIS Differential Snow 

Index). In the absence of IR infrared channels these thresholds will result in a residual cloud contamination over snow and 

sea ice. However,  10 

However, the historic MERIS data can be collocated with the AATSR data in the center part of the MERIS swath. This 

AATSR data have IR channels (1.6, 3.7, 11 and 12 µm) and they can be used for training and validation of the developed 

MERIS cloud mask. In this work, we use the AATSR cloud screening developed for the aerosol retrieval over snow and ice 

(Istomina et al., 2010). This method is based on dynamic thresholds in VIS, NIR and TIR channels which discriminate snow 

and ice signature from all other surfaces, and from clouds.  15 

uUnlike most of the moderate resolving spectroradiometers, MERIS has the so-called oxygen A Band (MERIS channel 11 at 

761.5 nm), which can aid greatly in cloud . This band can also be used to aid the cloud screening over snow and ice. 

2.1 MERIS Oxygen A Band and the smile effect 

As oxygen is in the Earth atmosphere, the amplitude of the absorption within MERIS channel 11 reflects optical path length 

of light rays received with the sensor. This band is therefore useful for cloud screening: eEffective path length over clouds is 20 

shorter than that over sea ice or snow on land, that is, light reflected from over higher clouds experiences less absorption 

when travelling through the atmosphere than light reflected from the surface. This allows separating reflecting objects such 

as clouds and snow/sea ice surface according to their height in the atmospheric column. We expect this criterion to work best 

for optically thick water clouds. The sensitivity to optically thin clouds is expected to be small over bright surfaces like sea 

ice (Preusker and Lindstrot, 2009), and clouds with a low top height would generally also have a weaker effect onto the 25 

oxygen ratio. Fortunately, as in our case the Arctic sea ice surface lies uniformly at sea level and displays no relief, there is 

no confusion possible between clouds and surface in the terms of optical path length and the only uncertainty might come 

from the sensor specific features, i.e. the smile effect. 

This approach has been used by Zege et al., (2015), and Istomina et al., (2015) as an additional threshold to classical 

whiteness and brightness criteria. For the additional threshold, the ratio of bands 10 (oxygen A reference) and 11 (oxygen A 30 

absorption) has been used R11/R10<0.27. To identify the cloud free pixels, we detect pixels where the oxygen absorbs light 
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within the whole atmosphere column as opposed to cloudy pixels where the absorption occurs only within the small fraction 

of the atmosphere column, namely, above the cloud.  

AHowever, as MERIS is a push-broom sensor, its channels are susceptible to the usual for this type of sensors smile effect,. 

which occurs due to a small variation in the central wavelength across the MERIS swath. The artifacts appear as along-track 

stripes within the swath and impair application of thresholds or retrievals. The oxygen ratio approach without the smile 5 

correction has been used by Zege et al., (2015), and Istomina et al., (2015) as a threshold in addition to classical whiteness 

and brightness criteria. The threshold comprises the ratio of bands 10 (oxygen A reference) and 11 (oxygen A absorption) 

R11/R10<0.27, where the value 0.27 has been derived from the visual analysis of several dozen of MERIS scenes (see Zege 

et al.,  2015 and Eq 17 therein). As seen in Zege et al., 2015 and Istomina et al., 2015, the channel 11 is virtually impossible 

to use effectively due to strong artifact presence compromises the effective application of the oxygen ratio threshold..  10 

The smile effect of MERIS has been studied (Bourg et al., 2008) and ways to correct it have been shown by Gómez-Chova et 

al. (2007) or Jäger (2013). The approach by Jäger (2013) greatly improves the usability of the oxygen ratio, but does not 

fully remove detector-to-detector differences. A reason for this might be instrument stray light, which is not fully removed in 

the MERIS operational processing chain (Lindstrot et al., 2010), and that was not taken into account by Jäger (2013). 

The smile effect appears as characteristic along track stripes in the satellite image. It is caused by shifts of the central 15 

wavelengths of the detector's pixels. The channel 11 of MERIS λ=761.5 nm lies within the oxygen absorption band, where a 

slight shift in wavelength may cause drastic effect on the signal measured by the sensor. As seen in Zege et al., 2015 and 

Istomina et al., 2015, the channel 11 is virtually impossible to use effectively due to strong artifact presence. 

Another aAvailable smile effect corrections comprise also those included into the ESA (European Space Agency) toolbox for 

ENVISAT Envisat processing, i.e. open source packages BEAM or SNAP (Earth Observation Toolbox and Development 20 

Platform, Sentinels Application Platform, https://www.brockmann-consult.de). These corrections work well within the 

transparency window of the atmosphere over darker surfaces but are not sufficient in the oxygen A absorption band over 

brighter surfaces such as snow and ice.. A set of corrections produced especially for bright Arctic surface and the oxygen A 

band are based on the simulation of the atmospheric transmittances with a radiative transfer forward model for each given 

pixel with its own wavelength (Jäger, 2013). This correction gives considerable improvement on the absolute values of the 25 

measured reflectances but does not entirely remove the stripes along the swath, which hinders the usage of this correction for 

the cloud screening. 

In this work, we suggest a smile correction for MERIS band 11 which allows slight inaccuracy on the absolute value of the 

top-of-atmosphere (TOA) reflectances but preserves the relative difference between the sensor pixels, which allows a 

quantitative use of the corrected oxygen A band for cloud screening (Section 3.3.1). 30 
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3 Methods  

The cloud screening method for MERIS data developed in this work is specifically aimed to work well over summer sea ice. 

It is called MECOSI (MERIS Cloud screening Over Sea Ice). MECOSI utilizes the collocated AATSR data in the center part 

of the MERIS swath, namely the infrared channels 1.6, 3.7, 11 and 12 µm, for training and. In this work, we use the AATSR 

cloud screening developed for the aerosol retrieval over snow and ice (Istomina et al., 2010).  5 

Currently MECOSIit is being applied as preprocessing for the retrieval of melt pond fraction and spectral albedo of summer 

sea ice (Melt Pond Detector, MPD). The MPD retrieval takes top-of-atmosphere reflectances of MERIS at 9 channels as 

input and employs a forward model of optical properties of the Arctic surface and an iterative procedure to retrieve spectral 

albedo and melt pond fraction of a given pixel. Several hundred field spectra of the Arctic sea ice and melt ponds have been 

used to constraint the input parameters of the forward model and to ensure realistic range of modeled surfaces. More details 10 

on the MPD retrieval can be found in Zege et al. (2015). The presented cloud screening method can be used for other remote 

sensing applications as well, e.g. for retrievals of other surface or atmospheric parameters or as a cloud mask for coarser 

resolving sensors onboard same satellite platform (e.g. SCHIAMACHY on Envisat).  

3.1 Data used  

Input for MECOSI are MERIS Level 1B observations. MERIS consists of five cameras scanning the surface of the Earth in 15 

push-broom mode and offers 15 spectral bands from 412.5 nm to 900 nm. The data is collected globally with a spatial 

resolution of 1040×1200m at nadir. The Level 1B product provides calibrated and georeferenced top of atmosphere (TOA) 

radiances. These are preprocessed using the software package BEAM (www.brockmann-consult.de/cms/web/beam/).  

The preprocessing includes:  

1. The region north of 65◦N is cut out from each orbit using the module Subset. 20 

2. The metadata in the L1B swaths is given in a grid with reduced resolution and needs to be interpolated in order to 

have the data available for each pixel. This is done using the BandMath module. The coordinates as well as sun 

zenith and the view zenith angles are now interpolated. 

3. The TOA radiances are corrected and converted to reflectances using the module Meris.CorrectRadiometry. The 

correction includes an equalization step to reduce detector-to-detector differences and a scheme to reduce the smile-25 

effect in all but the absorption Bands 11 and 15. 

A cloud mask derived from AATSR data is used as a reference mask to develop and validate the MECOSI algorithm. The 

AATSR instrument has been launched together with MERIS aboard ENVISAT Envisat and both sensors observe the same 

scene nearly simultaneously. The spatial resolution of AATSR is 1km at nadir which is similar to the spatial resolution of 

MERIS. However, as AATSR has a narrower swath of 512 km, it and covers only the central half of a MERIS swath. The 30 

AATSR cloud screening algorithm has been developed for an aerosol optical thickness retrieval and is presented by Istomina 

et al. (2010). It exploits knowledge about the spectral shape of snow in visible, near infrared and thermal infrared bands of 
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AATSR. As intercomparisons of cloud screening routines are challenging due to the time difference between the overflights 

of different satellite sensors, the validation has been performed against in situ lidar data. The comparison of the AATSR 

cloud mask to the Micro Pulse Lidar data has proven the robustness of the method (95% correct cloudy/clear detections with 

remaining 5% of cases connected to thin clouds on a sample of ~100 scenes).The output is a binary mask for cloud free snow 

and ice. Validation against a number of independent datasets has proven the reliability of the algorithm in the Arctic region 5 

(Istomina et al., 2010).  

The training dataset used in this work was prepared as follows: all AATSR swaths from May to September 2009, 2010 and 

2011 have been subset, transformed into TOA, and co-located to the corresponding MERIS swaths using a nearest neighbour 

algorithm (radius of influence 1.5 km). As the AATSR and MERIS data have different spatial resolution, the two datasets 

have been gridded to a single grid (the coarser grid of MERIS). This might have affected the pixels at the borders of clouds 10 

in a way that earlier fully covered pixels now become partly covered which the binary AATSR cloud mask cannot fully 

reflect. Therefore we exclude the two pixel border from the study.To avoid influence of collocation errors and subpixel cloud 

fraction at the borders between clouds and clear sky we exclude a two-pixel border. These pixels are not used to develop or 

to validate the algorithm.  

This AATSR dataset from May to September 2009 – 2011 was used to estimate the cloudy and clear case probabilities for 15 

given feature vector as described in the next Sections. 

3.2 Bayesian cloud screening  

A comprehensive introduction to the theory of Bayesian cloud screening is given by Hollstein et al. (2015). The described 

approach can be found in detail in (Marks, 2015). In the following, P(A,B) denotes the occurrence probability of A under the 

condition of the occurrence of B and F is a vector of features derived pixel-wise from satellite data. and if C denotes cloudy 20 

conditions (C̅ – clear conditions), the probability to see a cloudy pixel under the occurrence of F can be written as: 

P (C, 𝐅) =
P (𝐅,C)·P (C)

P (𝐅,C)·P (C)+P (𝐅,C̅)·P (C̅)
 ,          (1) 

using this equation to calculate the cloud probability P (C, 𝐅)  we need to estimate the probabilities P (𝐅, C) and P (𝐅, C̅)  for 

each possible feature vector 𝐅 ∈ 𝑅𝑁 . We accomplish this by calculating N-dimensional frequency histograms, one for cloud 

and one for clear sky cases as flagged in the AATSR mask. This is done for every AATSR and MERIS swath for the time 25 

period 01.05.2009 to 30.09.2009. The background probability P (C) is directly calculated from the AATSR masks using data 

from the same year. Pixels outside the AATSR swath are not used in this analysis. The set of features for which the above 

procedure is being performed is described below. 
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3.3 Features and applied corrections  

The selection of the features used to build the feature vector F is the most important step during the development of the al-

gorithm and greatly affects the performance of the screening. Hollstein et al. (2015) used a random search algorithm to find a 

set of features Fi that performs best in global application. Here, however, the features are selected manually to find a set that 

performs best over snow-covered ice and darker, ponded ice. Additionally, correction algorithms were developed to equalize 5 

the systematic dependencies on the cross-track pixel position.  

3.3.1 Oxygen-A ratio  

The TOA ratio of the O2A Band 11, which is located at the oxygen absorption line at 761 nm, to Band 10 at 754 nm, which 

is the oxygen reference band is used here, allows to estimate the absorption by oxygen in the atmospheric column above 

reflecting surface: 10 

rox =
R11

R10
 ,            (2) 

As oxygen is uniformly distributed in the atmosphere, the oxygen absorption depends on the pathlength that the photons 

have traveled on the way from the sun to the sensor, so the ratio (2) can be used to estimate the height in the atmosphere at 

which the photon reflection has happened. As clouds are higher than snow and sea ice, we expect to see a decreased 

absorption in cloud cases. We expect this criterion to work best for optically thick water clouds. The sensitivity to optically 15 

thin clouds is expected to be small over bright surfaces like sea ice (Preusker and Lindstrot, 2009), and clouds with a low top 

height would also have a weaker effect on rox.  

The ratio rox  cannot be used directly in the feature vector F because of dependencies onto the illumination-observation 

geometry, directional dependence of the surface optical properties (snow and sea ice BRDF), and because of thes ensor 

specific properties (the smile effect artifacts). The length of the optical path through the atmosphere depends on sun and view 20 

zenith angles in both cloudy and clear cases and needs to be accounted for. As these angles are provided in MERIS Level 1B 

swath data, the air mass factor can be calculated (e.g. Gómez-Chova et al. (2007)). However,The smile effect artifacts in rox 

is strongly affected by the smile effect, need additional consideration before it can be used for cloud screening. which occurs 

due to a small variation in the central wavelength across the MERIS swath. The smile effect of MERIS has been well studied 

(Bourg et al., 2008) and possible ways to use this information to correct rox have been shown by Gómez-Chova et al. (2007) 25 

or Jäger (2013). The approach by Jäger (2013) greatly improves the usability of rox, but does not fully remove detector-to-

detector differences. A reason for this might be instrument stray light, which is not fully removed in the MERIS operational 

processing chain (Lindstrot et al., 2010), and that was not taken into account by Jäger (2013).  

In this work, we propose an empirical approach to equalize rox and decrease the influence of the above-mentioned factors 

across the swath. We assume that over a statistically significant sample, the mean value of rox for a given set of conditions 30 

(e.g., for a given detector index, geometry, etc.) can be used to correct the systematic across-track dependence for this set of 
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conditions. We assume that 𝑟𝑜𝑥  depends on three parameters: the detector index 𝐼𝑑 which corresponds to the position of the 

pixel in the detector array, the sun zenith angle θ𝑠 and the viewing zenith angle θ𝑣. 𝐼𝑑 gives a pixel’s position in the sensor 

array and allows to compensate for the spectral smile effect. The sun zenith angle θ𝑠  and the viewing angle θ𝑣  allows 

estimating the optical path in the atmosphere which is in direct dependence with the oxygen absorption. The seasonal nature 

of 𝑟𝑜𝑥  dependence on surface reflectance e.g. at channel 779nm presents a challenge of statistically non-uniform bins of 5 

vastly different sample size and was not included into the correction scheme. The residual 𝑟𝑜𝑥dependence on the surface 

reflectance is less than 2% (Fig. 2) and does not prevent the application of the cloud screening routine. Assuming θ𝑠𝑢𝑚 =

θ𝑠 +  θ𝑣 , we obtain a set of data vectors:We assume that rox depends on three parameters: The detector index Id which 

corresponds to the position of 

the pixel in the detector array, the reflectance at 779 nm R12 and the sun zenith angle Θs. Id gives a pixel’s position in the 10 

sensor array and allows to compensate for the spectral smile effect. The dependence on R12 is assumed to correct the 

influence of surface albedo and instrument stray light. It was preferred over R10 to avoid a direct dependence on rox. The sun 

zenith angle Θs allows estimating the downside length of the optical path. To fully account for the acquisition geometry, the 

view zenith angle Θv would be also required. However, we do not include Θv here to keep the number of dependencies as 

small as possible. Instead, we use Id as a proxy for Θv because Θv does not change significantly for a given detector index in 15 

the Arctic region. So, we obtain a set of data vectors: 

𝑀 = {(𝑟𝑜𝑥 , 𝜃𝑠𝑢𝑚, 𝐼𝑑  )𝑖}, 𝑖 ∈ 𝐼          

 (3) 

The set I denotes the indices of all pixels in one swath. Pixels with the same detector index Id are selected from the set M and 

corresponding subsets are built: 20 

𝑀𝑗 = {(𝑟𝑜𝑥 , 𝜃𝑠𝑢𝑚 , 𝐼𝑑)  ∈ 𝑀 | 𝐼𝑑 = 𝑗}         

 (4) 

These subsets 𝑀𝑗  are then processed separately. The ratio is binned as follows: 

𝑅𝜃
𝑗

= {𝑟𝑜𝑥|(𝑟𝑜𝑥 , 𝜃𝑠𝑢𝑚, 𝐼𝑑)  ∈ 𝑀𝑗 , 𝜃 ≤ 𝜃𝑠𝑢𝑚 < 𝜃 + 𝛿}        (5) 

 25 

The bin width δ is set to 1/4 degree. The sets 𝑅𝜃
𝑗

 are calculated for many swaths K, typically all summer data of one year. 

Then the mean value of 𝑟𝑜𝑥  is calculated for each one of these sets: 

�̅�𝜃
𝑗

= mean{𝑟𝑜𝑥|𝑟𝑜𝑥  ∈  ⋃ (𝑅𝜃
𝑗

)𝑘
𝐾
𝑘 }          (6) 

Finally, a 5th order polynomial is fitted to the averaged values for each separate detector index j to achieve smooth and 

continuous correction functions 𝑓𝑗: 30 
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𝑓𝑗 = fit {�̅�𝜃
𝑗
},            (7) 

which in addition are functions of the solar zenith angle 𝜃𝑠𝑢𝑚 . The correction is applied pixelwise by evaluating f and 

subtracting the resulting value from the O2-A ratio. The corrected ratio is then used as a feature in the cloud screening 

algorithm.  

It must be noted that as the further calculation of cloud probabilities for the given detector indices and values of 𝑟𝑜𝑥  happens 5 

in the space of corrected 𝑟𝑜𝑥  only, the absolute amplitude of 𝑟𝑜𝑥  is not important for our application and is not preserved 

within the described approach. Instead, the relative difference between the scattering events at the surface and at the cloud 

are equalized throughout the swath and thus made available for cloud screening. 

The above described approach has been performed over all MERIS swathes subset to above 65°N for the time range from 

01.05.2009 to 30.09.2009. This sample is considered to be a statistically significant in terms of variety of surface and cloud 10 

types and their seasonal behavior under a variety of observation-illumination geometries for all detector indices.  

3.3.2 MERIS differential snow index  

The MERIS Differential Snow Index (MDSI) is defined as normalized difference of the TOA reflectances at 865 nm and 885 

nm: 

Fsi =
R13−R14

R13+R14
 ,            (8) 15 

It exploits the drop in spectral reflectance of snow and ice at the given wavelengths to aid discrimination of snow and ice 

from clouds (Schlundt et al., 2011). The systematic cross-track variation is less pronounced than that for the O2 -A ratio and 

no dependence on the observational geometry is expected, i.e. it is assumed to be the same for both spectral bands R13 and 

R14. Therefore, we use a simplified correction scheme: the mean value of Fsi is calculated for each detector index using 

swaths from the summer 2009. Clear sky pixels that show open water are excluded during this step. Open water pixels have 20 

been removed using two thresholds on channels 12 and 13 as described by Schlundt et al. (2011). As before, to remove the 

systematic across-track variability, the obtained mean values are subtracted from Fsi for each detector index.  

3.3.3 Brightness and whiteness  

Many types of clouds have a higher reflectance than snow in the NIR near infrared and they usually show a white spectrum. 

The usefulness of these two features to detect clouds has been shown in Gómez-Chova et al. (2007) and the same definitions 25 

are used here. The brightness b is a spectral integral over the reflectance. As the spectral resolution of the sensor is quite 

coarse with only 13 used channels, the brightness can be represented by the following equation:The brightness b is a spectral 

integral over the reflectance and is calculated by numerical integration of the measured TOA reflectance: 

 b =
1

λmax−λmin
∑

ri+1+ri

2iϵI (λi+1 − λi) ,         (9) 
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Here, λ denotes the center wavelength of a MERIS band and I is the set of used bands. The absorption bands 11 and 15 are 

excluded from the calculation, hence, we use bands I  1 - 10 and 12 - 14= [1, 14] \{11} to calculate the overall brightness b. 

The whiteness w of the spectrum is measured by the deviation of the radiances from the brightness b. With 𝑒𝑖 = |𝑟𝑖 − 𝑏|, the 

equation is  

w =
1

λmax−λmin
∑

ei+1+ei

2iϵI (λi+1 − λi) ,         (10) 5 

Note that small values for w correspond to a flat and therefore white spectrum.  

3.4 Evaluation  

The cloud probabilities for each given set of features (Section 3.2) were compiled into binary masks in order to compare the 

results to the binary AATSR cloud masks. The masks are created by normalizing the cloud probability P(F,C) to the range 

[0,1] and splitting the dataset at a probability threshold 0.45 to introduce binary values. An operation of morphological 10 

closing and opening was then applied to the cloud and snow/ice pixels in order to remove single pixels.The cloud 

probabilities for each given set of features (Section 3.2) were compiled into binary masks in order to compare the results to 

the binary AATSR cloud masks. The masks are created by applying a threshold tp ∈ [0,1] to the cloud probability P(F,C) 

followed by one iteration of morphological closing and opening to remove isolated pixels in clear sky and cloud covered 

areas. Invalid pixel and clear sky open water pixel are tracked during the morphological operations to avoid an enlarged land 15 

or open water mask. 

The binary MECOSI and AATSR cloud masks are the used to filter out clouds in the MPD swath data. No co-location or 

interpolation is necessary for this step because both algorithms, the MECOSI cloud screening and MPD, process identical 

MERIS swaths, and the AATSR cloud masks were gridded to the MERIS grid. The comparison of the three cloud masks, as 

well as illustration of separate features of the feature vector F as well as their corrections, is given in the next section. 20 

4 Results  

4.1 O2A correction  

An example of the influence of the O2A correction described in Section 3.3.1 is presented in Figure 1. The jumps at the 

transition between the five detectors of MERIS, visible as vertical stripes in the uncorrected ratio (Fig. 1b), are strongly 

reduced by applying the correction (Fig. 1c). The influence of low sun elevation, which causes the dark top left corner in the 25 

uncorrected ratio, is much less apparent. Also, there are no pronounced artifacts introduced by the discrete look up table 

(Section 3.3.1) used for the correction, as the corrected ratio is a rather smooth image. Very bright pixels, e.g. cloud edges 

visible in Figure 1a, are darker and more apparent after applying the correction. 
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Another way to investigate the effect of the correction is to study the along-track mean of the O2A ratio. As expected, the 

corrected ratio is a smooth function with values close to zero, if data from the whole period May to September is considered 

(Fig. 2 black line). This is different for the data from May only, where we find small jumps between the detectors (Fig. 2 red 

line). Moreover, there is a negative slope in the along-track mean, which implies that pixels at the right side of the swath 

tend to be darker than the ones on the left side. For the data of July, we find a reverse sign situation (Fig. 2, blue line). This 5 

seasonal dependence is expected due to the illumination-observation geometry change in the course of summer; however, 

these artifacts are minimal and still allow a high-quality cloud detection using the oxygen A MERIS band.  

4.2 Comparison to AATSR cloud mask  

We first investigate whether the MECOSI algorithm can reproduce the AATSR cloud mask for the year 2009 used for the 

algorithm training. As AATSR data contains also TIR thermal infrared bands, in which the snow and ice surface is virtually 10 

a black body, the cloud detection with AATSR shows good reliability in the Arctic (Istomina et al., 2010) and can be used as 

a reference in this study. Figures 3 and 4 show two examples of the MECOSI cloud probability, one for the typical situation 

at the beginning of the melt season in May with bright, snow covered ice (Fig. 3) and one for darker, ponded ice at the peak 

of the melt season in July (Fig. 4). In both cases, the cloud probability (Fig. 3b and Fig. 4b) corresponds to the AATSR mask 

(Fig. 3c and Fig. 4c). Most clouds visible in the TOA reflectance images (Fig. 3a and Fig. 4a) are prominent with 15 

significantly higher cloud probabilities. No distinct difference in cloud probability is visible across the swath and 

dependencies to the acquisition geometry or detector specific properties appear to be well compensated. However, closer 

inspection reveals several cases of false negatives, like e.g. the semi-transparent clouds over landfast ice which cannot be 

discriminated from clear sky regions by their cloud probability (red arrow in Fig. 3a). The opposite case is shown with a blue 

arrow Fig. 3a, where low ice concentrations close to the coast were falsely detected as high cloud probability.  20 

To quantify the performance of the algorithm, we study the distribution of cloud probability for clear sky and cloud covered 

pixels in the AATSR mask (Fig. 5). For cloud covered pixels, we find that nearly 85% percent show a cloud probability 

greater than the background probability P(C)=0.86 and the distribution drops sharply towards smaller cloud probabilities 

(Fig. 5 top). Visual inspection shows that probabilities smaller than P(C) are almost always correlated to semi-transparent 

cloud over snow covered ice or optically thin clouds. The distribution for clear sky pixels is less distinct (Fig. 5 bottom).  It 25 

drops towards higher cloud probabilities, which is expected, but 6% percent show a cloud probability higher than P (C) and 

cannot be reliably discriminated from clouds. The majority of these 6% is the challenging case of bright, snow covered sea 

ice during the beginning of the melt season and fresh snow during fall freeze-up, hence such incorrectly high cloud 

probability is rarely found for darker ice with melt ponds on top. Most of these false positives are connected to cloud-like 

values of the MDSI feature Fsi, which may potentially occur for fresh snow with fine grains. The extremely high albedo of 30 

such surface will compromise the 𝑟𝑜𝑥  feature and prevent correct detection. 

We compare the MECOSI binary mask to the AATSR reference mask to study the temporal behavior of the algorithm’s 

performance and to investigate the accuracy of the binary mask. By comparing all swaths from May to September 2009, we 
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find that, with reference to the AATSR cloud mask, 92.51% of the MERIS pixels are classified correctly and the remaining 

7.49% split up to 4.64% missed cloud and 2.85% missed clear sky pixels. The temporal behavior of the detection rates is 

presented in Figure 6. The algorithm works best in July, with detections rates around 0.9 for both clear sky and cloud pixels, 

and the performance is only slightly worse in June. However, we find a considerably worse detection rate for clear sky 

regions in May, August and September with values close to 0.6 and below. This indicates that more than 40% of the pixels 5 

marked as clear sky in the AATSR mask are falsely screened out in the MECOSI binary mask. The detection rate for cloud 

steadily increases during June and July up to almost 1.0 at the end of the melt season. This increase is due to the state of ice 

surface, which gets darker over time and makes the detection of semi-transparent cloud easier.  

The binary cloud mask derived from MECOSI cloud probability is compared to independent AATSR mask from two other 

years. By comparing over 3.8 × 109 pixels from 2010 and 2011, we find that 90.50% (90.65% for 2011) of the pixels are 10 

correctly classified, which is about 2% less than for 2009. Thereby 5.85% (5.92%) are missed cloud and 3.64% (3.42%) are 

wrongly screened out clear sky pixels.  

4.3 Extension beyond AATSR swath and comparison to MODIS cloud fraction  

The accuracy of the MECOSI algorithm outside of the center half of the swath is difficult to assess because of the lack of 

appropriate reference data. Visual inspection of MERIS images from 2009 to 2011, which have been superimposed with the 15 

binary cloud mask, gives the general impression that the accuracy is considerably good throughout the full swath. The 

several cases of semi-transparent clouds in May and early June 2010 are more frequently missed in the upper right quarter of 

the swath. The reason for this is somewhat small values in the corrected oxygen A ratio; a tendency towards smaller values 

on the right side of the swath is also observable in May 2009 (Fig. 2). The along-track mean of cloud probability for the year 

2010 also gives slightly smaller values at the right side of the swath, as Figure 7 shows, and the standard deviation σ 20 

increases. However, the differences across the swath are small (±0.017 for the mean and ±0.02 for σ) and are mainly linked 

to different characteristics of the five detectors of MERIS, as the jumps at the transitions and the linear behaviour for the 

center detectors show.  

To further investigate the performance outside of the AATSR swath as well as the overall accuracy, we compare MECOSI 

binary cloud mask, gridded to a one-degree constant angle grid, to MODIS cloud fraction (Ackermann et al., 2008) data 25 

from May to Septmeber 2010. Thereby, we use either the full MERIS swath, center half or the outside quarters (Figure 8a,b 

and c, respectively). We find a good agreement with the MODIS data in all three cases. If the full MERIS swath is used (Fig. 

8a), the comparison of over 6.7 × 105 grid cells gives a root-mean-square deviation RMSD = 0.18 and a difference of means 

D = -0.02, which indicates that the MECOSI algorithm tends to retrieve slightly higher cloud fraction. The numbers for the 

central part of the swath (Fig. 8b) are very similar, with RMSD = 0.19 and D = -0.03, but the number of grid cells N = 5.0 × 30 

105 is smaller because of the restricted spatial coverage. For the outside quarters, we find again almost equal parameters with 

RMSD = 0.19, D = -0.01 and N = 4.6 × 105, although a slight pixel displacement is seen (compare top left and bottom right 

corner of Fig. 8b and 8c).  
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4.4 Influence on the melt pond fraction retrieval  

Finally, we study the influence of different cloud masking schemes on the retrieved MPF. Figure 9 shows an example of 

using the original cloud screening built into the MPD algorithm, as well as the effect of additionally applying the MECOSI 

and AATSR cloud masks. It is evident that both the MECOSI and the AATSR cloud mask (Fig. 9b and c) are much more 

restrictive than the MPD cloud masking scheme (Fig. 9a). The spatial coverage is significantly reduced and regions which 5 

are not screened out correspond well to a MODIS cloud fraction below 50% (Fig. 9d). Differences between using the 

MECOSI and the AATSR cloud mask are mostly due to the limited spatial coverage of AATSR (e.g. the larger pole hole).  

A time series of the Arctic-wide mean MPF for all three cloud masking schemes is presented in Figure 10. The spatial 

coverage has been restricted to the area seen by AATSR. 

 For all three years 2009 to 2011, we find evident differences between the original MPD product and the two improved 10 

products with additional cloud masking. The most prominent one is the significantly higher (up to 0.08 increase) mean MPF 

in July when additional cloud screening is applied. In May and September, however, the additional screening results in 

slightly smaller mean MPF. This behavior is expected because as the MPD algorithm retrieves values of around 0.15 MPF 

for opaque clouds, so that immense cloud contamination in the original MPD product reduces the MPF value range of the 

timerseries towards this wrong MPF value.  15 

If we focus on the differences between AATSR and MECOSI cloud mask (dark red and blue in Fig. 10), we find that both 

masks lead to a similar MPF timeseries. Using the MECOSI mask results in slightly higher MPF in May, which is possibly 

caused by some omitted clouds. The main advantage of the MECOSI cloud mask over AATSR is the larger spatial coverage 

of the latter (compare Fig. 9b and 9c).  

5 Discussion  20 

The results show that the MECOSI algorithm discriminates clouds from summer sea ice with good accuracy. With MECOSI, 

over 90% of the pixels are classified correctly, when compared to the AATSR reference.  

Comparison to the independent MODIS daily cloud fractions shows good agreement with the developed MECOSI mask both 

in the center part of the MERIS swath where AATSR data are available for training, and on the outside edge of the swath 

(Fig. 8). There is no evidence that the quality of the algorithm performance worsens towards the edges of the swath. The 25 

variation of mean cloud probability and its standard deviation across the swath is dominated by detector-to-detector 

differences and shows no change towards the edges of the swath (Fig. 7). Therefore, we conclude that the results of the 

comparison to AATSR cloud mask are, in general, valid for the full MERIS swath.  

The quality of the MECOSI cloud mask for both clear and cloudy cases is the best in June and July, when the rapid melt 

onset and first pond drainage events happen on the Arctic sea ice (Fig. 6). Bright fresh snow compromise MECOSI cloud 30 

screening and lead to some false detections in May. The O2A ratio is well suited for improving the detection over fresh snow. 

The proposed correction scheme equalizes the ratio reasonably well (compare Figs. 1b and 1c). However, the detector-to-
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detector artifacts indicate some residual influences of the spectral smile effect, surface albedo and instrument stray light 

which were not fully removed also by the proposed correction scheme. 

The cloud detection rates at the end of the melting season in August/September are close to 100%. The not as good detection 

of clear cases might be connected to the reduced number of such scenes at the end of melting season, as humidity and 

cloudiness increase, and the ice cover decreases with the minimum ice extent typically in the first weeks of September. For 5 

our specific application, i.e. retrieving surface parameters, it is important to screen out possibly all clouds as they bias the 

retrieval result. Wrong detections of clear cases as cloudy are less critical as this just reduces the spatial coverage of the 

product but does not affect the retrieved values. 

Consequently, the MECOSI cloud screening improves the quality of the MPD MPF and albedo product. By reducing the 

amount of cloud contamination, we find consistently higher pond fraction in the period Mid-June to Mid-August for all three 10 

years (Fig. 10). The cloud contaminated pixels are no longer used as input into the MPD retrieval and the resulting MPF 

dataset contains unbiased MPF and albedo values. The so improved resulting dataset can be used for further applications, 

such as assimilation into or validation of climate and melt pond models.  

6 Summary  

In this work, we present MECOSI, a new cloud screening routine for MERIS specifically developed for use over Arctic 15 

summer sea ice. Comparison to the independent MODIS cloud mask shows that the available summer Arctic MPF and 

spectral sea ice albedo product from MERIS (Zege et al., 2015; Istomina et al., 2015) are significantly cloud contaminated 

(compare Figs. 9a and 9d). The cloud screening method presented here has been developed to improve the quality of the 

MPF and albedo datasets. 

The developed cloud masking routine utilizes all 15 MERIS channels and a reference AATSR cloud mask to calculate 20 

probabilities of cloudy and clear cases for a given set of features:  

- Oxygen A absorption and reference ratio (additionally corrected for smile effect), 

- MERIS normalized difference snow index, 

- brightness and whiteness criteria. 

The dependencies on the illumination-observation geometry and the position of the pixel in the array of detectors, i.e. the 25 

detector index, have been accounted for as well. To calculate the cloudy and clear probabilities, a dataset of every AATSR 

and MERIS swath from 01.05.2009 to 30.09.2009 have been used to ensure a representative sample of the sea ice, snow and 

cloud conditions. 

The developed cloud mask shows a considerable improvement over the old MPD cloud mask. The quality of cloud detection 

of the new algorithm is close to the reference AATSR cloud mask, whereas MERIS does not have the IR infrared channels 30 

which aid in the snow-cloud discrimination. The MECOSI cloud detection quality remains high also near the edges of the 

MERIS swath where no AATSR training data were available. Comparison to the reference AATSR and independent MODIS 
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cloud masks shows that the application of MECOSI has greatly increased the quality of the MPD products on both spatial 

(Fig. 9) and temporal (Fig. 10) scales. 

The advantage of MECOSI over e.g. MODIS daily cloud fraction product is that it enables accurate cloud screening of swath 

MERIS data over snow and sea ice, which was not possible with the old version of the cloud screening used in the MPD 

retrieval. 5 

The developed cloud mask for MERIS over the summer Arctic sea ice, as well as the improved datasets of the melt pond 

fraction and spectral albedo for the entire MERIS operation time are available at the ftp server of the University of Bremen 

https://seaice.uni-bremen.de/data/meris/gridded_cldscr/. 
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Figure 1: Reflectance at 779 nm (a), uncorrected O2A ratio (b) and corrected O2A ratio used as a feature in the cloud screening (c). 

Shown is a 2450 × 1121 pixel part of ENVISAT Envisat orbit 37475 from 1st of May 2009 with the New Siberian Islands at the 

bottom and parts of the Canadian Archipelago at the top. Land, open water and invalid pixels are white. 
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Figure 2: Along-track mean of the corrected O2A ratio. For each time period, the mean is calculated from 100 randomly selected 

swaths. The vertical lines mark the transition between the five detectors of MERIS. 
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Figure 3: Reflectance at 779 nm (a), cloud probability (b) and corresponding AATSR mask (c) for 14th of May 2009 with Svalbard 

at the bottom left corner. Land, open water and invalid pixels are white. The red arrow points to missed clouds and the blue one 

marks wrongly screened out clear sky pixels (orbit number 37666). 
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Figure 4: Reflectance at 779 nm (a), cloud probability (b) and corresponding AATSR mask (c) for 31st of July 2009 (orbit number 

38778). The blue arrow marks a region with wrongly screened out clear sky pixels, although a thin cloud cover is possible. 10 
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Figure 5: Distribution of MECOSI cloud probability for AATSR cloud pixels (top) and AATSR clear sky pixels (bottom) for May 

to September 2009. 

 

 5 

Figure 6: Time series of daily mean classification rates for 2009. As an example, a value of 0.9 for cloud means that 90% of the 

cloud pixels in the AATSR mask are correctly classified as cloud covered and the remaining 10% are missed clouds. 

 

Figure 7: Along-track mean and standard deviation of cloud probability for 2010. Vertical lines mark the transition between the 

five detectors of MERIS. 10 
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Figure 8: Comparison of daily gridded MECOSI and MODIS cloud fraction using the full MERIS swath (a), the center half (b) or 

the outside quarters (c) for the gridded MECOSI fraction. Period is May to September 2010.  

 

 5 

Figure 9: Gridded melt pond fraction with MPD cloud mask (a), MECOSI cloud mask (b), AATSR cloud mask (c) and MODIS 

daytime mean cloud fraction (d), 20th of June 2009.  
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Figure 10. Influence of different cloud mask on Arctic-wide mean melt pond fraction for 2009 – 2011. The means are calculated 

from gridded melt pond fraction data and coverage is restricted to the area seen by AATSR. Days with less than 100 grid cells to 

compare or missing AATSR data are excluded.  
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