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Abstract. The historic MERIS (Medium Resolution Imaging Spectrometer) sensor onboard Envisat (Environmental 

Satellite, operation 2002-2012) provides valuable remote sensing data for the retrievals of summer sea ice in the Arctic. 

MERIS data together with the data of recently launched successor OLCI (Ocean and Land Colour Instrument) onboard 10 

Sentinel 3A and 3B (2016 onwards) can be used to assess the long-term change of the Arctic summer sea ice. An important 

prerequisite to a high-quality remote sensing dataset is an accurate separation of cloudy and clear pixels to ensure lowest 

cloud contamination of the resulting product. The presence of 15 visible and near infrared  spectral channels of MERIS allow 

high quality retrievals of sea ice albedo and melt pond fraction, but make cloud screening a challenge as snow, sea ice and 

clouds have similar optical features in the available spectral range of 412.5 - 900nm. 15 

In this paper, we present a new cloud screening method MECOSI (MERIS Cloud Screening Over Sea Ice) for the retrievals 

of spectral albedo and melt pond fraction (MPF) from MERIS. The method utilizes all 15 MERIS channels, including the 

oxygen A absorption band. For the latter, a smile effect correction has been developed to ensure high quality screening 

throughout the whole swath. Three years of reference cloud mask from AATSR (Advanced Along Track Scanning 

Radiometer) (Istomina et al., 2010) have been used to train the Bayesian cloud screening for the available limited MERIS 20 

spectral range. Whiteness and brightness criteria as well as normalized difference thresholds have been used as well. 

The comparison of the developed cloud mask to the operational AATSR and MODIS (Moderate Resolution Imaging 

Spectroradiometer) cloud masks shows a considerable improvement in the detection of clouds over snow and sea ice, with 

about 10% false clear detections during May-July and less than 5% false clear detections in the rest of the melting season. 

This seasonal behaviour is expected as the sea ice surface is generally brighter and more challenging for cloud detection in 25 

the beginning of the melting season. 

The effect of the improved cloud screening on the MPF/albedo datasets is demonstrated on both temporal and spatial scales. 

In the absence of cloud contamination, the time sequence of MPFs displays a greater range of values throughout the whole 

summer. The daily maps of the MPF now show spatially uniform values without cloud artefacts, which were clearly visible 

in the previous version of the dataset.  30 

The developed cloud screening routine can be applied to address cloud contamination in remote sensing data over sea ice. 
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The resulting cloud mask for the MERIS operating time, as well as the improved MPF/albedo datasets for the Arctic region 

are available at: https://www.seaice.uni-bremen.de/start/ (last access: 30 July 2020, Istomina, Marks, Huntemann 2017).  

1 Introduction 

No other surface type of satellite imagery has the unique features of bright reflecting, white snow surface. The task of snow 

detection therefore would be an easy task in the absence of clouds. However, the snow spectral signature (e.g. Warren, 1982) 5 

is also a feature of water and especially of ice clouds (Kokhanovsky, 2006). Possible snow impurities, snow grain size 

differences, and liquid water content create fine differences between many snow types (Warren, 1982), but in general the 

spectra of snow and cloud are similar in the visible and near infrared, with the difference occurring beyond 1µm (e.g. 

channels at 1.6, 3.7, 11 and 12 µm).  

For MERIS data with a spectral range from 412.5nm to 900nm, cloud detection over snow and sea ice a challenging task. 10 

However, the advantage of MERIS - its 15 spectral bands within this relatively small spectral range - makes it especially 

suitable for the melt pond fraction (MPF) retrieval over the Arctic sea ice, which needs a quality cloud screening routine.  

Although most of the field campaigns and in situ measurements of the sea ice covered Arctic ocean are performed during 

Arctic summer (e.g. an overview in Istomina et al., 2015), the links and feedbacks between the rapidly evolving sea ice 

surface, the atmosphere and the underice ecosystem are multifold (Curry et al., 1996) and not yet fully understood. The 15 

appearance of melt ponds on sea ice during melt onset causes a drastic change of its albedo and transmittance (Nicolaus et 

al., 2012) which affects the surface energy balance and facilitates lateral, top, bottom and internal sea ice melt, i.e. affects the 

sea ice volume. Only recently the suggestion that melt ponds during melt onset might be connected to the sea ice area during 

the sea ice minimum has been published (Schröder et al., 2014). In order to understand these processes, a long-term global 

coverage record of sea ice parameters, among others also MPF, needs to be available to the community. That is, the 20 

presented cloud screening routine and the resulting MPF dataset can be used in studies of sea ice processes and feedbacks. 

To the knowledge of the authors, at the time of writing no climate model includes melt ponds on top of sea ice. One of the 

reasons is that melt ponds, although observed in situ during many campaigns, still present a challenge for climate modeling 

due to unknown global spatial distribution. Although reanalysis air temperature at the surface is available also over sea ice 

covered Arctic ocean (e.g. Kalnay et al., 1996), MPF is not linearly linked to the air temperature but also depends on the ice 25 

topography and its internal macrophysical properties as density, porosity etc. Satellite MPF datasets of possibly global 

coverage are the only way to understand not only local events but also global spatial dynamics, which may eventually lead to 

successful inclusion of melt ponds into climate models. 

Besides cloud screening for the MPF retrieval using MERIS data, a robust cloud detection from MERIS in the Arctic region 

may be important for 1) synergy with the other sensors onboard Envisat and 2) might be applicable to sensors similar to 30 

MERIS, e.g. OLCI. 
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The cloud screening for OLCI, which is a successor of MERIS without thermal infrared bands, presents challenges similar to 

those of MERIS. OLCI data are important as continuation of MERIS in order to provide long-term data records of e.g. MPF. 

Nevertheles, the cloud screening presented here has been developed specifically for MERIS and thus addresses the issue of 

cloud screening over snow for ENVISAT sensors, e.g. SCIAMACHY (Scanning Imaging Absorption Spectrometer for 

atmospheric Chartography) (see e.g. Schlundt et al., 2011). Of course, the approach presented here can be applied to OLCI 5 

data as well. 

Depending on the retrieved parameter and sensor, the effect of a compromised cloud screening may be moderate (retrievals 

of albedo and snow grain size within SGSP (Snow Grain Size and Pollution Amount Retrieval), Wiebe et al., 2013) to 

drastic (aerosol retrieval, Istomina et al., 2011; MPF retrieval, Zege et al. 2015). As the melting sea ice displays a variety of 

spectral behaviors in the entire range from white ice to dark melt ponds (e.g. Istomina et al., 2013), a versatile forward model 10 

and retrieval which can account for such a variability at a global spatial scale are needed. Such a retrieval (Melt Pond 

Detector, MPD) has been developed by Zege et al., (2015). The MPD is a pixelwise retrieval and only utilizes the spectral 

information without additional morphological or statistical criteria. As clouds do not spectrally differ from most of the 

surfaces available during Arctic summer, so that e.g. warm water clouds may appear similar to white ice throughout most of 

the available spectral range (same for cirrus and fresh fine snow), the MPD can therefore misinterpret the cloud 15 

contamination as sea ice melt.  The resulting MPF and albedo datasets are thus strongly affected by the residual cloud 

contamination. The objective of this work is to resolve this issue by means of a reliable cloud discrimination over snow for 

MERIS and to provide the datasets of MPF, albedo and cloud mask of a better quality than currently available. 

2 Sensor specific cloud screening in remote sensing 

Some sensors are better suited for the task of cloud screening but are not suitable for the MPD retrieval due to other 20 

limitations. E.g. the MODIS cloud mask (Ackermann et al., 1998; Liu et al., 2004) is one of the most comprehensive 

classification algorithms, however, as the MODIS sensor experiences saturation in some of the visible bands (Madhavan et 

al., 2012), it is impossible to use these data for the given sea ice albedo and MPF retrieval (Zege et al., 2015). As the MERIS 

sensor onboard Envisat does not have these limitations, it has been chosen for the retrievals of MPF and albedo. However, 

the choice of methodology to perform cloud screening over snow and ice with MERIS is not a trivial task.  25 

Three basic cloud screening approaches applicable to a spectroradiometer data can be distinguished among the available 

algorithms:  

- Analysis of time-sequences of data, under the assumption that the short-term changes of the scene can be only introduced 

by clouds (e.g. Key and Barry, 1989; Diner et al., 1999; Lyapustin et al., 2008; Lyapustin and Wang, 2009; Gafurov and 

Bárdossy, 2009). Such an approach assumes surfaces with a constant and pronounced structure (Lyapustin et al., 2008; 30 
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Lyapustin and Wang, 2009). Although the approach proved to be effective for various natural and artificial surfaces, it is not 

applicable within this work due to the fast-evolving nature of melt ponds and the sea ice. 

- Applying a reflectance or brightness temperature absolute threshold or their combination, e.g. ratio of reflectances in the 

form of NDVI. In this case, only a few channels are used (e.g. Minnis et al., 2001; Bréon and Colzy, 1999; Lotz et al., 2009; 

Allen et al., 1990; Spangenberg et al., 2001; Trepte et al., 2001). The optical properties of snow in the visible spectral range  5 

show weak spectral dependency. In the near infrared and infrared, however, the snow spectrum shows the typical “snow 

signature”, i.e. values decreasing due to water absorption in the near infrared, which also causes the dependence on the snow 

grain size due to different pathlength and absorption in the grains of different size. These features aid the snow-cloud 

discrimination. Therefore, it is a common practice to use infrared channels in addition to visible for such retrievals 

(Spangenberg et al., 2001). In the current task, the limited spectral range of MERIS does not allow effective usage of this 10 

approach.  

- Image processing and spatial variability analysis (e.g. Martins et al, 2002). In the case of white clouds over white surface, 

the spatial variability would mainly come from the difference in grain/particle size, surface roughness, different water phase 

(ice surface vs water cloud, melting surface vs ice cloud), and cloud shadows. Given the great natural variability of these 

parameters in both Arctic clouds and surface and the similarity of their optical properties in the given spectral range, this 15 

approach is prone to false detections. 

Combinations of the above methods together with additional thresholds and additional meteorological/reanalysis data are 

also available. E.g. the MODIS cloud detection scheme (Ackerman et al., 1998; Liu et al., 2004) is one of the most 

comprehensive among the available cloud detection schemes and is based on such combination. This algorithm uses 19 out 

of 36 MODIS channels along with additional inputs, e.g. topography and illumination observation geometry for each 1-km 20 

pixel, land /water mask, ecosystem maps, and daily operational snow/ice products (taken from the NOAA, National Oceanic 

and Atmospheric Administration and NSIDC, National Snow and Ice Data Center). The resulting MODIS cloud mask 

contains 4 confidence levels (confident cloudy, uncertain, probably clear, confident clear) and is available as a separate daily 

averaged product. Unfortunately, due to the time lag between Envisat and Terra/Aqua, MODIS cloud mask product cannot 

be used for swathwise screening for the melt ponds fraction retrieval. 25 

Most of the cloud screening approaches do not focus on the case of the snow surface; among those who do (Allen et al., 

1990; Spangenberg et al., 2001; Trepte et al., 2001; Istomina et al., 2010; Istomina et al., 2011), even smaller fraction utilizes 

MERIS sensor for this task (Kokhanovsky et al., 2009, Schlundt et al., 2011, Zege et al., 2015, Istomina et al., 2015, Krijger 

et al, 2011). 

The currently available cloud masks for MERIS (Zege et al., 2015, Schlundt et al., 2011, etc.) are based on NDSI-like 30 

(Normalized Difference Snow Index) indices, e.g. MDSI (MERIS Differential Snow Index). In the absence of infrared 

channels these thresholds result in a residual cloud contamination over snow and sea ice. However,  
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unlike most of the moderate resolving spectroradiometers, MERIS has the so-called oxygen A Band (MERIS channel 11 at 

761.5 nm), which can aid greatly in cloud screening over snow and ice. 

2.1 MERIS Oxygen A Band and the smile effect 

As oxygen is in the Earth atmosphere, the amplitude of absorption within MERIS channel 11 reflects optical path length of 

light rays received with the sensor. Effective path length over clouds is shorter than that over sea ice or snow on land, that is, 5 

light reflected from clouds experiences less absorption when travelling through the atmosphere than light reflected from the 

surface. This allows separating clouds and snow/sea ice surface according to their height in the atmospheric column.We 

expect this criterion to work best for optically thick water clouds. The sensitivity to optically thin clouds is expected to be 

small over bright surfaces like sea ice (Preusker and Lindstrot, 2009), and clouds with a low top height would generally also 

have a weaker effect onto the oxygen ratio. Fortunately, as in our case the Arctic sea ice surface lies uniformly at sea level 10 

and displays no relief, there is no confusion possible between clouds and surface in the terms of optical path length and the 

only uncertainty might come from the sensor specific features, i.e. the smile effect.As MERIS is a push-broom sensor, its 

channels are susceptible to the usual for this type of sensors smile effect,which occurs due to a small variation in the central 

wavelength across the MERIS swath. The artifacts appear as along-track stripes within the swath and impair application of 

thresholds or retrievals. The oxygen ratio approach without the smile correction has been used by Zege et al., (2015), and 15 

Istomina et al., (2015) as a threshold in addition to classical whiteness and brightness criteria. The threshold comprises the 

ratio of bands 10 (oxygen A reference) and 11 (oxygen A absorption) R11/R10<0.27, where the value 0.27 has been derived 

from the visual analysis of several dozen of MERIS scenes (see Zege et al.,  2015 and Eq 17 therein). As seen in Zege et al., 

2015 and Istomina et al., 2015, strong artifact presence compromises the effective application of the oxygen ratio threshold.  

The smile effect of MERIS has been studied (Bourg et al., 2008) and ways to correct it have been shown by Gómez-Chova et 20 

al. (2007) or Jäger (2013). The approach by Jäger (2013) greatly improves the usability of the oxygen ratio, but does not 

fully remove detector-to-detector differences. A reason for this might be instrument stray light, which is not fully removed in 

the MERIS operational processing chain (Lindstrot et al., 2010), and that was not taken into account by Jäger (2013). 

 

Another available smile effect corrections comprise also those included into the ESA (European Space Agency) toolbox for 25 

Envisat processing, i.e. open source packages BEAM or SNAP (Earth Observation Toolbox and Development Platform, 

Sentinels Application Platform, https://www.brockmann-consult.de). These corrections work well within the transparency 

window of the atmosphere over darker surfaces but are not sufficient in the oxygen A absorption band over brighter surfaces 

such as snow and ice. 

In this work, we suggest a smile correction for MERIS band 11 which allows slight inaccuracy on the absolute value of the 30 

top-of-atmosphere (TOA) reflectances but preserves the relative difference between the sensor pixels, which allows a 

quantitative use of the corrected oxygen A band for cloud screening (Section 3.3.1). 
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3 Methods  

The cloud screening method for MERIS data developed in this work is specifically aimed to work well over summer sea ice. 

It is called MECOSI (MERIS Cloud screening Over Sea Ice). MECOSI utilizes the collocated AATSR data in the center part 

of the MERIS swath, namely the infrared channels 1.6, 3.7, 11 and 12 µm, for training and. In this work, we use the AATSR 

cloud screening developed for the aerosol retrieval over snow and ice (Istomina et al., 2010).  5 

Currently MECOSI is being applied as preprocessing for the retrieval of melt pond fraction and spectral albedo of summer 

sea ice (MPD). The MPD retrieval takes top-of-atmosphere reflectances of MERIS at 9 channels as input and employs a 

forward model of optical properties of the Arctic surface and an iterative procedure to retrieve spectral albedo and melt pond 

fraction of a given pixel. Several hundred field spectra of the Arctic sea ice and melt ponds have been used to constraint the 

input parameters of the forward model and to ensure realistic range of modeled surfaces. More details on the MPD retrieval 10 

can be found in Zege et al. (2015). The presented cloud screening method can be used for other remote sensing applications 

as well, e.g. for retrievals of other surface or atmospheric parameters or as a cloud mask for coarser resolving sensors 

onboard same satellite platform (e.g. SCIAMACHY on Envisat).  

3.1 Data used  

Input for MECOSI are MERIS Level 1B observations. MERIS consists of five cameras scanning the surface of the Earth in 15 

push-broom mode and offers 15 spectral bands from 412.5 nm to 900 nm. The data is collected globally with a spatial 

resolution of 1040×1200m at nadir. The Level 1B product provides calibrated and georeferenced TOAradiances. These are 

preprocessed using the software package BEAM (www.brockmann-consult.de/cms/web/beam/).  

The preprocessing includes:  

1. The region north of 65◦N is cut out from each orbit using the module Subset. 20 

2. The metadata in the L1B swaths is given in a grid with reduced resolution and needs to be interpolated in order to 

have the data available for each pixel. This is done using the BandMath module. The coordinates as well as sun 

zenith and the view zenith angles are now interpolated. 

3. The TOA radiances are corrected and converted to reflectances using the module Meris.CorrectRadiometry. The 

correction includes an equalization step to reduce detector-to-detector differences and a scheme to reduce the smile-25 

effect in all but the absorption Bands 11 and 15. 

A cloud mask derived from AATSR data (Istomina et al., 2010) is used as a reference mask to develop and validate the 

MECOSI algorithm. The AATSR instrument has been launched together with MERIS aboard Envisat and both sensors 

observe the same scene nearly simultaneously. The spatial resolution of AATSR is 1km at nadir which is similar to the 

spatial resolution of MERIS. However, as AATSR has a narrower swath of 512 km, it covers only the central half of a 30 

MERIS swath. The AATSR cloud screening algorithm has been developed for an aerosol optical thickness retrieval and is 

presented by Istomina et al. (2010). It exploits knowledge about the spectral shape of snow in visible, near infrared and 
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thermal infrared bands of AATSR. As intercomparisons of cloud screening routines are challenging due to the time 

difference between the overflights of different satellite sensors, the validation has been performed against in situ lidar data. 

The comparison of the AATSR cloud mask to the Micro Pulse Lidar data has proven the robustness of the method (95% 

correct cloudy/clear detections with remaining 5% of cases connected to thin clouds on a sample of ~100 scenes).The output 

is a binary mask for cloud free snow and ice. 5 

The training dataset used in this work was prepared as follows: all AATSR swaths from May to September 2009, 2010 and 

2011 have been subset, transformed into TOA, and co-located to the corresponding MERIS swaths using a nearest neighbour 

algorithm (radius of influence 1.5 km). As the AATSR and MERIS data have different spatial resolution, the two datasets 

have been gridded to a single grid (the coarser grid of MERIS). This might have affected the pixels at the borders of clouds 

in a way that earlier fully covered pixels now become partly covered which the binary AATSR cloud mask cannot fully 10 

reflect. Therefore we exclude the two pixel border from the study. 

This AATSR dataset from May to September 2009 – 2011 was used to estimate the cloudy and clear case probabilities for 

given feature vector as described in the next Sections. 

3.2 Bayesian cloud screening  

A comprehensive introduction to the theory of Bayesian cloud screening is given by Hollstein et al. (2015). The described 15 

approach can be found in detail in (Marks, 2015). In the following, P(A,B) denotes the occurrence probability of A under the 

condition of the occurrence of B and F is a vector of features derived pixel-wise from satellite data. and if C denotes cloudy 

conditions (C̅ – clear conditions), the probability to see a cloudy pixel under the occurrence of F can be written as: 

P (C, 𝐅) =
P (𝐅,C)·P (C)

P (𝐅,C)·P (C)+P (𝐅,C̅)·P (C̅)
 ,          (1) 

using this equation to calculate the cloud probability P (C, 𝐅)  we need to estimate the probabilities P (𝐅, C) and P (𝐅, C̅)  for 20 

each possible feature vector 𝐅 ∈ 𝑅𝑁. We accomplish this by calculating N-dimensional frequency histograms, one for cloud 

and one for clear sky cases as flagged in the AATSR mask. This is done for every AATSR and MERIS swath for the time 

period 01.05.2009 to 30.09.2009. The background probability P (C) is directly calculated from the AATSR masks using data 

from the same year. Pixels outside the AATSR swath are not used in this analysis. The set of features for which the above 

procedure is being performed is described below. 25 

3.3 Features and applied corrections  

The selection of the features used to build the feature vector F is the most important step during the development of the al-

gorithm and greatly affects the performance of the screening. Hollstein et al. (2015) used a random search algorithm to find a 

set of features Fi that performs best in global application. Here, however, the features are selected manually to find a set that 
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performs best over snow-covered ice and darker, ponded ice. Additionally, correction algorithms were developed to equalize 

the systematic dependencies on the cross-track pixel position.  

3.3.1 Oxygen-A ratio  

The TOA ratio of the O2A Band 11, which is located at the oxygen absorption line at 761 nm, to Band 10 at 754 nm, which 

is the oxygen reference band is used here to estimate the absorption by oxygen in the atmospheric column above reflecting 5 

surface: 

rox =
R11

R10
 ,            (2) 

The ratio rox  cannot be used directly in the feature vector F because of dependencies on the illumination-observation 

geometry and because of the smile effect artifacts. The optical path through the atmosphere depends on sun and view zenith 

angles in both cloudy and clear cases and needs to be accounted for. As these angles are provided in MERIS Level 1B swath 10 

data, the air mass factor can be calculated (e.g. Gómez-Chova et al. (2007)). The smile effect artifacts in rox need additional 

consideration before it can be used for cloud screening.  

In this work, we propose an empirical approach to equalize rox and decrease the influence of the above-mentioned factors 

across the swath. We assume that over a statistically significant sample, the mean value of rox for a given set of conditions 

(e.g., for a given detector index, geometry, etc.) can be used to correct the systematic across-track dependence for this set of 15 

conditions. We assume that 𝑟𝑜𝑥 depends on three parameters: the detector index 𝐼𝑑 which corresponds to the position of the 

pixel in the detector array, the sun zenith angle θ𝑠 and the viewing zenith angle θ𝑣. 𝐼𝑑 gives a pixel’s position in the sensor 

array and allows to compensate for the spectral smile effect. The sun zenith angle θ𝑠  and the viewing angle θ𝑣  allows 

estimating the optical path in the atmosphere which is in direct dependence with the oxygen absorption. The seasonal nature 

of 𝑟𝑜𝑥 dependence on surface reflectance e.g. at channel 779nm presents a challenge of statistically non-uniform bins of 20 

vastly different sample size and was not included into the correction scheme. The residual 𝑟𝑜𝑥dependence on the surface 

reflectance is less than 2% (Fig. 2) and does not prevent the application of the cloud screening routine. Assuming θ𝑠𝑢𝑚 =

θ𝑠 +  θ𝑣, we obtain a set of data vectors: 

𝑀 = {(𝑟𝑜𝑥, 𝜃𝑠𝑢𝑚 , 𝐼𝑑 )𝑖}, 𝑖 ∈ 𝐼          (3) 

The set I denotes the indices of all pixels in one swath. Pixels with the same detector index Id are selected from the set M and 25 

corresponding subsets are built: 

𝑀𝑗 = {(𝑟𝑜𝑥, 𝜃𝑠𝑢𝑚 , 𝐼𝑑)  ∈ 𝑀 | 𝐼𝑑 = 𝑗}         (4) 

These subsets 𝑀𝑗  are then processed separately. The ratio is binned as follows: 

𝑅𝜃
𝑗

= {𝑟𝑜𝑥|(𝑟𝑜𝑥, 𝜃𝑠𝑢𝑚 , 𝐼𝑑)  ∈ 𝑀𝑗 , 𝜃 ≤ 𝜃𝑠𝑢𝑚 < 𝜃 + 𝛿}        (5) 
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The bin width δ is set to 1/4 degree. The sets 𝑅𝜃
𝑗

 are calculated for many swaths K, typically all summer data of one year. 

Then the mean value of 𝑟𝑜𝑥 is calculated for each one of these sets: 

�̅�𝜃
𝑗

= mean{𝑟𝑜𝑥|𝑟𝑜𝑥  ∈  ⋃ (𝑅𝜃
𝑗

)𝑘
𝐾
𝑘 }          (6) 

Finally, a 5th order polynomial is fitted to the averaged values for each separate detector index j to achieve smooth and 

continuous correction functions 𝑓𝑗: 5 

𝑓𝑗 = fit {�̅�𝜃
𝑗
},            (7) 

which in addition are functions of 𝜃𝑠𝑢𝑚. The correction is applied pixelwise by evaluating f and subtracting the resulting 

value from the O2-A ratio. The corrected ratio is then used as a feature in the cloud screening algorithm.  

It must be noted that as the further calculation of cloud probabilities for the given detector indices and values of 𝑟𝑜𝑥  happens 

in the space of corrected 𝑟𝑜𝑥  only, the absolute amplitude of 𝑟𝑜𝑥 is not important for our application and is not preserved 10 

within the described approach. Instead, the relative difference between the scattering events at the surface and at the cloud 

are equalized throughout the swath and thus made available for cloud screening. 

The above described approach has been performed over all MERIS swathes subset to above 65°N for the time range from 

01.05.2009 to 30.09.2009. This sample is considered to be a statistically significant in terms of variety of surface and cloud 

types and their seasonal behavior under a variety of observation-illumination geometries for all detector indices.  15 

3.3.2 MERIS differential snow index  

The MERIS Differential Snow Index (MDSI) is defined as normalized difference of the TOA reflectances at 865 nm and 885 

nm: 

Fsi =
R13−R14

R13+R14
 ,            (8) 

It exploits the drop in spectral reflectance of snow and ice at the given wavelengths to aid discrimination of snow and ice 20 

from clouds (Schlundt et al., 2011). The systematic cross-track variation is less pronounced than that for the O2 -A ratio and 

no dependence on the observational geometry is expected, i.e. it is assumed to be the same for both spectral bands R13 and 

R14. Therefore, we use a simplified correction scheme: the mean value of Fsi is calculated for each detector index using 

swaths from the summer 2009. Open water pixels have been removed using two thresholds on channels 12 and 13 as 

described by Schlundt et al. (2011). As before, to remove the systematic across-track variability, the obtained mean values 25 

are subtracted from Fsi for each detector index.  
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3.3.3 Brightness and whiteness  

Many types of clouds have a higher reflectance than snow in the near infrared and they usually show a white spectrum. The 

usefulness of these two features to detect clouds has been shown in Gómez-Chova et al. (2007) and the same definitions are 

used here. The brightness b is a spectral integral over the reflectance. As the spectral resolution of the sensor is quite coarse 

with only 13 used channels, the brightness can be represented by the following equation:: 5 

 b =
1

λmax−λmin
∑

ri+1+ri

2iϵI (λi+1 − λi) ,         (9) 

Here, λ denotes the center wavelength of a MERIS band and I is the set of used bands. The absorption bands 11 and 15 are 

excluded from the calculation, hence, we use bands 1 - 10 and 12 - 14 to calculate the overall brightness b. The whiteness w 

of the spectrum is measured by the deviation of the radiances from the brightness b. With 𝑒𝑖 = |𝑟𝑖 − 𝑏|, the equation is  

w =
1

λmax−λmin
∑

ei+1+ei

2iϵI (λi+1 − λi) ,         (10) 10 

Note that small values for w correspond to a flat and therefore white spectrum.  

3.4 Evaluation  

The cloud probabilities for each given set of features (Section 3.2) were compiled into binary masks in order to compare the 

results to the binary AATSR cloud masks. The masks are created by normalizing the cloud probability P(F,C) to the range 

[0,1] and splitting the dataset at a probability threshold 0.45 to introduce binary values. An operation of morphological 15 

closing and opening was then applied to the cloud and snow/ice pixels in order to remove single pixels. The binary MECOSI 

and AATSR cloud masks are the used to filter out clouds in the MPD swath data. No co-location or interpolation is 

necessary for this step because both algorithms, the MECOSI cloud screening and MPD, process identical MERIS swaths, 

and the AATSR cloud masks were gridded to the MERIS grid. The comparison of the three cloud masks, as well as 

illustration of separate features of the feature vector F as well as their corrections, is given in the next section. 20 

4 Results  

4.1 O2A correction  

An example of the influence of the O2A correction described in Section 3.3.1 is presented in Figure 1. The jumps at the 

transition between the five detectors of MERIS, visible as vertical stripes in the uncorrected ratio (Fig. 1b), are strongly 

reduced by applying the correction (Fig. 1c). The influence of low sun elevation, which causes the dark top left corner in the 25 

uncorrected ratio, is much less apparent. Also, there are no pronounced artifacts introduced by the discrete look up table 

(Section 3.3.1) used for the correction, as the corrected ratio is a rather smooth image. Very bright pixels, e.g. cloud edges 

visible in Figure 1a, are darker and more apparent after applying the correction. 
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Another way to investigate the effect of the correction is to study the along-track mean of the O2A ratio. As expected, the 

corrected ratio is a smooth function with values close to zero, if data from the whole period May to September is considered 

(Fig. 2 black line). This is different for the data from May only, where we find small jumps between the detectors (Fig. 2 red 

line). Moreover, there is a negative slope in the along-track mean, which implies that pixels at the right side of the swath 

tend to be darker than the ones on the left side. For the data of July, we find a reverse sign situation (Fig. 2, blue line). This 5 

seasonal dependence is expected due to the illumination-observation geometry change in the course of summer; however, 

these artifacts are minimal and still allow a high-quality cloud detection using the oxygen A MERIS band.  

4.2 Comparison to AATSR cloud mask  

We first investigate whether the MECOSI algorithm can reproduce the AATSR cloud mask for the year 2009 used for the 

algorithm training. As AATSR data contains also thermal infrared bands, in which the snow and ice surface is virtually a 10 

black body, the cloud detection with AATSR shows good reliability in the Arctic (Istomina et al., 2010) and can be used as a 

reference in this study. Figures 3 and 4 show two examples of the MECOSI cloud probability, one for the typical situation at 

the beginning of the melt season in May with bright, snow covered ice (Fig. 3) and one for darker, ponded ice at the peak of 

the melt season in July (Fig. 4). In both cases, the cloud probability (Fig. 3b and Fig. 4b) corresponds to the AATSR mask 

(Fig. 3c and Fig. 4c). Most clouds visible in the TOA reflectance images (Fig. 3a and Fig. 4a) are prominent with 15 

significantly higher cloud probabilities. No distinct difference in cloud probability is visible across the swath and 

dependencies to the acquisition geometry or detector specific properties appear to be well compensated. However, closer 

inspection reveals several cases of false negatives, like e.g. the semi-transparent clouds over landfast ice which cannot be 

discriminated from clear sky regions by their cloud probability (red arrow in Fig. 3a). The opposite case is shown with a blue 

arrow Fig. 3a, where low ice concentrations close to the coast were falsely detected as high cloud probability.  20 

To quantify the performance of the algorithm, we study the distribution of cloud probability for clear sky and cloud covered 

pixels in the AATSR mask (Fig. 5). For cloud covered pixels, we find that nearly 85% percent show a cloud probability 

greater than the background probability P(C)=0.86 and the distribution drops sharply towards smaller cloud probabilities 

(Fig. 5 top). Visual inspection shows that probabilities smaller than P(C) are almost always correlated to semi-transparent 

cloud over snow covered ice or optically thin clouds. The distribution for clear sky pixels is less distinct (Fig. 5 bottom). It 25 

drops towards higher cloud probabilities, which is expected, but 6% percent show a cloud probability higher than P (C) and 

cannot be reliably discriminated from clouds. The majority of these 6% is the challenging case of bright, snow covered sea 

ice during the beginning of the melt season and fresh snow during fall freeze-up, hence such incorrectly high cloud 

probability is rarely found for darker ice with melt ponds on top. Most of these false positives are connected to cloud-like 

values of the MDSI feature Fsi, which may potentially occur for fresh snow with fine grains. The extremely high albedo of 30 

such surface will compromise the 𝑟𝑜𝑥 feature and prevent correct detection. 

We compare the MECOSI binary mask to the AATSR reference mask to study the temporal behavior of the algorithm’s 

performance and to investigate the accuracy of the binary mask. By comparing all swaths from May to September 2009, we 
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find that, with reference to the AATSR cloud mask, 92.51% of the MERIS pixels are classified correctly and the remaining 

7.49% split up to 4.64% missed cloud and 2.85% missed clear sky pixels. The temporal behavior of the detection rates is 

presented in Figure 6. The algorithm works best in July, with detections rates around 0.9 for both clear sky and cloud pixels, 

and the performance is only slightly worse in June. However, we find a considerably worse detection rate for clear sky 

regions in May, August and September with values close to 0.6 and below. This indicates that more than 40% of the pixels 5 

marked as clear sky in the AATSR mask are falsely screened out in the MECOSI binary mask. The detection rate for cloud 

steadily increases during June and July up to almost 1.0 at the end of the melt season. This increase is due to the state of ice 

surface, which gets darker over time and makes the detection of semi-transparent cloud easier.  

The binary cloud mask derived from MECOSI cloud probability is compared to independent AATSR mask from two other 

years. By comparing over 3.8 × 109 pixels from 2010 and 2011, we find that 90.50% (90.65% for 2011) of the pixels are 10 

correctly classified, which is about 2% less than for 2009. Thereby 5.85% (5.92%) are missed cloud and 3.64% (3.42%) are 

wrongly screened out clear sky pixels.  

4.3 Extension beyond AATSR swath and comparison to MODIS cloud fraction  

The accuracy of the MECOSI algorithm outside of the center half of the swath is difficult to assess because of the lack of 

appropriate reference data. Visual inspection of MERIS images from 2009 to 2011, which have been superimposed with the 15 

binary cloud mask, gives the general impression that the accuracy is considerably good throughout the full swath. The 

several cases of semi-transparent clouds in May and early June 2010 are more frequently missed in the upper right quarter of 

the swath. The reason for this is somewhat small values in the corrected oxygen A ratio; a tendency towards smaller values 

on the right side of the swath is also observable in May 2009 (Fig. 2). The along-track mean of cloud probability for the year 

2010 also gives slightly smaller values at the right side of the swath, as Figure 7 shows, and the standard deviation σ 20 

increases. However, the differences across the swath are small (±0.017 for the mean and ±0.02 for σ) and are mainly linked 

to different characteristics of the five detectors of MERIS, as the jumps at the transitions and the linear behaviour for the 

center detectors show.  

To further investigate the performance outside of the AATSR swath as well as the overall accuracy, we compare MECOSI 

binary cloud mask, gridded to a one-degree constant angle grid, to MODIS cloud fraction (Ackermann et al., 2008) data 25 

from May to Septmeber 2010. Thereby, we use either the full MERIS swath, center half or the outside quarters (Figure 8a,b 

and c, respectively). We find a good agreement with the MODIS data in all three cases. If the full MERIS swath is used (Fig. 

8a), the comparison of over 6.7 × 105 grid cells gives a root-mean-square deviation RMSD = 0.18 and a difference of means 

D = -0.02, which indicates that the MECOSI algorithm tends to retrieve slightly higher cloud fraction. The numbers for the 

central part of the swath (Fig. 8b) are very similar, with RMSD = 0.19 and D = -0.03, but the number of grid cells N = 5.0 × 30 

105 is smaller because of the restricted spatial coverage. For the outside quarters, we find again almost equal parameters with 

RMSD = 0.19, D = -0.01 and N = 4.6 × 105, although a slight pixel displacement is seen (compare top left and bottom right 

corner of Fig. 8b and 8c).  
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4.4 Influence on the melt pond fraction retrieval  

Finally, we study the influence of different cloud masking schemes on the retrieved MPF. Figure 9 shows an example of 

using the original cloud screening built into the MPD algorithm (Zege et al., 2015, Istomina, 2017), as well as the effect of 

additionally applying the MECOSI and AATSR cloud masks. It is evident that both the MECOSI and the AATSR cloud 

mask (Fig. 9b and c) are much more restrictive than the MPD cloud masking scheme (Fig. 9a). The spatial coverage is 5 

significantly reduced and regions which are not screened out correspond well to a MODIS cloud fraction below 50% (Fig. 

9d). Differences between using the MECOSI and the AATSR cloud mask are mostly due to the limited spatial coverage of 

AATSR (e.g. the larger pole hole).  

A time series of the Arctic-wide mean MPF for all three cloud masking schemes is presented in Figure 10. The spatial 

coverage has been restricted to the area seen by AATSR. 10 

 For all three years 2009 to 2011, we find evident differences between the original MPD product and the two improved 

products with additional cloud masking. The most prominent one is the significantly higher (up to 0.08 increase) mean MPF 

in July when additional cloud screening is applied. In May and September, however, the additional screening results in 

slightly smaller mean MPF. This behavior is expected because as the MPD algorithm retrieves values of around 0.15 MPF 

for opaque clouds, so that immense cloud contamination in the original MPD product reduces the MPF value range of the 15 

timerseries towards this wrong MPF value.  

If we focus on the differences between AATSR and MECOSI cloud mask (dark red and blue in Fig. 10), we find that both 

masks lead to a similar MPF timeseries. Using the MECOSI mask results in slightly higher MPF in May, which is possibly 

caused by some omitted clouds. The main advantage of the MECOSI cloud mask over AATSR is the larger spatial coverage 

of the latter (compare Fig. 9b and 9c).  20 

5 Discussion  

The results show that the MECOSI algorithm discriminates clouds from summer sea ice with good accuracy. With MECOSI, 

over 90% of the pixels are classified correctly, when compared to the AATSR reference.  

Comparison to the independent MODIS daily cloud fractions shows good agreement with the developed MECOSI mask both 

in the center part of the MERIS swath where AATSR data are available for training, and on the outside edge of the swath 25 

(Fig. 8). There is no evidence that the quality of the algorithm performance worsens towards the edges of the swath. The 

variation of mean cloud probability and its standard deviation across the swath is dominated by detector-to-detector 

differences and shows no change towards the edges of the swath (Fig. 7). Therefore, we conclude that the results of the 

comparison to AATSR cloud mask are, in general, valid for the full MERIS swath.  

The quality of the MECOSI cloud mask for both clear and cloudy cases is the best in June and July, when the rapid melt 30 

onset and first pond drainage events happen on the Arctic sea ice (Fig. 6). Bright fresh snow compromise MECOSI cloud 

screening and lead to some false detections in May. The O2A ratio is well suited for improving the detection over fresh snow. 
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The proposed correction scheme equalizes the ratio reasonably well (compare Figs. 1b and 1c). However, the detector-to-

detector artifacts indicate some residual influences of the spectral smile effect, surface albedo and instrument stray light 

which were not fully removed also by the proposed correction scheme. 

The cloud detection rates at the end of the melting season in August/September are close to 100%. The not as good detection 

of clear cases might be connected to the reduced number of such scenes at the end of melting season, as humidity and 5 

cloudiness increase, and the ice cover decreases with the minimum ice extent typically in the first weeks of September. For 

our specific application, i.e. retrieving surface parameters, it is important to screen out possibly all clouds as they bias the 

retrieval result. Wrong detections of clear cases as cloudy are less critical as this just reduces the spatial coverage of the 

product but does not affect the retrieved values. 

Consequently, the MECOSI cloud screening improves the quality of the MPD MPF and albedo product. By reducing the 10 

amount of cloud contamination, we find consistently higher pond fraction in the period Mid-June to Mid-August for all three 

years (Fig. 10). The cloud contaminated pixels are no longer used as input into the MPD retrieval and the resulting MPF 

dataset contains unbiased MPF and albedo values. The so improved resulting dataset can be used for further applications, 

such as assimilation into or validation of climate and melt pond models.  

6 Summary  15 

In this work, we present MECOSI, a new cloud screening routine for MERIS specifically developed for use over Arctic 

summer sea ice. Comparison to the independent MODIS cloud mask shows that the available summer Arctic MPF and 

spectral sea ice albedo product from MERIS (Zege et al., 2015; Istomina et al., 2015) are significantly cloud contaminated 

(compare Figs. 9a and 9d). The cloud screening method presented here has been developed to improve the quality of the 

MPF and albedo datasets. 20 

The developed cloud masking routine utilizes all 15 MERIS channels and a reference AATSR cloud mask to calculate 

probabilities of cloudy and clear cases for a given set of features:  

- Oxygen A absorption and reference ratio (additionally corrected for smile effect), 

- MERIS normalized difference snow index, 

- brightness and whiteness criteria. 25 

The dependencies on the illumination-observation geometry and the position of the pixel in the array of detectors, i.e. the 

detector index, have been accounted for as well. To calculate the cloudy and clear probabilities, a dataset of every AATSR 

and MERIS swath from 01.05.2009 to 30.09.2009 have been used to ensure a representative sample of the sea ice, snow and 

cloud conditions. 

The developed cloud mask shows a considerable improvement over the old MPD cloud mask. The quality of cloud detection 30 

of the new algorithm is close to the reference AATSR cloud mask, whereas MERIS does not have the infrared channels 

which aid in the snow-cloud discrimination. The MECOSI cloud detection quality remains high also near the edges of the 
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MERIS swath where no AATSR training data were available. Comparison to the reference AATSR and independent MODIS 

cloud masks shows that the application of MECOSI has greatly increased the quality of the MPD products on both spatial 

(Fig. 9) and temporal (Fig. 10) scales. 

The advantage of MECOSI over e.g. MODIS daily cloud fraction product is that it enables accurate cloud screening of swath 

MERIS data over snow and sea ice, which was not possible with the old version of the cloud screening used in the MPD 5 

retrieval. The developed cloud screening routine can be applied to remote sensing data of sea ice surfaces in both cold and 

melting conditions. 

The developed cloud mask for MERIS over the summer Arctic sea ice, as well as the improved datasets of the melt pond 

fraction and spectral albedo for the entire MERIS operation time are available at the server of the University of Bremen 

https://www.seaice.uni-bremen.de/start/, (last access: 30 July 2020, Istomina, Marks, Huntemann, 2017) . 10 
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Istomina, Marks, Huntemann, 2017). The original MPD MPFs are available at https://seaice.uni-15 

bremen.de/data/meris/gridded/ (last access: 30 July 2020, Istomina, 2017).  

 

Author contributions.  

LI conceived of the original idea and provided its first implementation, worked with the MERIS and AATSR data to prepare 

the training and validation of the algorithm, provided the MERIS MPF datasets, analyzed and interpreted the results, and 20 

outlined and wrote the manuscript with contributions from all authors. HM advanced the method and defined the optimal set 

of Bayesian features, performed the training and validation of the algorithm with MODIS data. MH contributed to the 

concept and implementation of the smile correction and the Bayesian method and contributed to the discussions. GH and GS 

supervised the project and aided the development of the algorithm and the discussion of the results. All authors provided 

critical feedback on the manuscript. 25 

 

Competing interests.  

The authors declare that they have no conflict of interest. 

 

Acknowledgements.  30 

The authors express gratitude to ESA and NASA for providing MERIS, AATSR and MODIS operational and higher-level 

products, to Brockmann Consult for providing the open source software packages BEAM and SNAP.  

The authors are grateful to the anonymous reviewers and the editor for their effort and valuable comments on the manuscript. 

This work has been funded as a part of EU project SPICES and of DFG SPP 1158 project REASSESS. 



16 

 

 

Financial support.  

This research has been partly supported within the EU project SPICES, grant agreement ID: 640161, and by the Deutsche 

Forschungsgemeinschaft (SPP 1158 project REASSESS, grant no. 424326801). 

 5 

The article processing charges for this open-access publication were covered by the University of Bremen. 

 

Review statement.  

This paper was edited by Alexander Kokhanovsky and reviewed by two anonymous referees. 

 10 

 

 

 

 

 15 

 

 

 

 

 20 

 

 

 

 

 25 

 

 

 

 

 30 

 

 

 

 



17 

 

References 

Ackerman, S.A., Strabala, K.I., Menzel, W.P., Frey, R.A., Moeller, C.C. and Gumley, L.E.: Discriminating clear sky from 

clouds with MODIS, J. Geophys. Res., 103, 32.141-32.157, 1998. 

Ackermann, S., Holz, R., Frey, R., Eloranta, E., Maddux, B., and McGill, M.: Cloud Detection with MODIS. Part II: 

Validation, Journal of Atmos. and Oceanic Techn., 25, 1073–1086, https://doi.org/10.1175/2007JTECHA1053.1, 2008. 5 

Allen, R.C., Durkee, P.A., and Wash, C.H.: Snow/Cloud Discrimination with Multispectral Satellite Measurements, J. Appl. 

Meteor., 29, 994–1004, 1990. 

Bourg, L., D’Alba, L., and Colagrande, P.: MERIS Smile Effect Characterization and Correction, Tech. rep., European 

Space Agency, 2008. 

Bréon, F.-M., and Colzy, S.: Cloud detection from the spaceborne POLDER instrument and validation against surface 10 

synoptic observations, J. Appl. Meteor., 38, pp. 777-785, 1999. 

Curry, J.A., Rossow, W.B., Randall, D., and Schramm, J.L.: Overview of Arctic cloud and radiation characteristics, J. 

Climate, 9, 1731-1764, doi:10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2, 1996. 

Diner, D., Clothiaux, E., Di Girolamo, L.: MISR Multi-angle imaging spectro-radiometer algorithm theoretical basis. Level 1 

Cloud detection, Jet Propulsion Laboratory, JPL D-13397, 1999. 15 

Gafurov, A., and Bárdossy, A.: Cloud removal methodology from MODIS snow cover product, Hydrol. Earth Syst. Sci., 13, 

1361-1373, 2009. 

Gómez-Chova, L., Camps-Valls, G., Calpe-Maravilla, J., Guanter, L., and Moreno, J.: Cloud-Screening Algorithm for 

ENVISAT/MERIS Multispectral Images, IEEE Transactions on Geoscience and Remote Sensing, 45, 

https://doi.org/10.1109/TGRS.2007.905312, 2007.  20 

Hollstein, A., Fischer, J., Carbajal Henken, C., and Preusker, R.: Bayesian cloud detection for MERIS, AATSR, and their 

combination, Atmos. Meas. Tech., 8, 1757–1771, https://doi.org/10.5194/amt-8-1757-2015, 2015. 

Istomina, L.: The MPD MPF dataset, available at: https://seaice.uni-bremen.de/data/meris/gridded/, last access: 30 July 

2020, 2017. 

Istomina, L., von Hoyningen-Huene, W., Kokhanovsky, A., and Burrows, J.: The detection of cloud-free snow-covered areas 25 

using AATSR measurements, Atmospheric Measurement Techniques, 3, 1005–1017, https://doi.org/10.5194/amt-3-1005-

2010, 2010. 

Istomina, L. G., von Hoyningen-Huene, W., Kokhanovsky, A. A., Schultz, E., and Burrows, J. P.: Remote sensing of 

aerosols over snow using infrared AATSR observations, Atmos. Meas. Tech., 4, 1133–1145, https://doi.org/10.5194/amt-4-

1133-2011, 2011. 30 

Istomina, L., Heygster, G., Huntemann, M., Schwarz, P., Birnbaum, G., Scharien, R., Polashenski, C., Perovich, D., Zege, 

E., Malinka, A., Prikhach, A., and Katsev, I.: Melt pond fraction and spectral sea ice albedo retrieval from MERIS data – 



18 

 

Part 1: Validation against in situ, aerial, and ship cruise data, The Cryosphere, 9, 1551–1566, https://doi.org/10.5194/tc-9-

1551-2015, 2015.  

Istomina, L., Nicolaus, M., Perovich, D. K.: Spectral albedo of sea ice and melt ponds measured during POLARSTERN 

cruise ARK-XXVII/3 (IceArc) in 2012. Institut für Umweltphysik, Universität Bremen, PANGAEA, 

https://doi.org/10.1594/PANGAEA.815111, 2013. 5 

Istomina, L., Marks, H., Huntemann, M.: MECOSI cloud screening dataset, available at: https://www.seaice.uni-

bremen.de/start/, last access: 30 July 2020, 2017. 

Jäger, M.: Advanced MERIS Channel 11 Smile Correction as a Basis for Cloud Top Height Estimation Developed from 

SCIATRAN Radiative Transfer Calculations in the O2-A Absorption Band, Master’s thesis, University of Bremen, 2013.  

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., 10 

Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., 

Wang, J., Jenne, R., Joseph, D.: The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77, 437-470, doi: 

10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. 

Key, J., and Barry, R.G.: Cloud cover analysis with Arctic AVHRR data. 1. Cloud detection, J. Geophys. Res., 94, D15, 

18.521-18.535, 1989. 15 

Kokhanovsky, A.A.: Cloud Optics, Eds.: Mysak, L.A., Hamilton, K., Publ.: Springer, 2006. 

Kokhanovsky, A.A., von Hoyningen-Huene, W., and Burrows, J. P.: Determination of the cloud fraction in the 

SCIAMACHY ground scene using MERIS spectral measurements, International Journal of Remote Sensing, 30(23), 6151-

6167, https://doi.org/10.1080/01431160902842326, 2009. 

Krijger, J. M., Tol, P., Istomina, L. G., Schlundt, C., Schrijver, H., and Aben, I.: Improved identification of clouds and 20 

ice/snow covered surfaces in SCIAMACHY observations, Atmos. Meas. Tech., 4, 2213–2224, https://doi.org/10.5194/amt-

4-2213-2011, 2011. Lindstrot, R., Preusker, R., and Fischer, J.: Empirical Correction of Stray Light within the MERIS 

Oxygen A-Band Channel, Journal of Atmospheric and Oceanic Technology, 27(7), 1185-1194, 

https://doi.org/10.1175/210JTECHA1430.1, 2010.  

Liu, Y., Key, J.R., Frey, R.A., Ackerman, S.A. and Menzel, W.P.: Nighttime polar cloud detection with MODIS, Remote 25 

Sens. of Environment, 92, 181-194, 2004. 

Lotz, W.A., Vountas, M., Dinter, T., Burrows, J.P.: Cloud and surface classification using SCIAMACHY polarization 

measurement devices, Atmos. Chem. Phys., 9, 1279-1288, 2009. 

Lyapustin, A., Wang, |Y., Frey, R.: An automated cloud mask algorithm based on time series of MODIS measurements, J. 

Geophys. Res., 113, D16207, https://doi.org/10.1029/2007JD009641, 2008. 30 

Lyapustin, A., Wang, Y.: The time series technique for aerosol retrievals over land from MODIS, Satellite Aerosol Remote 

Sensing over Land. Eds: Kokhanovsky A. A., de Leeuw, G. - Springer Praxis Publ. Chichester, p. 69-99, 2009. 



19 

 

Madhavan, S., Angal, A., Dodd, J., Sun, J., and Xiong, X.: Analog and digital saturation in the MODIS reflective solar 

bands, Proc. SPIE 8510, Earth Observing Systems XVII, 85101N (October 15, 2012),  https://doi.org/10.1117/12.929998, 

2012. 

Marks, H.: Investigation of Algorithms to Retrieve Melt Pond Fraction on Arctic Sea Ice from Optical Satellite 

Observations, Master’s thesis, Universität Tübingen, 2015.  5 

Martins, J. V., Tanré, D., Remer, L., Kaufman, Y., Mattoo, S. and Levy, R.: MODIS Cloud screening for remote sensing of 

aerosols over oceans using spatial variability, Geophys. Res. Lett., 29(12), 8009, https://doi.org/10.1029/2001GL013252, 

2002. 

Minnis, P., Chakrapani, V., Doelling, D.R., Nguyen, L., Palikonda, R., Spangenberg, D.A., Uttal, T., Arduini, R.F., Shupe, 

M.: Cloud coverage and height during FIRE ACE derived from AVHRR data, J. Geophys. Res., 106, D14, 15.215-15.232, 10 

2001. 

Nicolaus, M., Katlein, C., Maslanik, J., Hendricks, S.: Changes in Arctic sea ice result in increasing light transmittance and 

absorption: LIGHT IN A CHANGING ARCTIC OCEAN, Geophys. Res. Lett., 39, 24, doi:10.1029/2012GL053738, 2012. 

Preusker, R. and Lindstrot, R.: Remote Sensing of Cloud-Top Pressure Using Moderately Resolved Measurements within 

the Oxygen A Band -A Sensitivity Study, Journal of Applied Meteorology and Climatology, 48, 15 

https://doi.org/10.1175/2009JAMC2074.1, 2009.  

Schlundt, C., Kokhanovsky, A., von Hoyningen-Huene, W., Dinter, T., Istomina, L., and Burrows, J.: Synergetic cloud 

fraction determination for SCIAMACHY using MERIS, Atmospheric Measurement Techniques, 4, 319–337, 

https://doi.org/10.5194/amt-4-319-2011, 2011. 

Schröder, D., Feltham, D., Flocco, D. et al.: September Arctic sea-ice minimum predicted by spring melt-pond fraction, 20 

Nature Clim Change 4, 353–357, https://doi.org/10.1038/nclimate220, 2014. 

Spangenberg, D. A., Chakrapani, V., Doelling, D.R., Minnis, P., and Arduini, R.F.: Development of an automated Arctic 

cloud mask using clear-sky satellite observations taken over the SHEBA and ARM NSA sites, Proc. 6th Conf. on Polar 

Meteor. and Oceanography, San Diego, CA, May 14-18, 2001, 246-249, 2001. 

Trepte, Q., Arduini, R.F., Chen, Y., Sun-Mack, S., Minnis, P., Spangenberg, D.A., Doelling, D.R.: Development of a 25 

daytime polar cloud mask using theoretical models of near-infrared bidirectional reflectance for ARM and CERES, Proc. 

AMS 6th Conf. Polar Meteorology and Oceanography, San Diego, CA; May 4-18, 242-245, 2001. 

Warren, S. G.: Optical Properties of Snow, Rev. Geophys., 20(1), 67–89, 1982. 

Wiebe, H., Heygster, G., Zege, E., Aoki, T., and Hori, M.: Snow grain size retrieval SGSP from optical satellite data: 

Validation with ground measurements and detection of snow fall events, Remote Sens. Environ., 128, 11–20, 30 

https://doi.org/10.1016/j.rse.2012.09.007, 2013. 

Zege, E., Malinka, A., Katsev, I., Prikhach, A., Heygster, G., Istomina, L., Birnbaum, G., and Schwarz, P.: Algorithm to 

retrieve the melt pond fraction and the spectral albedo of Arctic summer ice from satellite optical data, Remote Sensing of 

Environment, https://doi.org/10.1016/j.rse.2015.03.012, 2015.  



20 

 

 

 

Figure 1: Reflectance at 779 nm (a), uncorrected O2A ratio (b) and corrected O2A ratio used as a feature in the cloud screening (c). 

Shown is a 2450 × 1121 pixel part of Envisat orbit 37475 from 1st of May 2009 with the New Siberian Islands at the bottom and 

parts of the Canadian Archipelago at the top. Land, open water and invalid pixels are white. 5 

 

 

Figure 2: Along-track mean of the corrected O2A ratio. For each time period, the mean is calculated from 100 randomly selected 

swaths. The vertical lines mark the transition between the five detectors of MERIS. 
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Figure 3: Reflectance at 779 nm (a), cloud probability (b) and corresponding AATSR mask (c) for 14th of May 2009 with Svalbard 

at the bottom left corner. Land, open water and invalid pixels are white. The red arrow points to missed clouds and the blue one 

marks wrongly screened out clear sky pixels (orbit number 37666). 
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Figure 4: Reflectance at 779 nm (a), cloud probability (b) and corresponding AATSR mask (c) for 31st of July 2009 (orbit number 

38778). The blue arrow marks a region with wrongly screened out clear sky pixels, although a thin cloud cover is possible. 10 

 



22 

 

 

Figure 5: Distribution of MECOSI cloud probability for AATSR cloud pixels (top) and AATSR clear sky pixels (bottom) for May 

to September 2009. 

 

 5 

Figure 6: Time series of daily mean classification rates for 2009. As an example, a value of 0.9 for cloud means that 90% of the 

cloud pixels in the AATSR mask are correctly classified as cloud covered and the remaining 10% are missed clouds. 

 

Figure 7: Along-track mean and standard deviation of cloud probability for 2010. Vertical lines mark the transition between the 

five detectors of MERIS. 10 
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Figure 8: Comparison of daily gridded MECOSI and MODIS cloud fraction using the full MERIS swath (a), the center half (b) or 

the outside quarters (c) for the gridded MECOSI fraction. Period is May to September 2010.  
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Figure 9: Gridded melt pond fraction with MPD cloud mask (a), MECOSI cloud mask (b), AATSR cloud mask (c) and MODIS 

daytime mean cloud fraction (d), 20th of June 2009.  
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Figure 10. Influence of different cloud mask on Arctic-wide mean melt pond fraction for 2009 – 2011. The means are calculated 

from gridded melt pond fraction data and coverage is restricted to the area seen by AATSR. Days with less than 100 grid cells to 

compare or missing AATSR data are excluded.  
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