Anonymous Referee #1

The focus of this paper is a comparison of the latest MOPITT CO V8 retrievals with aircraft measurements. The authors use aircraft profiles that have not been previously used for comparisons with MOPITT, including profiles around urban regions. A variety of sensitivity tests are also performed to see how specific parameters affect the comparison. Overall I think the paper is well written and sound, and though I have numerous comments they are mostly minor. Response: Thank you for your time and effort in reviewing our manuscript.

General comments

G1: Even though the word "validation" or a variant has been used frequently in these contexts in the literature, "comparison" would nearly always be a better choice. "Validation" has a positive connotation which to me makes it sound like nothing new can be learned, and like the result is already known before the study. However, there is almost always something new that can be learned and new ways to improve the retrievals. In addition the aircraft measurements themselves are not perfect as the authors point out, with limited measurement altitudes and possible inhomogeneities. Please try to limit use of the word "validation" or a variant to five or fewer instances throughout the entire paper. I include some suggestions for rephrasing in the technical comments, but I do not have a technical comment for each instance.

Response: We revised the title (see response to the comment #S1) following the reviewer's comment #S1. And by addressing the specific comments and technical comments regarding the use of the term "validation", we have substantially reduced the use of the term "validation" and its variant (e.g., "validated", "validating"). Please see responses to the comments # S28, T2, T25, T27, T28, T38. In addition, we also tried to use terms such as "agreement" and "comparison" to replace "validation" when applicable, in our description and discussion of our own results in the manuscript. Note that we did not change the usage of "validation" when we refer to some previous studies because "validation" and "evaluation" are more effective to describe these studies than a substitute, for example "the primary goal of DISCOVER-AQ was to provide aircraft observation methodologies for satellite validation". Please see the updated manuscript for details.

G2: Sometimes it is not always clear when all data from the listed flights are used in a comparison and when it is just urban areas like the title implies. Please clarify throughout (especially Sect. 4) if comparisons are from just urban or if they include both urban and non-urban.

Response: Thank you for pointing this out. In Section 3 we analyze "all profiles", "profiles over urban regions", and "profiles over non-urban regions". While in Section 4, we use all the in-situ profiles listed in the Table 1 regardless of if the profiles are over urban or non-urban regions. We explicitly added the following statement at the beginning of Section 4:

"While in Section 3 we compared profiles over urban regions, and profiles over non-urban regions separately to MOPITT V8T, V8N, V8J, V7T, V7N, and V7J, in this section, we compare only the MOPITT V8J product to all the in-situ profiles (both over urban and non-urban regions) described in Table 1 to test the sensitivity of comparison results to the assumptions made during the comparisons."

We separated Section 3.2 (Discussions on individual campaigns) into 5 paragraphs so that each paragraph discusses overall conclusions or comparisons with one specific campaign.

In addition, we explicitly listed what campaign data were used for each statement in Section 4.

Specific comments:

S1 - p1| 1: Suggest the title be changed to be more descriptive, e.g., "Comparisons of MOPITT carbon monoxide retrievals with aircraft measurements, focusing on urban regions"

Response: We changed the manuscript title to

"Assessing MOPITT carbon monoxide retrievals over urban versus non-urban regions".

S2 - p1| 21: list date range of campaigns (2011-2016)

Response: We added date range for the campaigns "DISCOVER-AQ (2011-2014), SEAC4RS (2013), ARIAs (2016), A-FORCE (2009, 2013), and KORUS-AQ (2016)".

S3 - p1| 22: Please specify biases here refer to both urban and non-urban.

Response: We changed the sentence "Overall, MOPITT performs reasonably well over both urban and non-urban regions, overall biases for V8J and V8T vary from -0.7% to 0.0%, and from 2.0% to 3.5%, respectively."

to

"In general, MOPITT agrees reasonably well with the in-situ profiles, over both urban and nonurban regions. Version 8 multispectral product (V8J) biases vary from -0.7% to 0.0% and version 8 thermal-infrared product (TIR) biases vary from 2.0% to 3.5%."

S4 - p1| 22: Why is V8N disregarded in the abstract? Low DFS?

Response: Thank you for pointing this out. MOPITT V8N product has relatively lower DFS (Figure 3), and are not as widely used as the V8J and V8T. Therefore, V8N is not the main focus of this study and it is only analyzed in Table 2.

S5 - p2| 30: specify the other levels

Response: We added "(e.g., 600 hPa)" in the sentence.

S6 - p2| 48: Surely MOPITT itself is not doing the CO retrievals, but rather a team at NCAR? Suggest updating to: "Observations from the Measurements...satellite have been used for retrieving..."

Response: We updated the sentence accordingly.

S7 - p2| 51-52: Similar to last comment, I think MOPITT just makes the measurement and NCAR provides the product. Suggest update to: ...products, a multispectral TIRNIR product is also produced, which...

Response: We changed "MOPITT also provides the multispectral TIR-NIR product" to "the MOPITT multispectral TIR-NIR product is also provided".

S8 - p4 109: I think it would help to update to "quantities in the state vector." Response: We updated the sentence accordingly.

S9 - p5| 142: Similar to S6 & S7 – "There are 121 profiles over four urban regions from DISCOVER-AQ."

Response: We updated the sentence accordingly.

S10 - p5| 145: "... campaign obtained 45 profiles in total sampled over..."

Response: We revised the sentence.

S11 - p6| 161: I'm curious, why not just take the aircraft data as high as it goes and then use the model for the rest? Why include more interpolation with a Pinterp parameter than needed? Response: Thank you. We did take the aircraft data as high as it goes, and use the reanalysis data for the rest. P_{interp} is used because the rest of the pressure levels need to be filled differently. For pressure levels below P_{interp} (lower altitude), values are linearly interpolated using highest-altitude aircraft measurement and reanalysis data at P_{interp} . For pressure levels above P_{interp} (higher altitude), reanalysis data are used directly. If we use reanalysis data to fill all the levels directly, the extended vertical profile may not be continuous at the highest-altitude the aircraft profile. In addition, the use of P_{interp} allows us to test the sensitivity to the use of model or reanalysis data as because parameter P_{interp} controls the impact of the model-based profile extension on the shape and value of in-situ profiles (see Figure S5).

S12 - p6|169: This is a little circular, comparing MOPITT retrievals with data that assimilated another version of MOPITT retrievals. It would be helpful to let readers know here that you do not compare with these higher levels later, and that they are expected to have a minimal impact on the lower levels you use in the comparison.

Response: We thank the reviewer for pointing this out. We added the following statement in the text:

"We note that as we do not compare with these higher levels later, the use of CAMS reanalysis is expected to have a minimal impact on the lower levels we use in the comparison (e.g., surface, 800 hPa, and 600 hPa)."

S13 - p6| 173: Is this mass weighted? If not add in "unweighted averaging" Response: We added the adjective "unweighted" before "averaging".

S14 - p7|176: Please clarify, are these MOPITT profiles with the center point in the radius, or the entire footprint in the radius?

Response: Thank you. It is the center point that needs to be in the radius. We revised the sentence to:

"MOPITT profiles are considered co-located with the aircraft profile and are selected for comparison only if their center points are within the radius of 100 km and within 12 hours of the acquisition of the aircraft profile."

S15 - p7| 181-183: Please clarify that these are not the profiles, but rather the state vectors. (You could also remind readers the state vectors and profiles are related by log10).

Response: As shown in the following revised text, we have re-emphasized that all CO profiles $(x_{in-situ}, x_a, \text{ and } x_{transformed})$ appearing in Equation (2) are expressed in terms of $\log_{10}(VMR)$. "For each pair of co-located MOPITT retrieved and in-situ profiles, we apply the MOPITT a priori profile and averaging kernel to the in-situ profile as in Eq. (1). Thus, after converting from profiles of the in-situ and a priori CO concentrations to $\log_{10}(VMR)$ profiles $(x_{in-situ} \text{ and } x_a)$, we calculate

$$x_{transformed} = x_a + A(x_{in-situ} - x_a)$$
⁽²⁾

so that the $log_{10}(VMR)$ -based transformed in-situ profile ($x_{transformed}$) has the same degree of

smoothing and a priori dependence as the MOPITT retrieved $log_{10}(VMR)$ profile (x_{rtv}) ."

S16 - p7| 197: Specify, what does "uniformly weighted" mean here? In pressure? For MOPITT, isn't the surface level an exception to "uniformly"?

Response: "uniformly weighted" is about the way that the MOPITT retrieval algorithm internally converts from 'retrieval-grid' CO profiles (10 levels/layers) to higher-resolution 'model-grid' CO profiles (35 levels/layers) that are needed for the radiative transfer model. For V5 and later products, the algorithm assumes uniform weighting when it makes this conversion. So, for example, the retrieved CO at 900 hPa represents a layer from 900 to 800 hPa with a constant VMR within that layer. Internally, this means that model levels at 900, 875 and 850 are all assigned the same VMR value. We notice "uniformly weighted" is not relevant in this sentence and hence changed it to "uniform".

S17 - p7| 198: "vertical and horizontal" here is a little confusing (at first I thought it was in km, but realized it is variation in CO). You could reword to "The standard deviation of the original aircraft CO observations in each MOPITT layer are also shown, which is due to horizontal and vertical variability in CO."

Response: We revised the sentence accordingly.

S18 - p7| 201: Numerically, what is the xtransformed and xrtv difference? Response: We added the numerical value (12.4 ppb) in the sentence.

S19 - p8| 207: Even if it was not the focus, MOPITT has been compared against other observing systems in urban regions prior to this paper. For example, Buchholz (doi: 10.5194/amt-10-1927-2017) compared MOPITT observations with ground-based observations in urban areas including Toronto and Bremen.

Response: Thank you for pointing this out. We added a statement regarding the comparisons with ground-based spectrometric column retrievals, and citation for Buchholz et al. (2017) and Hedelius et al. (2019), in the introduction:

"In addition, MOPITT products have also been compared with ground-based spectrometric column retrievals (e.g., Buchholz et al., 2017; Hedelius et al., 2019)."

And for the sentence pointed out by the reviewer "... that MOPITT has yet to be validated over urban regions", we added specific description "... that MOPITT has yet to be validated over urban regions with in-situ observations."

S20 - p9| 238: Does this range of percentages include the 900 hPa and 700 hPa layers not shown? Why did you decide not to show these layers? Presumably you already did most the work for their comparison too.

Response: The range of percentages only includes what is shown in the Table 1 (i.e., surface layer, 800 hPa, and 600 hPa). We present results on surface layer, 800 hPa, and 600 hPa in this study to represent three levels, namely the surface level, the top of the PBL (800 hPa), and the free troposphere (600 hPa). We do not show results for 900 hPa and 700 hPa as surface layer, 800 hPa, and 600 hPa are representative, as shown by the in-situ profiles (Figures 2, S1, S3, S4) and the averaging kernels at those layers (Figure 3).

S21 - p9| 239: Why wasn't V8N also included? Low DFS? Coverage over land only?

Response: Please see the reply to the comment S4.

S22 - p9| 239: Consider changing "lower" to "smaller." I initially interpreted "lower" to mean "less than" (or more negative), but I think you mean "closer to zero." Same comment for "higher" on line 241.

Response: We changed "lower" to "smaller", and "higher" to "larger".

S23 - p9| 240: Is "-0.2" supposed to be "-2.0" based on Table 2?

Response: We thank the reviewer for noticing this. We changed "from -0.2% to -0.8%" to "from -0.8% to -2%"

S24 - p9| 242: It looks like you can omit "generally" here, as it appears to be true for all (unless 700 hPa and 900 hPa are exceptions). Response: We deleted "generally".

S25 - p9| 244-246: This line is hard to read because of the number density, and the information is already in Table 2. I suggest omitting it completely.

Response: We removed the sentence "For example, for the V8J product, correlation coefficients over urban regions are 0.53, 0.57, and 0.53 at the surface, 800 hPa, and 600 hPa, respectively, while over non-urban regions, the corresponding correlation coefficients are 0.76, 0.73 and 0.67."

S26 - p9|247: If you specified for T and J, then you could remove "generally" on this line.

Response: We changed the sentence "We also notice that V8 products generally have higher correlation coefficients with in-situ measurements than V7 over non-urban regions, whereas over urban regions, V8 products generally have lower correlation coefficients than V7."

to

"We also notice that for TIR-NIR and TIR-only products, V8 have higher correlation coefficients with in-situ measurements than V7 over non-urban regions, whereas over urban regions, V8 products have lower correlation coefficients than V7 (except for 600 hPa)."

S27 - p9|259: I suggest "at 600 hPa" -> "at the 600-500 hPa layer" (same for line 261). Otherwise it sounds like the comparison is at a specific level.

Response: We changed "at 600 hPa" to "at the 600-hPa layer (i.e., the 100 hPa uniform layer immediately above 600 hPa)", and changed "at the surface" to "at the surface layer (i.e., the uniform layer immediately above the surface)". In addition, we changed 600 hPa, 800 hPa, and the surface to the 600-hPa layer, the 800-hPa layer, and the surface level throughout the paper to indicate the comparisons are not for a specific pressure level.

S28 – p11| 295: Consider rewording "this validation of MOPITT at higher CO concentrations..." which sounds like it is the process does not work as well, rather than the results being further off. Response: We changed "this validation of MOPITT at higher CO concentrations" to "the agreement between MOPITT and the in-situ profiles at higher CO concentrations".

S29 – p12 335: Quantitatively how much larger are the "larger biases"?

Response: We changed the sentence "The validation results using 100 hPa as Pinterp have larger biases." to "The validation results against DISCOVER-AQ CA using 100 hPa or 200 hPa as

Pinterp have larger biases at the 600-hPa layer (~25%)."

S30 - p12| 339: This is repetitive with a sentence a few lines up (line 329). Can you just separate out a paragraph for DISCOVER-AQ CA so you do not have to mention it 6 times?

Response: We deleted this sentence "As mentioned in Section 3.2, the DISCOVER-AQ CA aircraft measurements concentrate below 600 hPa, so CO values in the in-situ profiles at 600 hPa and above are filled with and are more sensitive to CAMS reanalysis data." Please also see the response to the comment #G2.

S31 - p12| 344: "Previous MOPITT evaluation results," are these previous studies? Could you cite a few examples?

Response: We added Deeter et al. (2012) and Deeter et al. (2016) as examples.

S32 - p13| 376: Does this section and 4.4 use both urban and non-urban observations? Response: Yes. We added the following statement at the beginning of Section 4:

"In Section 3, we compared profiles over urban and non-urban regions separately to MOPITT V8T, V8N, V8J, V7T, V7N, and V7J. In this section, we compare only the MOPITT V8J product to all the in-situ profiles (both over urban and non-urban regions) described in Table 1 to test the sensitivity of results to the assumptions made during the comparisons."

S33 - p13| 380: Please be quantitative with "long enough lifetime" and include a reference. Response: The typical lifetime of CO is approximately a month. We added Gamnitzer et al. (2006) as reference.

S34 - p14| 394: What is the L3 grid size? Response: The resolution is 1°×1°, we added this in the text.

S35 – p15 | 422: "MOPITT biases" -> "MOPITT mean biases" Response: Thank you. We have revised accordingly.

S36 - p15|422: Please provide a reference for "10% required accuracy"

Response: We added the following reference:

Drummond, J. R., & Mand, G. S. (1996). The Measurements of Pollution in the Troposphere (MOPITT) instrument: Overall performance and calibration requirements. Journal of Atmospheric and Oceanic Technology, 13(2), 314-320.

S37 - p16|453: Do you know about how many profiles go into each grid cell for Level 3? If it's 1x1 degrees then a 100 km radius is larger. In this case the overall agreement may actually be worsened further by too few MOPITT soundings (if this is what you mean by "which is unlikely to happen when generating L3").

Response: We thank the reviewer for bringing this issue up.

As described in the MOPITT Version 8 Product User's Guide (https://www2.acom.ucar.edu/sites/default/files/mopitt/v8_users_guide_201812.pdf), MOPITT Level 2 data all feed in the specific filtering rules (both pixel filtering and signal-to-noise ratio). Data Averaging to generate MOPITT Level 3 data is performed on a one-degree latitude/longitude grid $(1^{\circ}\times1^{\circ})$. The original reason for implying which is unlikely to happen when generating Level

3 is that the daily MOPITT L2 data size is large, and globally speaking there will be enormous data. However, it is true that $1^{\circ}\times1^{\circ}$ pixel size is smaller than 100 km radius. And as the reviewer points out, for each individual $1^{\circ}\times1^{\circ}$ grid, we should not expect to have much more data to perform the filter and averaging. So we have deleted the statement in the Section 4.4 "However, when generating Level 3 data from Level 2 data, the circumstance is different as there are usually much more data to perform the filter and averaging." We also deleted the statement "which is unlikely to happen when generating Level 3 data" in the Section 5.

However, we disagree that the overall agreement may actually be worsened further by too few MOPITT soundings in MOPITT Level 3 data. We notice that some of the discussions in the manuscript may be misleading. For example, the statement "In some cases, applying the SNR filters degrades the validation results (e.g., DISCOVER-AO DC at the surface, DISCOVER-AQ CA at the surface, KORUS-AQ at 600 hPa, and ARIAs at the surface, 800 hPa, and 600 hPa)" in the section 4.4 to avoid confusion" indicate that applying SNR filter may worsen the agreement in some cases. While this statement is true, it is misleading because the readers may ignore the fact that applying SNR filter also improve the agreement in some cases (e.g., DISCOVER-AQ DC at the 600-hPa layer and the DISCOVER-AQ TX at the 600-hPa layer, and that the overall agreement does not change significantly. Therefore, we delete the aforementioned statement. In addition, we change also changed the statement "We find that applying the SNR filters does not improve the overall agreement between MOPITT retrievals and the in-situ profiles" in Section 4.4 to "We find that applying the SNR filters does not significantly change the overall agreement between MOPITT retrievals and the in-situ profiles used in this study." We also changed the statement in the section 5 "Applying SNR filters does not necessarily improve the overall agreement between MOPITT retrievals and in-situ profiles used in this study" to "Applying SNR filters does not necessarily change the overall agreement between *MOPITT* retrievals and in-situ profiles used in this study significantly".

In addition, even though applying SNR filter when generating Level 3 data does not significantly change the agreement with the in-situ profiles used in this study, by excluding low-SNR observations from the Level 3 cell-averaged values raises overall mean DFS values (MOPITT Version 8 Product User's Guide, 2018). In addition, the Level 3 product typically are less affected by random retrieval errors (e.g., due to instrument noise or geophysical noise). We have added this statement at the end of section 4.4.

Note that we are not suggesting the comparisons between MOPITT Level 3 product and aircraft measurements. Because the MOPITT Level 3 product is gridded data and represent the average value in a $1^{\circ} \times 1^{\circ}$ grid. Comparing the grid average value to an aircraft profile within it may be subject to large representativeness errors. Here we only show the sensitivity of agreement between MOPITT Level 2 data and aircraft profiles to the application SNR filter. This statement is also added to the section 4.4 of the manuscript. More discussion on the issue of representativeness errors can be found in section 5.

S38 - p16|463-468: These 2 sentences are very late in the paper. They should be earlier, like in Section 2.2.

Response: We moved the two sentences to section 2.3 where we discuss the sub-grid variability and representativeness error in Figure 2.

S39 - p16| 468-476: This discussion on NO2 variability from GeoTASO to try to constrain CO variability seems irrelevant and late in the paper. I think the whole thing should be omitted.

Response: We think this discussion is highly relevant to the future direction of this study and other comparisons that have issues with urban variability for satellite spatial resolution. Nevertheless, we addressed the reviewer's comment by reducing the discussion on GeoTASO substantially to one sentence:

"One possible way is to study NO_2 data retrieved from the Geostationary Trace Gas and Aerosol Sensor Optimization (GeoTASO) at very high resolution (250 m×250 m), to provide an upper estimate on CO variability".

S40 - p17 | 480: All the references to data should be split out into a "Data availability" section. See"ManuscriptComposition"here:

https://publications.copernicus.org/for_authors/manuscript_preparation.html.

Response: Thank you. We added a Data availability section and moved the relevant part from acknowledgement to it.

S41 - p17|480: Best practice is for all data to be in a public repository. If this is not possible, then please provide contact information for how the aircraft data can be obtained including ARIAs and A-FORCE.

Response: We added contact info for ARIAs and A-FORCE in the Data availability section.

S42 - p17| 480: Include a last access date with all URLs.

Response: We included last access dates for all the URLs in the data availability section.

S43 – p17 481-482: These seem like 2 references to the same MOPITT data? Which one should readers use?

Response: MOPITT data are available at both URLs. To avoid confusion, we deleted the second one "https://earthdata.nasa.gov/ (Last access date: Jan 14th, 2020)."

S44 – p17| 493: An "Author Contribution" section is needed: https://publications.copernicus.org/for_authors/manuscript_preparation.html.

Response: Thank you for pointing this out. We added an author contribution section after the data availability section.

S45 – p24 Table1: Could you please include the accuracy of CO from aircraft measurements somewhere?

Response: We added "Uncertainty" that includes precision and/or accuracy for each instrument in the Table 1.

S46 – p24| Table1: For better traceability, please list the CO scale the aircraft measurements were tied to (e.g., WMO-CO-X2004, WMOCO-X2014, WMO-CO-X2014A, CSIRO...).

Response: We agree this traceability is preferred, however, we were only able to confirm this for ARIAs (WMO-CO-X2014A), KORUS-AQ (WMO-CO-X2014A), SEAC⁴RS (WMO-CO-X2004), and DISCOVER-AQ MD, TX, and CA (WMO-CO-X2004). We added the available information to Table 1. However, the precisions/accuracies in Table 1 are based on the referenced literature for the aircraft measurements, which should be sufficient to describe the data we used.

S47 – p26: (No response requested) – Figure 1 is well done and has high information content

Response: Thank you.

S48 -p27|776-777: I don't understand "vertical and horizontal variability" here. Does "horizontal" somehow correspond to how many km were flown? Or are these just the standard deviations of aircraft profiles. If so, then just say "are the standard deviations of the original aircraft observations."

Response: Thank you. We changed "vertical and horizontal variability" to "the standard deviations of the original aircraft observations".

S49 - p27| 777-778: I guess this is why the black and orange traces do not always match. Optionally consider plotting at layer centers (shifting up by about 50 hPa).

Response: Thank you. Ploting the x_{rtv} , x_a , $x_{in-situ}$, and $x_{transformed}$ on the surface, 900 hPa, 800 hPa etc layers is consistent with the naming in the main text as well as other figures and tables. We also have mentioned that "each MOPITT retrieval level corresponds to a uniform layer immediately above that level" in the figure caption as well as the main text.

S50 - p29| 793: Please define Delta log(VMR) here and explicitly include the base of the logarithm.

Response: Thank you. $\Delta \log_{10}(VMR)$ is defined as $x_{rtv} - x_a$ for MOPITT profiles and $x_{transformed} - x_a$ for the in-situ profiles. The use of $\Delta \log_{10}(VMR)$ allows us to remove the impact of the a priori in the comparisons. We added this statement in the caption. We also added the base of the log (i.e., 10) here as well as in a few places in the main text.

S51 – p30| 803: Should "Figure 2" be "Figure 4"?

Response: Yes. Thank you for noticing this. We changed "Figure 2" to "Figure 4".

S52 - p31|810: Numerically, what are considered "outliers"? Please also add to captions of Figures 8-11. Or just reference the caption the Figure 6 so it is less repetitive.

Response: An outlier is a value that is more than 1.5 times the interquartile range away from the top or bottom of the box. We added this statement in the caption of Figure 6, and referred to it in the caption of Figures 8-11.

S53 - p33 Figure8: Are these MOPITT biases compared with aircraft still? So the "200 hPa" values are the same as yellow values in Figure 6? Please specify or optionally consider showing as a % bias compared with the baseline "200 hPa" results.

Response: The biases are calculated against all (both urban and non-urban) in-situ profiles listed in Table 1. We have added this statement in the captions of Figures 8-11. In addition, the "200 hPa" values (gray) in Figure 8 are the same as yellow values (for all data) in Figure 6; the "100 km" values (gray) in Figure 9 are the same as yellow values (for all data) in Figure 6; the "12 h" values (gray) in Figure 10 are the same as yellow values (for all data) in Figure 6; and the "without SNR filter" values in Figure 11 are the same as yellow values (for all data) in Figure 6. We added this information in the corresponding captions too.

S54 - p33 | Figure8: Please clarify that you are using "all" observations (both urban and non-urban).

Response: See reply to the comment # S53.

S55 – p34 Figure9: Optionally consider comparing against 100 km. Response: See reply to the comment # S53.

S56 – p35 Figure10: Optionally consider comparing against 12 hours. Response: See reply to the comment # S53.

S57 – Figure S3: It would help to remind readers that "in situ" is a combination of aircraft and models since values at 1050 hPa do not make much physical sense. (As a side observation it is interesting that MOPITT is so insensitive).

Response: We added "*in-situ profiles (combination of aircraft and reanalysis data as described in Section 2.3*)". in the caption of Figure S3.

S58 – Figure S5: Could you please provide more detail in the caption? Consider marking the level of highest aircraft measurements (presumably this is why there are straight lines). Response: We extended the caption of Figure S5 to include more details:

"Figure S5. Averaged in-situ profiles (combination of aircraft and reanalysis data as described in Section 2.3) under different assumptions of P_{interp} . For pressure levels below P_{interp} (lower altitude), values are linearly interpolated using the highest-altitude aircraft measurement and reanalysis data at P_{interp} . For pressure levels above P_{interp} (higher altitude), reanalysis data are used directly. For P_{interp} equals 100 hPa, 200 hPa, 300 hPa, 400 hPa, and 500 hPa, the corresponding averaged in-situ profiles are shown by the blue, gray, yellow, green, and red lines, respectively. Taking the P_{interp} equal to 100 hPa (blue line) as an example: for pressure levels below 100 hPa but above the highest-altitude aircraft measurement, the CO values are filled by linearly interpolation between CO values at the highest-altitude aircraft measurement and reanalysis data at 100 hPa; for levels above 100 hPa, CO values from reanalysis data are added to the in-situ profile directly."

Technical comments:

T1 - p1| 17: "The performance of the" could be omitted (and update has -> have) Response: We have revised accordingly.

T2 - p1| 19-20: E.g., validate \rightarrow compare, using \rightarrow with Response: We have revised accordingly.

T3 - p1| 25: suggest "performance" -> "agreement" and adding "with aircraft measurements" after V8T

Response: We have revised accordingly.

T4 - p2| 32: "allowed maximum" -> "maximum allowed" and "as criteria" -> "criterion" Response: We have revised accordingly.

T5 - p2| 34-35: suggest "hence few MOPITT retrievals are included in the comparison." Response: We have revised accordingly.

T6 - p2| 36: "overall smaller" -> "smaller overall" Response: We have revised accordingly.

T7 - p2| 40: "retrievals that result for comparison." -> "retrievals for the comparison." Response: We have revised accordingly.

T8 - p3| 58: "the most recently" Response: We have revised accordingly.

T9 - p3| 83-84: suggest "...we compare MOPITT version...regions with aircraft profiles made over..." Response: We have revised accordingly.

T10 - p3 83: "version" is lowercase here but capitalized on p2 55. Please be consistent throughout. Response: Thank you. We changed "version" to be capitalized throughout the manuscript.

T11 - p4| 100: "retrievals" -> "observations" Response: We have revised accordingly.

T12 - p4| 111: "The two" -> "These two" Response: We have revised accordingly.

T13 - p5| 124: "determined" -> "considered" Response: We have revised accordingly.

T14 - p5| 128-130: move/modify "the profiles over urban and non-urban areas are similar" to right after "We also notice..."

Response: The sentence "We also notice for aircraft profiles sampled during KORUS-AQ, even though the averaged profile over urban regions has slightly higher CO concentration near the surface, the profiles over urban and non-urban are close." was revised to "For aircraft profiles sampled during KORUS-AQ, the CO profiles over urban and non-urban regions are similar, even though the averaged profile over urban regions has slightly higher CO concentration near the surface."

T15 - p5| 139: omit "different instruments" (it's implied) Response: We have revised accordingly.

T16 - p6| 148: "Only few" -> "Few" Response: We have revised accordingly.

T17 - p6| 162: omit "below" (I initially was confused because I thought "below" meant lower pressure/higher altitude)

Response: Thank you for pointing this out. We omitted "below".

T18 - p6| 174-175: "We have investigated the..."

Response: We changed the sentence "We have conducted further calculations to investigate the sensitivity of validation results to P_{interp} in Section 4.1." to "We investigate the sensitivity of validation results to P_{interp} in Section 4.1."

T19 - p7| 179: "have been further" -> "are"

Response: We have revised accordingly.

T20 - p7| 186: "If fewer than five MOPITT retrievals are co-located with an in-situ profile, the..." Response: We have revised accordingly.

T21 - p7| 187-191: I think it would be clearer if you reordered the description. a) In situ profile individually applied to AK and prior of each MOPITT retrieval to get xtranformed. b) xtransform averaged as log10. c) Corresponding MOPITT profile retrievals also averaged

Response: Thank you for the suggestion. We have rephrased these sentences "If an in-situ profile is co-located with five or more MOPITT retrievals, these co-located MOPITT profiles are averaged as log10(VMR). These transformed in-situ profiles that are generated from the same insitu profile are also averaged. Applying these corresponding different MOPITT a priori profiles and averaging kernels to the same in-situ profile results in different transformed in-situ profiles. These transformed in-situ profiles that are generated from the same in-situ profile are also averaged."

to

"If an in-situ profile is co-located with five or more MOPITT retrievals (assume the number to be $N_{retrieval}$), then the following steps are used in the comparison with MOPITT: (a) the averaging kernel and a prior of each co-located MOPITT retrieval are applied to the in-situ profile (through equation 2) to obtain $N_{retrieval}$ of $x_{transformed}$. Note that applying these $N_{retrieval}$ sets of MOPITT a priori profiles and averaging kernels to the same in-situ profile results in differently transformed in-situ profiles; (b) the $N_{retrieval}$ of $x_{transformed}$ are averaged in log10(VMR) space; and (c) the $N_{retrieval}$ of MOPITT retrievals x_{rtv} are also averaged."

T22 - p7| 200: "variability" -> "standard deviation" Response: We have revised accordingly.

T23 - p7| 202 & 203: omit "retrieval" (the size does not depend on the retrieval algorithm, but is inherent in the MOPITT observation system) Response: We have deleted "retrieval".

T24 - p8| 205: omit "very" Response: We have deleted "very".

T25 - p8| 207: "validated" -> "compared with aircraft observations" Response: We have revised accordingly.

T26 - p8| 209-210: "...show a sensitivity analysis in Section 4 to provide..." Response: We have revised accordingly.

T27 - p8| 211: omit "validation"

Response: We have revised accordingly.

T28 - p8| 215: maybe "validation" -> "comparison with aircraft profiles" Response: We changed the section title to "3. MOPITT comparisons with aircraft profiles over urban and non-urban regions"

T29 - p8| 224: "against observations" -> "against in situ observations" Response: We have revised accordingly.

T30 - p9| 236: "Corresponding results" -> "These comparisons" Response: We have revised accordingly.

T31 - p9| 244: "three levels" -> "three levels in Table 2" Response: We have revised accordingly.

T32 - p9|251: "...in terms of higher correlation coefficients and smaller biases..." Response: Thank you. We have revised accordingly.

T33 - p9| 253: "provide" -> "evaluate", "evaluation against" -> "retrievals during", "campaigns" -> "campaigns with results"

Response: We have revised accordingly.

T34 - p9| 264: "in more favorable weather conditions" -> "during times with greater vertical mixing"

Response: We have revised accordingly.

T35 - p9| 271: "xin-situ, the" -> "xin-situ over non-urban areas, the" Response: We have revised accordingly.

T36 - p9| 291: "concentrations all" -> "concentration for all" Response: We have revised accordingly.

T37 - p9| 292: "For both" -> "For the higher 50% of measured mixing ratios both" and omit "if only the upper 50% of measured mixing ratios are considered" Response: We have changed the sentence accordingly.

T38 - p12| 335-336: Suggest omitting "The validation results", and the second "validation" and changing "are" -> "does", "different for" -> change

Response: We have changed the sentence "The validation results using 300, 400, or 500 hPa as P_{interp} are not significantly different for the validation results against DISCOVER-AQ CA." to

"Using 300, 400, or 500 hPa as P_{interp} does not significantly change the results against DISCOVER-AQ CA."

T39 - p12| 347: "the radius" -> "a radius" Response: We have revised accordingly.

T40 - p12| 350: "close" -> "similar" Response: We have revised accordingly.

T41 - p13| 356: "a smaller number of included" -> "including fewer" Response: We have revised accordingly.

T42 - p13| 359: "a a more more" -> "a more" Response: We have revised accordingly.

T43 - p13| 367: "especially" -> "including" Response: We have revised accordingly.

T44 - p14| 399: "Level 3" -> "the Level 3" Response: We have revised accordingly.

T45 - p14| 411: omit "process" Response: We have revised accordingly.

T46 – p15 | 423: suggest "overall" -> "mean" Response: We have revised accordingly.

T47 - p15| 424: "to 3.5% for different levels" Response: We have revised accordingly.

T48 – p15 | 429: "to" -> "into" Response: We have revised accordingly.

T49 - p15|431: "compared with low" Response: We have revised accordingly.

T50 - p15| 440: "as co-location criteria" -> "as a co-location criterion" Response: We have revised accordingly.

T51 - p15| 441: "where a" -> "where only a" Response: We have revised accordingly.

Anonymous Referee #2

This manuscript by Wenfu Tang et al presented a comparison of the latest MOPITT CO V8 retrievals with aircraft measurements from DISCOVER-AQ, SEAC4RS, ARIAs, A-FORCE, and KORUS-AQ campaigns conducted over the US or East Asia. In addition, the sensitivities of validation results to assumptions and data filters applied during the comparisons of MOPITT retrievals and in-situ profiles were also performed and analyzed. The comparison between the MOPITT CO product with various version and the coincident observations has been previously performed by many scientists in many groups around the world. This study is an extension of previous study and the strategy for comparison has been used extensively in previous MOPITT evaluation and validation studies. However, this study is one of few studies that focus on comparison over around urban regions, this is interesting. Overall, this paper is well written and fits well within the scope of AMT. I recommend for publication though I rate the novelty of this paper as moderate. Since referee # 1 has listed numerous technical comments which are mostly overlapped with my comments. Here I don't present the repeated correction request. Response: Thank you for your time and effort in reviewing our manuscript. We have addressed the comments accordingly. Please see below for details.

Extra minor revisions or comments are:

1. The Base map and color bar in Fig. 1 can be improved. It is hard to distinguish one from another. In latitude and longitude axis, the number like 30 should be 30°.

Response: We have changed colormap, color scale, and increased marker size. We also added the symbol for degree (°) in the latitude and longitude. See the updated Figure 1 in the manuscript for details.

2. What does the dashed line in Figs. 4 and 5 mean? The one to one lineïij§Should be stated in the caption.

Response: The dashed lines are one-to-one ratio lines. We added this information in the captions of Figures 4 and 5.

3. If you only compare the results at surface, 800 hPa, and 600 hPa. Then the expression should be the concentrations at surface, 800 hPa, and 600 hPa rather than the profiles at surface, 800 hPa, and 600 hPa.

Response: As described in the Section 2.3, we did compare the 10-level MOPITT profiles to 10level in-situ profiles. Due to the lack of observations above 600 hPa, we only showed and discussed the results of comparisons below 600 hPa. The surface layer, 800-hPa layer, and the 600-hPa layer are selected to represent different conditions of the profiles below 600 hPa. Please also see the response to the comment # S20 from the reviewer 1. Nevertheless, we thank the reviewer for bringing this up, and changed the term "profile" to "concentration"/"value" when discussing a single layer. For example, we changed "the overall agreements between values of MOPITT and in-situ profiles at the 800-hPa layer" to "the overall agreements between MOPITT and in-situ profiles at the 800-hPa layer" in the section 4.1 to emphasize this statement is only for one layer.

4. Another confusing thing is that the MOPITT could have a very low DOFS at a given level with a limited range (Fig. 3). Thus, the retrieval should come more from a priori information rather than

the measurement. In other words, I guess, the good agreement between the MOPITT and aircraft at a given level is largely attributed to the a priori information and the smoothing effect in equation 2.

Response: The MOPITT V8N product does have a lower degree of freedom for signal compared to the MOPITT V8T and V8J products. Note that this manuscript mainly focuses on the V8T and V8J products (see the reply to the comment S4 of the reviewer 1). It is true that applying MOPITT AK and a priori (the smoothing effect in equation 2) to in-situ profile would reduce the difference between MOPITT profile and the in-situ profiles. However, this is the only correct way to perform such comparison. As stated by the MOPITT Version 8 Product User's Guide (available online at https://www2.acom.ucar.edu/sites/default/files/mopitt/v8_users_guide_201812.pdf), because of the dependence of MOPITT on the a priori information, users must transform these comparison datasets using the equation 2, so that the comparison data exhibit the same degree of smoothing and a priori dependence as the MOPITT product. We are aware of the impact of the a priori information in the validation process following the method described in Deeter et al. (2017). Therefore, the good agreement between the MOPITT and aircraft at a given level is not largely attributed to the a priori information. In fact, the agreement would be much better than it is now if we did not remove the a priori information in the validation process.

Anonymous Referee #3

General comments:

The aim of this paper is to evaluate two versions of MOPITT CO (V7 and V8) by comparison with aircraft observations from diverse campaigns all over the globe. Each version has two sub versions (V7-8T, V7-8N, V7-8J for thermal, NIR and TIR+NIR, respectively). Urban and non urban areas are the focus of the evaluation. This is a paper that complete the list of publications of the evaluation of the different versions of MOPITT CO. Lots of statistics are provided and the MOPITT users community could find some interest in order to interpret MOPITT data over urban areas.

Response: Thank you for your time and effort in reviewing our manuscript.

However, I found the comparison sometimes difficult to follow because of the large number of campaigns, the number of aircraft profiles by campaign, number of aircraft profiles over urban regions, the number of MOPITT CO profiles in different circles,.. Table 1 helps but if possible it would be nice to simplify in the text. Moreover, the title does not reflect totally the subject of the paper: the validation of the MOPITT CO retrievals is also over non urban regions. I suggest to change the title in that way.

Response: Please see the responses to the comments # G2 and S1 of the reviewer 1.

1) Moreover, the distinction of urban and non urban regions for the comparison of MOPITT CO with aircraft observations could mislead the reader. What is important in this study, is it the carbone monoxide emitted from the urban region or just the urban region with surface parameters different from non urban regions? Such surface parameters that are used in the retrievals of MOPITT CO (surface temperature, emissivity). At 600 hPa, some comparisons are done but this is above the boundary layer. There is a great chance that the CO measured by both MOPITT and the aircraft is transported from other regions that are not representative of urban regions. The author should clarify this point.

Response: We thank the reviewer for bringing this question up. The urban regions often have different surface parameters (e.g., surface temperature and emissivity), and usually but not always have higher CO concentrations than non-urban regions. However, the surface parameters are unlikely to impact the ultimate quality of MOPITT retrieval products (Pan et al., 1998; Ho et al., 2005). The goal of this study is to understand if MOPITT retrievals are able to represent conditions over urban regions given sampling, and cloud cover. In addition, the relatively large spatial and temporal variability of CO concentrations over urban regions makes the validation even more complex. Because of the complexity of urban regions and their connection with non-urban regions nearby, we also provide analysis at high CO concentrations regardless of landcover type. As the reviewer pointed out, the comparisons are done for the 600-hPa layer (usually in the free troposphere). It is possible that CO concentrations at this layer are transported from other regions that are not representative of urban regions. Even so, MOPITT retrievals at the 600-hPa layer are still impacted by the CO concentrations at other layers including the surface layer (equation 1). Therefore, the comparisons at 600 hPa is necessary. We have added the discussions above to the section 2.2. See the manuscript for details.

2) Also, it would be nice to have a clear recommandation on which MOPITT CO version to use. For example, after reading the table 2 of the paper, I found difficult to conclude on which version to use for urban or a non urban study as well. The statistics are often very similar and I was wondering what is the added value of V8 vs V7 and how significant the values are? It would be nice the authors discuss this point and conclude with clear recommendation in the conclusions on the use of the different versions of MOPITT CO.

Response: We thank the reviewer for pointing this out. The main goal of this study is not to compare MOPITT V8 and V7 products, but rather to validate the performance of MOPITT products over urban regions versus non-urban regions. The finding is that in general, MOPITT agrees reasonably well with the in-situ profiles over both urban and non-urban regions. As the reviewer pointed out, the statistics are often very similar, therefore we do not have recommendation for which version to use in terms of urban versus non-urban regions.

The MOPITT TIR-only, and TIR-NIR products both have their own advantages and disadvantages. MOPITT TIR-NIR products usually have higher DFSs and have enhanced the sensitivity to near-surface CO but may have larger retrieval noise compared to the TIR-only products (Deeter et al., 2011, 2013; Worden et al., 2010). The MOPITT V8 uses a new parameterized radiance bias correction method to minimize retrieval biases, therefore in general the MOPITT V8 performs better than V7 and is recommended (Deeter et al., 2019). A detailed description of MOPITT V8 products and their comparisons to MOPITT V7 products can be found in Deeter et al. (2019). We added the discussion below to the section 5 of the manuscript:

"The statistics are often very similar between different versions and products over urban and non-urban regions, and in general, MOPITT agrees reasonably well with the in-situ profiles in both cases. There is not, therefore, any reason to recommend the continued use of MOPITT versions earlier than V8 based on urban or non-urban region considerations. In general, MOPITT V8 is recommended (Deeter et al., 2019) as it uses a new parameterized radiance bias correction method to minimize retrieval biases, and has updated spectroscopic data for water vapor and nitrogen."

3) The Section 4.4 (Sensitivity to the signal-to-noise ratio (SNR) filters) is unclear to me. What are the conclusions we can draw from this section? Is level 3 useless? I didn't catch the point of this section. Maybe the authors could clarify on how to use Level 3 data over urban and non urban regions in the light of the use of such SNR filter.

Response: Please see the response to the comments # S37 of the reviewer 1.

Specific Comments:

Abstract:

In the paper, V7 and V8 of MOPITT CO are evaluated whereas only V8 is mentioned in the abstract.

Response: MOPITT V7 products is only used as a reference in the sub-Section 3.1 and is not the focus of this study. To avoid the confusion, we changed the sentence "*We focus on evaluating the recently released Version 8, as well as the Version 7, of the MOPITT TIR, NIR, and multispectral*

TIR-NIR products." in the Section 2.1 (MOPITT retrievals and products) to "We focus on validating the recently released Version 8 of the MOPITT TIR, NIR, and multispectral TIR-NIR products. We also include comparisons with the MOPITT Version 7 TIR, NIR, and multispectral TIR-NIR products in the Section 3.1 for reference."

Section 3.3

L 300-301: This means MOPITT CO concentrations are highly variable in circles where true concentrations are high. In this condition, what are the retrieval errors for these MOPITT pixels? Response: We thank the reviewer for the question. We have conducted the calculation of the retrieval uncertainties, and added the statement below to section 3.3:

"At higher 50% CO concentrations, the averaged retrieval uncertainties for the 600-hPa, 800hPa, and surface layers, are 28%, 28%, and 29%, respectively. This is smaller than the averaged retrieval uncertainties at lower 50% CO concentrations (28%, 29%, and 30% for the 600-hPa, 800-hPa, and surface layers, respectively). We therefore conclude that the larger apparent biases at high CO concentrations are related to greater CO variability and representativeness error of the in-situ profile within the co-location radius used for analyzing the MOPITT data, rather than indicating larger retrieval uncertainties. Theoretically, MOPITT retrievals perform better with higher CO concentrations. The larger biases at high CO concentrations in Figure 7 implies that the relatively greater CO variability may overcome the impact of high CO concentrations. Addressing representativeness error and spatial variability in the comparisons between satellite and in-situ profiles is challenging, and will be discussed further in Section 5."

L 334: please correct the sentence

Response: The sentence is changed to "At the 600-hPa layer, the agreements between the values of MOPITT and in-situ profiles are affected more by P_{interp} compared to the those at the surface layer and the 800-hPa layer for comparisons with all the campaigns."

L 360: please correct the sentence

Response: We changed the sentence to "We note that the usage of the largest radius (200 km) in this paper does not appear to degrade the overall results, even though representativeness errors generated from CO spatial and/or temporal variability are expected to increase. However, the use of the smallest radius (25 km) degrades the overall results by reducing the number of included MOPITT retrievals."

L 369: The sentence 'we note..' is unclear to me. Please clarify if necessary. Response: We changed this sentence to

"We note that when comparing to the ARIAs campaign, using 1h as the allowed maximum time difference decreases the biases at the surface layer, the 800-hPa layer, and the 600-hPa layer, compared to the cases using longer allowed maximum time difference (i.e., 3h, 6h, and 12h). This implies that the temporal variability is relatively large in the region."

Assessing MOPITT carbon monoxide retrievals over urban versus non-urban regions

- 2 Wenfu Tang^{1,2}, Helen M. Worden², Merritt N. Deeter², David P. Edwards², Louisa K.
- 3 Emmons², Sara Martínez-Alonso², Benjamin Gaubert², Rebecca R. Buchholz², Glenn S.
- 4 Diskin³, Russell R. Dickerson⁴, Xinrong Ren^{4,5}, Hao He⁴, and Yutaka Kondo⁶
- 5 ¹Advanced Study Program, National Center for Atmospheric Research, Boulder, CO, USA
- 6 ²Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research,
- 7 Boulder, CO, USA
- 8 ³NASA Langley Research Center, Hampton, VA, USA
- 9 ⁴Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD,
- 10 USA

1

- 11 ⁵Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD,
- 12 USA
- 13 ⁶National Institute of Polar Research, Tachikawa, Japan
- 14 Correspondence: Wenfu Tang (wenfut@ucar.edu)
- 15

16 Abstract

17	The Measurements of Pollution in the Troposphere (MOPITT) retrievals over urban Deleted: performance of the
18	regions have not been validated systematically, even though MOPITT observations are widely Deleted: has
19	used to study CO over urban regions. Here we compare MOPITT products over urban and non- Deleted: validate
20	urban regions with aircraft measurements from DISCOVER-AQ (2011-2014), SEAC ⁴ RS (2013), Deleted: using
21	ARIAs (2016), A-FORCE (2009; 2013), and KORUS-AQ (2016) campaigns. In general, MOPITT
22	agrees reasonably well with the in-situ profiles, over both urban and non-urban regions. Version
23	8 multispectral product (V8J) biases vary from -0.7% to 0.0% and version 8 thermal-infrared
24	product (TIR) biases vary from 2.0% to 3.5%, The evaluation statistics of MOPITT V8J and V8T
25	over non-urban regions are better than that over urban regions with smaller biases and higher V8T vary from -0.7% to 0.0%, and from 2.0% to 3.5%,
26	correlation coefficients. We find that the agreement of MOPITT V8J and V8T with aircraft Deleted: performance
27	measurements at high CO concentrations is not as good as that at low CO concentrations, although
28	CO variability may tend to exaggerate retrieval biases in heavily-polluted scenes. We test the

Deleted: Validation of MOPITT Carbon Monoxide (CO) retrievals over urban regions

40	sensitivities of the agreements between MOPITT and in-situ profiles to assumptions and data	 Deleted: validation results
41	filters applied during the comparisons of MOPITT retrievals and in-situ profiles. The results at the	
42	surface layer are insensitive to the model-based profile extension (required due to aircraft altitude	
43	limitations) whereas the results at levels with limited aircraft observations (e.g., the 600-hPa layer)	
44	are more sensitive to the model-based profile extension. The results are insensitive to the maximum	 Deleted: validation
45	allowed time difference criterion for co-location (12 hours, 6 hours, 3 hours, and 1 hour), and are	 Deleted: allowed maximum
46	generally insensitive to the radius for co-location, except for the case where the radius is small (25	 Deleted: as criteria
47	km) and hence few MOPITT retrievals are included in the comparison, Daytime MOPITT products	 Deleted: hence the MOPITT retrievals included in the
48	have smaller overall biases than nighttime MOPITT products when comparing both MOPITT	 Validation become very small Deleted: smaller
49	daytime and nighttime retrievals to the daytime aircraft observations. However, it would be	
50	premature to draw conclusions on the performance of MOPITT nighttime retrievals without	
51	nighttime aircraft observations. Applying signal-to-noise ratio (SNR) filters does not necessarily	
52	improve the overall agreement between MOPITT retrievals and in-situ profiles, likely due to the	
53	reduced number of MOPITT retrievals for comparison. Comparisons of MOPITT retrievals and	 Deleted: that result
54	in-situ profiles over complex urban or polluted regimes are inherently challenging due to spatial	
55	and temporal variabilities of CO within MOPITT retrieval pixels (i.e., footprints). We demonstrate	
56	that some of the errors are due to CO representativeness with these sensitivity tests, but further	 Deleted: the
57	quantification of representativeness errors due to CO variability within the MOPITT footprint will	 Deleted: that
58	require future work.	Deleted: validation
59		
60	1 Introduction	
	1. Inti vuutton	
61	Observations from the Measurements of Pollution in the Troposphere (MOPITT)	 Deleted: T

	61	Observations from the Measurements of Pollution in the Troposphere (MOPITT) Deleted: T
	62	instrument onboard the NASA Terra satellite have been used for retrieving total column amounts
1	63	and volume mixing ratio (VMR) profiles of carbon monoxide (CO) using both thermal-infrared
	64	(TIR) and near-infrared (NIR) measurements since March, 2000. Besides the TIR-only and NIR- Deleted: ,
	65	only products, the MOPITT multispectral TIR-NIR product is also provided, which has enhanced Deleted: MOPITT also provides
ļ	66	the sensitivity to near-surface CO (Deeter et al., 2011, 2013; Worden et al., 2010). Since the start
	67	of the mission, the MOPITT CO retrieval algorithm has been improved and enhanced continuously
	68	(Worden et al., 2014). For example, the Version 6 product improvements included the reduction
	69	of both a geolocation bias and a significant latitude-dependent retrieval bias in the upper

85 troposphere (Deeter et al., 2014). In the Version 7 products, a new strategy for radiance-bias 86 correction and an improved method for calibrating MOPITT's NIR radiances were included 87 (Deeter et al., 2017). For the most recently released MOPITT Version 8 products, enhancements include a new radiance bias correction method (Deeter et al., 2019). Meanwhile, the MOPITT 88 89 products have been extensively evaluated and validated with in-situ measurements, though this has been done primarily over non-urban areas (Deeter et al., 2010, 2012, 2013, 2014, 2016, 2017, 90 91 2019; Emmons et al., 2004, 2007, 2009). In addition, MOPITT products have also been compared 92 with ground-based spectrometric column retrievals (e.g., Buchholz et al., 2017; Hedelius et al., 93 2019). For the past two decades, MOPITT CO products have been widely used for various 94 applications, including understanding atmospheric composition, evaluating atmospheric chemistry 95 models, and constraining inverse analyses of CO emissions (e.g., Arellano et al., 2004, 2006, 2007; 96 Chen et al., 2009; Edwards et al., 2006; Emmons et al., 2010; Fortems-Cheiney et al., 2011; 97 Gaubert et al., 2016; Heald et al., 2004; Jiang et al., 2018; Kopacz et al., 2009, 2010; Kumar et al., 98 2012; Lamarque et al., 2012; Tang et al., 2018; Yurganov et al., 2005).

MOPITT products are particularly useful for monitoring and analyzing air pollution over 99 100 urban regions because of the enhanced retrieval sensitivity to near-surface CO and the long-term 101 record (e.g., Clerbaux et al., 2008; Girach and Nair, 2014; Jiang et al., 2015, 2018; Kar et al., 2010; 102 Tang et al., 2019; Worden et al., 2010; Li and Liu, 2011; He et al., 2013; Aliyu and Botai, 2018; 103 Kanakidou et al., 2011). However, the performance of MOPITT retrievals over urban regions has 104 not yet been validated systematically. Furthermore, in-situ observations of CO profiles over urban 105 areas are limited, especially in Asia. Indeed, along with the non-urban validation exercises 106 mentioned above, development and validation of the MOPITT retrieval algorithm relies heavily 107 on in-situ measurements over remote regions, such as measurements from the HIAPER Pole-to-108 Pole Observations (HIPPO) and the Atmospheric Tomography Mission (ATom) campaigns (e.g., 109 Deeter et al., 2013, 2014, 2017, 2019). Comparisons of MOPITT products to measurements with 110 aircraft profiles during the Korea United States Air Quality (KORUS-AQ) campaign over South 111 Korea have only recently been made in Deeter et al. (2019), but without explicitly analyzing 112 MOPITT performance over urban regions.

In this study, we <u>compare MOPITT Version 8 and 7 products with aircraft profiles made</u> over urban regions (as well as non-urban regions) from campaigns including: Deriving Information Deleted:

3

Deleted: validate
Deleted: version
Deleted: over urban regions by comparing
Deleted: that are over

120	on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality		
121	(DISCOVER-AQ); the Studies of Emissions and Atmospheric Composition, Clouds, and Climate		
122	Coupling by Regional Surveys (SEAC ⁴ RS); the Air Chemistry Research In Asia (ARIAs); the		
123	Aerosol Radiative Forcing in East Asia (A-FORCE); and KORUS-AQ. These campaigns are		
124	described in Section 2, along with a brief description of the MOPITT products and the		Deleted: introduced
125	methodology used. We present the comparisons of MOPITT products to aircraft profiles, and		Deleted: introduction
126	discuss the impacts of key factors in the retrieval process on the retrieval results in Section 3. In	and the second	Deleted: validation Deleted: validation results
127	Section 4, we discuss the sensitivities of results to the assumptions and data filters made for		
128	aircraft-satellite comparisons not only in this study, but also in previous evaluation studies of		
129	MOPITT and other satellite products. Section 5 gives the conclusions of the study.		
130			
131	2. Data and methods		
132	2.1 MOPITT retrievals and products		
133	MOPITT is a nadir sounding satellite instrument flying on the NASA Terra satellite. It uses		
134	a gas filter correlation radiometer and measures $\underline{radiance}$ at both the TIR band near 4.7 μm and the		
135	NIR band near 2.3 μ m. These <u>observations</u> have a spatial resolution of about 22 km \times 22 km with		Deleted: retrievals
136	satellite overpass time at approximately 10:30 and 22:30 (local time). To determine a unique CO		
137	concentration profile from the MOPITT measured radiances, an optimal estimation-based retrieval		
138	algorithm, and a fast radiative transfer model are used (Deeter et al., 2003; Edwards et al., 1999).		
139			
	The retrieved state vector (x_{rtv}) for optimal estimation-based retrievals can be expressed as		
140	The retrieved state vector (x_{rtv}) for optimal estimation-based retrievals can be expressed as $x_{rtv} = x_a + A(x_{true} - x_a) + \epsilon$ (1)		
140 141	The retrieved state vector (x_{rtv}) for optimal estimation-based retrievals can be expressed as $x_{rtv} = x_a + A(x_{true} - x_a) + \epsilon$ (1) x_a and x_{true} are the a priori state vector and the true state vector, respectively. <i>A</i> (which has a size		
140 141 142	The retrieved state vector (x_{rtv}) for optimal estimation-based retrievals can be expressed as $x_{rtv} = x_a + A(x_{true} - x_a) + \epsilon$ (1) x_a and x_{true} are the a priori state vector and the true state vector, respectively. <i>A</i> (which has a size of 10×10) is the retrieval averaging kernel matrix (AK) that represents the sensitivity of retrieved		
140 141 142 143	The retrieved state vector (x_{rtv}) for optimal estimation-based retrievals can be expressed as $x_{rtv} = x_a + A(x_{true} - x_a) + \epsilon$ (1) x_a and x_{true} are the a priori state vector and the true state vector, respectively. <i>A</i> (which has a size of 10×10) is the retrieval averaging kernel matrix (AK) that represents the sensitivity of retrieved profiles to actual profiles and ϵ is the random error vector. Note that CO quantities in the state		
140 141 142 143 144	The retrieved state vector (x_{rtv}) for optimal estimation-based retrievals can be expressed as $x_{rtv} = x_a + A(x_{true} - x_a) + \epsilon$ (1) x_a and x_{true} are the a priori state vector and the true state vector, respectively. <i>A</i> (which has a size of 10×10) is the retrieval averaging kernel matrix (AK) that represents the sensitivity of retrieved profiles to actual profiles and ϵ is the random error vector. Note that CO quantities in the state vector are retrieved as log ₁₀ (VMR).		Deleted: profiles
140 141 142 143 144 145	The retrieved state vector (x_{rtv}) for optimal estimation-based retrievals can be expressed as $x_{rtv} = x_a + A(x_{true} - x_a) + \epsilon$ (1) x_a and x_{true} are the a priori state vector and the true state vector, respectively. <i>A</i> (which has a size of 10×10) is the retrieval averaging kernel matrix (AK) that represents the sensitivity of retrieved profiles to actual profiles and ϵ is the random error vector. Note that CO quantities in the state vector are retrieved as log ₁₀ (VMR). We focus on validating the recently released Version 8 of the MOPITT TIR, NIR, and		Deleted: profiles Deleted: quantities
140 141 142 143 144 145 146	The retrieved state vector (x_{rtv}) for optimal estimation-based retrievals can be expressed as $x_{rtv} = x_a + A(x_{true} - x_a) + \epsilon$ (1) x_a and x_{true} are the a priori state vector and the true state vector, respectively. <i>A</i> (which has a size of 10×10) is the retrieval averaging kernel matrix (AK) that represents the sensitivity of retrieved profiles to actual profiles and ϵ is the random error vector. Note that CO quantities in the state vector are retrieved as $\log_{10}(VMR)$. We focus on validating the recently released Version 8 of the MOPITT TIR, NIR, and multispectral TIR-NIR products. We also include comparisons with the MOPITT Version 7 TIR,		Deleted: profiles Deleted: quantities
140 141 142 143 144 145 146 147	The retrieved state vector (x_{rtv}) for optimal estimation-based retrievals can be expressed as $x_{rtv} = x_a + A(x_{true} - x_a) + \epsilon$ (1) x_a and x_{true} are the a priori state vector and the true state vector, respectively. <i>A</i> (which has a size of 10×10) is the retrieval averaging kernel matrix (AK) that represents the sensitivity of retrieved profiles to actual profiles and ϵ is the random error vector. Note that CO quantities in the state vector are retrieved as log ₁₀ (VMR). We focus on validating the recently released Version 8 of the MOPITT TIR, NIR, and multispectral TIR-NIR products. We also include comparisons with the MOPITT Version 7 TIR, NIR, and multispectral TIR-NIR products in the Section 3.1 for reference. These two versions of		Deleted: profiles Deleted: quantities Deleted: We focus on evaluating the recently released Deleted: We focus on evaluating the recently released
140 141 142 143 144 145 146 147 148	The retrieved state vector (x_{rtv}) for optimal estimation-based retrievals can be expressed as $x_{rtv} = x_a + A(x_{true} - x_a) + \epsilon$ (1) x_a and x_{true} are the a priori state vector and the true state vector, respectively. <i>A</i> (which has a size of 10×10) is the retrieval averaging kernel matrix (AK) that represents the sensitivity of retrieved profiles to actual profiles and ϵ is the random error vector. Note that CO quantities in the state vector are retrieved as log ₁₀ (VMR). We focus on validating the recently released Version 8 of the MOPITT TIR, NIR, and multispectral TIR-NIR products. We also include comparisons with the MOPITT Version 7 TIR, NIR, and multispectral TIR-NIR products in the Section 3.1 for reference. These two versions of MOPITT products were introduced in detail in Deeter et al. (2017) and Deeter et al. (2019).		Deleted: profiles Deleted: quantities Deleted: We focus on evaluating the recently released version 8, as well as the version 7, of the MOPITT TIR, NIR, and multispectral TIR-NIR products.

2.2 Aircraft measurements used for comparisons

160	Aircraft-sampled profiles of CO concentrations during the DISCOVER-AQ, SEAC ⁴ RS,		
161	ARIAs, A-FORCE, and KORUS-AQ campaigns are used for comparisons with MOPITT-		
162	retrieved profiles. DISCOVER-AQ, and SEAC ⁴ RS were conducted over the US, while ARIAs, A-		
163	FORCE, and KORUS-AQ were conducted over East Asia, Locations of the aircraft profiles from	Del	eted: (EA)
164	these campaigns are compared with the MODIS (Moderate Resolution Imaging Spectroradiometer)		
165	Terra+Aqua Land Cover Type Climate Modeling Grid Yearly Level 3 Version 6 0.05°×0.05°	Del	eted: version
166	Global product (MCD12C1 v006) (Friedl and Sulla-Menashe, 2015) to determine if a profile was	Del	eted: is
167	sampled over an urban or non-urban region, Specifically, for each aircraft profile, a 0.5°×0.5° box	Del	eted: s
168	centered over the location of the aircraft profile (determined by averaged Jatitude and longitude of	Del	eted: of
169	aircraft observations in the profile) is selected. If the urban and built-up fraction in the box is larger		
170	than 10%, the profile is <u>considered</u> to be an urban profile. Overall, for each campaign, the averaged	Del	eted: determined
171	aircraft profile over urban regions has higher CO concentrations compared to that over non-urban		
172	regions, especially near the surface (see Figure S1). Profiles during ARIAs, which are sampled		
173	over Hebei province in China, are exceptional, as the averaged profile over non-urban regions has	Del	eted: the exception
174	higher CO concentrations especially near the surface, indicating high CO levels in the entire study		
175	region. We note that Hebei is one of the most heavily industrialized and polluted regions, and the		
176	difference in CO profiles is driven less by urban versus rural than by synoptic and mesoscale		
177	meteorology. In addition, Hebei is an arid region and subject to strong nocturnal inversions, so the		
178	surface CO can be very high, For aircraft profiles sampled during KORUS-AQ, the CO profiles	Del	eted: .
179	over urban and non-urban regions are similar, even though the averaged profile over urban regions	Del	eted: We also notice f
180	has slightly higher CO concentration near the surface. This is largely due to the fact that many of	Del	eted: or aircraft profiles sampled during KORUS-AQ,
181	the non-urban aircraft profiles are sampled over the Taehwa forest site, which is impacted by CO	eve	n though the averaged profile over urban regions has htly higher CO concentration near the surface, the
182	transported from the nearby Seoul urban region. The urban regions often have different surface	prot	ïles over urban and non-urban are close
183	parameters (e.g., surface temperature and emissivity), and usually but not always have higher CO		
184	concentrations than non-urban regions. However, the surface parameters are unlikely to impact the		
185	ultimate quality of MOPITT retrieval products (Pan et al., 1998; Ho et al., 2005). The goal of this		
186	study is to understand if MOPITT retrievals are able to represent conditions over urban regions		
187	given sampling, and cloud cover. In addition, the relatively large spatial and temporal variability		
188	of CO concentrations over urban regions makes the validation even more complex. Because of the		
189	complexity of urban regions and their connection with non-urban regions nearby, we also provide		

analysis at high CO concentrations regardless of landcover type. As the reviewer pointed out, the
 comparisons are done for the 600-hPa layer (usually in the free troposphere). It is possible that CO
 concentrations at this layer are transported from other regions that are not representative of urban
 regions. Even so, MOPITT retrievals at the 600-hPa layer are still impacted by the CO
 concentrations at other layers including the surface layer (equation 1). Therefore, the comparisons
 at 600 hPa is necessary.

The campaigns and profiles are summarized in the Table 1 and Figure 1. During DISCOVER-AQ, SEAC⁴RS, and KORUS-AQ, CO concentrations were measured by the NASA Differential Absorption Carbon monOxide Measurement (DACOM), whereas during ARIAs and A-FORCE, CO concentrations were measured by Picarro G2401-m, and Aero-Laser GmbH AL5002, respectively. Note that the primary goal of DISCOVER-AQ was to provide aircraft

- observation methodologies for satellite validation (e.g., Lamsal et al. (2014)). There are 121
- 215 profiles over four urban regions from DISCOVER-AQ, making it particularly useful for the goal
- of this study. Because of this, our results are heavily driven by aircraft profiles from DISCOVER-
- 217 AQ. Even though there are only two profiles sampled over urban regions, the A-FORCE campaign
- 218 <u>obtained</u> 45 profiles in total sampled over <u>East Asia</u> during Spring 2009, Winter 2013, and Summer
- 219 2013. The seasonal and spatial coverage of the dataset makes it representative of the region. The
- 220 ARIAs campaign provides 19 profiles and three of these were sampled over Chinese urban regions.
- 221 Few previous studies have validated MOPITT products over China (e.g., Hedelius et al., 2019), so
- aircraft profiles from ARIAs have also been included in this study.
- 223 2.3 Method for comparing MOPITT profiles to aircraft measurements

We generally follow the method that has been used in previous MOPITT evaluation and validation studies (Deeter et al., 2010, 2012, 2013, 2014, 2016, 2017, 2019; Emmons et al., 2004,

226 2007, 2009). There are four main steps in aircraft versus MOPITT comparisons.

227 (1) Because of aircraft altitude limitations, in-situ data from field campaigns do not typically reach

- the highest altitudes at which MOPITT radiances are sensitive. Therefore, to obtain a complete
- 229 vertical profile as required for comparison with MOPITT retrievals, each in-situ profile is extended
- 230 vertically using the following steps: (i) the aircraft measurements are interpolated to the 35-level
- vertical grid used in MOPITT forward model calculations (0.2–1060 hPa); (ii) the levels from the surface to the lowest-altitude aircraft measurement are filled with the value of the in-situ

Deleted: Urban regions do not always have higher CO
concentrations than non-urban regions. Therefore, because of
the complexity of urban regions and their connection with
non-urban regions nearby, we also provide analysis of
validation at high CO concentrations regardless of landcover
type.

Deleted: different instruments, a Deleted: I

Deleted: DISCOVER-AQ provides 121 profiles over four urban regions Deleted: validation

Deleted: provides in total Deleted: EA

Deleted: Only Deleted: f

Deleted: aircraft measurements and

249	measurement at the lowest-altitude aircraft measurement; (iii) for levels above a certain pressure	
250	level P _{interp} (higher altitude), model or reanalysis data are used directly; (iv) for levels between the	 Deleted: e.g., 200 hPa
251	highest-altitude aircraft measurement and the altitude of Pinterp, values are linearly interpolated.	 Deleted: below
252	Unlike the previous MOPITT evaluation studies that used monthly model results from MOZART	
253	(Model for OZone And Related chemical Tracers) (Emmons et al., 2010) or CAM-chem	
254	(Community Atmosphere Model with chemistry) (Lamarque et al., 2012), here we use 3-hourly	
255	Copernicus Atmosphere Monitoring Service (CAMS) reanalysis of CO produced by the European	
256	Centre for Medium-Range Weather Forecasts (ECMWF). CAMS CO reanalysis has a horizontal	
257	resolution of 80 km \times 80 km, and 60 vertical grids (from surface to 0.1 hPa). Satellite retrievals of	
258	atmospheric composition including MOPITT TIR Version 6 total column CO retrievals are	
259	assimilated in the CAMS reanalysis (Inness et al., 2019;	
260	https://confluence.ecmwf.int/pages/viewpage.action?pageId=83396018). We note that as we do	
261	not compare with these higher levels later, the use of CAMS reanalysis is expected to have a	
262	minimal impact on the lower levels we use in the comparison (e.g., the surface layer, the 800-hPa	
263	layer, and the 600-hPa layer). The final CO profile at the 35-level vertical grid is then regridded	
264	onto a coarser 10-level grid (for consistency with the actual MOPITT retrieval grid) by <u>unweighted</u>	
265	averaging the fine-grid VMR values in the layers immediately above the corresponding levels in	
266	the retrieval grid. We investigate the sensitivity of the results to P _{interp} in Section 4.1.	 Deleted: have conducted further calculations to
2.67	(2) For a given in-situ profile MOPITT profiles are considered co-located with the aircraft profile	 Deleted: validation
268	and are selected for comparison only if their center points are within the radius of 100 km and	 Deleted: only Deleted: retrieved within the radius of 100 km and within 12
269	within 12 hours of the acquisition of the aircraft profile. Sensitivities of the results to the radius	 hours of the acquisition of the aircraft profile
270	and time criteria for co-location selection are further investigated in Section 4.2.	 Deleted: validation
		 Deleted: have been
271	(3) For each pair of co-located MOPITT retrieved and in-situ profiles, we apply the MOPITT a	
272	priori profile and averaging kernel to the in-situ profile as in Eq. (1). Thus, after converting from	
273	profiles of the in-situ and a priori CO concentrations to $\log_{10}(VMR)$ profiles $(x_{in-situ} \text{ and } x_a)$, we	
274	<u>calculate</u>	
275	$x_{transformed} = x_a + A(x_{in-situ} - x_a) $ (2)	 Formatted: Right
276	so that the $\log_{10}(VMR)$ -based transformed in-situ profile ($x_{transformed}$) has the same degree of	 Formatted: Space Before: 6 pt, After: 6 pt
277	smoothing and a priori dependence as the MOPITT retrieved $\log_{10}(\text{VMR})$ profile $(x_{rtv})_{\tau}$	 Deleted: For each pair of co-located MOPITT retrieval and in-situ profiles, we apply the MOPITT a priori profile and averaging kernel to the in-situ profile, . ([1])

[...[1]]

292	(4) For each in-situ profile, there are likely to be multiple MOPITT retrievals that meet the above
293	co-location criteria. If fewer than five MOPITT retrievals are co-located with an in-situ profile
294	the in-situ profile is not used in the following study and analysis, If an in-situ profile is co-located
295	with five or more MOPITT retrievals (assume the number to be N _{retrieval}), then the following steps
296	are used in the comparison with MOPITT: (a) the averaging kernel and a prior of each co-located
297	$\underline{\text{MOPITT retrieval are applied to the in-situ profile (through equation 2) to obtain N_{retrieval} of}$
298	Xtransformede Note that applying these Nretrieval sets of MOPITT a priori profiles and averaging
299	kernels to the same in-situ profile results in differently transformed in-situ profiles; (b) the $N_{retrieval}$
300	of xtransformed, are averaged in log10(VMR) space; and (c) the N _{retrieval} of MOPITT retrievals x _{rtva}
301	are also averaged,

302	Figure 2 shows an example of profile comparisons (the original aircraft profile, aircraft
303	profile extended with CAMS reanalysis data and regridded to 35-level grid, $x_{in-situ}$, x_a ,
304	$x_{transformed}$, and x_{rtv}) in VMR for an aircraft profile sampled on July 22, 2011 during
305	DISCOVER-AQ in Maryland (MD), Figure 2 also demonstrates what to expect within a MOPITT
306	retrieval pixel and vertical level. The MOPITT retrievals have a spatial resolution of about 22 km
307	\times 22 km, and each MOPITT retrieval level corresponds to a Jayer immediately above that level.
308	The standard deviation of the original aircraft CO observations in each MOPITT layer are also
309	shown, which is due to horizontal and vertical variability in CO, Taking the 800-hPa layer as an
310	example, the standard deviation of the original aircraft CO observations in the level is 21.4 ppb,
311	which is larger than the difference between $x_{transformed}$ and x_{rtv} at that level (12.4 ppb). We also
312	show the relative scale of the aircraft profile (3 km \times 5 km) and a MOPITT pixel (22 km \times 22 km)
313	in Figure 2. We expect the variability of CO within a MOPITT pixel to be even larger than the CO
314	variability within the scale of 3 km \times 5 km. The variability within a satellite pixel and the
315	representativeness error in the satellite retrieval and aircraft profile comparisons make it
316	challenging to <u>compare</u> satellite retrievals <u>to</u> aircraft observations. This is one of the major reasons
317	that MOPITT has yet to be compared with aircraft observations over urban regions with in-situ
318	observations. The representativeness error has been discussed in previous studies (Fishman et al.,
319	2011; Follette-Cook et al., 2015; Judd et al., 2019). Follette-Cook et al. (2015) quantified spatial
320	and temporal variability of column integrated air pollutants, including CO, during DISCOVER-
321	AQ MD from modeling perspective (using the Weather Research and Forecasting model coupled
1	

Deleted: If an in-situ profile is co-located with fewer than five MOPITT retrievals Formatted: Font color: Text 1 Formatted: Font:Not Italic, Font color: Text 1

	Formatted: Font color: Text 1
~	Formatted: Font color: Text 1
	Formatted: Font:Not Italic, Font color: Text 1
	Formatted: Font color: Text 1
	Formatted: Font color: Text 1
(N)	Formatted: Font:Not Italic, Font color: Text 1
$\langle \rangle \rangle$	Formatted: Font color: Text 1
$\langle \rangle \rangle$	Formatted: Font color: Text 1
$\langle \rangle \rangle$	Formatted: Font:Not Italic, Font color: Text 1
\mathbb{N}	Formatted: Font color: Text 1
	Deleted: If an in-situ profile is co-located with five or more MOPITT retrievals, these co-located MOPITT profiles are averaged as $\log_{10}(VMR)$. Applying these corresponding different MOPITT a priori profiles and averaging kernels to the same in-situ profile results in different transformed insitu profiles. These transformed in-situ profiles that are generated from the same in-situ profile are also averaged.
\mathbb{N}	Deleted: DC
	Deleted: uniformly-weighted
	Deleted: The vertical and horizontal variability of the original aircraft CO observations in each MOPITT layer (represented by standard deviation) are also shown
$\langle \rangle \rangle$	Deleted: level of
	Deleted:
	Deleted: variability
	Deleted: retrieval
-	Deleted: retrieval

Deleted: very	
Deleted: validate	
Deleted: against	
Deleted: validated	

345	with Chemistry – WRF-Chem). They found that during the July 2011 DISCOVER-AQ campaign,	
346	the mean CO difference at the distance of 20-24 km is ~30 ppb (derived from the aircraft	
347	observations) and ~40 ppb (derived from co-located WRF-Chem output), based on structure	
348	function analyses. In this study, we demonstrate this challenge with an example in Figure 2. We	
349	also show a sensitivity analysis in Section 4 to provide perspectives on how the spatial and	 Deleted: in Section 4 the
350	temporal representativeness may change the results. Further quantification of the variability within	 Deleted: validation
351	MOPITT pixels would be very challenging (partially due to limited coverage of the observational	
352	data), and we will elaborate more on this issue in Section 5.	
353		
354	3. MOPITT comparisons with aircraft profiles over urban and non-urban regions	Deleted: validation
355	In this section, the results for MOPITT comparisons with aircraft profiles are provided for	 Deleted: regions Deleted: validation results
356	only daytime retrievals (i.e., solar zenith angle < 80° in the retrieval), because (1) MOPITT	
357	retrievals generally contain more CO profile information in daytime, which is reflected in AKs	
358	and Degrees of Freedom for Signal (DFS) in Figure 3, and (2) most aircraft profiles are sampled	
359	during daytime. In Section 4.3, we discuss the sensitivity to the inclusion of MOPITT nighttime	
360	retrievals in MOPITT comparisons with aircraft profiles. In addition, many aircraft profiles,	 Deleted: the
361	especially those from DISCOVER-AQ, lack observations above 600 hPa. Even though we	 Deleted: validation process
362	extended the aircraft profiles vertically with reanalysis data (as discussed in Section 2.3), this still	
363	prevents the use of these profiles for validating MOPITT retrievals at upper levels against in-situ	
364	observations. In this paper, we only focus on <u>comparing MOPITT retrievals below the altitude of</u>	 Deleted: validating
365	600 hPa to aircraft profiles. Nevertheless, since the CO retrievals below 600 hPa are still weakly	
366	impacted by CO fields in the upper levels (as shown by the AKs in Figure 3), in Section 4.1 we	
367	perform sensitivity tests on how augmenting the aircraft profiles with reanalysis fields affects the	
368	<u>comparison</u> results.	 Deleted: validation
369	3.1 Overall statistics	
370	The overall comparison results are presented in Table 2. Following Deeter et al. (2017),	 Deleted: validation
371	retrieval biases and standard deviation (SD) are calculated based on mean x_{rtv} and $x_{transformed}$	
372	for each in-situ profile, and converted from $log_{10}(VMR)$, to percent. The correlation coefficient (r)	 Deleted: log(VMR)
1 373	is quantified based on $(x_{rtv} - x_a)$ and the corresponding $(x_{transformed} - x_a)$ to avoid	

385	correlations which mainly result from the variability of the a priori. x_{rtv} , $x_{transformed}$, and x_a are		
386	in log ₁₀ (VMR) space in order to apply the AKs, which are computed for x_{rtv} in log ₁₀ (VMR). <u>These</u>		
387	comparisons, for MOPITT Version 8 TIR-only (V8T) and Version 8 TIR-NIR (V8J) are shown in		Deleted: Corresponding results
388	Figures 4 (for all profiles) and 5 (for urban profiles). Overall biases for V8J products (averaged		
389	over all campaigns in Table 1) vary from -0.7% to 0.0%, which are lower than biases for V8T		
390	(from 2.0% to 3.5%). Overall biases for V8J products are also smaller than biases for V7J (from -		Deleted: lower
391	0.5% to -5.4%). For V8J and V7J, biases over urban regions vary from -0.8% to -2%, and from,-		Deleted: from -0.2% to -0.8%
392	1.4% to -8.9%, respectively, which are generally larger than biases over non-urban regions (-		Deleted: -8.9% to
393	0.3%~1.1% and -3.3%~0.1%). Correlation coefficients over non-urban regions are higher than		Deleted: higher
394	those over urban regions for all six products (V7T, V8T, V7N, V8N, V7J, V8J) at all three levels		Deneral generally
395	in Table 2 (the surface layer, the 800-hPa layer, and the 600-hPa layer). We also notice that for		Deleted:
396	TIR-NIR and TIR-only products. V8 have higher correlation coefficients with in-situ		Deleted:
397	measurements than V7 over non-urban regions, whereas over urban regions. V8 products have	$\langle \rangle$	Deleted: For example, for the V coefficients over urban regions a
398	lower correlation coefficients than V7 (except for the 600-hPa layer). Overall, MOPITT products	$\langle \rangle$	surface, 800 hPa, and 600 hPa, r urban regions, the corresponding
399	(especially V81) perform reasonably well over both urban and non-urban regions. Performance	$\langle \rangle$	0.76, 0.73 and 0.67.
400	over non-urban regions is better than that over urban regions in terms of higher correlation	V	Deleted: generally
401	coefficients and smaller biases for V81 and V71		Deleted: in terms of correlation
402	3.2 Discussions on individual campaigns		
403	We also evaluate MOPITT V8J retrievals during individual field campaigns with results in		Deleted: provide
404	Figure 6. The corresponding results for MOPITT V8T are summarized in Figure S2. The patterns		Deleted: evaluation against
405	of biases are very similar for MOPITT V8J and V8T. Thus, in this sub-section, we focus on V8J		
406	unless stated otherwise. Overall, except comparisons with A-FORCE and ARIAs, biases over		Deleted: besides
407	urban regions and non-urban regions do not have a significant difference. Neither do biases		
408	determined for campaigns over the US and East Asia differ significantly, either.		Deleted: EA
409	When compared to DISCOVER-AO CA MOPITT CO values are generally higher than		
h10	in-situ profiles at the 600-hPa layer (i.e., the 100 hPa uniform layer immediately above 600 hPa)		
411	but not at the surface layer (i.e., the uniform layer immediately above the surface). This is likely		Deletede et 600 bDe
412	put not at the surface layer (i.e., the uniform layer infinedrately above the surface). This is likely	******	Deleted: at 600 hPa
412	related to the fact that the DISCOVER-AQ CA aircraft profiles are mostly below 600 hPa, and		Deleted:
413	hence CO values of these in-situ profiles at 600 hPa and above are filled with CAMS reanalysis		
414	data. In addition, DISCOVER-AQ CA was conducted in the winter when boundary layer height is		

6	
-1	Deleted: lower
-{	Deleted: from -0.2% to -0.8%
{	Deleted: -8.9% to
{	Deleted: higher
{	Deleted: generally

Deleted: Deleted:

Deleted: For example, for the V8J product, correlation coefficients over urban regions are 0.53, 0.57, and 0.53 at the surface, 800 hPa, and 600 hPa, respectively, while over non-urban regions, the corresponding correlation coefficients are 0.76, 0.73 and 0.67.

Deleted: in terms of correlation coefficients and biases

 Deleted: provide
 Deleted: evaluation against
 Deleted: besides
 Deleted: EA
 Deleted: at 600 hPa
 Deleted:

1	Λ
1	υ

437	at lower altitudes, which could also explain the difference, in particular since most of the other	
438	campaigns are during times with greater vertical mixing, The lack of aircraft observations at 600	 Deleted: in
439	hPa and above also has a smaller impact on the biases at the 800-hPa layer through applying AK	 Deleted: more favorable weather conditions
440	(see Figure 3).	Deleted:
441	During the A-FORCE campaign, only 2 in-situ profiles out of 45 were sampled over urban	
442	regions. The locations of the two profiles are close to each other and they are both sampled on/near	
443	the coast of South Korea (Figure 1). MOPITT has large negative biases (-30%~-40%) when	
444	compared to these two profiles. The averaged $x_{in-situ}$, x_a , $x_{transformed}$, and x_{rtv} over non-urban	
445	regions during A-FORCE and the $x_{in-situ}, x_a, x_{transformed}$, and x_{rtv} of the two profiles over	
446	urban regions are shown in Figure S3. Compared to the averaged $x_{in-situm}$ over non-urban regions,	 Deleted: ,
447	the $x_{in-situ}$ for the two profiles over the urban regions have large enhancements near the surface	
448	and between 600~800 hPa. Even though the x_a and x_{rtv} for the two profiles have higher CO	
449	concentrations (~400 ppb at the surface layer) than the averaged x_a and x_{rtv} (~200 ppb at the	
450	surface <u>layer</u>), they are still lower than the $x_{transformed}$.	
451	As for KORUS-AQ, MOPITT also has a negative bias (though smaller) when compared to	
452	the profiles over urban regions. Most of these KORUS-AQ profiles were located near the two	
453	profiles from A-FORCE but farther from the coast. The negative bias is not seen over non-urban	
454	regions during KORUS-AQ at the surface layer.	
455	When compared to the in-situ profiles from ARIAs, MOPITT has a large positive bias,	
456	especially over urban regions (20%~30%). During ARIAs, in-situ profiles over urban regions have	
457	lower CO values (~200 ppb at the surface layer) than those in-situ profiles over non-urban regions	
458	(~ 400 ppb at the surface layer; Figure S4). We note there are only a small number of in-situ	
459	profiles over urban regions in East Asia used in this study, compared to what is provided by	 Deleted: EA
460	DISCOVER-AQ in the US. The large negative biases against A-FORCE and large positive biases	
461	against ARIAs point to the need for more in-situ observations over East Asia	 Deleted: EA
462	3.3 MOPITT comparisons with aircraft profiles at high CO concentrations	 Deleted: Validation
463	Urban regions are often associated with high CO concentrations. But this is not always the	
464	case (e.g., Figure S4). Here we separate the in-situ profiles at the surface layer, the 800-hPa layer,	
465	and the 600-hPa layer into lower 50% CO values and higher 50% CO values based on CO values	 Deleted: the surface, 800 hPa, and 600 hPa

474	at each level to demonstrate the impact of CO concentrations on the MOPITT product validation
475	(Figure 7). For V8J, MOPITT has smaller biases at higher 50% CO concentrations for all three
476	levels, whereas for V8T, MOPITT has larger biases at the surface layer and the 600-the layer at
477	higher 50% CO concentrations. For the higher 50% of measured mixing ratios both V8J and V8T,
478	have, larger SDs and lower correlation coefficients at the surface layer, the 800-hPa layer, and the
479	600-hPa layer, suggesting that the agreement between MOPITT and the in-situ profiles at higher
480	CO concentrations is not as good as that at lower CO concentrations. In contrast, Deeter et al.
481	(2016) found that the retrieval biases do not visibly increase at the upper range of CO
482	concentrations when compared to aircraft measurements over the Amazon basin. The vertical error
483	bars in Figure 7 (caused by the multiple co-located MOPITT profiles with one in-situ profile)
484	represent the variability (standard deviation) of the MOPITT data used to calculate each of the
485	plotted mean values. For an in-situ profile, the variability of the MOPITT data located within its
486	radius of 100 km and within 12 hours is larger when the in-situ profile has higher CO values,
487	indicated by larger error bars at higher 50% CO concentrations. At higher 50% CO concentrations,
488	the averaged retrieval uncertainties for the 600-hPa, 800-hPa, and surface layers, are 28%, 28%,
489	and 29%, respectively. This is smaller than the averaged retrieval uncertainties at lower 50% CO
490	concentrations (28%, 29%, and 30% for the 600-hPa, 800-hPa, and surface layers, respectively).
491	We therefore conclude that the larger apparent biases at high CO concentrations are related to
492	greater CO variability and representativeness error of the in-situ profile within the co-location
493	radius used for analyzing the MOPITT data, rather than indicating larger retrieval uncertainties.
494	Theoretically, MOPITT retrievals perform better with higher CO concentrations. The larger biases
495	at high CO concentrations in Figure 7 implies that the relatively greater CO variability may
496	overcome the impact of high CO concentrations. Addressing representativeness error and spatial
497	variability in the comparisons between satellite and in-situ profiles is challenging, and will be
498	discussed further in Section 5.
l 499	We will discuss the sensitivity of radius and time difference for the selection of co-located

500 data in Section 4. The difference in the variability at different CO concentrations was not found in Deeter et al. (2016). It could be partially due to the fact that the aircraft profiles over the Amazon 501 502 basin used in Deeter et al. (2016) were sampled under more geographically homogeneous 503 conditions, whereas the profiles used in this study are from different campaigns, and high CO

6	
-	Deleted:
6	
1	Deleted: For both
ſ	Deleted: ,
ſ	Deleted: MOPITT
ſ	Deleted: s
ſ	Deleted: the surface, 800 hPa, and 600 hPa if only the upper 50% of measured CO mixing ratios are considered
$\left \right $	Deleted this
Ł	beteteu. uns
L	Deleted: validation
ſ	Deleted: of

Deleted: However, it is unclear whether the larger apparent bias at high CO concentration actually represents larger retrieval uncertainties or could be related to greater CO variability and representativeness of the in situ profile within the co-location radius used for analyzing the MOPITT data.

Deleted: in

12

520 concentrations over and near urban regions might be associated with more complex and

521 inhomogeneous conditions.

522

523 4. Sensitivities to assumptions made for aircraft-satellite comparisons

- 524 In Section 3, we compared profiles over urban and non-urban regions separately to Formatted: Font:Not Bold
- 525 MOPITT V8T, V8N, V8J, V7T, V7N, and V7J. In this section, we compare only the MOPITT
- 526 <u>V8J product to all the in-situ profiles (both over urban and non-urban regions) described in Table</u>
- 527 <u>1 to test the sensitivity of results to the assumptions made during the comparisons</u>

528 4.1 Sensitivity to the in-situ profile extension

529 As discussed in Section 2.3, the in-situ profiles must be vertically extrapolated or extended 530 to compare with MOPITT products due to aircraft altitude limits. Thus, model or reanalysis data 531 must be merged with the in-situ data to generate a complete CO profile for comparisons with 532 MOPITT satellite retrievals. The use of model or reanalysis data may introduce uncertainties in 533 the comparison results as they are not measured directly. The parameter Pinterp controls the impact 534 of the model-based profile extension on the shape and value of in-situ profiles (see Figure S5). 535 Here we test the sensitivity of validation results to various P_{interp} values (100 hPa, 200 hPa, 300 536 hPa, 400 hPa, 500 hPa) to demonstrate the potential impact of the profile extension. Note that the 537 model-based profile extension and the value of P_{interp} impacts the validation results through 538 changing the augmented observational profile, which is different from the other sensitivity tests in 539 this study that change the selection of MOPITT data. The agreements between the values of 540 MOPITT and in-situ profiles at the surface layer are insensitive to the selection of P_{interp} (Figure 541 8). The overall agreements between the values of MOPITT and in-situ profiles at the 800-hPa layer 542 are also not sensitive to Pinterp, except for the results against DISCOVER-AQ CA which have 543 slightly larger biases when Pinterp is 200 hPa or 100 hPa since the DISCOVER-AQ CA aircraft 544 profiles at 600 hPa and above are mostly extended using reanalysis data. Therefore, the 545 comparisons with DISCOVER-AQ CA are more likely to be affected by Pinterp compared to other 546 campaigns which typically obtained higher maximum aircraft altitudes. At the 600-hPa layer, the agreements between the values of MOPITT and in-situ profiles are affected more by Pinterp 547 548 compared to the those at the surface layer and the 800-hPa layer for comparisons with all the 549 campaigns. The overall validation results using 100 hPa as Pinterp have larger biases than using

	Formatted: Font:Not Bold
	Deleted: for use in
	Deleted: validation
	Deleted: validation
	Deleted: on the validation results
	Deleted: validation results
	Deletede colidation normite
-	Deleted:
	Deleted:
	Deleted:
-	Deleted: As mentioned in Section 3.2
	Deleted: are mostly below 600 hPa, and hence CO values of
	these in-situ profiles
	Deleted: validation results against
	Deleted:
-	Deleted: validation results
	Deleted: more
	Deleted:
	Deleted:

568	other values of Pinterp At 400-hPa layer and 200-hPa layer, the comparisons are even more sensitive	 Deleted: The validation results using 300, 400, or 500 hPa
569	to P _{interp} for all the campaigns (Figure S6). The CAMS 3-hourly reanalysis data are constrained by	as P _{interp} are not significantly different for the validation results against DISCOVER-AQ CA. The validation results
570	observations, but its usage may still introduce the uncertainties in the validation results especially	against DISCOVER-AQ CA using 200 hPa as P_{interp} show similar results as those using 100 hPa as P_{interp} .
571	at upper pressure levels (e.g., 200 hPa and 400 hPa). Previous MOPITT evaluation results may be	Deleted: T
572	subject to larger uncertainties by using CAM-chem monthly CO fields that are not constrained by	Deleted: validation results
572	subject to rarger uncertaining by using CAM-enciri monthly CO neids that are not constrained by	Deleted: to the P _{interp} at 400 hPa and 200 hPa
573	observations (e.g., Deeter et al., 2012, 2016).	Deleted: with larger blases
574	4.2 Sensitivity to the radius and allowed maximum time difference as criteria for co-location	CA aircraft measurements concentrate below 600 hPa, so CO values in the in-situ profiles at 600 hPa and above are filled with and car more agentitize to CAMS reapplying data
575	The criteria for co-location in this study (within a radius of 100 km and within 12 hours of	 Deleted: the
576	the acquisition of the aircraft profile) generally follow previous MOPITT validation studies (e.g.,	
577	Deeter et al., 2016, 2019) and are chosen empirically. They are selected based on a trade-off	
578	between uncertainties generated from CO spatial and/or temporal variability, and the number of	
579	included MOPITT retrievals that impacts the statistical robustness. Here we test the sensitivity of	
580	the results to the two criteria for co-location. The boxplot of biases calculated with different radii	 Deleted: validation
581	(200 km, 100 km, 50 km, and 25 km) at the surface layer, the 800-hPa layer, and the 600-hPa layer,	 Deleted: the surface, 800 hPa, and 600 hPa
582	are shown in Figure 9. Overall, the biases calculated with radius of 200 km, 100 km and 50 km are	
583	similar, whereas the biases calculated with the radius of 25 km are different from others. The	 Deleted: close
584	comparisons of MOPITT to in-situ profiles results using the radius of 25 km generally have larger	 Deleted: validation
585	biases and SD, due to including fewer, MOPITT retrievals. In some cases, there are no matched	 Deleted: a smaller number of included
586	MOPITT retrievals within the radius of 25_km of the aircraft profile (e.g., DISCOVER-AQ CA	
587	and ARIAs). In addition, representativeness errors would be expected to go up if there are only a	
588	few retrievals over a more polluted and perhaps heterogeneous area. We note that the usage of the	 Deleted: a more
589	largest radius (200 km) in this paper does not appear to degrade the overall results, even though	 Deleted: through
590	representativeness errors generated from CO spatial and/or temporal variability are expected to	 Deleted: introducing
591	increase However, the use of the smallest radius (25 km) degrades the overall results by reducing	 Deleted: ,
592	the number of included MOPITT retrievals.	 Deleted: whereas
593	The boxplot of biases calculated with four sets of allowed maximum time difference (12	
594	hours, 6 hours, 3 hours, and 1 hours) are shown in Figure 10. The overall results are not sensitive	 Deleted: validation
595	to the selection of allowed maximum time difference. One exception is the comparisons to the	 Deleted: , especially at the surface
506	SEAC ⁴ RS campaign at the 600-hPa layer, due to a smaller number of MODITT ratriavals in the	Deleted: validation results

596 SEAC⁴RS campaign at <u>the 600-hPa layer</u>, due to a smaller number of MOPITT retrievals in the

shorter time window. We note that when comparing to the ARIAs campaign, using 1h as the

14

Deleted: against

Deleted:

- 627 allowed maximum time difference decreases the biases at the surface layer, the 800-hPa layer, and
- the 600-hPa layer, compared to the cases using longer allowed maximum time difference (i.e., 3h,

629 <u>6h, and 12h). This implies that the temporal variability is relatively large in the region. And the</u>

630 improvement observed for ARIAs for the shortest time also points to the possibility that short term

- 631 emission sources might be responsible for the large biases there. On the other hand, when the 632 allowed maximum time difference equals 1 hour, there are only 6 aircraft profiles that have
- 633 matched MOPITT retrievals.

634 **4.3 Sensitivity to the inclusion of MOPITT nighttime retrievals**

635 Previous MOPITT validation studies have only included MOPITT daytime observations. 636 Over land, MOPITT retrievals for daytime and nighttime overpasses are characterized by 637 significantly different averaging kernels (Figure 3), and may be subject to different types of 638 retrieval error (Deeter et al., 2007). CO has a long enough lifetime (approximately a month; 639 Gamnitzer et al., 2006) in the free troposphere that nighttime observations could be potentially 640 comparable, in general, to the daytime flights for remote sites. However, for urban regions where 641 the spatiotemporal variability of the emissions and evolution of the planetary boundary layer drives 642 large changes in the measured CO, comparisons of MOPITT nighttime observations to aircraft 643 profiles sampled during daytime may introduce representative uncertainties, especially for areas 644 that are subject to strong nocturnal inversions and the surface CO can be enhanced. It is difficult 645 to disentangle the effects of the MOPITT daytime/nighttime performance and the uncertainty from the temporal representativeness, based on the comparison of the MOPITT daytime/nighttime 646 647 retrievals with daytime aircraft profiles. Therefore, we only include the results in Figure S7 and 648 briefly describe the results here without drawing any further conclusions. Overall, MOPITT 649 nighttime retrievals have larger biases than daytime retrievals, which could be expected since most 650 of the aircraft profiles are sampled during daytime. Flight campaigns with nighttime observations 651 are needed to validate MOPITT nighttime retrievals.

652 4.4 Sensitivity to the signal-to-noise ratio (SNR) filters

653The MOPITT Level 3 data are generated from Level 2 data, and are available as gridded654(1°×1°) daily-mean and monthly-mean files. Pixel filtering and signal-to-noise ratio (SNR)655thresholds for Channel 5 and 6 Average radiances are used when averaging Level 2 data into Level6563 data, and this increases overall mean DFS values (details can be found in the MOPITT Version

15

Deleted: We note that when validated against the ARIAs campaign, the biases at the surface, 800 hPa and 600 hPa are smaller with the allowed maximum time difference as 1h, indicating the temporal variability is relatively large in the region.

662	8 Product User's Guide, 2018). Taking MOPITT V8J daytime product as an example, the Level 3	 Deleted: user guide;
663	data product excludes all observations from Pixel 3 (one of the four elements of MOPITT's linear	ers_guide_201812.pdf
664	detector array that has highly variable Channel 7 SNR values), or observations where both the	
665	Channel 5 Average radiances SNR < 1000 and the Channel 6 Average radiances SNR < 400. In	
666	Figure 11, we test the impact of applying the aforementioned SNR filters on the agreement between	 Deleted: validation results
667	MOPITT and in-situ profiles. Note that we are not suggesting the comparisons between MOPITT	
668	Level 3 product and aircraft measurements. Because the MOPITT Level 3 product is gridded data	
669	and represent the average value in a 1°×1° grid. Comparing the grid average value to an aircraft	
670	profile within it may be subject to large representativeness errors. Here we only show the	
671	sensitivity of agreement between MOPITT Level 2 data and aircraft profiles to the application	
672	SNR filter. We find that applying the SNR filters does not significantly change the overall	 Deleted: improve
673	agreement between MOPITT retrievals and the in-situ profiles used in this study. This is mostly	 Deleted: In some cases, applying the SNR filters degrades
674	because applying the SNR filters reduces the number of MOPITT retrievals included in the	the validation results (e.g., DISCOVER-AQ DC at the surface, DISCOVER-AQ CA at the surface, KORUS-AQ at
675	comparisons. This effect is particularly important if there are not many MOPITT retrievals to begin	600 hPa, and ARIAs at the surface, 800 hPa, and 600 hPa).
676	with (such as our comparisons with in-situ profiles in this study). Even though applying SNR filter	
677	when generating Level 3 data does not significantly change the agreement with the in-situ profiles	
678	used in this study, by excluding low-SNR observations from the Level 3 cell-averaged values	
679	raises overall mean DFS values (MOPITT Version 8 Product User's Guide, 2018). In addition, the	
680	Level 3 product typically are less affected by random retrieval errors (e.g., due to instrument noise	
681	or geophysical noise).	 Deleted: However, when generating Level 3 data from Level
682		2 data, the circumstance is different as there are usually much more data to perform the filter and averaging process.
602		
683	5. Discussion and conclusions	
684	MOPITT products are widely used for monitoring and analyzing CO over urban regions.	
685	However, systematic validation against observations over urban regions has been lacking. In this	

study, we compared MOPITT products over urban regions to aircraft measurements from DISCOVER-AQ, SEAC⁴RS, ARIAs, A-FORCE, and KORUS-AQ campaigns. The DISCOVER-

AQ campaign was designed primarily with satellite validation in mind, and the campaign over MD,

CA, TX, and CO together contributes 64.8% (232 out of 358) of the aircraft profiles and 91.0%

(121 out of 133) of the aircraft profiles over the urban regions in this study (Table 1). Therefore,

the DISCOVER-AQ campaign largely contributes to the results and the statistics in this study. We

686

687 688

689 690

691

Deleted: DC

Deleted: validation

706	found that MOPITT mean biases are well within the 10% required accuracy (Drummond and Mand
707	1996) for both urban and non-urban regions (mean biases for V8J and V8T vary from -0.7% to
708	0.0% and from 2.0% to 3.5% for different levels). The performance over non-urban regions is
709	better than that over urban regions in terms of correlation coefficients for the 6 products in Table
力10	2 and biases of V&I and V7I. However, the in-situ profiles over Fast Asia used in this study are
711	limited especially over urban regions (only 11 profiles). The large biases against aircraft profiles
712	from the A EOPCE and APIAs comparisons point to the need for more in situ observations over
/12	East Asia. We also studied the impact of CO concentrations on the agreement between MOPITT
714	reducts and in site profiles by dividing the simplet profiles of CO into two groups of high CO
715	(uncer 50%) and here CO. (Leaver 50%). We found that MODITE extrinuels at high CO.
715	(upper 50%) and low CO (lower 50%). We found that MOPTIT reflevals at high CO
/10	concentrations have higher blases and lower correlations compared with low CO concentrations,
/1/	although CO variability may tend to exaggerate retrieval biases in heavily-polluted scenes. The Formatted: Font:Not Italic, Font color: Text I
/18	statistics are often very similar between different versions and products over urban and non-urban
/19	regions, and in general, MOPITT agrees reasonably well with the in-situ profiles in both cases.
720	There is not, therefore, any reason to recommend the continued use of MOPITT versions earlier
721	than V8 based on urban or non-urban region considerations. In general, MOPITT V8 is
722	recommended (Deeter et al., 2019) as it uses a new parameterized radiance bias correction method
723	to minimize retrieval biases, and has updated spectroscopic data for water vapor and nitrogen, Formatted: Font color: Text 1
724	In addition, the assumptions and data filters made during aircraft-satellite comparisons may
725	impact the validation results. We tested the sensitivities of the results to assumptions and data Deleted: validation
726	filters, including the model-based extension to the in-situ profile, radius and allowed maximum
727	time difference as criteria for the selection of co-located data, the inclusion of nighttime MOPITT
728	data, and the SNR filters. The agreements between the values of MOPITT and in-situ profiles at
729	the surface layer are insensitive to the model-based profile extension, whereas the results at upper Deleted: validation
730	levels (e.g., 400 hPa and 200 hPa) are more sensitive to the profile extension, as there are very
731	limited aircraft observations. The results are insensitive to the allowed maximum time difference Deleted: validation
732	as <u>a co-location criteria</u> , and are generally insensitive to the radius for co-location except for the Deleted:
733	case with a radius of 25 km, where only a small number of MOPITT retrievals are included in the
734	comparisons. Overall, daytime MOPITT products overall have smaller biases than nighttime Deleted: validation
735	MOPITT products. However, conclusions regarding the performance of MOPITT daytime and
736	nighttime retrievals cannot be drawn due to the fact that most of the aircraft profiles are sampled

during daytime. As we mentioned earlier, MOPITT daytime and nighttime retrievals may be 747 748 subject to different retrieval errors. In addition, previous studies suggest pollutants themselves may 749 have different characteristics during daytime and nighttime (e.g., Yan et al., 2018). Therefore, validation of MOPITT nighttime retrievals, with a sufficient number of nighttime airborne profiles, 750 751 is needed in order to study nighttime CO characteristics and trends. Applying SNR filters does not necessarily change the overall agreement between MOPITT retrievals and in-situ profiles used in 752 753 this study significantly, and this may be partially caused by the smaller number of MOPITT 754 retrievals in the comparisons after the SNR filters. We note that comparisons to ARIAs are exceptional in a few sensitivity tests due to rather a limited number of aircraft measurements. 755 756 Given the large biases against aircraft profiles from the ARIAs campaign, more in-situ 757 observations over East Asia especially China are needed in order to validate MOPITT products in 758 the region.

759 Validation and evaluation of satellite retrievals with aircraft observations are very 760 challenging, and assumptions have to be made for the comparisons. As discussed in Section 2, the 761 CO spatial variability within MOPITT retrieval pixels and the representativeness error of aircraft profiles when compared to MOPITT retrievals may introduce uncertainties in the validation 762 763 results. This issue is difficult to address and quantify due to the limited spatial coverage of dense 764 aircraft observations. One possible way is to study NO2 data retrieved from the Geostationary 765 Trace Gas and Aerosol Sensor Optimization (GeoTASO) at very high resolution (250 m × 250 m), to provide an upper estimate on CO variability. Besides, the variability of Tropospheric Monitoring 766 767 Instrument (TROPOMI) CO retrievals (resolution: 7 km×7 km; Landgraf et al., 2016) might also provide information on MOPITT sub-pixel variability. Further research on trace gas spatial 768 769 variability within satellite retrieval pixels, and quantification of the representativeness error incurred by comparing individual aircraft profiles to satellite products is needed, and will be the 770 771 subject of a follow-up study.

772

773 **Data availability**

774	MOPITT products are available at https://www2.acom.ucar.edu/mopitt (Last access date:
775	January 14 th , 2020). MOPITT Version 8 Product User's Guide is available online at
776	$https://www2.acom.ucar.edu/sites/default/files/mopitt/v8_users_guide_201812.pdf~(Last_access_suide_201812.pdf)/(Last_acces$

Deleted: improve

Deleted: validation

••••	Deleted: process
	Deleted: , which is unlikely to happen when generating Level 3 data
Ù	Deleted: validation results against
Ń	Deleted: an
Ì	Deleted: n
Ì	Deleted: EA
	Deleted: Follette-Cook et al. (2015) quantified spatial and temporal variability of column integrated air pollutants, including CO, during DISCOVER-AQ DC from modeling perspective (using the Weather Research and Forecasting model coupled with Chemistry - WRF-Chem). They found that during the July 2011 DISCOVER-AQ campaign, the mean CO difference at the distance of 20-24 km is ~30 ppb (derived from the aircraft observations) and ~40 ppb (derived from co-located WRF-Chem output), based on structure function analyses. Judd et al. (2019) explored the impact of spatial resolution on tropospheric NO ₂ column retrievals with NASA Geostationary Trace Gas and Aerosol Sensor Optimization (GeoTASO). We expect CO to have a smaller spatial and temporal variability than NO ₂ due primarily to its relatively longer lifetime, though
	Deleted: future analyses of NO ₂ variability within urban regions using GeoTASO could
Ì	Deleted: In addition
Ù	Deleted: ,
Ń	Deleted: with a pixel size of
M	Deleted: (
V	Deleted: .
$\langle \rangle$	Deleted: within the larger MOPITT footprint
	Deleted: using
M	Deleted: in
V	Deleted: validation

18

Deleted: comparisons Formatted: Font:Bold Formatted: Indent: First line: 0" Moved (insertion) [2]

Formatted: Superscript

813	date: January 15 th , 2020). DISCOVER-AQ data can be accessed at https://www-	 Moved (insertion) [3]
814	air.larc.nasa.gov/missions/discover-aq/discover-aq.html (Last access date: January 14th, 2020).	 Deleted: MOPITT data can be downloaded at https://earthdata.nasa.gov/.
815	SEAC ⁴ RS data can be accessed at https://www-air.larc.nasa.gov/missions/seac4rs/ (Last access	
816	date: January 14th, 2020). KORUS-AQ and ARIAs data can be accessed at https://www-	 Moved (insertion) [4]
817	air.larc.nasa.gov/missions/korus-aq/index.html (Last access date: January 14th, 2020), A-FORCE	
818	data are available upon request (Yutaka Kondo: kondo.yutaka@nipr.ac.jp). MODIS Land Cover	
819	Type Global product (MCD12C1 v006) is available at https://earthdata.nasa.gov/ (Last access date:	
820	January 14 th , 2020).	
821		
822	Author contribution	 Formatted: Font:Bold
823	WT, HMW, and MND designed the study. WT analyzed the data with help from MND,	
824	SMA, and LKE. GSD provided CO measurements during DISCOVER-AQ SEAC4RS, and	 Formatted: Superscript
825	KORUS-AQ. RRD, XR, and HH provided CO measurements during ARIAs. YK provided CO	
826	measurements during A-FORCE. HMW, MND, DPE, LKE, BG, RRB, and XR offered valuable	
827	discussions and comments in improving the study. WT prepared the manuscript with	
828	improvements from all the other coauthors.	
829	۸	 Formatted: Font color: Auto, (Asian) Chinese (PRC)
830	Acknowledgements	
831	The National Center for Atmospheric Research (NCAR) is sponsored by the National	 Moved (insertion) [1]
832	Science Foundation (NSF). W. Tang is supported by a NCAR Advanced Study Program	
833	Postdoctoral Fellowship. The NCAR MOPITT project is supported by the National Aeronautics	 Deleted: .
834	and Space Administration (NASA) Earth Observing System (EOS) Program. The authors thank	 Moved up [2]: MOPITT products are available at https://www2.acom.ucar.edu/mopitt. MOPITT data can be
835	the DISCOVER-AQ, SEAC ⁴ RS, ARIAs, A-FORCE, and KORUS-AQ Science Teams for the	downloaded at https://earthdata.nasa.gov/.
836	valuable in-situ observations. We thank Drs. Naga Oshima and Makoto Koike for the A-FORCE	 Moved up [3]: DISCOVER-AQ data can be accessed at
837	data. ARIAs was supported by NSF (grant # 1558259) and National Institute of Standards and	nups.//www-air.iarc.nasa.gov/missions/discover-ad/discover- ad.html. SEAC ⁴ RS data can be accessed at https://www- air.larc.nasa.gov/missions/ceac4rc/
838	Technology (NIST, grant #70NANB14H332). The authors thank Dr. Frank Flocke for helpful	 Moved up [4]: KORUS-AQ data can be accessed at
839	comments on the manuscript. Wenfu Tang thanks Dr. Cenlin He for helpful discussions.	 https://www-air.larc.nasa.gov/missions/korus-aq/index.html.
840		Research (NCAR) is sponsored by the National Science Foundation. W. Tang is supported by a NCAR Advanced Study Program Postdoctoral Fellowship.
841	References	

- Al-Saadi, J., Carmichael, G., Crawford, J., Emmons, L., Song, C. K., Chang, L. S., ... & Park, R.
 (2015). NASA contributions to KORUS-AQ: An international cooperative air quality field study
 in Korea. NASA White Paper available at: https://goo. gl/VhssdX (last access: 3 May 2016).
- Aliyu, Y. A., & Botai, J. O.: Appraising city-scale pollution monitoring capabilities of multisatellite datasets using portable pollutant monitors. *Atmospheric environment*, *179*, 239-249, 2018.
- Arellano, A. F., Kasibhatla, P. S., Giglio, L., van der Werf, G. R., and Randerson, J. T.: Topdown
 estimates of global CO sources using MOPITT measurements, Geophys. Res. Lett., 31, L01104,
 doi:10.1029/2003GL018609, 2004.
- Arellano, A. F., Kasibhatla, P. S., Giglio, L., van der Werf, G. R., Randerson, J. T., and Collatz,
 G. J.:, Time-dependent inversion estimates of global biomass-burning CO emissions using
 Measurement of Pollution in the Troposphere (MOPITT) measurements, J. Geophys. Res., 111,
 D09303, doi:10.1029/2005JD006613, 2006.
- Arellano A. F. Jr., Raeder, K., Anderson, J. L., Hess, P. G., Emmons, L. K., Edwards, D. P., Pfister,
 G. G., Campos, T. L., and Sachse, G. W.: Evaluating model performance of an ensemble-based
 chemical data assimilation system during INTEX-B field mission, Atmos. Chem. Phys., 7, 56955710, https://doi.org/10.5194/acp-7-5695-2007, 2007.
- Buchholz, R. R., Deeter, M. N., Worden, H. M., Gille, J., Edwards, D. P., Hannigan, J. W., Jones,
 N. B., Paton-Walsh, C., Griffith, D. W. T., Smale, D., Robinson, J., Strong, K., Conway, S.,
 Sussmann, R., Hase, F., Blumenstock, T., Mahieu, E., and Langerock, B.: Validation of MOPITT
 carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC,
 Atmos. Meas. Tech., 10, 1927–1956, https://doi.org/10.5194/amt-10-1927-2017, 2017.
- Chen, D., Wang, Y., McElroy, M. B., He, K., Yantosca, R. M., and Le Sager, P.: Regional CO
 pollution and export in China simulated by the high-resolution nested-grid GEOS-Chem model,
 Atmos. Chem. Phys., 9, 3825-3839, https://doi.org/10.5194/acp-9-3825-2009, 2009.
- Clerbaux, C., Edwards, D. P., Deeter, M., Emmons, L., Lamarque, J.-F., Tie, X. X., Massie, S. T.,
 and Gille, J.: Carbon monoxide pollution from cities and urban areas observed by the
 Terra/MOPITT mission, Geophys. Res. Lett., 35, 3817, doi:10.1029/2007GL032300, 2008.
- Deeter, M. N., Emmons, L. K., Francis, G. L., Edwards, D. P., Gille, J. C., Warner, J. X., Khattatov,
 B., Ziskin, D., Lamarque, J.-F., Ho, S.-P., Yudin, V., Attie, J.-L., Packman, D., Chen, J., Mao, D.,
 and Drummond, J. R.: Operational carbon monoxide retrieval algorithm and selected results for
 the MOPITT instrument, J. Geophys. Res., 108(D14), 4399, doi:10.1029/2002JD003186, 2003.
- Deeter, M. N., Edwards, D. P., Gille, J. C., Emmons, L. K., Francis, G., Ho, S.-P., Mao, D., Masters,
 D., Worden, H., Drummond, J. R., and Novelli, P. C.: The MOPITT version 4 CO product:
 Algorithm enhancements, validation, and long-term stability, J. Geophys. Res., 115, D07306,
 doi:10.1029/2009JD013005, 2010.
- 902

861

864

868

878

- Deeter, M. N., Worden, H. M., Gille, J. C., Edwards, D. P., Mao, D., and Drummond, J. R.:
 MOPITT multispectral CO retrievals: Origins and effects of geophysical radiance errors, J.
 Geophys. Res., 116, D15303, doi:10.1029/2011JD015703, 2011.
- Deeter, M. N., Worden, H. M., Edwards, D. P., Gille, J. C., and Andrews, A. E.: Evaluation of
 MOPITT Retrievals of Lowertropospheric Carbon Monoxide over the United States, J. Geophys.
 Res., 117, D13306, doi:10.1029/2012JD017553, 2012.
- 911 Deeter, M. N., Martínez-Alonso, S., Edwards, D. P., Emmons, L. K., Gille, J. C., Worden, H. M.,
 912 Pittman, J. V., Daube, B. C., and Wofsy, S. C.: Validation of MOPITT Version 5 thermalinfrared,
 913 near-infrared, and multispectral carbon monoxide profile retrievals for 2000–2011, J. Geophys.
 914 Res., 118, 6710–6725, doi:10.1002/jgrd.50272, 2013.
- Deeter, M. N., Martínez-Alonso, S., Edwards, D. P., Emmons, L. K., Gille, J. C., Worden, H. M.,
 Sweeney, C., Pittman, J. V., Daube, B. C., and Wofsy, S. C.: The MOPITT Version 6 product:
 algorithm enhancements and validation, Atmos. Meas. Tech., 7, 3623–3632,
 https://doi.org/10.5194/amt-7-3623-2014, 2014.
- Deeter, M. N., Martínez-Alonso, S., Gatti, L. V., Gloor, M., Miller, J. B., Domingues, L. G., and
 Correia, C. S. C.: Validation and analysis of MOPITT CO observations of the Amazon Basin,
 Atmos. Meas. Tech., 9, 3999–4012, https://doi.org/10.5194/amt-9-3999-2016, 2016.
- Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Martínez-Alonso, S., Worden, H. M.,
 and Sweeney, C.: A climate-scale satellite record for carbon monoxide: the MOPITT Version 7
 product, Atmos. Meas. Tech., 10, 2533–2555, https://doi.org/10.5194/amt-10-2533-2017, 2017.
- Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Mao, D., Martínez-Alonso, S., Worden,
 H. M., Ziskin, D., and Andreae, M. O.: Radiance-based retrieval bias mitigation for the MOPITT
 instrument: the version 8 product, Atmos. Meas. Tech., 12, 4561–4580,
 https://doi.org/10.5194/amt-12-4561-2019, 2019.
- Drummond, J. R., & Mand, G. S. (1996). The Measurements of Pollution in the Troposphere (MOPITT) instrument: Overall performance and calibration requirements. Journal of Atmospheric and Oceanic Technology, 13(2), 314-320.
- Edwards, D., Halvorson, C., and Gille, J.: Radiative transfer modeling for the EOS Terra satellite
 Measurement of Pollution in the Troposphere (MOPITT) instrument, J. Geophys. Res., 104,
 16755–16775, 1999.
- Edwards, D. P., Petron, G., Novelli, P. C., Emmons, L. K., Gille, J. C., and Drummond, J. R.:
 Southern Hemisphere carbon monoxide interannual variability observed by Terra/Measurement of
 Pollution in the Troposphere (MOPITT), J. Geophys. Res., 111, D16303,
 doi:10.1029/2006JD007079, 2006.

946

906

910

915

920

Emmons, L. K., Deeter, M. N., Gille, J. C., et al.: Validation of Measurements of Pollution in the
Troposphere (MOPITT) CO retrievals with aircraft in situ profiles, J. Geophys. Res., 109, D03309,
doi:10.1029/2003JD004101, 2004.

950

955

965

987

- Emmons, L. K., Pfister, G. G., Edwards, D. P., Gille, J. C., Sachse, G., Blake, D., Wofsy, S.,
 Gerbig, C., Matross, D., and N'ed'elec, P.: Measurements of Pollution in the Troposphere
 (MOPITT) validation exercises during summer 2004 field campaigns over North America, J.
 Geophys. Res., 112, D12S02, doi:0.1029/2006JD007833, 2007.
- Emmons, L. K., Edwards, D. P., Deeter, M. N., Gille, J. C., Campos, T., Nédélec, P., Novelli, P.,
 and Sachse, G.: Measurements of Pollution In The Troposphere (MOPITT) validation through
 2006, Atmos. Chem. Phys., 9, 1795-1803, https://doi.org/10.5194/acp-9-1795-2009, 2009.
- 960 Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C.,
 961 Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C.,
 962 Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related
 963 chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67,
 964 https://doi.org/10.5194/gmd-3-43-2010, 2010.
- Fishman, J., Silverman, M. L., Crawford, J. H., & Creilson, J. K.: A study of regional-scale
 variability of in situ and model-generated tropospheric trace gases: Insights into observational
 requirements for a satellite in geostationary orbit. Atmospheric environment, 45(27), 4682-4694,
 2011.
- Follette-Cook, M., Pickering, K., Crawford, J., Duncan, B., Loughner, C., Diskin, G., Fried, A.,
 and Weinheimer, A.: Spatial and temporal variability of trace gas columns derived from
 WRF/Chem regional model output: Planning for geostationary observations of atmospheric
 composition, Atmos. Environ., 118, 28–44, doi:10.1016/j.atmosenv.2015.07.024, 2015.
- Fortems-Cheiney, A., Chevallier, F., Pison, I., Bousquet, P., Szopa, S., Deeter, M. N., and
 Clerbaux, C.: Ten years of CO emissions as seen from Measurements of Pollution in the
 Troposphere (MOPITT), J. Geophys. Res., 116, D05304, doi:10.1029/2010JD014416, 2011.
- Friedl, M., Sulla-Menashe, D. (2015). MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly
 L3 Global 0.05Deg CMG V006 [Data set]. NASA EOSDIS Land Processes DAAC. Accessed
 2019-08-12 from https://doi.org/10.5067/MODIS/MCD12C1.006.
- Gamnitzer, U., Karstens, U., Kromer, B., Neubert, R. E., Meijer, H. A., Schroeder, H., & Levin, I.
 (2006). Carbon monoxide: A quantitative tracer for fossil fuel CO2? Journal of Geophysical
 Research, 111, D22302. https://doi.org/10.1029/2005JD006966
- Gaubert, B., Arellano, A. F., Barré, J., Worden, H. M., Emmons, L. K., Tilmes, S., Buchholz, R.
 R., Vitt, F., Raeder, K., Collins, N., Anderson, J. L., Wiedinmyer, C., Martinez Alonso, S., Edwards,
 D. P., Andreae, M. O., Hannigan, J. W., Petri, C., Strong, K., and Jones, N.: Toward a chemical
- 991 reanalysis in a coupled chemistry-climate model: An evaluation of MOPITT CO assimilation and

its impact on tropospheric composition, J. Geophys. Res.-Atmos., 121, 7310–7343, https://doi.org/10.1002/2016JD024863, 2016.

Girach, I. A. and Nair, P. R.: Carbon monoxide over Indian region as observed by MOPITT, Atmos.
 Environ., 99, 599–609, 2014.

He, H., Stehr, J. W., Hains, J. C., Krask, D. J., Doddridge, B. G., Vinnikov, K. Y., Canty, T. P.,
Hosley, K. M., Salawitch, R. J., Worden, H. M., and Dickerson, R. R.: Trends in emissions and
concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from
1997 to 2011, Atmos. Chem. Phys., 13, 7859-7874, https://doi.org/10.5194/acp-13-7859-2013,
2013.

Heald, C. L., Jacob, D. J., Jones, D. B. A., Palmer, P. I., Logan, J. A., Streets, D. G., Sachse, G.
W., Gille, J. C., Hoffman, R. N., and Nehrkorn, T.: Comparative inverse analysis of satellite
(MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide,
J. Geophys. Res., 109, D23306, doi:10.1029/2004JD005185, 2004.

Hedelius, J. K., He, T.-L., Jones, D. B. A., Baier, B. C., Buchholz, R. R., De Mazière, M.,
Deutscher, N. M., Dubey, M. K., Feist, D. G., Griffith, D. W. T., Hase, F., Iraci, L. T., Jeseck, P.,
Kiel, M., Kivi, R., Liu, C., Morino, I., Notholt, J., Oh, Y.-S., Ohyama, H., Pollard, D. F., Rettinger,
M., Roche, S., Roehl, C. M., Schneider, M., Shiomi, K., Strong, K., Sussmann, R., Sweeney, C.,
Té, Y., Uchino, O., Velazco, V. A., Wang, W., Warneke, T., Wennberg, P. O., Worden, H. M.,
and Wunch, D.: Evaluation of MOPITT Version 7 joint TIR–NIR XCO retrievals with TCCON,
Atmos. Meas. Tech., 12, 5547–5572, https://doi.org/10.5194/amt-12-5547-2019, 2019.

Ho, S. P., Edwards, D. P., Gille, J. C., Chen, J., Ziskin, D., Francis, G. L., ... & Drummond, J. R. (2005). Estimates of 4.7 µm surface emissivity and their impact on the retrieval of tropospheric carbon monoxide by Measurements of Pollution in the Troposphere (MOPITT). Journal of Geophysical Research: Atmospheres, 110(D21).

Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M.,
Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart,
S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS
reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515-3556,
https://doi.org/10.5194/acp-19-3515-2019, 2019.

Jiang, Z., Worden, J. R., Jones, D. B. A., Lin, J.-T., Verstraeten, W. W., and Henze, D. K.:
Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT, Atmos. Chem. Phys., 15,
99-112, https://doi.org/10.5194/acp-15-99-2015, 2015.

Jiang, Z., McDonald, B. C., Worden, H., Worden, J. R., Miyazaki, K., Qu, Z., Henze, D. K., Jones,
D. B. A., Arellano, A. F., Fischer, E. V., Zhu, L. Y., and Boersma, K. F.: Unexpected slowdown
of US pollutant emission reduction in the past decade, P. Natl. Acad. Sci. USA, 115, 5099–5104,
https://doi.org/10.1073/pnas.1801191115, 2018.

1036

1031

997

1008

Judd, L. M., Al-Saadi, J. A., Janz, S. J., Kowalewski, M. G., Pierce, R. B., Szykman, J. J., Valin,
L. C., Swap, R., Cede, A., Mueller, M., Tiefengraber, M., Abuhassan, N., and Williams, D.:
Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban
areas using high-resolution airborne data, Atmos. Meas. Tech., https://doi.org/10.5194/amt-2019161, 2019.

Kanakidou, M., Mihalopoulos, N., Kindap, T., Im, U., Vrekoussis, M., Dermitzaki, E.,
Gerasopoulos, E., Unal, A., Koc, ak, M., Markakis, K., Melas, D., Youssef, A. F., and Moubasher,
H.: Megacities as hot spots of air pollution in the East Mediterranean,
doi:10.1016/j.atmosenv.2010.11.048, 2011.

1047

1052

1057

1069

Kar, J., Deeter, M. N., Fishman, J., Liu, Z., Omar, A., Creilson, J. K., Trepte, C. R., Vaughan, M.
A., and Winker, D. M.: Wintertime pollution over the Eastern Indo-Gangetic Plains as observed
from MOPITT, CALIPSO and tropospheric ozone residual data, Atmos. Chem. Phys., 10, 1227312283, https://doi.org/10.5194/acp-10-12273-2010, 2010.

Kopacz, M., Jacob, D. J., Henze, D. K., Heald, C. L., Streets, D. G., and Zhang, Q.: Comparison
 of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon
 monoxide using satellite (MOPITT) measurements of CO columns, J. Geophys. Res., 114, D04305,
 doi:10.1029/2007JD009264., 2009.

Kopacz, M., Jacob, D. J., Fisher, J. A., Logan, J. A., Zhang, L., Megretskaia, I. A., Yantosca, R.
M., Singh, K., Henze, D. K., Burrows, J. P., Buchwitz, M., Khlystova, I., McMillan, W. W., Gille,
J. C., Edwards, D. P., Eldering, A., Thouret, V., and Nedelec, P.: Global estimates of CO sources
with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS,
SCIAMACHY, TES), Atmos. Chem. Phys., 10, 855-876, https://doi.org/10.5194/acp-10-8552010, 2010.

Kumar, R., Naja, M., Pfister, G. G., Barth, M. C., Wiedinmyer, C., and Brasseur, G. P.: Simulations
over South Asia using the Weather Research and Forecasting model with Chemistry (WRF-Chem):
chemistry evaluation and initial results, Geosci. Model Dev., 5, 619–648,
https://doi.org/10.5194/gmd-5-619-2012, 2012.

Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L.,
Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.: CAMchem: description and evaluation of interactive atmospheric chemistry in the Community Earth
System Model, Geosci. Model Dev., 5, 369–411, https://doi.org/10.5194/gmd-5-369-2012, 2012.

Lamsal, L. N., Krotkov, N. A., Celarier, E. A., Swartz, W. H., Pickering, K. E., Bucsela, E. J.,
Gleason, J. F., Martin, R. V., Philip, S., Irie, H., Cede, A., Herman, J., Weinheimer, A., Szykman,
J. J., and Knepp, T. N.: Evaluation of OMI operational standard NO2 column retrievals using in
situ and surface-based NO2 observations, Atmos. Chem. Phys., 14, 11587-11609,
https://doi.org/10.5194/acp-14-11587-2014, 2014.

Landgraf, J., aan de Brugh, J., Scheepmaker, R., Borsdorff, T., Hu, H., Houweling, S., Butz, A.,
 Aben, I., and Hasekamp, O.: Carbon monoxide total column retrievals from TROPOMI shortwave

- 1083 infrared measurements, Atmos. Meas. Tech., 9, 4955–4975, https://doi.org/10.5194/amt-9-49552016, 2016.
- Li, L. and Liu, Y.: Space-borne and ground observations of the characteristics of CO pollution in
 Beijing, 2000–2010, Atmos. Environ., 45, 2367, doi:10.1016/j.atmosenv.2011.02.026, 2011.

 Pan, L., Gille, J. C., Edwards, D. P., Bailey, P. L., & Rodgers, C. D. (1998). Retrieval of tropospheric carbon monoxide for the MOPITT experiment. Journal of Geophysical Research: Atmospheres, 103(D24), 32277-32290.

1092

1099

1103

1109

1122

Tang, W., Arellano, A. F., DiGangi, J. P., Choi, Y., Diskin, G. S., Agustí-Panareda, A., Parrington,
M., Massart, S., Gaubert, B., Lee, Y., Kim, D., Jung, J., Hong, J., Hong, J.-W., Kanaya, Y., Lee,
M., Stauffer, R. M., Thompson, A. M., Flynn, J. H., and Woo, J.-H.: Evaluating high-resolution
forecasts of atmospheric CO and CO2 from a global prediction system during KORUS-AQ field
campaign, Atmos. Chem. Phys., 18, 11007–11030, https://doi.org/10.5194/acp-18-11007-2018,
2018.

Tang, W., Arellano, A. F., Gaubert, B., Miyazaki, K., and Worden, H. M.: Satellite data reveal a
 common combustion emission pathway for major cities in China, Atmos. Chem. Phys., 19, 4269–
 4288, https://doi.org/10.5194/acp-19-4269-2019, 2019.

Toon, O. B., Maring, H., Dibb, J., Ferrare, R., Jacob, D. J., Jensen, E. J., Luo, Z. J., Mace, G. G.,
Pan, L. L., Pfister, L., and Rosenlof, K. H.: Planning, implementation, and scientific goals of the
Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional
Surveys (SEAC4RS) field mission, J. Geophys. Res.-Atmos., 121, 4967–5009,
doi:10.1002/2015JD024297, 2016.

Wang, F., Li, Z., Ren, X., Jiang, Q., He, H., Dickerson, R. R., Dong, X., and Lv, F.: Vertical distributions of aerosol optical properties during the spring 2016 ARIAs airborne campaign in the North China Plain, Atmos. Chem. Phys., 18, 8995–9010, https://doi.org/10.5194/acp-18-8995-2018, 2018, 2018.

Worden, H. M., Deeter, M. N., Edwards, D. P., Gille, J. C., Drummond, J. R., and Nédélec, P.:
Observations of near-surface carbon monoxide from space using MOPITT multispectral retrievals,
J. Geophys. Res., 115, D18314, https://doi.org/10.1029/2010JD014242, 2010.

Worden, H. M., Deeter, M. N., Edwards, D. P., Gille, J., Drummond, J., Emmons, L. K., Francis,
G., and Martínez-Alonso, S.: 13 years of MOPITT operations: lessons from MOPITT retrieval
algorithm development, Ann. Geophys., 56, 1–5, https://doi.org/10.4401/ag-6330, 2014.

Yurganov, L. N., Duchatelet, P., Dzhola, A. V., Edwards, D. P., Hase, F., Kramer, I., Mahieu, E.,
Mellqvist, J., Notholt, J., Novelli, P. C., Rockmann, A., Scheel, H. E., Schneider, M., Schulz, A.,
Strandberg, A., Sussmann, R., Tanimoto, H., Velazco, V., Drummond, J. R., and Gille, J. C.:
Increased Northern Hemispheric carbon monoxide burden in the troposphere in 2002 and 2003
detected from the ground and from space, Atmos. Chem. Phys., 5, 563-573,
https://doi.org/10.5194/acp-5-563-2005, 2005.

132 Table 1. In-situ datasets of CO used for MOPITT products validation in this study.

	1135								
		Period	Region	Number of profiles	Number of profiles over urban	Technique	<u>Uncertainty</u>	Reference	Formatted Table
D	ISCOVER- AQ <u>MD</u>	Jul, 2011	Baltimore- Washington, D.C., US	80	36	NASA DACOM			Deleted: DC
D	NSCOVER- AQ CA	Jan-Feb, 2013	California, US	35	12	NASA DACOM	Precision < 1% or	https://www-	
D	ISCOVER- AQ TX	Sep, 2013	Texas, US	61	37	NASA DACOM	<u>Accuracy 2%</u>	missions/discover	-aq/
D	ISCOVER- AQ CO	Jul-Aug, 2014	Colorado, US	56	36	NASA DACOM			
	SEAC ⁴ RS	Aug-Sep, 2013	US	15	1	NASA DACOM	<u>Precision < 1% or</u> <u>0.1 ppbv;</u> <u>Accuracy 2%</u>	Toon et al. (201	6)
	A-FORCE	Mar-Apr, 2009; Feb- Mar, 2013; Jun-Jul, 2013	Japan, South Korea, Pacific Ocean	45	2	AL5002, Aero-Laser GmbH	Precision ~0.5%; Accuracy 2%	Oshima et al. (20 Kondo et al. (20	12); 16)
K	CORUS-AQ	May-Jun, 2016	South Korea	47	6	NASA DACOM	Precision < 1% or 0.1 ppby; Accuracy 2%	Al-Saadi et al. (20)15)
_	ARIAs	May-Jun, 2016	Hebei, East China	19	3	Picarro G2401- <u>m</u>	Precision of <u>+4</u> ppbv	Wang et al. (201	Formatted: Font: 10 pt, Not Bold Formatted: Font: 10 pt, Not Bold
	1136 The	CO scale use	d for SEAC ⁴ RS, ar	d DISCOVE	R-AQ MD, TX	<u>K, and CA is W</u>	MO-CO-X2004, while	e the CO scale	Formatted: Font: 10 pt, Not Bold
	1 13/ <u>use</u>	d tor ARIAs a	nd KORUS-AQ is	<u>wmo-co-</u> 2	(2014A			//	Deleted: 1
									Formatted: Font: 10 pt, Not Bold
									Formatted: Justified
									Formatted: Font:10 pt
									Formatted: Font:10 pt
									Deleted:
									Formatted: Font:10 pt, Not Bold
									Formatted: Font:10 pt

1142 1143 1144 **Table 2.** Summarized validation results for V7 and V8 TIR-only (V7T and V8T), NIR-only (V7N and V8N) and TIR-NIR (V7J and V8J) products based on in-situ profiles from DISCOVER-AQ, SEAC⁴RS, A-FORCE, KORUS-AQ, and ARIAs.

			Surfa	ce layer	800 <u>-</u> hPa <u>layer</u>				600-hPalayer Deleted		
		All	Urban	Non-urban	All	Urban	Non-urban	All	Urban	Non-ù Deleted	
	Bias (%)	0.1	-1.7	1.1	0.8	-0.6	1.7	4.0	3.9	4.0	
V7T	SD (%)	9.5	8.6	9.8	11.0	9.0	11.9	11.4	9.0	12.7	
	r	0.71	0.67	0.72	0.66	0.65	0.66	0.63	0.58	0.64	
	Bias (%)	2.0	0.9	2.7	2.2	1.4	2.7	3.5	3.5	3.5	
V8T	SD (%)	9.3	9.6	9.0	10.7	9.7	11.2	11.7	10.0	12.6	
	r	0.70	0.58	0.75	0.66	0.58	0.69	0.63	0.54	0.66	
	Bias (%)	-2.0	-2.8	-1.5	-1.6	-2.1	-1.1	-1.6	-1.9	-1.3	
V7N	SD (%)	6.7	6.4	6.9	5.7	5.2	6.0	4.3	4.2	4.4	
	r	0.62	0.54	0.67	0.56	0.45	0.61	0.61	0.48	0.68	
	Bias (%)	1.4	0.4	2.2	1.6	0.9	2.1	1.2	0.8	1.5	
V8N	SD (%)	6.9	6.7	6.9	6.0	5.8	6.1	4.6	4.7	4.5	
	r	0.60	0.52	0.67	0.54	0.40	0.62	0.59	0.42	0.68	
	Bias (%)	-5.4	-8.9	-3.3	-3.9	-6.5	-2.4	-0.5	-1.4	0.1	
V7J	SD (%)	13.5	12.1	13.9	14.2	12.4	15.0	13.6	11.0	14.8	
	r	0.68	0.63	0.70	0.64	0.58	0.66	0.60	0.52	0.62	
	Bias (%)	0.0	-2.0	1.1	-0.7	-1.6	-0.1	-0.5	-0.8	-0.3	
V8J	SD (%)	12.7	13.7	12.0	12.9	12.5	13.1	12.8	10.9	13.8	
	r	0.69	0.53	0.76	0.69	0.57	0.73	0.65	0.53	0.67	

5(

 1153
 Figure 1. Spatial distributions of aircraft profiles from the DISCOVER-AQ, SEAC RS, ARIAS,

 1154
 A-FORCE, and KORUS-AQ campaigns. Urban and built-up land cover (from MCD12C1 v006)

 1155
 are shown by gray shade in the boxes. Biases of MOPITT V8J comparing to the aircraft profile at

 1156
 the surface layer are shown by the color of the profile.

Deleted: level

1162 1163 Figure 2. Example of profile comparisons for an aircraft profile sampled on July 22, 2011 during 1164 DISCOVER-AQ MD. The black solid line represents the original aircraft profile and the stars 1165 represent the original aircraft observations, the black dotted line is the aircraft profile extended with CAMS reanalysis data, and regridded to 35-level grid. The in-situ profile regridded at 10-1166 level grid $(x_{in-situ})$, the MOPITT a priori profile (x_a) , the in-situ profile transformed with the 1167 MOPITT a priori and AK ($x_{transformed}$), and the MOPITT retrieved profile (x_{rtv}) are shown in 1168 colored lines with dots. The purple bars centered at the $x_{in-situ}$ at each MOPITT retrieval level 1169 1170 show the standard deviations of the original aircraft observations in the MOPITT layer. Note that 1171 each MOPITT retrieval level corresponds to a uniform layer immediately above that level. 1172 Superimposed gray box shows the horizontal scale of the profile (each aircraft observation is

1173 represented by a red dot) and a MOPITT pixel (gray box).

Deletede	DC
Deleteu:	DC

-	Deleted: vertical and horizontal variability
	Deleted: , indicated by standard deviation
-4	Deleted: ly-weighted

Figure 3. Mean retrieval averaging kernels for the MOPITT V8J, V8T, and V8N for the
 corresponding in-situ profiles from the DISCOVER-AQ, SEAC⁴RS, ARIAs, KORUS-AQ, and A FORCE at daytime (solid lines) and nighttime (dashed lines).

1189 1190 Figure 4. MOPITT V8J and V8T validation results over both urban and non-urban regions at 600hPa layer, 800-hPa layer, and the surface layer in terms of Δlog₁₀(VMR). Δlog₁₀(VMR) is defined as $x_{rtv} - x_a$ for MOPITT profiles and $x_{transformed} - x_a$ for the in-situ profiles. The use of $\Delta \log_{10}$ (VMR) allows us to remove the impact of the a priori in the comparisons. The variability of the MOPITT data used to calculate each of the plotted mean values are represented by the vertical error bars. The dashed lines are one-to-one ratio lines.

Deleted:	
Deleted:	
Deleted: log	
Deleted:	

5			
6	Figure 5. MOPITT V8J and V8T validation results against aircraft profiles over urban regions at		
7	the 600-hPa layer, the 800-hPa layer, and the surface layer in terms of $\Delta \log$ (VMR). The dashed		Deleted:
8	lines are one-to-one ratio lines. See the caption of Figure 4,		Deleted:
0		· · · · · · · · · · · · · · · · · · ·	

ł	Deleted:
1	Deleted:
ł	Deleted: See caption to Figure 2

1217 Figure 6. Boxplot (with medians represented by middle bars, interquartile ranges between 25th and 75th percentiles represented by boxes, and the most extreme data points not considered outliers represented by whiskers) for biases (%) for the profiles over both urban and non-urban regions (yellow), profiles over urban regions (green), and profiles over non-urban regions (red) at 600-hPa layer (panel a), 800-hPa layer (panel b), and the surface layer (panel c). An outlier is a value that is more than 1.5 times the interquartile range away from the top or bottom of the box.

Deleted: Deleted:

Figure 7. MOPITT V8J and V8T validation results at 600-hPa layer, 800-hPa layer, and the surface layer against the lower 50% in-situ profiles of CO and higher 50% in-situ profiles of CO.
The variability of the MOPITT data used to calculate each of the plotted mean values are represented by the vertical error bars. Each panel shows the least-squares best-fit lines for the lower 50% CO concentrations (dotted line) and the higher 50% CO concentrations (dashed line).

Deleted:

1246 1247

Figure 8. Sensitivity to Pinterp. Biases (%), using 100 hPa (blue), 200 hPa (gray), 300 hPa (yellow),

400 hPa (green), and 500 hPa (red) as Pinterp at 600-hPa layer (panel a), 800-hPa layer (panel b),

and the surface layer (panel c) are shown by boxplot (with medians represented by middle bars,

interquartile ranges between 25th and 75th percentiles represented by boxes, and the most extreme data points not considered outliers represented by whiskers). The biases are calculated against all (both urban and non-urban) in-situ profiles listed in Table 1. The "200 hPa" values (gray) in are

the same as yellow values (for all data) in Figure 6. See the caption of Figure 6 for the definition

1253 1254

1255

1259

1260

of outliers.

1261

1262

1263 1264

36

Deleted:

Deleted:

Deleted:

1270 Figure 9. Sensitivity to the radius as criteria for co-location. Biases (%) using 200 km (blue), 100 1271 1272 km (gray), 50 km (green), and 25 km (pink) as the radius for co-location at 600-hPa layer (panel a), 800-hPa layer (panel b), and the surface layer (panel c) are shown by boxplot (with medians 1273 represented by middle bars, interquartile ranges between 25th and 75th percentiles represented by 1274 boxes, and the most extreme data points not considered outliers represented by whiskers). The 1275 numbers in panel c correspond to the number of in-situ profiles qualified for validation within the 1276 given radius. The biases are calculated against all (both urban and non-urban) in-situ profiles listed 1277 in Table 1. The "100 km" values (gray) are the same as yellow values (for all data) in Figure 6. 1278 See the caption of Figure 6 for the definition of outliers. 1279

Deleted: Deleted:

Figure 11. Sensitivity to the signal-to-noise ratio (SNR) filters. Biases (%) for MOPITT retrievals without SNR filters (gray), and MOPITT retrievals with SNR filters (green) at 600-hPa layer (panel a), 800-hPa layer (panel b), and the surface layer (panel c) are shown by boxplot (with medians represented by middle bars, interquartile ranges between 25th and 75th percentiles represented by boxes, and the most extreme data points not considered outliers represented by whiskers). The numbers in panel c correspond to the number of in-situ profiles qualified for validation without or with SNR filters. The biases are calculated against all (both urban and non-urban) in-situ profiles listed in Table 1. the "without SNR filter" values in are the same as yellow values (for all data) in Figure 6. See the caption of Figure 6 for the definition of outliers.

 Deleted:
 Deleted:

Page 7: [1] Deleted	Wenfu Tang	1/22/20 5:16:00 PM

For each pair of co-located MOPITT retrieval and in-situ profiles, we apply the MOPITT a priori profile and averaging kernel to the in-situ profile,

 $x_{transformed} = x_a + A(x_{in-situ} - x_a)$ (2)

so that the transformed in-situ profile ($x_{transformed}$) has the same degree of smoothing and a priori dependence as the MOPITT profile.