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Supplemental to Recommendations for Spectral Fitting of SO2 from MAX-DOAS Measurements 

 

                             
Figure S1 SO2 dSCDs for the base-case at all the viewing elevation angles for the high (left) and low (right) concentration 
cells. Grey areas indicate under-estimation of >10% and >50% for the high and low concentration measurements, 5 
respectively. Black areas indicate over-estimation of >10% and >50% for the high and low concentration measurements, 
respectively. 
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DOAS Analysis & Fitting in DOASIS 

DOAS analysis is based on the Beer-Lambert law, which describes the attenuation of light with wavelength λ emitted by a 

radiation source Io(λ) as it passes through the atmosphere along the path length s by an absorber with an absorption cross-

section σ(λ) and number concentration c (Honninger et al., 2004).  5 

I(λ) = Ioe−σ(λ)cs (1) 

In order to allow interpretation of radiance measurements in the real atmosphere, equation (1) would have to be expanded to 

include that 1) trace gas absorption cross-sections are a function of temperature and pressure, 2) multiple absorbers are 

typically present in the atmosphere, and 3) Rayleigh (air molecule) and Mie (aerosol) scattering of light occurs. 

Determination of trace gas concentration using (1) would require quantification of all factors affecting light intensity 

including the effect of scattering of light, turbulence, variation in the light source, and changes in spectral sensitivity of the 10 

detector (Platt et al., 2008).  

For multiple absorbers i and given temperature T 

I(λ) = Ioe−σ(λ,T)∫ ci(s)ds (2) 

Given that the SCD of absorber i is Si = ∫ ci(s)ds, the integral can be approximated as 

I(λ) = Ioe−∑σi(λ,T)Si (3) 

ln�I(λ)� = ln(Io) −�σi(λ, T)Si 
(4) 

The DOAS technique eliminates the problem of having to quantify all factors affecting light intensity (see above) by 

separating absorption structures that vary “slowly” with wavelength (σB) from the differential structures (σ’).  15 

σi(λ) = σiB(λ) + σi′(λ) (5) 

The absorption bands unique to each gas are differential features while Rayleigh and Mie scattering, light source variation 

and spectral sensitivity are broadband features (Honninger et al., 2004).    

The result is the following set of linear equations 

ln�I(λ)� = ln(Io) −�σiB(λ, T)Si −�σi′(λ, T)Si 
(6) 

The first and second terms on the right-hand side of the equation are low frequency (broadband) and can be modelled as a 

polynomial function P(λ) with coefficients aj.  20 

ln(Io) −�σiB(λ, T)Si = P(λ) = � ajλj
m

j=0

 
(7) 

ln�I(λ)� = −�σi′(λ, T)Si + P(λ) (8) 

Si and aj can be solved for using the linear least squares method.  
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However, changes in temperature drift cause wavelength shift (si) and squeeze (ti) so that the wavelength calibration can be 

slightly inaccurate. Such inaccuracies are non-trivial because absorption features can be only a few detector channels wide 

(Kraus, 2006). The shift and squeeze parameters are non-linear, preventing a linear solution.  

ln�I(λ)� = −�σi′(si + tiλ)Si +  P(λ) (9) 

Therefore, DOASIS uses an iterative Levenberg-Marquardt method to obtain the optimal solution. The DOAS retrieval of 

SCDs finds the best fit of a set of reference spectra to the measured spectrum by minimizing the cost function χ2. 5 

χ2 = ��lnI(λ) − P(λ) + �σi′(si + tiλ)Si
i

�
2

dλ 
(10) 

The first term inside the brackets includes the measured spectrum, and the other two terms include the modelled parameters 

and absorption cross-sections. 

The Levenberg-Marquardt Method combines the gradient descent method, which tends to converge rapidly when the starting 

conditions are far away from the cost function minimum, and the Gauss-Newton method, which is most effective close to the 

optimal solution (Kraus, 2006). The methods were combined by Levenberg (1944) because the combined algorithm is more 10 

stable and converges faster than the individual methods (Platt et al., 2008). A flow chart of the steps in a DOASIS fit can be 

found in Fig. 7.1 in (Kraus, 2006). The parameters in the model are split into sets of linear (SCDs and polynomial) and 

nonlinear parameters (shift and squeeze). A first guess of the linear parameters is made, followed by an estimation of the 

non-linear parameters. A simple least squares method is used to solve for the linear parameters while keeping the nonlinear 

parameters constant. A step of the iterative algorithm then calculates the nonlinear parameters with the linear parameters 15 

kept constant.  The linear parameters are now recalculated using the new nonlinear parameters, and the iterations continue 

until a terminal condition is reached (Kraus, 2006). If an iteration step produces a new estimate with a greater cost function, 

the gradient method is used to seek a better solution farther away, but if the new estimate is an improvement, the Gauss-

Newton method is used. The iteration process stops when the change in the cost function is <10-5 or maximum iteration steps 

have been reached. When the steps become very small, ideally the iteration is close to the cost function minimum. Note that 20 

the algorithm may not find the global optimal solution like the least squares method but rather a local minimum in the cost 

function. Also, the algorithm results are stable and correct if all parameters are independent, but cross-sections containing 

similar parameters may introduce inter-dependencies that can create instability in the retrieval (Kraus, 2006).  

An offset polynomial, O(λ) can be enabled in the DOASIS fit to compensate for local broad band structures within the fitting 

window (e.g., stray light). 25 

ln�I(λ)� = e−∑σi
′(λ,T)Si+P(λ) + O(λ) (11) 

An approximation that ln �1 + O(λ)
I(λ)

� ≈ O(λ)
I(λ)

 for small O(λ)
I(λ)

 leads to the equation used by the software as follows:  

ln�I(λ)� = −�σi′(si + tiλ)Si +  P(λ) +
O(λ)
I(λ)

 
(12) 
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