
Author’s response to interactive comments by Referee #1 

Post-processing is essential to the automated accumulating precipitation gauges, 

although it is just a filtering technique. This study proposed an improved post-

processing technique to tackle the noise caused by diurnal oscillations and drift from the 

evaporation of the bucket contents. Comparing with other techniques, the major 

advantage of the suggested one is its fully automated processing with a 24-hour 

latency.  

Generally, this study is well written and presented. I am happy to see this paper 

published in the Atmospheric Measurement Techniques. But the following issues should 

be addressed properly before the paper can be considered for publication. 

1. For users, people would like to know what are the performances of the filter for all-

weather precipitation. Compared to a much smaller amount of solid precipitation in the 

cold season, testing the filter might be more important in the warm season. First of all, 

the drift from evaporation in the warm season can be much more serious in most cold 

regions, and the evaporation rate can be much larger. Secondly, the noise features can 

be quite different between warm and cold seasons. Thus, to make the conclusion more 

solid for both rainfall and solid precipitation, I would like to see the performance for the 

warm season. 

AC: The reviewer makes a good point. It is important that users know the performance 

of the filter for each season. For this analysis, however, we chose winter for several 

reasons:  

1)The data set that we had available to us was a mainly cold season precipitation data 

set originating from the WMO-SPICE (or post-SPICE) project. We chose this data set 

because it had a known quality. This data came with relatively meticulous metadata 

such as service logs and field notes so that we were confident in our ability to quality 

control this data to allow for a level playing field for each filter. The quantity and quality 

of the warm season data from SPICE is reduced and much of this wasn’t readily 

available at the time that this analysis was undertaken.  

2)The signal to noise ratio is always lower in the winter due to lower (generally) 

precipitation rates. In our opinion, this makes filtering of winter data substantially more 

difficult than filtering of summer data, where small absolute errors are less likely to be 

large relative errors. 

3)We know that the evaporation signal in the SPICE data is significant during the 

shoulder seasons (Fig. 5c as an example), perhaps even more significant relative to 

total precipitation than evaporation during the summer months. We felt that this cold 

(shoulder) season evaporation would be a considerable challenge to the filters. 



To help answer the question about warm season performance, we ran a separate 

control experiment on the warm season and added 11 available unprocessed warm 

season time series to the analysis. 

The results of the warm season control analysis suggested that in general, the 

performance of NAF remained consistent, NAF-S improved, O15 became even more 

unstable, and the performance of NAF-SEG dropped somewhat, apparently because of 

a lower recovery rate for evaporation (Table 4). However, NAF-SEG continued to 

outperform NAF and O15 in nearly every metric. 

Although we don’t have nearly as much summer data as winter data due to the focus of 

SPICE, we filtered 11 available warm season time series of known data quality for 

comparison with winter results. All filters showed a slight reduction in performance for 

the warm season with an increase in RMSD vs. the cold season (Table 5). The biggest 

increase in RMSD was in the O15 filter (increase of nearly 0.03 mm). 

Action: We have clarified our justification in the methods section for focussing on the 

filtering of cold season data but since we agree that assessing the performance during 

the warm season is also important, we have added the warm season control exercise 

and the addition of the 11 warm season time series to the methods sections and 

summarized the results from these experiments in the appropriate sections, including an 

update of Tables 2-5 and the addition of Table A2. A substantial addition to the 

Discussion section was made to discuss the results of both the pre-processed and 

unprocessed warm-season testing.  

2. Compared to the robustness of NAF-S, the validity of NAF-SEG is closely related to 

the setting of the minimum threshold P* = 0.001 mm. Although the authors assert it is 

somewhat arbitrary within the tested conditions of solid precipitation measurements, it 

might be challenging for the noise features in the warm season. Considering the more 

variability of precipitation and stronger evaporation in the warm season, further 

exploration in the point is necessary. In addition, there is no validation for the raw 

precipitation data when using the filters. Therefore, validation using independent 

measurements from the tipping bucket would be very helpful for the filtered 

measurements from the accumulating gauges. 

AC: Analysis not shown in the manuscript tests the sensitivity of NAF-SEG to P* and 

found little to no sensitivity (which was actually somewhat surprising), but the reviewer 

would be correct in assuming that the tests were only performed on winter data. This 

can be tested relatively easily using the same data used to address comment 1. As for 

using tipping bucket rain gauge (TBRG) data as a reference (during warm season 

tests), the authors feel that TBRG data has it’s own inherent problems and would be not 

be conducive for use as a reference or even as an independent validation due to known 



issues with splash, siphoning delays, unknown maintenance issues, calibration, etc. We 

think that the greatest potential for future improvements could be the incorporation of 

present weather detectors or disdrometers into the filtering process for identifying light 

and false events.     

Action: Using the same observed warm season time series data discussed above, the 

NAF-SEG filter was tested using different P* values ranging from 0.0001 mm to 0.5 mm. 

This is a very similar test to that run using cold season data. Results were similar to the 

cold season in that the response in the metrics was subtle up to 0.05, only dropping off 

substantially at 0.5. This was added to the discussion section. Also, in response to the 

reviewers question about independent validation, we added a paragraph to the 

discussion section suggesting that the use of present weather detectors or optical 

disdrometers could be explored to validate or improve filtering techniques. The use of a 

TBRG or other precipitation detectors is out of the scope of this current analysis.   

3. As we know the performances of the filters are slightly related to the climate of the 

observed sites. Further discussion of the relationships between the biases for the 44 

raw time series would help understand the validity of the filters in different 

environments.  

AC: The reviewer makes a good point. However, it’s not the filter that is impacted by 

climate but rather the behaviour of the precipitation gauge. Although climate is a factor 

(e.g. wind vibration, temperature signals, evaporation), there are many non-climate 

related factors that also have a significant impact on gauge performance, such as 

electrical interference, service interval, or even the actual installation of the gauge and 

infrastructure. These are very difficult to isolate from the impacts of climate. Examining 

the impact of these factors, including climate conditions, on the signal behaviour of the 

gauge was discussed in the SPICE final report and was recommended for further 

analysis, but understanding these impacts are out of scope for this analysis. 

Action: In the discussion section, we suggest that filtering techniques (whether this filter 

or others) could be improved by better understanding the cause of signal noise and 

filtering made easier by reducing signal noise during measurement.   

Minor comments:  

(1) P1-L5: If my understanding is correction, this study is talking about the weight-

based precipitation gauge. It is quite confusing when using ’automatic 

precipitation gauge’, ‘automated accumulating precipitation gauge’ and 

‘automated accumulating (weighting) precipitation gauge’.  

AC: These gauges are in fact accumulating automated weighing precipitation gauges.  



Action: We will define this better and make the nomenclature consistent to “automated 

weighing gauge” 

 

(2) P12-L406: ‘his’ to ‘this’ 

Action: done 

 



Author’s response to interactive comments by Referee #2 

Throughout the paper 
 
In the introduction, you do name three post-processing challenges: mechanical and electrical 
interference, diurnal oscillations, and evaporation of the bucket contents. While you treat 
mechanical and electrical interferences and evaporation explicit with your filtering method, 
possible diurnal variations as the temperature dependency of the measurement device are 
treated more implicit with the introduction of a 24h measurement window, where you can 
assume similar temperatures at the end and beginning of the cycle without explaining this part 
of the algorithm. However, synoptic changes can make this assumption not valid and thus some 
of the detected precipitation or evaporation can be due to temperature changes independent of 
a diurnal cycle. I don’t think that this is problematic for your results, but I suggest to discuss this 
issue throughout your paper. 
 
AC: True, a non-diurnal temperature fluctuation may have an impact on signal noise and 
therefore impact the NAF-SEG filtering. It might be worthwhile looking at strong non-diurnal 
gradients to determine if that could explain when and why the filters have a reduced 
performance.  
 
Action: The following sentences were added to the discussion: “There may also be a decrease 
in the performance of NAF-SEG when signal noise is due to non-cyclical temperature 
fluctuations, such as those that occur during strong synoptic events. Although this wasn’t 
explicitly assessed, it may be a situation that a user should be aware of.” 
 
Section 2.4 Segmented Neutral Aggregating Filter, page 6, algorithm description and Figure 1 in 
Appendix (flowchart): Please clarify that the measurement interval in your case is actually a 
minute or has to be a much shorter interval than the 24 hour segments. I think it may also help if 
you punctuate (in addition to the use of indices) when you are treating the 24 hour segment as 
one: i.e. all individual measurements from one interval is assigned the same flag “precipitating”, 
“evaporating” or “neither E nor P”, and when you are treating minute by minute (each single 
measurement can get its individual P(i) or E(i), and from step 4 you evaluating minute values). 
 
Action: added the following paragraph to Section 2.4:  
 
“The measurement interval used in this analysis to evaluate NAF, NAF-S, and NAF-SEG is 1-
min. This interval is used here because it was chosen as the preferred interval for archiving of 
the SPICE data, and was therefore available for this analysis. NAF has been shown to work on 
data of larger intervals (i.e. 30 min in Pan et al.,2016) and there is no reason why NAF-SEG 
could not be used with larger intervals as well, provided that the intervals are considerably 
shorter than the 24-hour window (i.e. 30 minutes or less).” 
 
Please reword 6c. While the flowchart indicates clearly that if answers on both questions 6a and 
6b are no, precipitation and evaporation are set to zero. That includes also (and especially) 
those cases where not all three overlapping windows do agree. After repeated reading of 
sentence “6c” and a look on the flowchart, I actually understood that 6c could be understand this 
way. However, I do suggest to rewrite and clarify the point that you are also looking for 
disagreement between the three flags here and not only for those cases where all three flags 
indicate (in agreement) no precipitation nor evaporation (the latter is how I understood the 
sentence when reading it the first time). 
 



AC: Agreed 
 
Action: The sentence now reads “a. For intervals which are not precipitating (a) or evaporating 
(b), i.e. when the flag from all three overlapping windows indicates the absence of both 
precipitation and evaporation, or when the three flags do not agree with each other, P(i) and E(i) 
are set to zero. 
 
 
Section 3.1. Testing with pre-procesed (control) precipitation data 
 
The description of the creation of the synthetic signal is very informative. I was searching after a 
figure illustrating the level of noise visual. Maybe you can hint other readers that figure 3 in the 
appendix actually have that kind of visualization. Also, in contrast to figure 2, where the 
difference between the three noise levels is not visible due to the higher overall changes. 
 
Action: we indicated near the end of Section 3.1 that the various noise levels in the synthetic 
data can be visualized in Figure 3. 
 
 
Section 3.2 Testing with raw precipitation data 
 
From your description, it becomes clear, that you actually include a double filtering. The QC 
process used for the WMO-SPICE analysis is already cleaning and smoothing the data series 
before you apply the described filters of this study. That is off course no problem, but I do think it 
is important enough that it should be mentioned earlier in the paper and also be taken up again 
in the discussion of the results.  
 
AC: agreed. This is already noted in Section 3.2 
 
Action: A brief discussion of the impacts of the Gaussian filter is included in the discussion 
section. 
 
I am wondering especially about: 
 
Have you tried to apply your filtering algorithm without this additional SPICE-filtering and 
QC? 
 
AC: We have in more recent work but not in this work. Preliminary results suggest that the 
Gaussian filter has little impact on the performance of NAF-SEG but it may help O15. 
Unfortunately, it was built into the SPICE data QC, some of which was completed before we 
received the data, so it was maintained for consistency. 
 
In the operational use of your O15 filter, you calculate a 5-minute mean prior to filtering. Do 
you assume that the 5-minute average calculation would do about the same as the 4-minute 
Gaussian filter of the SPICE-algorithm? 
 
AC: I think that the 5-minute mean would be more aggressive than the Gaussian filter. This is 
considered part of the O15 filter, not a pre-filter process. This is what is implemented on the 
operational data loggers.  
 
In case of your study, did you still use the 5-minute averaging step of the O15 filter after 



applying the 4 minute Gaussian filter of the SPICE-algorithm? 
 
AC: Yes, the 5-min mean was applied after the Gaussian smoothing, which probably gave the 
O15 filter more of an advantage with this test data than it would get in real-time on the data 
logger. This should be pointed out in the discussion. 
 
Action: added the following sentences to the discussion section:  “It should also be noted that 
the unprocessed data in these tests were pre-filtered with a Gaussian filter with a 4-min window, 
which was integrated into the SPICE quality control process, prior to testing the algorithms. This 
likely resulted in the O15 filter performing better than it would have in the operational setting, but 
this was not confirmed.” 
 
Do you think a quality control of the time series is necessary before applying the filter? 
 
AC: Yes, some quality control of the time series is necessary before applying the filter. We can 
speculate that the Gaussian filter has a negligible impact on performance, but artifacts such as 
those caused by gauge servicing (as an example) need to be removed. Generally, these don’t 
appear in the operational data due to servicing protocols (i.e. the data is suspended during 
servicing) but simple range checks and jump filters would prevent other artifacts from impacting 
the data. 
 
Action: we added the recommendation for a post-processing enhanced quality control 
procedure, along with the archiving and re-processing of the 1-min operational data in non-real-
time, to the final sentence in the conclusions section.  
 
  
Especially when thinking of the O15 filter, but also for the other filters, it may be more usual 
to apply the complete or parts of the quality control on the filtered (with your algorithm) 
data - what are the advantages/disadvantages of either way? 
 
AC: The advantage, and perhaps the only advantage, of the O15 filter is that it can be deployed 
operationally (i.e. on the data logger) to work in real-time. This means that only rudimentary 
quality control measures are available. The O15 filter definitely benefits from pre-filtering data 
quality control, as do the other filters. Testing the impacts of QC procedures was out of scope 
for this analysis (which is why we used the pre-tested SPICE process), but we can certainly see 
the benefit of testing and implementing enhanced QC processes in operational data 
management systems as a first step to an integrated precipitation post-processing technique.  
I don’t see any disadvantages, other than keeping processes separate may make revisions, 
documentation, and implementation less complex.  
 
Action: see above 
 
Chapter 5 – Discussion, lines 364-372: 
 
I think the necessity of antifreeze and oil, also when an algorithm is applied, is valuable 
information, which should also occur in the conclusions (in a slightly shorter form) 
 
AC: agreed 
 



Action: added “This, in combination with routine site servicing to pre-empt evaporation and other 
sources of noise, can result in improved operational precipitation data.” As the final statement in 
the conclusions section. 
 
Use of Ott Pluvio2 data – throughout the paper 
 
In the Introduction (lines 68-71), you describe that you are using somewhat processed values of 
the Ott Pluvio2 gauges. In Section 3.2 (lines 285ff.), however, you do not distinguish between 
data from Geonor or Pluvio2. Do you apply the SPICE-algorithm on the preprocessed or the raw 
bucket data from Ott Pluvio2? To my understanding, the SPICE algorithm is meant to be applied 
to the raw bucket data. Depending on what you actually did, Pluvio2 and Geonor data may have 
been treated significantly different and I wonder if that should be visible in your results. Do you 
see any effect of a possible different treatment of the data from the different gauges? I was 
surprised to see that evaporation was detected in a similar manner for Pluvio2 gauges as for 
Geonor gauges even if (after my understanding) evaporation for Pluvio2 gauges were already 
treated from the inbuilt algorithm and thus probably be “treated” twice. 
 
AC: The description in the introduction describes what is available as output from the Pluvio2, 
but states that some users (including the authors) would like to bypass “further processing” and 
have the option to “complete their own post-processing of the data in its rawest form.” The 
output used for testing from the Pluvio2 was the real-time bucket weight output. This data, 
according to OTT, is pre-processed by the onboard algorithm in that it is a high frequency 
measurement which is internally corrected for temperature and vibration effects on the load cell. 
This output is NOT corrected for evaporation. This is the “rawest” output product available from 
this gauge and is as close as possible to the raw unprocessed data derived from the Geonor. 
The SPICE algorithm was designed to be applied to both the raw Geonor ouput and the Pluvio2 
real-time bucket weight data in the same manner, with only parameter changes for range and 
jump thresholds. Having said that, the signal noise for the gauges have both similarities and 
differences, but are treated the same by all four filtering algorithms under test.  
 
Action: clarified the output source of both the Geonor and Pluvio2 in paragraph 2 of Section 3.2   
 
Appendix 
 
Flowchart and figures 2 and 3 contain relevant information and I suggest moving them from the 
appendix into the main text. 
 
AC: We apologize as this was a mistake in the order of the tables and figures. Only Table A1 is 
meant to be in the Appendix while the figures, including the flow chart, should be integrated into 
the manuscript during final publication. 
 
Appendix, Figure 5 
 
The lines are very thin and difficult to distinguish; the evaporation line seems to be almost 
constantly zero, due to the different orders of magnitude. You try to overcome some of these 
issues with the smaller inserts, but those makes the plots “untidy” and difficult to understand. 
Please consider to use several plots, shorter time intervals, or some other way to improve the 
quality of these figures. 
 
AC: agreed. These will be improved when we re-submit the manuscript for final publication. 
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Abstract. The unconditioned data retrieved from accumulating automated accumulatingweighing precipitation gauges 15 

is inherently noisy due to the sensitivity of the instruments to mechanical and electrical interference. This noise, 

combined with diurnal oscillations and signal drift from evaporation of the bucket contents, can make accurate 

precipitation estimates challenging. Relative to rainfall, errors in the measurement of solid precipitation are 

exacerbated because the lower accumulation rates are more impacted by measurement noise. Precipitation gauge 

measurement post-processing techniques are used by Environment and Climate Change Canada in research and 20 

operational monitoring to filter cumulative precipitation time series derived from high-frequency, bucket-weight 

measurements. Four techniques are described and tested here: 1) the operational 15-minute filter (O15), 2) the Neutral 

Aggregating Filter (NAF), 3) the Supervised Neutral Aggregating Filter (NAF-S), and 4) the Segmented Neutral 

Aggregating Filter (NAF-SEG). Inherent biases and errors in the first two post-processing techniques have revealed 

the need for a robust automated method to derive an accurate noise-free precipitation time series from the raw bucket-25 

weight measurements. The method must be capable of removing random noise, diurnal oscillations, and evaporative 

(negative) drift from the raw data. This evaluation primarily focuses on cold-season (October to April) accumulating 

automated- weighing precipitation -gauge data at 1-min resolution from two sources: a control (pre-processed time 

series) with added synthetic noise and drift; and raw (minimally-processed) data from several WMO Solid 

Precipitation Inter-Comparison Experiment (SPICE) sites. Evaluation against the control with synthetic noise shows 30 

the effectiveness of the NAF-SEG technique, recovering 99%, 100%, and 102% of the control total precipitation for 

low, medium, and high noise scenarios respectively for the cold-season (Oct-Apr) and 97% of the control total 

precipitation for all noise scenarios in the warm-season (May-Sep). Among the filters, the fully-automated NAF-SEG 

produced the highest correlation coefficients and lowest RMSE for all synthetic noise levels, with comparable 

performance to the supervised and manually-intensive NAF-S method. Compared to the operational O15 method in 35 

cold-season testing, NAF-SEG shows a lower bias in 37 of 44 real-world test cases, a similar bias in 5 cases, and a 

higher bias in 2 cases. In warm-season testing, the NAF-SEG bias was lower or similar in 87 of 11 time sericases. The 

results indicate that the NAF-SEG post-processing technique provides substantial improvement over current 

automated techniques, reducing both uncertainty and bias in accumulating-gauge measurements of precipitation, with 

a 24-hour latency. Because it cannot be implemented in real time, we recommend that NAF-SEG be used in consort 40 

with a simple real-time filter, such as the operational O15 or similar filter.  
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1  Introduction   

Accurate precipitation measurements are crucial for a variety of applications, including water resource forecasting, 45 

future water availability, and hydrological and climate analysis and modelling (Barnett et al., 2005; Bartlett et al., 

2006; Wolff et al., 2015). Canada’s Changing Climate Report led by Environment and Climate Change Canada (2019) 

highlights the importance of accurate precipitation measurements as fundamental climate quantities that play an 

important role in human and natural systems. Although the systematic bias due to the impact of wind on solid 

precipitation measurements is well documented (Goodison, 1978; Sevruk et al., 1991; Goodison et al., 1998;Yang et 50 

al 2005; Sevruk et al., 2009; Smith, 2009; Wolff et al., 2015; Kochendorfer et al., 2017a), errors related to the 

automatic recording of precipitation measurements have only relatively recently been identified as automated 

weighing gauges come into common use (Sevruk, 2005). The cumulative precipitation data output from automated 

weighing gauges is subject to noise, diurnal temperature oscillations, and negative drift from evaporation which can 

often mean that the precipitation signal over short sampling periods is influenced or hard to detect (Rasmussen et al., 55 

2012). The nature of the noise and drift often varies substantially from site to site and between gauge configurations.  

High frequency noise can exceed ± 1 mm and evaporation from the bucket can be in excess of several mm between 

precipitation events. It is therefore necessary to filter the raw data to separate real precipitation events from signal 

noise and identify and remove periods with evaporation (keeping in mind that evaporation reduces the precipitation 

amount derived from the differential in bucket weight). Improper filtering can lead to the accumulation of errors and 60 

result in significant inaccuracies in total seasonal precipitation. Duchon (2008) suggests that errors due to the diurnal 

oscillation in Geonor T-200B gauges could be 1-10% of the precipitation total. Three post-processing challenges in 

the derivation of ‘clean’ precipitation time series are the focus of this study: mechanical and electrical interference, 

diurnal oscillations, and evaporation of the bucket contents.  

This study incorporates two commonly-used accumulating automated weighing precipitation gauges (henceforth 65 

referred to as automated weighing gauges) : the Geonor T-200B and OTT Pluvio2. The Geonor T-200B implements 

up to three vibrating wire transducers, which provide a frequency output that varies as a function of the fluid weight 

in the gauge bucket. The cumulative precipitation amount (bucket weight) is calculated from the frequency of each 

wire via calibration coefficients, with no onboard filtering (Geonor, 2019). The OTT Pluvio2 precipitation automated 

weighing gauge uses a high-precision load cell to weigh the bucket contents and provides several outputs including 70 

intensity and precipitation accumulation (Nemeth, 2008; Nitu et al., 2018). The OTT Pluvio2 output has been pre-

processed using an onboard proprietary algorithm which adjusts the high frequency load cell measurements for 

temperature and vibration to derive a more accurate bucket weight. Further onboard processing removes the impact 

of unrealistic bucket weight changes and evaporation from the output, however, some would prefer to bypass thise 

onboard algorithm was bypassed in this analysis to obtainand complete their own post-processing of the data in its 75 

rawest form. 
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A number of post-processing techniques have been developed to derive a noise-free precipitation time series from 

high-frequency automated weighing gauge bucket weight measurements. Some examples are described here. 

The Rolling Maximum filter was used by Harder and Pomeroy (2013) to remove the “jitter” from the accumulated 

precipitation datasets by retaining a cumulative precipitation observation if it is greater than the previous maximum 80 

cumulative precipitation. The previous maximum is assumed to be the cumulative precipitation in all other cases. This 

filter reportedly works well in preserving the cumulative change in precipitation but it may not always catch the precise 

start of precipitation events and will not always perform optimally in the presence of negative gauge drift (i.e. 

evaporation).  

The World Meteorological Organization (WMO) Solid Precipitation Inter-Comparison Experiment (SPICE, 2013-85 

2015) developed a uniform post-processing method for defining and quantifying precipitation events (Nitu et al., 

2018). The process includes calculating a 30-minute bucket weight differential using thresholds and filters, effectively 

producing what was termed the Site Event Datasets (SEDS). For an event to be identified, the net precipitation duration 

needed to be sufficiently long (as measured by a precipitation-detector or disdrometer) and the total accumulation (as 

measured by the reference automated weighing gauge) needed to be equal to or greater than a defined threshold (set 90 

at 0.25 mm when a reliable precipitation-detector was available). This process was effective at creating a high 

confidence data set for developing and testing transfer functions (Kochendorfer et al., 2017b) but because of the 

rigorous filtering of shorter and smaller events, was not an effective means of filtering a time series.   

The U.S. Climate Reference Network (USCRN) uses the redundancy of the Geonor T-200B three vibrating-wire load 

sensors in the determination of precipitation events (Leeper et al., 2015). Initially, a pairwise calculation was used 95 

which relies on pairwise agreement of bucket weight changes using the wire redundancy as a check on the 

measurement. This was determined to be sensitive to gauge evaporation and noise, leading to the development of a 

weighted average calculation using the change in bucket weight between successive sub-hourly periods for each 

transducer output. A weighted mean is then used to average the bucket weights, with greater weight given to less noisy 

measurements. 100 

The Meteorological Service of Canada currently implements a real-time threshold filter in their data loggers to 

automatically determine the occurrence of precipitation events. The filter is based on the 15-min differential in the 

Geonor T-200B bucket weight (Mekis et al., 2018). Although this filter is unnamed, we call it the Operational 15 

Minute (O15) automated processing technique. This technique is included in this analysis and is described below in 

more detail. The filter tends to fail when the noise threshold is exceeded, resulting in false precipitation reports, and 105 

when evaporation exceeds the acceptable limits.  

Limitations in the O15 technique led to the development of the Neutral Aggregating Filter (NAF), previously known 

as ‘Brute Force’ (Pan et al., 2016). The NAF, described in greater detail by Smith et al. (2019), iteratively adds all 

negative and small positive changes to proximate positive changes until all changes exceed a user-specified threshold. 

Because the technique preserves the total change in bucket weight over the time series, it cannot account for the 110 

negative drift that results from evaporation. To overcome this deficiency, the Supervised Neutral Aggregating Filter 
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(NAF-S) was created to allow user intervention and minimize evaporation errors through interactive manual 

adjustment. Both NAF and NAF-S are explained in greater detail in the next section. 

To overcome the limitations of the O15, NAF, and NAF-S techniques, we evaluated a moving-window modification 

of the NAF, implementing the NAF on 24-hour overlapping windows, which we will call the Segmented Neutral 115 

Aggregating Filter (NAF-SEG). The objective was to obtain a robust post-processing technique that is completely 

automated, easily implemented, and successfully eliminates varying levels of noise, diurnal oscillations and 

evaporation without significantly impacting the timing and amount of precipitation. This study introduces the NAF-

SEG technique and examines its performance compared to the O15, NAF, and NAF-S methods. 

  120 

2 Processing Techniques Under Test 

2.1  MSC Operational O15 Minute 

The O15 filtering technique is used operationally by the Meteorological Service of Canada (MSC) for Geonor T-200B 

measurements at the Reference Climate Stations (RCS).  The O15 filter is implemented in real time at the measurement 

site data logger. The algorithm is intended to filter out noise and eliminate evaporation while minimizing the reports 125 

of false precipitation. For each 15-min period, a mean bucket weight is computed over the last 5 min (minutes 11 to 

15) of the period. The mean bucket weight from the initial period is used to establish the baseline. For each successive 

15-min period, the difference between the current mean bucket weight and the baseline is calculated. If the bucket 

weight difference is greater than or equal to 0.2 mm, the difference is attributed to precipitation and added to the 

cumulative precipitation total, and the baseline is reset upwards to the current mean. If the difference is less than or 130 

equal to -1.0 mm, the difference is attributed to evaporation and the baseline is adjusted downward to match the current 

mean. This process is performed separately on each of the three installed transducers in the RCS gauge although 

ultimately only one is used to determine reported precipitation. 

The O15 technique is used operationally in real-time, and so must be simpler than other post-processing techniques. 

As a result, it has the potential to be problematic, including a sensitivity to the positive and negative thresholds used 135 

to identify precipitation and evaporation events. The 0.2 mm positive accumulating (noise) threshold can cause an 

overestimation of precipitation if the data are inherently noisy or have a high diurnal oscillation. Additionally, if the 

negative drift from evaporation lies just above the -1.0 mm threshold, the baseline will not be adjusted before the next 

precipitation event, resulting in an underestimation of the next event by up to 1.2 mm (evaporation threshold plus the 

noise threshold).  140 

2.2  Neutral Aggregating Filter  

The NAF method, developed by Environment and Climate Change Canada’s Climate Research Division, is an 

automated method that removes noise from cumulative precipitation time series (Pan et al., 2016; Smith et al., 2019). 

The processing is done iteratively, beginning with the minimum non-zero interval precipitation value. All non-zero 
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changes in interval precipitation, with values below a user-defined threshold are transferred to neighboring periods 145 

with positive or larger changes. The results from the algorithm are “neutral” as the filter balances the positive and 

negative noise until all changes below the user-defined threshold are eliminated.  

The technique removes random noise and accounts for diurnal oscillations in the bucket-weight signal but, because 

the total precipitation is forced to equal the total bucket weight increase at the end of the time series, it cannot account 

for negative drift. This means that it will not perform well if the time series has significant periods with evaporative 150 

losses from the automated weighing precipitation accumulating gauge bucket. The significance of the error could 

exceed 10% depending on the effectiveness of the servicing measures to reduce evaporation from the bucket contents. 

NAF serves as the framework for both the NAF-S and NAF-SEG techniques described below.  

In this study, the NAF, NAF-S (2.3) and NAF-SEG (2.4) methods all use a minimum threshold P* of 0.001 mm. P* 

was somewhat arbitrarily set at 0.001 mm based on the minimum resolution of the gauge data. Testing (not shown 155 

here) suggests that the method is not overly sensitive to P* and that a 5-fold increase in the magnitude of P* had 

minimal impact on the performance in either the cold- or the warm-season.   

2.3  Supervised Neutral Aggregating Filter 

The NAF-S method is used to manually adjust the cumulative time series for evaporation and other spurious data, 

effectively reducing the NAF estimation error. The NAF-S method uses the NAF output as a first guess, and then 160 

allows for manual, interactive adjustment of the baseline to account for evaporation events and other data artifacts 

impacting the time series. The NAF-S creates an interactive plot, showing both raw (quality controlled) and NAF 

output data, which highlights periods with drift caused by evaporation. The user is then given the capability to identify 

and manually exclude each period with evaporation, using the cumulative precipitation value before each evaporation 

event as a new baseline. NAF-S successfully minimizes the impact of evaporation but requires user intervention (i.e. 165 

it cannot be automated) along with user subjectivity to identify the endpoints of evaporative and other spurious events 

(Smith et al., 2019). 

2.4  Segmented Neutral Aggregating Filter 

The NAF-SEG is a fully automated technique that implements the NAF to process multi-day precipitation time series 

in successive 24-hour segments using overlapping moving windows. The use of 24-hour windows automates the 170 

identification and removal of evaporation, minimizing the negative biases in total precipitation from evaporation 

without the need for user intervention. Additionally, the NAF-SEG method provides an estimate of evaporative losses 

on precipitation-free days for evaluating servicing procedures.  

   

The NAF-SEG technique uses three overlapping moving windows per day, advanced in increments of 8 hours. The 175 

algorithm begins by filtering the first 24-hour segment using NAF. It then advances 8 hours and filters the next 24-
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hour segment. This filtering process is repeated until the end of the data is reached. Each 8-hour data segment thus 

passes through the NAF three times. The processing steps are listed below and outlined in Fig. 1. 

The measurement interval used in this analysis to evaluate NAF, NAF-S, and NAF-SEG is 1-min. This interval is used 

here because it was chosen as the preferred interval for archiving of the SPICE data. , and therefore available for this 180 

analysis. NAF has been shown to work on data of larger intervals (i.e. 30 min in Pan et al.,2016) and there is no reason 

why NAF-SEG could not be used with larger intervals as well, provided that the intervals are considerably shorter 

longer than the 24-hour window (i.e. less than 30 minutes or less).   

We will denote the precipitation amount from one measurement interval (i) as P(i); cumulative precipitation as 

cumP(i); evaporation from one measurement interval as E(i) ; and cumulative evaporation as cumE(i). All units are in 185 

mm. 

1. The time series is processed in successive 24-hour segments.  

2. For each 24-hour segment, the change in bucket weight, which we will call Δ24h, is computed as the difference 

between the final and initial observations.  

3. Based on the value of Δ24h, the 24-hour segment is assigned one of three states: 1) precipitating, 2) evaporating, 190 

or 3) neither. It is then processed accordingly:  

a. If Δ24h ≥ P*, the 24-hour segment is flagged and treated as a precipitation period with no evaporation. The 24-

hour segment is passed through the NAF, resulting in values of P(i) that are either zero or greater than or equal 

to P*.  

b. If Δ24h ≤ -P*, the 24-hour segment is flagged and treated as an evaporation period with no precipitation. The 195 

24-hour segment is passed through the NAF but with the sign of the data reversed, resulting in values of E(i) 

that are either zero or less than or equal to -P*.  

c. If -P* < Δ24h < P*, the 24-hour segment is flagged as free of both precipitation and evaporation, and all values 

of P(i) and E(i) are set to zero.  

4. The NAF P(i) and E(i) outputs from step (3), as well as the flags that indicate the presence of precipitation or 200 

evaporation, are added to arrays with three columns corresponding to the three overlapping windows per day (i.e. 

as P(i,j), E(i,j) and flag(i,j) where j denotes columns (windows) 1 to 3).  

5. Steps (2) to (4) are repeated using moving windows on successive 24-hour segments, beginning 8 hours apart, 

until the entire time series has been processed.  

6. The P(i,j) and E(i,j) arrays from steps (3) to (5), with three overlapping windows, are processed to create a single 205 

time series for P(i) and E(i), based on the flag.  

a. For intervals when the flag from all three overlapping windows indicates the presence of precipitation, E(i) is 

set to zero and the three P(i,j) values are averaged to produce P(i), otherwise P(i) is set to zero.  

b. For intervals when the flag from all three overlapping windows indicates the presence of evaporation, P(i) is 

set to zero and the three E(i,j) values are averaged across columns to produce E(i), otherwise E(i) is set to 210 

zero.  
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c. For intervals which are not precipitating (6a) or evaporating (6b), i.e. when the flag from all three overlapping 

windows indicates the absence of both precipitation and evaporation, or when the three flags do not agree with 

each other, does NOT indicate the presence of precipitation or evaporation, P(i) and E(i) is are set to zero. 

7. The P(i) and E(i) outputs from step (6) are summed to create the cumP and cumE time series. Lastly, cumP is 215 

passed through the NAF to ensure that all P(i) values are either zero or greater than or equal to P*; cumE is passed 

through the NAF but with the sign of the data reversed to ensure that all E(i) values are either zero or less than or 

equal to -P*. The evaporation estimate is taken as the absolute value of the cumulative total of cumE.  

Two additional steps not shown in Fig. 1 are required. First, additional 24-hour segments need to be added to the start 

and end of the time series to ensure that all core intervals are covered by three overlapping windows. Since these time 220 

series begin at 0 mm at the start of the season, the 24-hour segment added to the start of each time series is set to all 

zero values. The 24-hour segment added to the end of the time series is set to the maximum of the cumulative time 

series. This step is only necessary if the user requires processed data from the first and last 24-hour period in the time 

series and does not impact the precipitation amounts.  

A second step is required to ensure that the precipitation during data gaps is not omitted from the accumulated total. 225 

Note that when gaps occur in an automated weighing gauge time series, the total accumulation across the gap is 

preserved but the event timing is lost. In the NAF-SEG implementation, precipitation occurring over data gaps is 

preserved if all three windows capture the jump in the bucket weight over the gap. But this will not always be the case. 

We resolved the problem as follows. First, we identified data gaps that overlapped the start or end of each 24-hour 

segment, computed the difference in bucket weight across the gap, and flagged windows when the difference was 230 

greater than or equal to P*. For those segments only, we added a processing step between steps (5) and (6), as follows. 

If any of the three overlapping windows captured the jump in the bucket weight across the gap, the window(s) in P(i,j) 

that did not capture the jump were excluded from the averaging, and all three windows were flagged to indicate the 

presence of precipitation. If none of the windows captured the jump in bucket weight across the gap, the difference 

across the gap was assigned to the final interval of the gap in P(i,j) for all three windows, with all windows flagged to 235 

indicate the presence of precipitation. 

 

3  Filter Evaluation  

Two data sources, both with 1-min resolution, were used to evaluate the O15, NAF, NAF-S and NAF-SEG 

precipitation filters: a control (pre-processed) precipitation time series which is free of noise and drift; and raw 240 

(minimally filtered) automated weighing accumulating gauge data collected at a number of international sites, which 

contain varying levels of noise, diurnal oscillations, and evaporative drift. The controlclean, pre-processed time 

series were used to evaluate all four filters -- by adding synthetic noise, diurnal oscillations, and evaporative drift, 

then evaluating the ability of the filters to recover the original time series. The raw time series, following quality 

control procedures, were passed through each of the filters, and the supervised NAF-S output was used as the 245 

standard against which to evaluate the others.  
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Both data sources, raw data with real-world noise, and controlclean data with synthetic noise added, have 

advantages and disadvantages in assessing filter performance (Peters et al., 2014). Clean data with added noise 

provide a known ‘true’ control but add the risk that the added noise and drift may not adequately capture the 

characteristics of real-world measurements. Raw measurements preserve observed noise patterns and capture the 250 

variability in noise behavior across sites and instruments, but do not provide a control time series for filter 

evaluation. By using both complementary data sources, we exploit their respective strengths and thus better assess 

the relative effectiveness of each filter. 

3.1 Testing with pre-processed (control) precipitation data  

The pre-processed 1-minute cumulative time series was originally derived from an Alter-shielded Geonor T-200B 255 

precipitation gauge at Caribou Creek, Canada from October-2013 through SeptemberApril-2014. It was broken into 

two seasons to better assess filter performance differences between the cold-season (Oct-Apr) and the warm-season 

(May-Sep).. The raw gauge outputs were filtered using NAF-S, resulting in a cold-season precipitation total of 259 

mm and a warm-season precipitation total of 282 mm. Historically, this particular gauge has performed well with 

minimal noise (< ± 0.25 mm) and evaporation issues; the time series was very clean even prior to filtering, and 260 

therefore the filtered output provides a suitable control.  

To evaluate the four filters, we added synthetic noise and drift to the filtered (noise-free) control, then tested each 

filters ability to recover the original signal. The perturbations included synthetic evaporation, diurnal oscillations, and 

random noise, computed as follows:  

1. Negative evaporative drift was added that totaled 25.9 mm and 28.2 mm in the cold and warm-seasons 265 

respectively, or 10% of the precipitation totals. The synthetic evaporation was partitioned among the 1-min 

intervals assuming that interval evaporation was proportional to the vapor pressure deficit (VPD). The fraction of 

evaporation for each interval was calculated by dividing the interval VPD by the VPD sum over the entire time 

series. Those fractions were then multiplied by the total (25.9 mm or 28.2 mm), and the resulting cumulative sum 

was subtracted from the control cumulative precipitation.   270 

2. Temperature-dependent diurnal oscillations δT(i) were computed from observed air temperature at gauge height 

and added to the cumulative precipitation control. The diurnal oscillations were calculated as:  

 

δT(i) = fTs * (T(i) - mean(T)) / (0.5*range(T)                                                                       (1) 

 275 

where fTs is a coefficient that varies for the different noise scenarios (Table 1). The temperature-oscillation time 

series δT was then subtracted from the cumulative time series from Step 1. 

3. Normally-distributed random noise was generated for each 1-min interval, with a mean of zero and a specified 

standard deviation (Table 1). Because the synthetic noise time series is generated randomly, it does not necessarily 

sum to zero. To avoid adding bias, we forced the sum to zero by subtracting the mean. The result was then added 280 

to the cumulative time series from Step 2.  



9 

 

The artificially-noisy time series from Step 3 wereas adjusted to a value of zero at the start, and then filtered using the 

O15, NAF, NAF-S, and NAF-SEG techniques. The nature and magnitude of the various noise levels can be visualized 

in Fig. 3. 

3.2  Testing with raw precipitation data  285 

Automated weighing Precipitation-gauge data were collected between 2013 and 2017 at seven WMO-SPICE (Nitu et 

al., 2018) sites including Bratt’s Lake (XBK; Canada), Caribou Creek (CCR; Canada), Centre for Atmospheric 

Research and Experiments (CAR; Canada), Formigal (FMG; Spain), Haukeliseter (HKL; Norway), Sodankylä (SOD; 

Finland), and Weissfluhjoch (WFJ; Switzerland). These sites provided high-quality precipitation observations (with a 

focus on cold-season measurements) from several automated weighingprecipitation gauge (Geonor T-200B and OTT 290 

Pluvio2) configurations at a temporal resolution of 1-minute. In addition, the sites utilized a number of wind-shield 

configurations including the WMO Double Fence Automated Reference (DFAR), and the single Alter-shield, as well 

as unshielded configurations. The combination of different climate regimes, gauge types, and wind-shield 

configurations, provides the opportunity to test processing algorithms on contrasting noise patterns. Although the 

SPICE intercomparison period (2013-2015) officially ended in 2015, many of these high-quality precipitation 295 

observations were continued beyond 2015 and made available by the site hosts for this evaluation. 

In total, 44 cold-seasonwinter time series time series (from October through April over years 2013 to 2017) and 11 

warm-season time series (May through September over years 2015 to 2017) time series were used in testing. The raw 

1-minute data (raw frequency output converted to bucket weight from the Geonor T-200B and real-time bucket weight 

output from the OTT Pluvio2) were first run through an automated quality control process to remove out-of-range 300 

outliers and data jumps, which included the removal of data jumps/drops related to gauge servicing (bucket emptying 

and/or charging) consistent with the quality control process used for the WMO-SPICE analysis (Nitu et al., 2018). 

Anything missed or flagged by the automated quality control process was examined and, as necessary, cleaned 

manually. The 1-minute precipitation bucket-weight data were then smoothed using a Gaussian filter with a 4-minute 

running window. This filter smoothed large spikes in the time series that may have resulted from mechanical or 305 

electrical noise. Since all of the Geonor T-200B gauges used in this analysis were equipped with three vibrating wire 

transducers, the bucket weights from each wire were averaged following the quality control process to derive a single 

time series. This has been shown to further reduce random noise (Duchon, 2008). Finally, the time series were zeroed 

at the start of the season and the cumulative time series was filtered using the O15, NAF, NAF-S, and NAF-SEG 

techniques. 310 

Unlike the first data sources, the raw (minimally-filtered) observations do not provide a control. To overcome this 

limitation, we used the NAF-S output as the reference standard for the other three methods. This adds a potential bias 

because of NAF-S-user subjectivity, but we believe the bias to be small. Previous tests have shown NAF-S to achieve 

favorable results (Smith et al., 2019).  

3.3  Analysis methods 315 

Formatted: Superscript
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For analysis, the 1-minute filtered data were aggregated into 30-minute accumulation intervals. Three statistical tests 

were chosen to analyze the performance of the post-processing techniques: total bias (for each seasonal time series), 

root mean square error (RMSE; or more appropriately, root mean square deviation RMSD for the tests with unfiltered 

data), and Pearson’s correlation coefficient (r). The total bias is a valuable metric that demonstrates the post-processing 

technique's overall ability to generate an accurate total. The RMSE (or RMSD) quantifies the variability of the filter 320 

outputs relative to the control or reference standard. Finally, Pearson’s correlation coefficient determines the strength 

of the linear relationships between the filter outputs and the control or reference. RMSE (or RMSD) and r are based 

on the interval precipitation amounts and include the intervals with zero precipitation. 

 

4  Results 325 

4.1  Filter evaluation using pre-processed (control) data  

The performance of the four filters was evaluated by adding synthetic noise and drift to a clean (control) cold-season 

and warm-season time series and then assessing each filter’s skill in recovering the control. The cold-season results 

are shown in Fig. 2, and an in-depth look at the first simulated cold-season evaporation event is shown in Fig. 3, for 

each of the three noise scenarios. The warm-season results (are not shown) here but are they look very similar to the 330 

cold-season results shown in Fig. 2 and Fig. 3. Tables 2 to 4 show the associated 30-minute total seasonal biases, 

correlation coefficients, and RMSE for all four filters, and the NAF-SEG evaporation estimates, broken down by 

season.. 

Based on their success in eliminating the added synthetic noise and drift and recovering the original control time 

series, NAF-S and NAF-SEG outperformed NAF and O15. O15 performed well at low noise but was sensitive to 335 

higher noise levels, with biases in total precipitation of +1% (+8%), +13% (+21%) and +33%  (+46%) for the cold-

season (warm-season) low, medium and high noise scenarios respectively. NAF was insensitive to noise but failed to 

recover the added evaporative losses (10% of the precipitation total) at all noise levels. NAF-S and NAF-SEG 

performed well at all three noise levels, recovering the control precipitation to within 32% of the total (regardless of 

season) and generating the highest correlation coefficients and lowest RMSE. NAF-SEG also produced an estimate 340 

of evaporation; its skill in detecting evaporative losses varied by both season and noise level. In the cold-season, NAF-

SEG overestimated the synthetic evaporation byhad , with a  16% overestimation of the synthetic total at high noise 

and underestimated the synthetic evaporation by a 19% underestimation at low noise. In the warm-season, NAF-SEG 

underestimated the synthetic evaporation by total from 10% at (high noise and ) to 26% at (low noise). Given the 

inherent difficulty of the deconvolving the evaporation and precipitation signals, task and the high degree of temporal 345 

detail in the added evaporation time series, and given that the fully automated NAF-SEG matched the skill of the 

manually supervised NAF-S, the ability of the NAF-SEG filter to detect and eliminate negative evaporative drift was 

encouraging. Indeed, the fully automated NAF-SEG was able to match the skill of the manually supervised NAF-S.    

4.2  Filter evaluation using unprocessed data  
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This intercomparison examines the relative performance of the O15, NAF and NAF-SEG filters on raw (minimally-350 

processed) weighing-gauge time series, using the NAF-S output as the reference standard. Individual results from the 

44 cold-season and 11 warm-season test time series are shown in Tables A1 and A2 respectively. Overall, the NAF-

SEG technique gave the lowest mean bias, highest mean correlation coefficient r, and lowest mean RMSD value 

(Table 5) in both seasons. In cold-season testing, tThe absolute bias from NAF-SEG was lower than the O15 bias in 

37 of 44 cases (84%), similar in 5 cases (11%) and higher in 2 cases (5%). In warm-season testing, NAF-SEG  showed 355 

a lower or similar absolute bias in 87 of the 11 cases (7364%). NAF-SEG also produced the lowest variability in r, 

RMSD and seasonal total (Fig. 4, showing cold-season only), suggesting the greatest consistency in processing 

performance across sites, configurations and years.  

The relative performance of NAF-SEG, NAF, and O15 varied across the 5544 test time series, related to the nature 

and magnitude of the added noise and negative drift due to evaporation from the bucket (Table A1 and A2). Figure 5 360 

shows four cold-season examples, comparing raw and processed time series. The y-axis is scaled to the precipitation 

total to provide perspective on the relative errors in the processing techniques. The inset graphs in Fig. 5, which zoom 

in on particular events, highlight the magnitude of noise and drift in the raw data and show how the filters respond. 

Figure 5a shows a time series for Caribou Creek (CCR), Canada, where the raw data exhibits very little noise or 

evaporation. For that reason, all processing techniques are within a few percent of the NAF-S reference, and it is 365 

difficult to see the differences during much of the time series. Fig. 5b, from Haukeliseter (HKL), Norway, exhibits 

higher noise, resulting in an O15 precipitation overestimate of +9% due to false precipitation detection. A moderate 

amount of evaporation is seen in the growing difference between NAF and NAF-S, with NAF-SEG nearly replicating 

NAF-S. Fig. 5c and 5d, from Bratt’s Lake (XBK), Canada, show cases with high evaporation (5c) and high noise (5d). 

In Fig. 5c, evaporation causes a low bias in NAF, which recovers only 87% of the NAF-S precipitation total; O15 370 

shows two compensating errors – an underestimation in precipitation due to evaporation and an increase in false 

precipitation detections due to noise, resulting in a recovery of 94% of total precipitation relative to NAF-S; and NAF-

SEG closely replicates NAF-S, with slight deviations in Nov. and Dec. Fig 5d shows the impact of high noise with 

little evaporation; O15 overestimates precipitation by 4%, whereas NAF-SEG is consistent with NAF-S throughout 

the time series.  375 

 

5  Discussion 

This study evaluated four filters for processing the outputs of accumulating automated (weighing) precipitation 

gauges, three that were fully automated (O15, NAF and NAF-SEG) and one that required manual supervision (NAF-

S). Overall, NAF-S and NAF-SEG outperformed O15 and NAF; both NAF-S and NAF-SEG showed similar skill in 380 

compensating for evaporative losses and eliminating false detections caused by random noise and diurnal 

oscillations. O15 performed well in low noise cases with minimal evaporation, but generated false precipitation 

detections when the data were noisy, and often underestimated evaporative losses. NAF performed well in cases 

with minimal evaporation regardless of the noise level but did not correct for evaporative losses. NAF-SEG 
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performed consistently well and provided a fully-automated alternative that matched the skill of the manual NAF-S 385 

method. Moreover, NAF-SEG added a direct estimate of evaporation, without the user intervention required by 

NAF-S or the 1-mm threshold required by O15. Similar evaporation estimates are not directly available from the 

other techniques.  

Although NAF-SEG did not perfectly recover the synthetic evaporation that was added to the control time series (the 

recovery rates were 81% to 116% depending on the noise level), it performed as well as the manually-supervised 390 

NAF-S technique. Both NAF-S and NAF-SEG failed to disentangle precipitation and evaporation when they 

occurred on the same day. The challenge to do so may be insurmountable. The imperfect recovery of synthetic 

evaporation, coupled with the sensitivity of the recovered evaporation to noise, highlights the need to implement 

measurement protocols that minimize evaporative losses. We recommend the use of NAF-SEG as a screening 

technique to identify gauges and locations that have significant evaporative losses, and then to implement adequate 395 

measures to minimize those losses, such as modifications to the oil and antifreeze mixture used to prevent freezing 

and evaporation.  

Overestimation of precipitation by the O15 method occurs when the noise exceeds the filter’s prescribed threshold 

of 0.2 mm. This value for the threshold has been set based on experience as a necessary and calculated balance 

between eliminating real precipitation events and detecting false events. When the noise level is low, as in the low 400 

noise scenario of the control data, the O15 technique works successfully. However, noise patterns vary substantially 

from site to site and among gauges, as illustrated by Nitu et al. (2018), and often exceed the filtering capabilities of 

O15. It should also be noted that the unprocessed data in our these tests were pre-filtered using with a Gaussian filter 

with a 4-min window, which was integrated into the SPICE quality control process, prior to testing the algorithms. 

This likely resulted in the O15 filter performing better than it would have in the operational setting, but this was not 405 

confirmed.   

The NAF technique is fundamentally effective at filtering noise and diurnal oscillations, but underestimates 

precipitation when evaporative losses occur, because the algorithm forces the precipitation total to match the final 

raw bucket weight in the time series, with evaporation assumed to be zero. The NAF-SEG technique, which 

implements NAF over 24-hour windows, maintains all the strengths of NAF with the added functionality of 410 

automating the detection and removal of bucket evaporation. Neither NAF-S ornor NAF-SEG remove evaporation 

perfectly, particularly when it occurs in consort with precipitation, but both represent a major step forward compared 

to other processing methods. We attribute the effectiveness of NAF-SEG to two characteristics properties of 

precipitation events, first that evaporation is relatively small during periods with precipitation, and second that both 

precipitation and evaporation are persistent over time scales of days. In the development of NAF-SEG, a 24-hour 415 

moving window was chosen to minimize the impact of temperature-related diurnal oscillations, but fortuitously the 

24-hour window also serves served to separate days with precipitation and little evaporation from days with 

evaporation and little or no precipitation. The re may also be a decrease in the performance of NAF-SEG may 

decline when signal noise is due to non-cyclical temperature fluctuations, such as those that occur during strong 
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synoptic events. Although this possibility was no’t explicitly assessed, it may be a situation is one that a users 420 

should be aware of.   

As mentioned in the introduction to NAF-SEG, a sensitivity analysis was performed for a range of P* values ranging 

from 0.0001 to 0.5 mm using the pre-processed high-noise time series for both warm and cold-seasons. Although the 

results are not discussed in greater detail, tThe analysis experiment showed negligible sensitivity as P* ranged from 

0.0001 through 0.05, and higher sensitivity as although the metrics changed substantially at P* further increased to 425 

the 0.5 mm, setting for both seasons. Given the relative insensitivity of NAF-SEG to P* < 0.5 mm, the use of 0.001 

mm seems to be an appropriate baseline value for both seasons; , but users may want to further experiment with the 

parameter as their own data requires.    

  

NAF-SEG provides an attractive alternative to NAF when negative evaporative drift is present in the raw data, but it 430 

is not designed to handle all contingencies. For instance, unexplained positive then negative excursions in bucket 

weight are sometimes observed. If the positive and negative excursions are separated by more than 24 hours (the 

size of the window), the NAF-SEG filter will errantly attribute the positive excursion to precipitation and the 

negative excursion to evaporation.   

The results of the testing on unprocessed time series from different sites, seasons, and gauge configurations showed 435 

that NAF-SEG generally outperformed O15 on both cold- and warm-season test cases. Of the 44 cold-season raw-

data test cases from different sites, seasons, and gauge configurations, O15 outperformed NAF-SEG in only two 

cases: the DFAR and unshielded Pluvio2 gauges at WFJ, 2016-2017. However, These these gauges may not have 

been serviced adequately; note the extreme evaporation rates as evidenced in the high biases between NAF and 

NAF-S in Table A1. This may diminishes their usefulness value of these time series for this evaluation; they were 440 

among the most challenging to process, with the greatest adding uncertainty in to the supervised NAF-S output 

which that served as the reference standard.  

Filter evaluation was more limited in the warm season because the raw site data were obtained from the SPICE 

project, which focused on the measurement of solid precipitation. Still, we were able to assemble 11 warm-season 

cases. The warm-season data were expected to differ from the cold-season data in two respects: higher evaporative 445 

losses and different noise characteristics. Each of the filters generated a higher RMSD in the warm season than the 

cold season; the greatest increase was found for O15, consistent with the pre-processed control experiments. In 

general, NAF-SEG outperformed both NAF and O15 in the warm season.  NAF-SEG outperformed O15 in all warm 

season cases for r and RMSD, and resulted in a lower or similar seasonal bias in 7 of the 11 cases. The NAF-SEG 

totals consistently underestimated warm-season precipitation but the biases waswere small, averaging 1.7% 450 

compared with 1.0% for the cold season. Although RMSD increased for each of the filters for the warm-season, the 

increase in O15 was the largest, and consistent with the pre-processed control experiments.Fewer warm-season test 

cases were examined, largely due to data availability, since the unprocessed data used in this analysis were obtained 

from the SPICE project that had a focus on cold-season precipitation intercomparisons. It was expected that warm-
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season bucket evaporation would be higher relative to the cold-season and that the warm-season noise could exhibit 455 

different characteristics and therefore have a negative impact on the performance of the filters. Of the 11 warm-

season test cases, O15 only outperformed NAF-SEG in three of those cases (all from XBK). The reason for these 

three cases cannot be easily explained. Although all of the NAF-SEG warm-season biases were negative (under-

estimating), and on average slightly higher than for the cold-season (1.7% and 1.0% for the warm- and cold-season 

respectively), the differences were not substantial. Although RMSD increased for each of the filters for the warm-460 

season, the increase in O15 was the largest, and consistent with the pre-processed control experiments. However, 

withGiven the smaller warm-season sample size, it iwas not possible to difficult to determine if the performance 

differences are significant. Filter performance for warm-season processing should be explored further. Regardless of 

the sample size, the performance metrics all show that NAF-SEG outperformed both NAF and O15 in the warm-

season as well as the cold-season.  465 

The The evaluation of filter analysis of the performance metrics of the filters based on the raw site unprocessed data 

is observation begs the question: how reliable are the NAF-S outputs as reference standards, given that they rely on 

the operator’s subjective judgment during the interactive elimination of negative drift and other spurious bucket 

weight changes? We acknowledge that operator bias is possible but are confident that its impact in this study is 

minimal. A single, skilled operator processed all of the data and made every attempt to apply the NAF-S method 470 

consistently. Adding further confidence to the NAF-S outputs are the tests with control data, which independently 

demonstrated the efficacy of the NAF-S to eliminate noise and evaporative drift.  

The precipitation time series used in his study were collected during October to April as part of an intercomparison 

of solid-precipitation measurement techniques. Although the data include liquid, mixed, and solid precipitation 

events at many of the sites, the precipitation is predominately snowfall. We recommend a complementary follow-up 475 

study on the processing of warm-season precipitation measurements from accumulating gauges. The issues faced 

may vary by season. Compared to other seasons, cold-season evaporation rates are low, as was confirmed for most 

cases in this study (Table A1). The identification and elimination of evaporative losses may be more challenging in 

the warm season when evaporation rates are higher. On the other hand, precipitation rates are generally lower for 

solid precipitation than rainfall, which reduces the signal to noise ratio, therefore adding difficulty to the processing 480 

of solid precipitation data.  

One suggestion to for improvinge the  the quality of data from accumulating precipitation gauges is NAF-SEG filter, 

or any of the tested filters for that matter, would be to addincorporate the use of present weather detectors or 

disdrometers, which detect the current weather conditions, into the site measurements, then incorporate their outputs  

configurations for use during into the quality control and filtering process. These augmented observations could be 485 

used to refine the noise filtering by automating the high temporal resolution (e.g. 1-min) detection of light 

precipitation events and assist in removing false precipitation reportdetections. These ancillary data measurements 

were used in this way during SPICE (Nitu et al., 2018) and they should be further explored for enhancing 

operational filtering.    
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 490 

6  Conclusions 

This study reports the development and implementation of a robust, fully-automated technique for post-processing 

data from automated accumulating (weighing) precipitation gauges. The NAF-SEG technique is designed to 

eliminate varying levels of random noise and diurnal oscillations, as well as correcting for negative drift from bucket 

evaporation. An intercomparison of four filtering techniques shows that the operational O15 filter, although simple 495 

and deployable in real-time, fails when noise levels exceed the filter’s threshold, and may undercompensate for 

bucket evaporation. NAF, although highly effective in eliminating noise, does not correct for evaporative losses. 

NAF-S, which adds manual supervision to NAF, is effective in removing noise, eliminating spurious data, and 

correcting for negative drift from evaporation. However, it is labour intensive and best suited to complete seasonal 

time series.  500 

Our results show that NAF-SEG is equally effective to NAF-S in eliminating noise and evaporative drift from 

automated weighing accumulating-gauge precipitation measurements. When tested against a control data set with 

added synthetic noise and evaporation, NAF-SEG was able to recover the original control to within ± 32% of the 

total, with a lower RMSE than the other techniques. When evaluated on 5544 raw time series from various sites, 

years and gauge configurations, NAF-SEG outperformed O15 and NAF and gave the highest mean correlation 505 

coefficient and lowest mean RMSD.  

One limitation of NAF-SEG is that it requires 24-hour data segments; consequently, it cannot be deployed for real-

time processing of automated weighing -gauge precipitation measurements. Until other alternatives are found, we 

recommend the use of a simple threshold filter like O15 for real-time applications, but with the archiving of the raw 

1-min time series for subsequent enhanced quality control, reprocessing using NAF-SEG, and the archiving of the 510 

NAF-SEG outputs. This, in combination with routine site servicing to minimize pre-empt evaporation and other 

sources of noise, can result in improved operational precipitation data.     
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Table 1: Diurnal and random noise parameters in the simulated precipitation time series 

Noise Level High Medium Low 

Diurnal coefficient (fTs) (mm) 2 1.5 1 

Random noise (std dev) (mm) 0.1 0.01 0.001 

 

Table 2: Total seasonal bias in mm and percent of total for NAF, NAF-S, O15, and NAF-SEG post-processing techniques 

at different simulated noise levels. 

Noise 

Level 

NAF 

(mm) 

NAF 

(%) 

NAF-S 

(mm) 

NAF-S 

(%) 

O15 

(mm) 

O15 

(%) 

NAF-SEG 

(mm) 

NAF-SEG 

(%) 

Low -26.1 -10.1% -6.4 -2.5% 1.5 +0.6% -2.8 -1.1% 

Med -26.2 -10.1% -3.4 -1.3% 33.5 +12.9% 1.0 +0.4% 

High -26.3 -10.2% -2.7 -1.0% 86.0 +33.2% 5.0 +1.9% 

Table 2: Total seasonal bias in mm and percent of total for NAF, NAF-S, O15, and NAF-SEG post-processing techniques 620 

at different simulated noise levels for the cold (C) and warm (W) seasons. 

Noise 

Level 

NAF 

(mm) 

NAF 

(%) 

NAF-S 

(mm) 

NAF-S 

(%) 

O15 

(mm) 

O15 

(%) 

NAF-SEG 

(mm) 

NAF-SEG 

(%) 

Low-C 

Low-W 

-26.1 

-27.7 

-10.1% 

-9.8% 

-6.4 

-3.3 

-2.5% 

-1.2% 

1.5 

22.8 

+0.6% 

+8.1% 

-2.8 

-8.2 

-1.1% 

-2.9% 

Med-C 

Med-W 

-26.2 

-27.6 

-10.1% 

-9.8% 

-3.4 

1.9 

-1.3% 

+0.7% 

33.5 

58.3 

+12.9% 

+20.7% 

1.0 

-7.4 

+0.4% 

-2.6% 

High-C 

High-W 

-26.3 

-27.7 

-10.2% 

-9.8% 

-2.7 

2.1 

-1.0% 

+0.78% 

86.0 

130.0 

+33.2% 

+46.12% 

5.0 

-9.2 

+1.9% 

-3.3% 

 

 

Table 3: Correlation coefficient (r) and RMSE for NAF-SEG, NAF-S, NAF, and O15 post-processing techniques at 

different simulated noise levels. 625 

Noise 

Level 

r 

NAF 

r 

NAF-S 

R 

O15 

r 

NAF-SEG 

RMSE 

NAF 

(mm) 

RMSE 

NAF-S 

(mm) 

RMSE 

O15 

(mm) 

RMSE 

NAF-SEG 

(mm) 

Low 0.97 0.99 0.94 0.99 0.029 0.020 0.044 0.019 

Med 0.97 0.98 0.92 0.98 0.032 0.025 0.053 0.024 

High 0.95 0.96 0.87 0.96 0.041 0.038 0.069 0.037 
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Table 3: Correlation coefficient (r) and RMSE for NAF-SEG, NAF-S, NAF, and O15 post-processing techniques at 

different simulated noise levels for the cold (C) and warm (W) seasons. 

Noise 

Level 

r 

NAF 

r 

NAF-S 

r 

O15 

r 

NAF-SEG 

RMSE 

NAF 

(mm) 

RMSE 

NAF-S 

(mm) 

RMSE 

O15 

(mm) 

RMSE 

NAF-SEG 

(mm) 

Low-C 

Low-W 

0.97 

0.98 

0.99 

1.00 

0.94 

0.98 

0.99 

1.00 

0.029 

0.045 

0.020 

0.020 

0.044 

0.054 

0.019 

0.021 

Med-C 

Med-W 

0.97 

0.98 

0.98 

0.99 

0.92 

0.97 

0.98 

0.99 

0.032 

0.049 

0.025 

0.027 

0.053 

0.061 

0.024 

0.027 

High-C 

High-W 

0.95 

0.97 

0.96 

0.99 

0.87 

0.95 

0.96 

0.997 

0.041 

0.057 

0.038 

0.041 

0.069 

0.084 

0.037 

0.041 

 

Table 4: NAF-SEG evaporation estimates for different simulated noise levels with actual evaporation constant at 25.9 mm 630 

in the control. 

Noise Level 

Recovered 

Evaporation 

(mm) 

% of Actual 

 

Low 21.0 81% 

Med 25.1 97% 

High 30.1 116% 

 

Table 4: NAF-SEG evaporation estimates for different simulated noise levels with actual evaporation constant at 25.9 mm 

in the cold-season (C) and 28.2 mm in the warm-season (W) control. 

Noise Level 

Recovered 

Evaporation 

(mm) 

% of Actual 

 

Low-C 

Low-W 

21.0 

20.8 

81% 

74% 

Med-C 

Med-W 

25.1 

22.7 

97% 

81% 

High-C 

High-W 

30.1 

25.5 

116% 

90% 

  635 
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Table 5: Mean correlation coefficients (r) and RMSD along with standard deviations (SD) for all observed real-world 

precipitation time series using NAF-S as the reference  (warm-season, May through September, in parenthesis). 

Post-Processing Technique Mean r SD r Mean RMSD 

(mm) 

SD RMSD 

(mm) 

NAF-SEG 0.99 0.006 0.017 0.006 

NAF 0.98 0.040 0.020 0.025 

O15 0.95 0.032 0.041 0.024 

Post-Processing Technique Mean r SD r Mean RMSD 

(mm) 

SD RMSD 

(mm) 

NAF-SEG 0.991 (0.999) 0.006 (0.001) 0.017 (0.020) 0.006 (0.008) 

NAF 0.983 (0.998) 0.040 (0.003) 0.020 (0.027) 0.025 (0.013) 

O15 0.952 (0.989) 0.032 (0.010) 0.041 (0.068) 0.024 (0.015) 
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Appendix A: Raw time series used in precipitation filter evaluation, with evaporation estimates and total 640 

precipitation bias.   

Table A1: Seasonal total precipitation (unfiltered, NAF-S and NAF-SEG filtered), filter biases (NAF, O15 and NAF-SEG) 

and derived bucket evaporation (NAF-SEG) from 44 WMO-SPICE precipitation time series. Biases (mm) are calculated 

using NAF-S as the reference filtering technique. Filtered time series that do not show an improvement with the NAF-

SEG method when compared to O15 are indicated by an asterisk (*). 645 

Site/Shield/Gauge/Year 

Unfiltered 

Total 

(mm) 

NAF-S 

Total 

(mm) 

NAF-SEG 

Total 

(mm) 

Bias NAF 

(mm) 

Bias O15 

(mm) 

Bias NAF-SEG 

(mm) 

Evaporation 

NAF-SEG 

Estimate 

(mm) 

CAR-R2P-2016-2017 441.6 468.8 455.2 -27.2 -15.0 -13.6 9.6 

CAR-R3AG-2016-2017 400.4 407.0 406.0 -6.6 -5.7 -1.0 4.7 

CAR-R3AP-2016-2017 365.1 394.0 380.2 -28.9 -17.7 -13.8 12.0 

CAR-R3UP-2016-2017 313.5 345.8 330.1 -32.3 -19.1 -15.7 11.6 

CCR-ABG-2013-2014 256.5 259.0 258.0 -2.5 -2.2 -1.0 2.1 

CCR-ABG-2014-2015 168.6 172.7 171.7 -4.1 -3.7 -0.9 3.5 

CCR-ABG-2015-2016 171.5 174.3 174.8 -2.8 -1.1 0.4 3.8 

CCR-ABP-2014-2015 166.1 174.8 172.7 -8.8 -5.4 -2.2 6.2 

CCR-ABP-2015-2016 171.1 177.1 177.0 -6.0 -2.1 -0.1 5.9 

CCR-R2G-2014-2015 105.7 106.3 108.1 -0.6 8.1 1.8 3.4 

CCR-R2G-2015-2016 186.5 189.3 188.3 -2.8 -2.0 -1.1 2.3 

CCR-R2G-2013-2014* 275.5 279.6 276.5 -4.0 0.4 -3.1 3.0 

CCR-R3AG-2013-2014 222.9 224.1 224.6 -1.2 -1.0 0.4 2.5 

CCR-R3AG-2014-2015* 85.8 86.8 88.1 -1.1 -0.4 1.3 2.6 

CCR-R3UG-2013-2014 183.4 185.2 184.4 -1.9 -1.3 -0.8 2.5 

CCR-R3UG-2014-2015* 72.3 73.9 75.6 -1.6 -0.7 1.7 3.0 

FMG-R2P-2015-2016 1036.7 1053.8 1042.1 -17.1 -13.0 -11.7 3.4 

FMG-R3AP-2015-2016* 828.1 849.1 832.6 -21.0 -15.6 -16.5 2.6 

HKL-R2G-2016-2017* 748.5 755.0 754.0 -6.5 -0.5 -1.0 5.1 

HKL-R3AG-2016-2017 423.9 437.5 438.0 -13.6 39.4 0.5 11.1 

HKL-R3AP-2016-2017 385.4 403.0 399.5 -17.6 -3.7 -3.5 10.3 

HKL-R3UG-2016-2017 320.5 328.3 329.2 -7.8 -2.2 0.9 7.8 

SOD-R2P-2016-2017 215.0 238.4 234.7 -23.4 -7.4 -3.7 15.7 

SOD-R3AP-2016-2017 187.7 212.9 207.8 -25.2 -8.9 -5.1 16.7 

SOD-R3UP-2016-2017 180.9 194.1 192.0 -13.2 -4.1 -2.2 9.4 

WFJ-R2P-2016-2017* 595.4 715.1 706.6 -119.7 -1.5 -8.5 102.4 
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WFJ-R3AP-2016-2017 375.4 605.7 598.0 -230.3 13.2 -7.7 208.6 

WFJ-R3UP-2016-2017* 246.6 434.6 423.6 -188.0 0.4 -11.0 167.0 

XBK-AP-2013-2014 83.8 91.9 90.7 -8.1 -4.2 -1.2 4.9 

XBK-AP-2014-2015 49.5 59.5 58.1 -10.0 -6.6 -1.4 7.1 

XBK-AP-2015-2016 61.1 74.9 71.8 -13.7 -9.4 -3.1 8.2 

XBK-DAG-2013-2014 131.4 136.0 134.2 -4.6 -3.9 -1.8 3.3 

XBK-DAG-2014-2015 104.3 111.0 108.5 -6.7 -3.4 -2.4 5.6 

XBK-DAG-2015-2016 90.2 97.1 95.5 -7.0 -5.5 -1.6 5.2 

XBK-R2G-2013-2014 167.2 170.2 170.4 -3.0 -2.8 0.2 2.3 

XBK-R2G-2015-2016 71.1 75.5 75.7 -4.4 -4.1 0.3 3.8 

XBK-R2P-2014-2015 110.3 119.2 114.9 -8.8 -7.6 -4.2 3.7 

XBK-R2P-2015-2016 80.4 92.6 91.2 -12.2 -5.6 -1.3 9.4 

XBK-R3AG-2013-2014 97.7 100.7 101.4 -3.0 -2.9 0.7 3.7 

XBK-R3AG-2014-2015 73.0 78.3 76.9 -5.3 -2.8 -1.4 4.7 

XBK-R3AG-2015-2016 72.7 78.2 77.8 -5.5 -5.0 -0.4 5.2 

XBK-R3UG-2013-2014 83.1 89.6 90.2 -6.5 3.8 0.6 7.3 

XBK-R3UG-2014-2015 56.4 63.8 62.3 -7.5 -3.0 -1.6 7.2 

XBK-R3UG-2015-2016 69.5 76.2 75.2 -6.7 -4.2 -1.0 5.7 

 

  



24 

 

Table A2: Warm-seasonal total precipitation (unfiltered, NAF-S and NAF-SEG filtered), filter biases (NAF, O15 and 

NAF-SEG) and derived bucket evaporation (NAF-SEG) from 611 WMO-SPICE precipitation time series. Biases (mm) 

are calculated using NAF-S as the reference filtering technique. Filtered time series that do not show an improvement 650 

with the NAF-SEG method when compared to O15 are indicated by an asterisk (*). 

Site/Shield/Gauge/Year 

Unfiltered 

Total 

(mm) 

NAF-S 

Total 

(mm) 

NAF-SEG 

Total 

(mm) 

Bias NAF 

(mm) 

Bias O15 

(mm) 

Bias NAF-SEG 

(mm) 

Evaporation 

NAF-SEG 

Estimate 

(mm) 

CCR-ABP-2015 344.8 353.5 350.9 -8.7 -4.4 -2.6 5.7 

CCR-R2G-2015 349.3 354.0 353.3 -4.7 -3.1 -0.7 3.4 

XBK-R2P-2015* 222.8 242.0 232.2 -19.21 -4.7 -9.8 5.7 

XBK-R2P-2016* 261.5 282.6 271.6 -21.1 -6.4 -11.0 7.6 

XBK-R3UG-2015* 253.5 260.3 258.3 -6.8 -0.9 -2.0 5.3 

XBK-R3UG-2016 287.6 293.7 290.4 -6.1 7.0 -3.3 4.9 

CAR-R3AG-2016 294.8 307.0 305.1 -12.2 -7.8 -1.9 9.0 

CAR-R3AG-2017 386.3 389.6 389.2 -3.3 -3.4 -0.4 3.1 

CAR-R3UP-2017 346.7 369.3 361.3 -22.6 -8.1 -8.0 10.1 

CAR-R2P-2017* 358.1 383.5 372.2 -25.4 -8.9 -11.3 10.6 

CAR-R3AP-2017* 345.1 368.8 361.2 -23.7 -4.1 -7.6 12.2 

 

Table A32: A description of the different shield/gauge configurations used in tables A1 and A2. 

Code Description 

R2 DFAR Reference (SPICE) 

R3 Alter or Unshielded Reference (SPICE) 

A Single Alter shield 

U Unshielded 

DA Double Alter shield 

B Bush shield 

P Pluvio gauge 

G Geonor gauge 
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P* = 0.001 mm

Is Δ24h ≥ P*?

Flag as precip

For each 24-hour 
data segment

Compute overall change 
in bucket weight Δ24h 

Is Δ24h ≤ -P*? Is -P* < Δ24h < P*? 

Flag as evap Flag as neither

Run NAF Set all values to zero

Is the entire time 
series flagged and 

filtered?

Move forward 
8-hours in time

and repeat

Are all 3 overlapping windows 
flagged as precip?
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                        Figure 1: NAF-SEG data flowchart 660 

P* = 0.001 mm 
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Figure 2: Time series of simulated cold-season precipitation gauge bucket weight with synthetic evaporation and 

varying levels of synthetic noise and diurnal oscillations (A - high noise; B - med noise; C - low noise). 

a) 

b) 

c) 
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Figure 3: Time series of simulated cold-season precipitation gauge bucket weight (zoomed into the first evaporation 

event) with synthetic evaporation and varying levels of synthetic noise and diurnal oscillations (A - high noise; B - 

med noise; C - low noise). 

 

  

b) 

c) 

a) 
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Figure 4: Box and whisker plots of (a) Pearson r, (b) RMSD and (c) bias in seasonal cold-season total precipitation 

relative to the reference for each of the evaluated filtering techniques (NAF-SEG, NAF, and O15) as compared to the 

reference technique (NAF-S) for the 44 unprocessed time series. 

a) b) 

c) 
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Figure 5: Time series of observed cold-season precipitation gauge bucket weight processing (NAF, NAF-S, O15, 

and NAF-SEG) along with the NAF-SEG evaporation estimate for a) Caribou Creek R2G 2013-2014, b) 

Haukeliseter R3AG 2016-2017, c) Bratt’s Lake R2P 2015-2016, and d) Bratt’s Lake R3UG 2013-2014. Insets 710 

show a zoomed example with consistent vertical scaling to illustrate the issues and filter performance relative to 

each time series. 
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d) 


