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Abstract. The unconditioned data retrieved from accumulating automated weighing precipitation gauges is inherently 15 

noisy due to the sensitivity of the instruments to mechanical and electrical interference. This noise, combined with 

diurnal oscillations and signal drift from evaporation of the bucket contents, can make accurate precipitation estimates 

challenging. Relative to rainfall, errors in the measurement of solid precipitation are exacerbated because the lower 

accumulation rates are more impacted by measurement noise. Precipitation gauge measurement post-processing 

techniques are used by Environment and Climate Change Canada in research and operational monitoring to filter 20 

cumulative precipitation time series derived from high-frequency, bucket-weight measurements. Four techniques are 

described and tested here: 1) the operational 15-minute filter (O15), 2) the Neutral Aggregating Filter (NAF), 3) the 

Supervised Neutral Aggregating Filter (NAF-S), and 4) the Segmented Neutral Aggregating Filter (NAF-SEG). 

Inherent biases and errors in the first two post-processing techniques have revealed the need for a robust automated 

method to derive an accurate noise-free precipitation time series from the raw bucket-weight measurements. The 25 

method must be capable of removing random noise, diurnal oscillations, and evaporative (negative) drift from the raw 

data. This evaluation primarily focuses on cold-season (October to April) accumulating automated weighing 

precipitation gauge data at 1-min resolution from two sources: a control (pre-processed time series) with added 

synthetic noise and drift; and raw (minimally-processed) data from several WMO Solid Precipitation Inter-

Comparison Experiment (SPICE) sites. Evaluation against the control with synthetic noise shows the effectiveness of 30 

the NAF-SEG technique, recovering 99%, 100%, and 102% of the control total precipitation for low, medium, and 

high noise scenarios respectively for the cold-season (Oct-Apr) and 97% of the control total precipitation for all noise 

scenarios in the warm-season (May-Sep). Among the filters, the fully-automated NAF-SEG produced the highest 

correlation coefficients and lowest RMSE for all synthetic noise levels, with comparable performance to the 

supervised and manually-intensive NAF-S method. Compared to the operational O15 method in cold-season testing, 35 

NAF-SEG shows a lower bias in 37 of 44 real-world test cases, a similar bias in 5 cases, and a higher bias in 2 cases. 

In warm-season testing, the NAF-SEG bias was lower or similar in 7 of 11 cases. The results indicate that the NAF-

SEG post-processing technique provides substantial improvement over current automated techniques, reducing both 

uncertainty and bias in accumulating-gauge measurements of precipitation, with a 24-hour latency. Because it cannot 

be implemented in real time, we recommend that NAF-SEG be used in consort with a simple real-time filter, such as 40 

the operational O15 or similar filter.  
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1  Introduction   

Accurate precipitation measurements are crucial for a variety of applications, including water resource forecasting, 45 

future water availability, and hydrological and climate analysis and modelling (Barnett et al., 2005; Bartlett et al., 

2006; Wolff et al., 2015). Canada’s Changing Climate Report led by Environment and Climate Change Canada (2019) 

highlights the importance of accurate precipitation measurements as fundamental climate quantities that play an 

important role in human and natural systems. Although the systematic bias due to the impact of wind on solid 

precipitation measurements is well documented (Goodison, 1978; Sevruk et al., 1991; Goodison et al., 1998;Yang et 50 

al 2005; Sevruk et al., 2009; Smith, 2009; Wolff et al., 2015; Kochendorfer et al., 2017a), errors related to the 

automatic recording of precipitation measurements have only relatively recently been identified as automated 

weighing gauges come into common use (Sevruk, 2005). The cumulative precipitation data output from automated 

weighing gauges is subject to noise, diurnal temperature oscillations, and negative drift from evaporation which can 

often mean that the precipitation signal over short sampling periods is influenced or hard to detect (Rasmussen et al., 55 

2012). The nature of the noise and drift often varies substantially from site to site and between gauge configurations. 

High frequency noise can exceed ± 1 mm and evaporation from the bucket can be in excess of several mm between 

precipitation events. It is therefore necessary to filter the raw data to separate real precipitation events from signal 

noise and identify and remove periods with evaporation (keeping in mind that evaporation reduces the precipitation 

amount derived from the differential in bucket weight). Improper filtering can lead to the accumulation of errors and 60 

result in significant inaccuracies in total seasonal precipitation. Duchon (2008) suggests that errors due to the diurnal 

oscillation in Geonor T-200B gauges could be 1-10% of the precipitation total. Three post-processing challenges in 

the derivation of ‘clean’ precipitation time series are the focus of this study: mechanical and electrical interference, 

diurnal oscillations, and evaporation of the bucket contents.  

This study incorporates two commonly-used accumulating automated weighing precipitation gauges (henceforth 65 

referred to as automated weighing gauges): the Geonor T-200B and OTT Pluvio2. The Geonor T-200B implements 

up to three vibrating wire transducers, which provide a frequency output that varies as a function of the fluid weight 

in the gauge bucket. The cumulative precipitation amount (bucket weight) is calculated from the frequency of each 

wire via calibration coefficients, with no onboard filtering (Geonor, 2019). The OTT Pluvio2 automated weighing 

gauge uses a high-precision load cell to weigh the bucket contents and provides several outputs including intensity 70 

and precipitation accumulation (Nemeth, 2008; Nitu et al., 2018). The OTT Pluvio2 output has been pre-processed 

using an onboard proprietary algorithm which adjusts the high frequency load cell measurements for temperature and 

vibration to derive a more accurate bucket weight. Further onboard processing removes the impact of unrealistic 

bucket weight changes and evaporation from the output, however, this onboard algorithm was bypassed in this analysis 

to obtain the data in its rawest form. 75 

A number of post-processing techniques have been developed to derive a noise-free precipitation time series from 

high-frequency automated weighing gauge bucket weight measurements. Some examples are described here. 
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The Rolling Maximum filter was used by Harder and Pomeroy (2013) to remove the “jitter” from the accumulated 

precipitation datasets by retaining a cumulative precipitation observation if it is greater than the previous maximum 

cumulative precipitation. The previous maximum is assumed to be the cumulative precipitation in all other cases. This 80 

filter reportedly works well in preserving the cumulative change in precipitation but it may not always catch the precise 

start of precipitation events and will not always perform optimally in the presence of negative gauge drift (i.e. 

evaporation).  

The World Meteorological Organization (WMO) Solid Precipitation Inter-Comparison Experiment (SPICE, 2013-

2015) developed a uniform post-processing method for defining and quantifying precipitation events (Nitu et al., 85 

2018). The process includes calculating a 30-minute bucket weight differential using thresholds and filters, effectively 

producing what was termed the Site Event Datasets (SEDS). For an event to be identified, the net precipitation duration 

needed to be sufficiently long (as measured by a precipitation-detector or disdrometer) and the total accumulation (as 

measured by the reference automated weighing gauge) needed to be equal to or greater than a defined threshold (set 

at 0.25 mm when a reliable precipitation-detector was available). This process was effective at creating a high 90 

confidence data set for developing and testing transfer functions (Kochendorfer et al., 2017b) but because of the 

rigorous filtering of shorter and smaller events, was not an effective means of filtering a time series.  

The U.S. Climate Reference Network (USCRN) uses the redundancy of the Geonor T-200B three vibrating-wire load 

sensors in the determination of precipitation events (Leeper et al., 2015). Initially, a pairwise calculation was used 

which relies on pairwise agreement of bucket weight changes using the wire redundancy as a check on the 95 

measurement. This was determined to be sensitive to gauge evaporation and noise, leading to the development of a 

weighted average calculation using the change in bucket weight between successive sub-hourly periods for each 

transducer output. A weighted mean is then used to average the bucket weights, with greater weight given to less noisy 

measurements. 

The Meteorological Service of Canada currently implements a real-time threshold filter in their data loggers to 100 

automatically determine the occurrence of precipitation events. The filter is based on the 15-min differential in the 

Geonor T-200B bucket weight (Mekis et al., 2018). Although this filter is unnamed, we call it the Operational 15 

Minute (O15) automated processing technique. This technique is included in this analysis and is described below in 

more detail. The filter tends to fail when the noise threshold is exceeded, resulting in false precipitation reports, and 

when evaporation exceeds the acceptable limits.  105 

Limitations in the O15 technique led to the development of the Neutral Aggregating Filter (NAF), previously known 

as ‘Brute Force’ (Pan et al., 2016). The NAF, described in greater detail by Smith et al. (2019), iteratively adds all 

negative and small positive changes to proximate positive changes until all changes exceed a user-specified threshold. 

Because the technique preserves the total change in bucket weight over the time series, it cannot account for the 

negative drift that results from evaporation. To overcome this deficiency, the Supervised Neutral Aggregating Filter 110 

(NAF-S) was created to allow user intervention and minimize evaporation errors through interactive manual 

adjustment. Both NAF and NAF-S are explained in greater detail in the next section. 
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To overcome the limitations of the O15, NAF, and NAF-S techniques, we evaluated a moving-window modification 

of the NAF, implementing the NAF on 24-hour overlapping windows, which we will call the Segmented Neutral 

Aggregating Filter (NAF-SEG). The objective was to obtain a robust post-processing technique that is completely 115 

automated, easily implemented, and successfully eliminates varying levels of noise, diurnal oscillations and 

evaporation without significantly impacting the timing and amount of precipitation. This study introduces the NAF-

SEG technique and examines its performance compared to the O15, NAF, and NAF-S methods. 

  

2 Processing Techniques Under Test 120 

2.1  MSC Operational O15 Minute 

The O15 filtering technique is used operationally by the Meteorological Service of Canada (MSC) for Geonor T-200B 

measurements at the Reference Climate Stations (RCS). The O15 filter is implemented in real time at the measurement 

site data logger. The algorithm is intended to filter out noise and eliminate evaporation while minimizing the reports 

of false precipitation. For each 15-min period, a mean bucket weight is computed over the last 5 min (minutes 11 to 125 

15) of the period. The mean bucket weight from the initial period is used to establish the baseline. For each successive 

15-min period, the difference between the current mean bucket weight and the baseline is calculated. If the bucket 

weight difference is greater than or equal to 0.2 mm, the difference is attributed to precipitation and added to the 

cumulative precipitation total, and the baseline is reset upwards to the current mean. If the difference is less than or 

equal to -1.0 mm, the difference is attributed to evaporation and the baseline is adjusted downward to match the current 130 

mean. This process is performed separately on each of the three installed transducers in the RCS gauge although 

ultimately only one is used to determine reported precipitation. 

The O15 technique is used operationally in real-time, and so must be simpler than other post-processing techniques. 

As a result, it has the potential to be problematic, including a sensitivity to the positive and negative thresholds used 

to identify precipitation and evaporation events. The 0.2 mm positive accumulating (noise) threshold can cause an 135 

overestimation of precipitation if the data are inherently noisy or have a high diurnal oscillation. Additionally, if the 

negative drift from evaporation lies just above the -1.0 mm threshold, the baseline will not be adjusted before the next 

precipitation event, resulting in an underestimation of the next event by up to 1.2 mm (evaporation threshold plus the 

noise threshold).  

2.2  Neutral Aggregating Filter  140 

The NAF method, developed by Environment and Climate Change Canada’s Climate Research Division, is an 

automated method that removes noise from cumulative precipitation time series (Pan et al., 2016; Smith et al., 2019). 

The processing is done iteratively, beginning with the minimum non-zero interval precipitation value. All non-zero 

changes in interval precipitation, with values below a user-defined threshold are transferred to neighboring periods 
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with positive or larger changes. The results from the algorithm are “neutral” as the filter balances the positive and 145 

negative noise until all changes below the user-defined threshold are eliminated.  

The technique removes random noise and accounts for diurnal oscillations in the bucket-weight signal but, because 

the total precipitation is forced to equal the total bucket weight increase at the end of the time series, it cannot account 

for negative drift. This means that it will not perform well if the time series has significant periods with evaporative 

losses from the automated weighing precipitation gauge bucket. The significance of the error could exceed 10% 150 

depending on the effectiveness of the servicing measures to reduce evaporation from the bucket contents. NAF serves 

as the framework for both the NAF-S and NAF-SEG techniques described below.  

In this study, the NAF, NAF-S (2.3) and NAF-SEG (2.4) methods all use a minimum threshold P* of 0.001 mm. P* 

was somewhat arbitrarily set at 0.001 mm based on the minimum resolution of the gauge data. Testing (not shown 

here) suggests that the method is not overly sensitive to P* and that a 5-fold increase in the magnitude of P* had 155 

minimal impact on the performance in either the cold- or the warm-season.  

2.3  Supervised Neutral Aggregating Filter 

The NAF-S method is used to manually adjust the cumulative time series for evaporation and other spurious data, 

effectively reducing the NAF estimation error. The NAF-S method uses the NAF output as a first guess, and then 

allows for manual, interactive adjustment of the baseline to account for evaporation events and other data artifacts 160 

impacting the time series. The NAF-S creates an interactive plot, showing both raw (quality controlled) and NAF 

output data, which highlights periods with drift caused by evaporation. The user is then given the capability to identify 

and manually exclude each period with evaporation, using the cumulative precipitation value before each evaporation 

event as a new baseline. NAF-S successfully minimizes the impact of evaporation but requires user intervention (i.e. 

it cannot be automated) along with user subjectivity to identify the endpoints of evaporative and other spurious events 165 

(Smith et al., 2019). 

2.4  Segmented Neutral Aggregating Filter 

The NAF-SEG is a fully automated technique that implements the NAF to process multi-day precipitation time series 

in successive 24-hour segments using overlapping moving windows. The use of 24-hour windows automates the 

identification and removal of evaporation, minimizing the negative biases in total precipitation from evaporation 170 

without the need for user intervention. Additionally, the NAF-SEG method provides an estimate of evaporative losses 

on precipitation-free days for evaluating servicing procedures. The NAF-SEG technique uses three overlapping 

moving windows per day, advanced in increments of 8 hours. The algorithm begins by filtering the first 24-hour 

segment using NAF. It then advances 8 hours and filters the next 24-hour segment. This filtering process is repeated 

until the end of the data is reached. Each 8-hour data segment thus passes through the NAF three times. The processing 175 

steps are listed below and outlined in Fig. 1. 
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The measurement interval used in this analysis to evaluate NAF, NAF-S, and NAF-SEG is 1-min. This interval is used 

here because it was chosen as the preferred interval for archiving of the SPICE data. NAF has been shown to work on 

data of larger intervals (i.e. 30 min in Pan et al.,2016) and there is no reason why NAF-SEG could not be used with 

larger intervals as well, provided that the intervals are considerably shorter than the 24-hour window (i.e. 30 minutes 180 

or less).   

We will denote the precipitation amount from one measurement interval (i) as P(i); cumulative precipitation as 

cumP(i); evaporation from one measurement interval as E(i) ; and cumulative evaporation as cumE(i). All units are in 

mm. 

1. The time series is processed in successive 24-hour segments.  185 

2. For each 24-hour segment, the change in bucket weight, which we will call Δ24h, is computed as the difference 

between the final and initial observations.  

3. Based on the value of Δ24h, the 24-hour segment is assigned one of three states: 1) precipitating, 2) evaporating, 

or 3) neither. It is then processed accordingly:  

a. If Δ24h ≥ P*, the 24-hour segment is flagged and treated as a precipitation period with no evaporation. The 24-190 

hour segment is passed through the NAF, resulting in values of P(i) that are either zero or greater than or equal 

to P*.  

b. If Δ24h ≤ -P*, the 24-hour segment is flagged and treated as an evaporation period with no precipitation. The 

24-hour segment is passed through the NAF but with the sign of the data reversed, resulting in values of E(i) 

that are either zero or less than or equal to -P*.  195 

c. If -P* < Δ24h < P*, the 24-hour segment is flagged as free of both precipitation and evaporation, and all values 

of P(i) and E(i) are set to zero.  

4. The NAF P(i) and E(i) outputs from step (3), as well as the flags that indicate the presence of precipitation or 

evaporation, are added to arrays with three columns corresponding to the three overlapping windows per day (i.e. 

as P(i,j), E(i,j) and flag(i,j) where j denotes columns (windows) 1 to 3).  200 

5. Steps (2) to (4) are repeated using moving windows on successive 24-hour segments, beginning 8 hours apart, 

until the entire time series has been processed.  

6. The P(i,j) and E(i,j) arrays from steps (3) to (5), with three overlapping windows, are processed to create a single 

time series for P(i) and E(i), based on the flag.  

a. For intervals when the flag from all three overlapping windows indicates the presence of precipitation, E(i) is 205 

set to zero and the three P(i,j) values are averaged to produce P(i), otherwise P(i) is set to zero.  

b. For intervals when the flag from all three overlapping windows indicates the presence of evaporation, P(i) is 

set to zero and the three E(i,j) values are averaged across columns to produce E(i), otherwise E(i) is set to 

zero.  

c. For intervals which are not precipitating (6a) or evaporating (6b), i.e. when the flag from all three overlapping 210 

windows indicates the absence of both precipitation and evaporation, or when the three flags do not agree with 

each other, P(i) and E(i) are set to zero. 
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7. The P(i) and E(i) outputs from step (6) are summed to create the cumP and cumE time series. Lastly, cumP is 

passed through the NAF to ensure that all P(i) values are either zero or greater than or equal to P*; cumE is passed 

through the NAF but with the sign of the data reversed to ensure that all E(i) values are either zero or less than or 215 

equal to -P*. The evaporation estimate is taken as the absolute value of the cumulative total of cumE.  

Two additional steps not shown in Fig. 1 are required. First, additional 24-hour segments need to be added to the start 

and end of the time series to ensure that all core intervals are covered by three overlapping windows. Since these time 

series begin at 0 mm at the start of the season, the 24-hour segment added to the start of each time series is set to all 

zero values. The 24-hour segment added to the end of the time series is set to the maximum of the cumulative time 220 

series. This step is only necessary if the user requires processed data from the first and last 24-hour period in the time 

series and does not impact the precipitation amounts.  

A second step is required to ensure that the precipitation during data gaps is not omitted from the accumulated total. 

Note that when gaps occur in an automated weighing gauge time series, the total accumulation across the gap is 

preserved but the event timing is lost. In the NAF-SEG implementation, precipitation occurring over data gaps is 225 

preserved if all three windows capture the jump in the bucket weight over the gap. But this will not always be the case. 

We resolved the problem as follows. First, we identified data gaps that overlapped the start or end of each 24-hour 

segment, computed the difference in bucket weight across the gap, and flagged windows when the difference was 

greater than or equal to P*. For those segments only, we added a processing step between steps (5) and (6), as follows. 

If any of the three overlapping windows captured the jump in the bucket weight across the gap, the window(s) in P(i,j) 230 

that did not capture the jump were excluded from the averaging, and all three windows were flagged to indicate the 

presence of precipitation. If none of the windows captured the jump in bucket weight across the gap, the difference 

across the gap was assigned to the final interval of the gap in P(i,j) for all three windows, with all windows flagged to 

indicate the presence of precipitation. 

 235 

3  Filter Evaluation  

Two data sources, both with 1-min resolution, were used to evaluate the O15, NAF, NAF-S and NAF-SEG 

precipitation filters: a control (pre-processed) precipitation time series which is free of noise and drift; and raw 

(minimally filtered) automated weighing gauge data collected at a number of international sites, which contain 

varying levels of noise, diurnal oscillations, and evaporative drift. The control, pre-processed time series were used 240 

to evaluate all four filters -- by adding synthetic noise, diurnal oscillations, and evaporative drift, then evaluating the 

ability of the filters to recover the original time series. The raw time series, following quality control procedures, 

were passed through each of the filters, and the supervised NAF-S output was used as the standard against which to 

evaluate the others.  

Both data sources, raw data with real-world noise, and control data with synthetic noise added, have advantages and 245 

disadvantages in assessing filter performance (Peters et al., 2014). Clean data with added noise provide a known 

‘true’ control but add the risk that the added noise and drift may not adequately capture the characteristics of real-
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world measurements. Raw measurements preserve observed noise patterns and capture the variability in noise 

behavior across sites and instruments, but do not provide a control time series for filter evaluation. By using both 

complementary data sources, we exploit their respective strengths and thus better assess the relative effectiveness of 250 

each filter. 

3.1 Testing with pre-processed (control) precipitation data  

The pre-processed 1-minute cumulative time series was originally derived from an Alter-shielded Geonor T-200B 

precipitation gauge at Caribou Creek, Canada from October-2013 through September-2014. It was broken into two 

seasons to better assess filter performance differences between the cold-season (Oct-Apr) and the warm-season 255 

(May-Sep). The raw gauge outputs were filtered using NAF-S, resulting in a cold-season precipitation total of 259 

mm and a warm-season precipitation total of 282 mm. Historically, this particular gauge has performed well with 

minimal noise (< ± 0.25 mm) and evaporation issues; the time series was very clean even prior to filtering, and 

therefore the filtered output provides a suitable control.  

To evaluate the four filters, we added synthetic noise and drift to the filtered (noise-free) control, then tested each 260 

filters ability to recover the original signal. The perturbations included synthetic evaporation, diurnal oscillations, and 

random noise, computed as follows:  

1. Negative evaporative drift was added that totaled 25.9 mm and 28.2 mm in the cold and warm-seasons 

respectively, or 10% of the precipitation totals. The synthetic evaporation was partitioned among the 1-min 

intervals assuming that interval evaporation was proportional to the vapor pressure deficit (VPD). The fraction of 265 

evaporation for each interval was calculated by dividing the interval VPD by the VPD sum over the entire time 

series. Those fractions were then multiplied by the total (25.9 mm or 28.2 mm), and the resulting cumulative sum 

was subtracted from the control cumulative precipitation.   

2. Temperature-dependent diurnal oscillations δT(i) were computed from observed air temperature at gauge height 

and added to the cumulative precipitation control. The diurnal oscillations were calculated as:  270 

 

δT(i) = fTs * (T(i) - mean(T)) / (0.5*range(T)                                                                       (1) 

 

where fTs is a coefficient that varies for the different noise scenarios (Table 1). The temperature-oscillation time 

series δT was then subtracted from the cumulative time series from Step 1. 275 

3. Normally-distributed random noise was generated for each 1-min interval, with a mean of zero and a specified 

standard deviation (Table 1). Because the synthetic noise time series is generated randomly, it does not necessarily 

sum to zero. To avoid adding bias, we forced the sum to zero by subtracting the mean. The result was then added 

to the cumulative time series from Step 2.  

The artificially-noisy time series from Step 3 were adjusted to a value of zero at the start, and then filtered using the 280 

O15, NAF, NAF-S, and NAF-SEG techniques. The nature and magnitude of the various noise levels can be visualized 

in Fig. 3. 
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3.2  Testing with raw precipitation data  

Automated weighing gauge data were collected between 2013 and 2017 at seven WMO-SPICE (Nitu et al., 2018) 

sites including Bratt’s Lake (XBK; Canada), Caribou Creek (CCR; Canada), Centre for Atmospheric Research and 285 

Experiments (CAR; Canada), Formigal (FMG; Spain), Haukeliseter (HKL; Norway), Sodankylä (SOD; Finland), and 

Weissfluhjoch (WFJ; Switzerland). These sites provided high-quality precipitation observations (with a focus on cold-

season measurements) from several automated weighing gauge (Geonor T-200B and OTT Pluvio2) configurations at 

a temporal resolution of 1-minute. In addition, the sites utilized a number of wind-shield configurations including the 

WMO Double Fence Automated Reference (DFAR), and the single Alter-shield, as well as unshielded configurations. 290 

The combination of different climate regimes, gauge types, and wind-shield configurations, provides the opportunity 

to test processing algorithms on contrasting noise patterns. Although the SPICE intercomparison period (2013-2015) 

officially ended in 2015, many of these high-quality precipitation observations were continued beyond 2015 and made 

available by the site hosts for this evaluation. 

In total, 44 cold-season time series (from October through April over years 2013 to 2017) and 11 warm-season time 295 

series (May through September over years 2015 to 2017) were used in testing. The raw 1-minute data (raw frequency 

output converted to bucket weight from the Geonor T-200B and real-time bucket weight output from the OTT Pluvio2) 

were first run through an automated quality control process to remove out-of-range outliers and data jumps, which 

included the removal of data jumps/drops related to gauge servicing (bucket emptying and/or charging) consistent 

with the quality control process used for the WMO-SPICE analysis (Nitu et al., 2018). Anything missed or flagged by 300 

the automated quality control process was examined and, as necessary, cleaned manually. The 1-minute precipitation 

bucket-weight data were then smoothed using a Gaussian filter with a 4-minute running window. This filter smoothed 

large spikes in the time series that may have resulted from mechanical or electrical noise. Since all of the Geonor T-

200B gauges used in this analysis were equipped with three vibrating wire transducers, the bucket weights from each 

wire were averaged following the quality control process to derive a single time series. This has been shown to further 305 

reduce random noise (Duchon, 2008). Finally, the time series were zeroed at the start of the season and the cumulative 

time series was filtered using the O15, NAF, NAF-S, and NAF-SEG techniques. 

Unlike the first data sources, the raw (minimally-filtered) observations do not provide a control. To overcome this 

limitation, we used the NAF-S output as the reference standard for the other three methods. This adds a potential bias 

because of NAF-S-user subjectivity, but we believe the bias to be small. Previous tests have shown NAF-S to achieve 310 

favorable results (Smith et al., 2019).  

3.3  Analysis methods 

For analysis, the 1-minute filtered data were aggregated into 30-minute accumulation intervals. Three statistical tests 

were chosen to analyze the performance of the post-processing techniques: total bias (for each seasonal time series), 

root mean square error (RMSE; or more appropriately, root mean square deviation RMSD for the tests with unfiltered 315 

data), and Pearson’s correlation coefficient (r). The total bias is a valuable metric that demonstrates the post-processing 

technique's overall ability to generate an accurate total. The RMSE (or RMSD) quantifies the variability of the filter 
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outputs relative to the control or reference standard. Finally, Pearson’s correlation coefficient determines the strength 

of the linear relationships between the filter outputs and the control or reference. RMSE (or RMSD) and r are based 

on the interval precipitation amounts and include the intervals with zero precipitation. 320 

 

4  Results 

4.1  Filter evaluation using pre-processed (control) data  

The performance of the four filters was evaluated by adding synthetic noise and drift to clean (control) cold-season 

and warm-season time series and then assessing each filter’s skill in recovering the control. The cold-season results 325 

are shown in Fig. 2, and an in-depth look at the first simulated cold-season evaporation event is shown in Fig. 3, for 

each of the three noise scenarios. The warm-season results (not shown) are very similar to the cold-season results in 

Fig. 2 and Fig. 3. Tables 2 to 4 show the associated 30-minute total seasonal biases, correlation coefficients, and 

RMSE for all four filters, and the NAF-SEG evaporation estimates, broken down by season. 

Based on their success in eliminating the added synthetic noise and drift and recovering the original control time 330 

series, NAF-S and NAF-SEG outperformed NAF and O15. O15 performed well at low noise but was sensitive to 

higher noise levels, with biases in total precipitation of +1% (+8%), +13% (+21%) and +33% (+46%) for the cold-

season (warm-season) low, medium and high noise scenarios respectively. NAF was insensitive to noise but failed to 

recover the added evaporative losses (10% of the precipitation total) at all noise levels. NAF-S and NAF-SEG 

performed well at all three noise levels, recovering the control precipitation to within 3% of the total (regardless of 335 

season) and generating the highest correlation coefficients and lowest RMSE. NAF-SEG also produced an estimate 

of evaporation; its skill in detecting evaporative losses varied by both season and noise level. In the cold-season, NAF-

SEG overestimated the synthetic evaporation by 16% at high noise and underestimated the synthetic evaporation by 

19% at low noise. In the warm-season, NAF-SEG underestimated the synthetic evaporation by 10% at high noise and 

26% at low noise. Given the inherent difficulty of deconvolving the evaporation and precipitation signals, and the 340 

high degree of temporal detail in the added evaporation time series, the ability of the NAF-SEG filter to detect and 

eliminate evaporative drift was encouraging. Indeed, the fully automated NAF-SEG was able to match the skill of the 

manually supervised NAF-S.   

4.2  Filter evaluation using unprocessed data  

This intercomparison examines the relative performance of the O15, NAF and NAF-SEG filters on raw (minimally-345 

processed) weighing-gauge time series, using the NAF-S output as the reference standard. Individual results from the 

44 cold-season and 11 warm-season test time series are shown in Tables A1 and A2 respectively. Overall, the NAF-

SEG technique gave the lowest mean bias, highest mean correlation coefficient r, and lowest mean RMSD value 

(Table 5) in both seasons. In cold-season testing, the absolute bias from NAF-SEG was lower than the O15 bias in 37 

of 44 cases (84%), similar in 5 cases (11%) and higher in 2 cases (5%). In warm-season testing, NAF-SEG showed a 350 
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lower or similar absolute bias in 7 of the 11 cases (64%). NAF-SEG also produced the lowest variability in r, RMSD 

and seasonal total (Fig. 4, showing cold-season only), suggesting the greatest consistency in processing performance 

across sites, configurations and years.  

The relative performance of NAF-SEG, NAF, and O15 varied across the 55 test time series, related to the nature and 

magnitude of the noise and negative drift due to evaporation from the bucket (Table A1 and A2). Figure 5 shows four 355 

cold-season examples, comparing raw and processed time series. The y-axis is scaled to the precipitation total to 

provide perspective on the relative errors in the processing techniques. The inset graphs in Fig. 5, which zoom in on 

particular events, highlight the magnitude of noise and drift in the raw data and show how the filters respond. 

Figure 5a shows a time series for Caribou Creek (CCR), Canada, where the raw data exhibit very little noise or 

evaporation. For that reason, all processing techniques are within a few percent of the NAF-S reference, and it is 360 

difficult to see the differences during much of the time series. Fig. 5b, from Haukeliseter (HKL), Norway, exhibits 

higher noise, resulting in an O15 precipitation overestimate of +9% due to false precipitation detection. A moderate 

amount of evaporation is seen in the growing difference between NAF and NAF-S, with NAF-SEG nearly replicating 

NAF-S. Fig. 5c and 5d, from Bratt’s Lake (XBK), Canada, show cases with high evaporation (5c) and high noise (5d). 

In Fig. 5c, evaporation causes a low bias in NAF, which recovers only 87% of the NAF-S precipitation total; O15 365 

shows two compensating errors – an underestimation in precipitation due to evaporation and an increase in false 

precipitation detections due to noise, resulting in a recovery of 94% of total precipitation relative to NAF-S; and NAF-

SEG closely replicates NAF-S, with slight deviations in Nov. and Dec. Fig 5d shows the impact of high noise with 

little evaporation; O15 overestimates precipitation by 4%, whereas NAF-SEG is consistent with NAF-S throughout 

the time series.  370 

 

5  Discussion 

This study evaluated four filters for processing the outputs of accumulating automated weighing precipitation 

gauges, three that were fully automated (O15, NAF and NAF-SEG) and one that required manual supervision (NAF-

S). Overall, NAF-S and NAF-SEG outperformed O15 and NAF; both NAF-S and NAF-SEG showed similar skill in 375 

compensating for evaporative losses and eliminating false detections caused by random noise and diurnal 

oscillations. O15 performed well in low noise cases with minimal evaporation, but generated false precipitation 

detections when the data were noisy, and often underestimated evaporative losses. NAF performed well in cases 

with minimal evaporation regardless of the noise level but did not correct for evaporative losses. NAF-SEG 

performed consistently well and provided a fully-automated alternative that matched the skill of the manual NAF-S 380 

method. Moreover, NAF-SEG added a direct estimate of evaporation, without the user intervention required by 

NAF-S or the 1-mm threshold required by O15. Similar evaporation estimates are not directly available from the 

other techniques.  
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Although NAF-SEG did not perfectly recover the synthetic evaporation that was added to the control time series (the 

recovery rates were 81% to 116% depending on the noise level), it performed as well as the manually-supervised 385 

NAF-S technique. Both NAF-S and NAF-SEG failed to disentangle precipitation and evaporation when they 

occurred on the same day. The challenge to do so may be insurmountable. The imperfect recovery of synthetic 

evaporation, coupled with the sensitivity of the recovered evaporation to noise, highlights the need to implement 

measurement protocols that minimize evaporative losses. We recommend the use of NAF-SEG as a screening 

technique to identify gauges and locations that have significant evaporative losses, and then to implement adequate 390 

measures to minimize those losses, such as modifications to the oil and antifreeze mixture used to prevent freezing 

and evaporation.  

Overestimation of precipitation by the O15 method occurs when the noise exceeds the filter’s prescribed threshold 

of 0.2 mm. This value for the threshold has been set based on experience as a necessary and calculated balance 

between eliminating real precipitation events and detecting false events. When the noise level is low, as in the low 395 

noise scenario of the control data, the O15 technique works successfully. However, noise patterns vary substantially 

from site to site and among gauges, as illustrated by Nitu et al. (2018), and often exceed the filtering capabilities of 

O15. It should also be noted that the unprocessed data in our tests were pre-filtered using a Gaussian filter with a 4-

min window, which was integrated into the SPICE quality control process prior to testing the algorithms. This likely 

resulted in the O15 filter performing better than it would have in the operational setting, but this was not confirmed.   400 

The NAF technique is fundamentally effective at filtering noise and diurnal oscillations, but underestimates 

precipitation when evaporative losses occur, because the algorithm forces the precipitation total to match the final 

raw bucket weight in the time series, with evaporation assumed to be zero. The NAF-SEG technique, which 

implements NAF over 24-hour windows, maintains all the strengths of NAF with the added functionality of 

automating the detection and removal of bucket evaporation. Neither NAF-S nor NAF-SEG remove evaporation 405 

perfectly, particularly when it occurs in consort with precipitation, but both represent a major step forward compared 

to other processing methods. We attribute the effectiveness of NAF-SEG to two characteristics of precipitation 

events, first that evaporation is relatively small during periods with precipitation, and second that both precipitation 

and evaporation are persistent over time scales of days. In the development of NAF-SEG, a 24-hour moving window 

was chosen to minimize the impact of temperature-related diurnal oscillations, but fortuitously the 24-hour window 410 

also served to separate days with precipitation and little evaporation from days with evaporation and little or no 

precipitation. The performance of NAF-SEG may decline when signal noise is due to non-cyclical temperature 

fluctuations, such as those that occur during strong synoptic events. Although this possibility was not assessed, it is 

one that users should be aware of.   

As mentioned in the introduction to NAF-SEG, a sensitivity analysis was performed for a range of P* values ranging 415 

from 0.0001 to 0.5 mm using the pre-processed high-noise time series for both warm and cold-seasons. The analysis 

showed negligible sensitivity as P* ranged from 0.0001 through 0.05 and higher sensitivity as P* further increased 

to 0.5 mm, for both seasons. Given the relative insensitivity of NAF-SEG to P* < 0.5 mm, the use of 0.001 mm 
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seems to be an appropriate baseline value for both seasons; users may want to further experiment with the parameter 

as their own data requires.    420 

NAF-SEG provides an attractive alternative to NAF when negative evaporative drift is present in the raw data, but it 

is not designed to handle all contingencies. For instance, unexplained positive then negative excursions in bucket 

weight are sometimes observed. If the positive and negative excursions are separated by more than 24 hours (the 

size of the window), the NAF-SEG filter will errantly attribute the positive excursion to precipitation and the 

negative excursion to evaporation.  425 

The results of the testing on unprocessed time series from different sites, seasons, and gauge configurations showed 

that NAF-SEG generally outperformed O15 on both cold- and warm-season test cases. Of the 44 cold-season test 

cases, O15 outperformed NAF-SEG in only two cases: the DFAR and unshielded Pluvio2 gauges at WFJ, 2016-

2017. However, these gauges may not have been serviced adequately; note the extreme evaporation rates as 

evidenced in the high biases between NAF and NAF-S in Table A1. This diminishes their usefulness for this 430 

evaluation; they were among the most challenging to process, with the greatest uncertainty in the supervised NAF-S 

output that served as the reference standard.  

Filter evaluation was more limited in the warm season because the raw site data were obtained from the SPICE 

project, which focused on the measurement of solid precipitation. Still, we were able to assemble 11 warm-season 

cases. The warm-season data were expected to differ from the cold-season data in two respects: higher evaporative 435 

losses and different noise characteristics. Each of the filters generated a higher RMSD in the warm season than the 

cold season; the greatest increase was found for O15, consistent with the pre-processed control experiments. In 

general, NAF-SEG outperformed both NAF and O15 in the warm season. NAF-SEG outperformed O15 in all warm 

season cases for r and RMSD, and resulted in a lower or similar seasonal bias in 7 of the 11 cases. The NAF-SEG 

totals consistently underestimated warm-season precipitation but the biases were small, averaging 1.7% compared 440 

with 1.0% for the cold season. Regardless of the sample size, the performance metrics all show that NAF-SEG 

outperformed both NAF and O15 in the warm-season as well as the cold-season.  

The evaluation of filter performance based on raw site data begs the question: how reliable are the NAF-S outputs as 

reference standards, given that they rely on the operator’s subjective judgment during the interactive elimination of 

negative drift and other spurious bucket weight changes? We acknowledge that operator bias is possible but are 445 

confident that its impact in this study is minimal. A single, skilled operator processed all of the data and made every 

attempt to apply the NAF-S method consistently. Adding further confidence to the NAF-S outputs are the tests with 

control data, which independently demonstrated the efficacy of the NAF-S to eliminate noise and evaporative drift.  

One suggestion to improve the quality of data from accumulating precipitation gauges is to add disdrometers, which 

detect the current weather conditions, to the site measurements, then incorporate their outputs into the quality 450 

control and filtering process. These augmented observations could be used to refine the noise filtering by automating 

the high temporal resolution (e.g. 1-min) detection of light precipitation events and assist in removing false 
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precipitation detections. These ancillary data were used in this way during SPICE (Nitu et al., 2018) and should be 

further explored for enhancing operational filtering.    

 455 

6  Conclusions 

This study reports the development and implementation of a robust, fully-automated technique for post-processing 

data from automated weighing precipitation gauges. The NAF-SEG technique is designed to eliminate varying 

levels of random noise and diurnal oscillations, as well as correcting for negative drift from bucket evaporation. An 

intercomparison of four filtering techniques shows that the operational O15 filter, although simple and deployable in 460 

real-time, fails when noise levels exceed the filter’s threshold, and may undercompensate for bucket evaporation. 

NAF, although highly effective in eliminating noise, does not correct for evaporative losses. NAF-S, which adds 

manual supervision to NAF, is effective in removing noise, eliminating spurious data, and correcting for negative 

drift from evaporation. However, it is labour intensive and best suited to complete seasonal time series.  

Our results show that NAF-SEG is equally effective to NAF-S in eliminating noise and evaporative drift from 465 

automated weighing gauge precipitation measurements. When tested against a control data set with added synthetic 

noise and evaporation, NAF-SEG was able to recover the original control to within ± 3% of the total, with a lower 

RMSE than the other techniques. When evaluated on 55 raw time series from various sites, years and gauge 

configurations, NAF-SEG outperformed O15 and NAF and gave the highest mean correlation coefficient and lowest 

mean RMSD.  470 

One limitation of NAF-SEG is that it requires 24-hour data segments; consequently, it cannot be deployed for real-

time processing of automated weighing gauge precipitation measurements. Until other alternatives are found, we 

recommend the use of a simple threshold filter like O15 for real-time applications, but with the archiving of the raw 

1-min time series for subsequent enhanced quality control, reprocessing using NAF-SEG, and the archiving of the 

NAF-SEG outputs. This, in combination with routine site servicing to minimize evaporation and other sources of 475 

noise, can result in improved operational precipitation data. 
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Table 1: Diurnal and random noise parameters in the simulated precipitation time series 

Noise Level High Medium Low 

Diurnal coefficient (fTs) (mm) 2 1.5 1 

Random noise (std dev) (mm) 0.1 0.01 0.001 

 

Table 2: Total seasonal bias in mm and percent of total for NAF, NAF-S, O15, and NAF-SEG post-processing techniques 

at different simulated noise levels for the cold (C) and warm (W) seasons. 

Noise 

Level 

NAF 

(mm) 

NAF 

(%) 

NAF-S 

(mm) 

NAF-S 

(%) 

O15 

(mm) 

O15 

(%) 

NAF-SEG 

(mm) 

NAF-SEG 

(%) 

Low-C 

Low-W 

-26.1 

-27.7 

-10.1% 

-9.8% 

-6.4 

-3.3 

-2.5% 

-1.2% 

1.5 

22.8 

+0.6% 

+8.1% 

-2.8 

-8.2 

-1.1% 

-2.9% 

Med-C 

Med-W 

-26.2 

-27.6 

-10.1% 

-9.8% 

-3.4 

1.9 

-1.3% 

+0.7% 

33.5 

58.3 

+12.9% 

+20.7% 

1.0 

-7.4 

+0.4% 

-2.6% 

High-C 

High-W 

-26.3 

-27.7 

-10.2% 

-9.8% 

-2.7 

2.1 

-1.0% 

+0.7% 

86.0 

130.0 

+33.2% 

+46.1% 

5.0 

-9.2 

+1.9% 

-3.3% 

 585 

Table 3: Correlation coefficient (r) and RMSE for NAF-SEG, NAF-S, NAF, and O15 post-processing techniques at 

different simulated noise levels for the cold (C) and warm (W) seasons. 

Noise 

Level 

r 

NAF 

r 

NAF-S 

r 

O15 

r 

NAF-SEG 

RMSE 

NAF 

(mm) 

RMSE 

NAF-S 

(mm) 

RMSE 

O15 

(mm) 

RMSE 

NAF-SEG 

(mm) 

Low-C 

Low-W 

0.97 

0.98 

0.99 

1.00 

0.94 

0.98 

0.99 

1.00 

0.029 

0.045 

0.020 

0.020 

0.044 

0.054 

0.019 

0.021 

Med-C 

Med-W 

0.97 

0.98 

0.98 

0.99 

0.92 

0.97 

0.98 

0.99 

0.032 

0.049 

0.025 

0.027 

0.053 

0.061 

0.024 

0.027 

High-C 

High-W 

0.95 

0.97 

0.96 

0.99 

0.87 

0.95 

0.96 

0.99 

0.041 

0.057 

0.038 

0.041 

0.069 

0.084 

0.037 

0.041 

 

Table 4: NAF-SEG evaporation estimates for different simulated noise levels with actual evaporation constant at 25.9 mm 

in the cold-season (C) and 28.2 mm in the warm-season (W) control. 590 

Noise Level 

Recovered 

Evaporation 

(mm) 

% of Actual 
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Low-C 

Low-W 

21.0 

20.8 

81% 

74% 

Med-C 

Med-W 

25.1 

22.7 

97% 

81% 

High-C 

High-W 

30.1 

25.5 

116% 

90% 
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Table 5: Mean correlation coefficients (r) and RMSD along with standard deviations (SD) for all observed real-world 

precipitation time series using NAF-S as the reference (warm-season, May through September, in parenthesis). 

Post-Processing Technique Mean r SD r Mean RMSD 

(mm) 

SD RMSD 

(mm) 

NAF-SEG 0.991 (0.999) 0.006 (0.001) 0.017 (0.020) 0.006 (0.008) 

NAF 0.983 (0.998) 0.040 (0.003) 0.020 (0.027) 0.025 (0.013) 

O15 0.952 (0.989) 0.032 (0.010) 0.041 (0.068) 0.024 (0.015) 
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Appendix A: Raw time series used in precipitation filter evaluation, with evaporation estimates and total 

precipitation bias.   

Table A1: Seasonal total precipitation (unfiltered, NAF-S and NAF-SEG filtered), filter biases (NAF, O15 and NAF-SEG) 

and derived bucket evaporation (NAF-SEG) from 44 WMO-SPICE precipitation time series. Biases (mm) are calculated 

using NAF-S as the reference filtering technique. Filtered time series that do not show an improvement with the NAF-600 

SEG method when compared to O15 are indicated by an asterisk (*). 

Site/Shield/Gauge/Year 

Unfiltered 

Total 

(mm) 

NAF-S 

Total 

(mm) 

NAF-SEG 

Total 

(mm) 

Bias NAF 

(mm) 

Bias O15 

(mm) 

Bias NAF-SEG 

(mm) 

Evaporation 

NAF-SEG 

Estimate 

(mm) 

CAR-R2P-2016-2017 441.6 468.8 455.2 -27.2 -15.0 -13.6 9.6 

CAR-R3AG-2016-2017 400.4 407.0 406.0 -6.6 -5.7 -1.0 4.7 

CAR-R3AP-2016-2017 365.1 394.0 380.2 -28.9 -17.7 -13.8 12.0 

CAR-R3UP-2016-2017 313.5 345.8 330.1 -32.3 -19.1 -15.7 11.6 

CCR-ABG-2013-2014 256.5 259.0 258.0 -2.5 -2.2 -1.0 2.1 

CCR-ABG-2014-2015 168.6 172.7 171.7 -4.1 -3.7 -0.9 3.5 

CCR-ABG-2015-2016 171.5 174.3 174.8 -2.8 -1.1 0.4 3.8 

CCR-ABP-2014-2015 166.1 174.8 172.7 -8.8 -5.4 -2.2 6.2 

CCR-ABP-2015-2016 171.1 177.1 177.0 -6.0 -2.1 -0.1 5.9 

CCR-R2G-2014-2015 105.7 106.3 108.1 -0.6 8.1 1.8 3.4 

CCR-R2G-2015-2016 186.5 189.3 188.3 -2.8 -2.0 -1.1 2.3 

CCR-R2G-2013-2014* 275.5 279.6 276.5 -4.0 0.4 -3.1 3.0 

CCR-R3AG-2013-2014 222.9 224.1 224.6 -1.2 -1.0 0.4 2.5 

CCR-R3AG-2014-2015* 85.8 86.8 88.1 -1.1 -0.4 1.3 2.6 

CCR-R3UG-2013-2014 183.4 185.2 184.4 -1.9 -1.3 -0.8 2.5 

CCR-R3UG-2014-2015* 72.3 73.9 75.6 -1.6 -0.7 1.7 3.0 

FMG-R2P-2015-2016 1036.7 1053.8 1042.1 -17.1 -13.0 -11.7 3.4 

FMG-R3AP-2015-2016* 828.1 849.1 832.6 -21.0 -15.6 -16.5 2.6 

HKL-R2G-2016-2017* 748.5 755.0 754.0 -6.5 -0.5 -1.0 5.1 

HKL-R3AG-2016-2017 423.9 437.5 438.0 -13.6 39.4 0.5 11.1 

HKL-R3AP-2016-2017 385.4 403.0 399.5 -17.6 -3.7 -3.5 10.3 

HKL-R3UG-2016-2017 320.5 328.3 329.2 -7.8 -2.2 0.9 7.8 

SOD-R2P-2016-2017 215.0 238.4 234.7 -23.4 -7.4 -3.7 15.7 

SOD-R3AP-2016-2017 187.7 212.9 207.8 -25.2 -8.9 -5.1 16.7 

SOD-R3UP-2016-2017 180.9 194.1 192.0 -13.2 -4.1 -2.2 9.4 

WFJ-R2P-2016-2017* 595.4 715.1 706.6 -119.7 -1.5 -8.5 102.4 



22 

 

WFJ-R3AP-2016-2017 375.4 605.7 598.0 -230.3 13.2 -7.7 208.6 

WFJ-R3UP-2016-2017* 246.6 434.6 423.6 -188.0 0.4 -11.0 167.0 

XBK-AP-2013-2014 83.8 91.9 90.7 -8.1 -4.2 -1.2 4.9 

XBK-AP-2014-2015 49.5 59.5 58.1 -10.0 -6.6 -1.4 7.1 

XBK-AP-2015-2016 61.1 74.9 71.8 -13.7 -9.4 -3.1 8.2 

XBK-DAG-2013-2014 131.4 136.0 134.2 -4.6 -3.9 -1.8 3.3 

XBK-DAG-2014-2015 104.3 111.0 108.5 -6.7 -3.4 -2.4 5.6 

XBK-DAG-2015-2016 90.2 97.1 95.5 -7.0 -5.5 -1.6 5.2 

XBK-R2G-2013-2014 167.2 170.2 170.4 -3.0 -2.8 0.2 2.3 

XBK-R2G-2015-2016 71.1 75.5 75.7 -4.4 -4.1 0.3 3.8 

XBK-R2P-2014-2015 110.3 119.2 114.9 -8.8 -7.6 -4.2 3.7 

XBK-R2P-2015-2016 80.4 92.6 91.2 -12.2 -5.6 -1.3 9.4 

XBK-R3AG-2013-2014 97.7 100.7 101.4 -3.0 -2.9 0.7 3.7 

XBK-R3AG-2014-2015 73.0 78.3 76.9 -5.3 -2.8 -1.4 4.7 

XBK-R3AG-2015-2016 72.7 78.2 77.8 -5.5 -5.0 -0.4 5.2 

XBK-R3UG-2013-2014 83.1 89.6 90.2 -6.5 3.8 0.6 7.3 

XBK-R3UG-2014-2015 56.4 63.8 62.3 -7.5 -3.0 -1.6 7.2 

XBK-R3UG-2015-2016 69.5 76.2 75.2 -6.7 -4.2 -1.0 5.7 
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Table A2: Warm-seasonal total precipitation (unfiltered, NAF-S and NAF-SEG filtered), filter biases (NAF, O15 and 

NAF-SEG) and derived bucket evaporation (NAF-SEG) from 11 WMO-SPICE precipitation time series. Biases (mm) are 605 

calculated using NAF-S as the reference filtering technique. Filtered time series that do not show an improvement with 

the NAF-SEG method when compared to O15 are indicated by an asterisk (*). 

Site/Shield/Gauge/Year 

Unfiltered 

Total 

(mm) 

NAF-S 

Total 

(mm) 

NAF-SEG 

Total 

(mm) 

Bias NAF 

(mm) 

Bias O15 

(mm) 

Bias NAF-SEG 

(mm) 

Evaporation 

NAF-SEG 

Estimate 

(mm) 

CCR-ABP-2015 344.8 353.5 350.9 -8.7 -4.4 -2.6 5.7 

CCR-R2G-2015 349.3 354.0 353.3 -4.7 -3.1 -0.7 3.4 

XBK-R2P-2015* 222.8 242.0 232.2 -19.2 -4.7 -9.8 5.7 

XBK-R2P-2016* 261.5 282.6 271.6 -21.1 -6.4 -11.0 7.6 

XBK-R3UG-2015* 253.5 260.3 258.3 -6.8 -0.9 -2.0 5.3 

XBK-R3UG-2016 287.6 293.7 290.4 -6.1 7.0 -3.3 4.9 

CAR-R3AG-2016 294.8 307.0 305.1 -12.2 -7.8 -1.9 9.0 

CAR-R3AG-2017 386.3 389.6 389.2 -3.3 -3.4 -0.4 3.1 

CAR-R3UP-2017 346.7 369.3 361.3 -22.6 -8.1 -8.0 10.1 

CAR-R2P-2017* 358.1 383.5 372.2 -25.4 -8.9 -11.3 10.6 

CAR-R3AP-2017* 345.1 368.8 361.2 -23.7 -4.1 -7.6 12.2 

 

Table A3: A description of the different shield/gauge configurations used in tables A1 and A2. 

Code Description 

R2 DFAR Reference (SPICE) 

R3 Alter or Unshielded Reference (SPICE) 

A Single Alter shield 

U Unshielded 

DA Double Alter shield 

B Bush shield 

P Pluvio gauge 

G Geonor gauge 

 610 
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                        Figure 1: NAF-SEG data flowchart 

P* = 0.001 mm 
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Figure 2: Time series of simulated cold-season precipitation gauge bucket weight with synthetic evaporation and 

varying levels of synthetic noise and diurnal oscillations (A - high noise; B - med noise; C - low noise). 

a) 

b) 

c) 
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Figure 3: Time series of simulated cold-season precipitation gauge bucket weight (zoomed into the first evaporation 

event) with synthetic evaporation and varying levels of synthetic noise and diurnal oscillations (A - high noise; B - 

med noise; C - low noise). 

 

  

b) 

c) 

a) 
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Figure 4: Box and whisker plots of (a) Pearson r, (b) RMSD and (c) bias in cold-season total precipitation relative to the 

reference for each of the evaluated filtering techniques (NAF-SEG, NAF, and O15) as compared to the reference 

technique (NAF-S) for the 44 unprocessed time series. 

a) b) 

c) 
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Figure 5: Time series of observed cold-season precipitation gauge bucket weight processing (NAF, NAF-S, O15, 

and NAF-SEG) along with the NAF-SEG evaporation estimate for a) Caribou Creek R2G 2013-2014, b) 665 

Haukeliseter R3AG 2016-2017, c) Bratt’s Lake R2P 2015-2016, and d) Bratt’s Lake R3UG 2013-2014. Insets 

show a zoomed example with consistent vertical scaling to illustrate the issues and filter performance relative to 

each time series. 

c) 

d) 


