

Calibration of an airborne HO_X instrument using the All Pressure Altitude based Calibrator for HO_X Experimentation (APACHE)

Daniel Marno¹, Cheryl Ernest^{1*}, Korbinian Hens^{1**}, Umar Javed^{1,2}, Thomas Klimach¹, Monica
 Martinez¹, Markus Rudolf¹, Jos Lelieveld¹, and Hartwig Harder¹

¹ Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128, Mainz, Germany

6 ² Forschungszentrum Jülich GmbH, IEK-8, 52425, Jülich, Germany

7 *now at: Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz,

8 55131, Mainz, Germany
9 **now at: Hübner GmbH

**now at: Hübner GmbH & Co KG - Division Hübner Photonics, 34123 Kassel, Germany

10 11

Correspondence: Daniel Marno (daniel.marno@mpic.de), Hartwig Harder (hartwig.harder@mpic.de)

12

13 Abstract. Laser induced fluorescence (LIF) is a widely used technique for both laboratory-14 based and ambient atmospheric chemistry measurements. However, LIF instruments require 15 calibrations in order to translate instrument response into concentrations of chemical species. 16 Calibration of LIF instruments measuring OH and HO₂ (HO_x), typically involves the photolysis of water vapor by 184.9 nm light thereby producing quantitative amounts of OH and 17 HO_2 . For ground-based systems HO_X instruments, this method of calibration is done at one 18 19 pressure (typically ambient pressure) at the instrument inlet. However, airborne HO_X 20 instruments can experience varying cell pressures, internal residence times, temperatures, and humidity during flight. Therefore, replication of such variances when calibrating are essential 21 22 to acquire the appropriate sensitivities. This requirement resulted in the development of the 23 APACHE (All Pressure Altitude-based Calibrator for HO_X Experimentation) chamber. It 24 utilizes photolysis of water vapor, but has the additional ability to alter the pressure at the inlet 25 of the HO_x instrument thus relating instrument sensitivity to the external pressure ranges experienced during flight (275 to 1000 mbar). Measurements supported by COMSOL 26 27 multiphysics and its computational fluid dynamics calculations revealed that, for all pressures explored in this study, APACHE is capable of initializing homogenous flow and maintain near 28 uniform flow speeds across the internal cross-section of the chamber. This reduces the 29 uncertainty regarding average exposure times across the mercury (Hg) UV ring lamp. Two 30 different actinometrical approaches characterized the APACHE UV ring lamp flux as 6.3 x 31 $10^{14} (\pm 0.9 \text{ x } 10^{14}) \text{ s}^{-1}$ depending on pressure. Data presented in this study are the first direct 32 33 calibrations, performed in a controlled environment using APACHE of an airborne HO_x 34 system instrument.

35

36 1 Introduction

37 It is well known that the hydroxyl (OH) radical is a potent oxidizing agent in daytime photochemical degradation of pollutants sourced from anthropogenic and biogenic processes 38 thus accelerating their removal from our atmosphere. The hydroperoxyl radical (HO₂) also 39 40 plays a central role in atmospheric oxidation as it not only acts as a reservoir for OH, but is 41 involved in formation of other oxidants such as peroxides and impacts the cycling of pollutants such as NO_X (= $NO + NO_2$) (Lelieveld et al., 2002). Therefore, measurements of OH and HO_2 42 (HO_X) within the troposphere are essential in understanding the potential global scale impacts 43 of pollutants in both the present day and in climate predictions. One common HO_x 44 45 measurement method is Laser Induced Fluorescence (LIF) (Stevens et al., 1994; Brune et al.,

1995; Hard et al., 1995; Martinez et al., 2003; Faloona et al., 2004; Hens et al., 2014; Novelli 46 et al., 2014). However, other methods have been successfully implemented to measure HO_X. 47 Chemical Ionization Mass Spectrometry (CIMS) (Sjostedt et al., 2007; Dusanter et al., 2008; 48 49 Kukui et al., 2008; Albrecht et al., 2019) and Differential Optical Absorption Spectroscopy (DOAS) (Brauers et al., 1996; Brauers et al., 2001; Schlosser et al., 2007) have also been used 50 51 in the measurement of HO_X in the field and in intercomparison projects with LIF 52 instrumentation. However, low atmospheric concentrations of HO_x (Schlosser et al., 2009) and 53 potential interferences (Faloona et al., 2004; Fuchs et al., 2011; Mao et al., 2012; Hens et al., 54 2014; Novelli et al., 2014; Fuchs et al., 2016) can make HO_x measurements especially 55 challenging. Airborne LIF-FAGE (LIF-Fluorescence Assay by Gas Expansion) instruments 56 experience large variability in pressure, humidity, instrument internal air density, and internal 57 quenching during flights, which cause a wide array of instrumental sensitivities (Faloona et al., 2004; Martinez et al., 2010; Regelin et al., 2013; Winiberg et al., 2015). Therefore, it is critical 58 59 to utilize a calibration system that can suitably reproduce in-flight conditions to determine the instrument response to known levels of OH and HO_2 to acquire robust HO_X measurements. 60 The first stage of the our Hydroxyl Radical measurement Unit based on fluorescence 61 Spectroscopy (HORUS) inlet is an inlet pre-injector (IPI), used to determine the concentration 62 63 of background OH interferences by removing atmospheric OH from the signal via addition of an OH scavenger such as propane. IPI draws 50-230 sL min⁻¹ depending on altitude and is 64 susceptible to temperature and pressure-driven changes in internal reaction rates and residence 65 times under flight conditions. This has implications for the removal of atmospheric OH in the 66 67 inlet and for the characterization of background interference signals in HORUS. Therefore, a 68 device capable of providing stable high flows whilst reproducing a wide range of pressures and 69 temperatures is needed in order to calibrate the airborne HORUS instrument.

70 71

2 Experimental design and set up

72 73 74

2.1 APACHE design overview

75 Figure 1 shows the overview of the APACHE system. In front of the APACHE inlet, a series 76 of mixing blocks were installed where multiple dry synthetic air additions were injected into a 77 controlled humidified air supply ensuring thorough mixing of water vapor before being 78 measured by a LI-COR $6262 \text{ CO}_2/\text{H}_2\text{O}$ (figure 1a). This air is then fed into a large mass flow controller (MFC). The construction of the APACHE chamber itself is shown in figure 1b. The 79 80 first section contains the diffuser inlet with a sintered filter (bronze alloy, Amtag, filter class 81 10). This 2 mm thick sintered filter, with a pore size of $35 \,\mu$ m, which initializes a homogeneous 82 flow and further improves the mixing of water vapor before passing over the UV ring lamp 83 (described further in section 4). The water photolysis section contains a low-pressure, 0.8 A, mercury ring lamp (uv-technik, see supplementary, figure S.1) which produces a constant radial 84 85 photon flux at 184.9 nm, situated 133 mm after the sintered filter and separated from the main 86 APACHE chamber by an airtight quartz window. Between the lamp and the quartz window 87 there is an anodized aluminum band with thirty 8 mm apertures, which blocks all light apart from that going through the apertures, which reduces the amount of UV flux entering APACHE 88 and controls the size of the illuminated area. The HORUS inlet is clamped down 169.5 mm 89 90 after the photolysis section in such a way that the instrument sample flow is perpendicular to 91 the airflow passing over the inlet. The inlet protrudes 51.5 mm into the APACHE cavity much 92 like it is when installed in the aircraft shroud system (see figure 2), and is made air tight with 93 the use of O-rings. Opposite the HORUS inlet, there is an airtight block attachment containing 94 a series of monitoring systems.

Figure 1. Overview of the APACHE system and the pre mixing set up. With a picture of perforated stainless steel plates with wool mesh.

95

96 One system being a pitot tube attached to an Airflow PTSX-K 0-10Pa differential pressure 97 sensor (accuracy rating of 1% at full scale, 1 σ), which is used to monitor the internal flow 98 speeds within APACHE. A 3 kOhm NTC-EC95302V thermistor is used to monitor the air 99 temperature and an Edwards ASG2-1000 pressure sensor (with an accuracy rating of ± 4 mbar, 100 2 σ) monitors the static air pressure. Additionally, there are two one-quarter inch airtight 101 apertures in the monitoring block that can be opened to enable other instrumentation to be 102 installed.

103 **2.2 Pressure control**

For this study, the operational pressure range of APACHE used was 250 - 900 mbar, with 104 105 precision of $\pm 0.1\%$ (1 σ) and accuracy of $\pm 2\%$ (1 σ) with mass flows ranging from 200 to 990 sL min⁻¹. This was achieved by an Edwards GSX160 scroll pump controlling the volume flow, 106 which resulted in air speeds of 0.9 to 1.5 m s⁻¹ through APACHE at 250 and 1000 mbar 107 respectively at 25 °C, used in combination with a MFC (Bronkhorst F-601A1-PAD-03-V) 108 capable of controlling a mass flow of up to 2000 sL min⁻¹ dictating the mass flow of air entering 109 APACHE and thus controlling the pressure. Although not critical for this study, the operational 110 pressure range of APACHE can be extended by changing the draw speed of the Edwards scroll 111 pump. However, that may cause the flow speeds and potentially the flow speed profiles across 112 the UV ring lamp to vary in between different pressure calibrations. 113

114 2.3 The airborne HORUS instrument

The LIF-FAGE instrument developed by our group (HORUS), is based on the original 115 design of GTHOS (Ground Tropospheric Hydrogen Oxide Sensor) described by Faloona et al. 116 117 (2004) and is described in further detail by Martinez et al. (2010). The airborne instrument is a 118 revised and altered design to perform under conditions experienced during flight and conform 119 to aeronautical regulations. It was primarily developed for installation on the High Altitude and 120 Long Range Research Aircraft (HALO). The system comprises of an external inlet shroud, detections axes, laser system, and a vacuum system (figure. 2). Additionally, this is the first 121 airborne LIF-FAGE instrument measuring HO_x with a dedicated inlet pre injector (IPI) system 122 123 installed for the purpose of removing atmospheric OH enabling real time measurements and quantification of potential chemical background OH interferences. The airborne IPI system is 124 125 redesigned to fit within the shroud inlet system, whilst maintaining similar operational features 126 as the on-ground IPI installation (Novelli et al., 2014).

127

To prevent excessive collisions of OH and HO₂ with the IPI orifice and internal walls, thus 128 limiting losses of HO_X , the momentum inertia of the air passing through the external shroud 129 system had to be overcome to promote flow direction into the instrument. This was achieved 130 by installing in the shroud a choke point behind the instrument inlet, resulting in air flow to 131 decrease from ~ 200 to < 21 m s⁻¹, which is sufficiently below the sample velocity of HORUS 132 $(44 - 53 \text{ m s}^{-1})$. Additionally, it limits non-parallel flows across the HORUS inlet created by 133 variable pitch, roll and yaw changes of the aircraft. As the aircraft changes pitch, roll and yaw, 134 the measured OH variability increases by $\pm 4.51 \text{ x}10^4 \text{ cm}^{-3}$ (1 σ), which is only 10 to 15 % 135 higher than the natural variability of OH on average. This increase in variability is negligible 136 as is represents, depending on internal pressure, 19 to 30 % of the detection limit of the 137 138 instrument. Both these effects of the external shroud improve the measurement performance by reducing variable wall losses of HO_X at the HORUS inlet under flight conditions. 139

140

Figure 2. Overview of the airborne HORUS system as installed in the HALO aircraft. HO₂ is measured indirectly through the addition of NO that quantitatively converts HO₂ into OH. The NO injection occurs via a stainless steel 1/8 inch line, shaped into a ring perpendicular to the airflow with several unidirectional apertures of 0.25 mm diameter creating essentially a NO shower.

143

144 As with other LIF-FAGE HO_x instruments, HORUS measures an off-resonance signal to 145 discern the net OH fluorescence signal. This is achieved by successive cycling of the laser 146 tuning from on-resonance (measuring the total signal of OH fluorescence and the signal 147 originating from other fluorescence and electronic sources), to off-resonance (measuring all the above except the OH fluorescence). The HORUS instrument utilizes the Q1(2) transition 148 $X^2\Pi_{3/2}(v''=0) \rightarrow A^2\Sigma^+(v'=0)$ (Dorn et al., 1995; Holland et al., 1995; Mather et al., 1997). 149 The net OH signal (S_{OH}) is thus the difference between the on-resonance and off-resonance 150 151 signals. The OH sensitivity (C_{OH}) and average laser power within the detection axis ($Wz_{1 pwr}$) are then used to calculate the absolute OH mixing ratio (see Eq. (1)). HO₂ is measured indirectly 152 153 through the quantitative conversion of atmospheric HO_2 to OH by injection of nitric oxide (NO) under the low-pressure conditions within HORUS. 154

155 156

$$HO_2 + NO \rightarrow NO_2 + OH$$
 (R1)

157

When NO is injected into the instrument, both ambient OH and HO₂ are measured in the second detection axis. The net HO₂ signal (S_{HO2}) in the second axis is therefore derived from subtracting the net OH signal from the first detection axis normalized by the ratio of the OH sensitivities for the two detection axes ($C_{OH(2)} / C_{OH}$) from the net HO_X signal (S_{HOx}). Then S_{HO2} is corrected by the sensitivity to HO₂ (C_{HO2}) and laser power ($Wz_{2 pwr}$) to reach absolute HO₂ mixing ratio (see Eq. (2)).

)

$$164 \quad OH = \frac{S_{OH}}{(C_{OH} \cdot Wz_{1 pwr})}$$
(1)

165

166 HO₂ =
$$\frac{1}{(C_{HO_2} \cdot W_{Z_2 pwr})} \cdot \{S_{HO_X} - \frac{C_{OH(2)}}{C_{OH}} S_{OH}\}$$
 (2)

167

168 $Wz_{1 pwr}$ is the laser power in the first detection axis, $Wz_{2 pwr}$ is the laser power in the second 169 detection axis and C_{OH} and C_{HO2} are the calibrated sensitivity factors for OH and HO₂ (cts s⁻¹ 170 pptv⁻¹ mW⁻¹) respectively. By calibrating using a known OH mixing ratio, the instrument 171 sensitivity C_{OH} can be determined by rearranging Eq. (1) to: 172

173
$$C_{OH (cal)} = \frac{S_{OH_{cal}}}{(OH \cdot Wz_{1 pwr})}$$
(3)

The sensitivity of HORUS depends on the internal pressure, water vapor mixing ratios, and temperature, which are subject to change quite significantly during flight. Therefore, further parameterization when calibrating is required to fully constrain the sensitivity response of the instrument at various flight conditions. Eq. (4) shows the terms that affect the sensitivity of the first HORUS axis that measures OH.

179
$$C_{OH}(P,T) = c0 \cdot \rho_{Int}(P,T) \cdot Q_{IF}(P) \cdot b_{c}(T) \cdot Wz_{pwr} \cdot [\alpha_{IPI}(P,T) \cdot \alpha_{HORUS}(P,T)]$$
(4)

Where c0 is determined by calibrations and is the lump sum coefficient of all the pressure 180 independent factors affecting the HORUS sensitivity, for example, OH absorption cross section 181 182 at 308nm, the photon collection efficiency of the optical setup and quantum yield of the detectors, as well as pressure independent wall loss effects (cts cm³ molecule⁻¹ s⁻¹). ρ_{Int} is the 183 internal molecular density. QIF is the quenching effect of N2, O2 and H2O occurring inside the 184 detection axis, which is normalized to 1 % water mixing ratio. Both are pressure dependent 185 terms as denoted in Eq. (4). The Boltzmann correction (b_c) has a temperature dependency as 186 it corrects for any OH molecules that enter the HORUS instrument in a thermally excited state 187 and are therefore not measurable by fluorescence excitation at the wavelength used. Wz_{pwr} is 188 189 the measured laser power entering the white cell in the detection axis. α is the pressure 190 dependent OH transmission, which is the fraction of OH that reaches the point of detection. 191 This term is separated for the two-tier pressure conditions present in the instrument. The term α_{IPI} represents the correction for pressure and temperature dependent OH loss on the walls 192 193 within IPI (post pinhole, pre-critical orifice). The term α_{HORUS} is the correction for pressure 194 dependent OH loss to the walls within the HORUS detection axes post critical orifice. Whilst the quenching effects, internal densities and Boltzmann corrections can be quantified, and the 195 power entering the measurement cell is measured, the two factors that need to be determined 196 197 through calibration are c0 and OH transmission. Once the c0 coefficient and α terms are known, 198 the final in-flight measured OH mixing ratio (pptv) is found:

199
$$OH = \frac{S_{OH}}{(c0 \cdot \rho_{Int} \cdot Q_{IF} \cdot b_c \cdot Wz_{pwr} \cdot [\alpha_{IPI} \cdot \alpha_{HORUS}])}$$
(5)

As depicted in both figure 1b and figure 2, the complete system is calibrated with IPI attached and operating as it did when installed in the aircraft. Therefore, the combined losses of OH within IPI and in the low pressure regime post critical orifice contribute to the overall calibrated C_{OH} sensitivity factor in the same way during measurement and calibrations,

204 meaning that the OH transmission of HORUS can be quantified with both OH transmission 205 terms (α_{IPI} and α_{HORUS}) combined into one term (α_{Total}).

206
$$0H = \frac{S_{OH}}{(c0 \cdot \rho_{Int} \cdot Q_{IF} \cdot b_c \cdot Wz_{pwr} \cdot [\alpha_{Total}])}$$
(6)

Figure 3 shows the graphical representation of the different factors described above and their impact on the overall sensitivity.

Figure 3. Pressure dependent components affecting LIF sensitivity. Internal density (solid green line), OH transmission (dotted blue line), and quenching (dotted red line). The product of these factors produce the expected pressure dependent sensitivity. (Modified after Faloona et al., 2004).

209

210 **3** Calibration method and theory

As an overview, table 1 shows common calibration techniques for OH instruments. The
APACHE system is based on the production of known quantified and equal concentrations of
OH and HO₂ via photolysis of water vapor in pure synthetic air using a Hg ring lamp emitting
UV radiation at 184.9 nm.

215
$$H_2O + hv \xrightarrow{\lambda = 184.9 \text{ nm}} OH + H^*$$
 (R2)

216
$$H^* + O_2 \xrightarrow{O_2} OH + O_3$$
 (R3)

217
$$H^* \xrightarrow{M} H$$
 (R4)

218
$$H + O_2 \xrightarrow{M} HO_2$$
 (R5)

219 Stable water mixing ratios with a variability of < 2 % were achieved by heating 300 sL min⁻ ¹ flow of synthetic air to 353 K and introducing deionized water using a peristaltic pump into 220 221 this heated gas flow causing it to evaporate before entering a 15 L mixing chamber. This prevents re-condensation and humidity spikes when the pump is introducing the water. The 222 humidified gas flow is then diluted (to around 3 mmol mol⁻¹) and mixed further with additional 223 224 dry pure synthetic air via a series of mixing blocks to achieve the required and desired stable 225 water vapor mixing ratios. The photolysis of H₂O has only one spin-allowed and energetically 226 viable dissociation channel at 184.9 nm (Engel et al., 1992), meaning the quantum yield of OH

237

227 and H* are unified (Sander et al., 2003). Even though reaction R3 is possible particularly since 228 the H* atoms can carry transitional energies of 0.7 eV at 189.4nm (Zhang et al., 2000), the fast removal of energy by reaction R4 allows for the general assumption that all H* atoms produced 229 230 leads to HO₂ production. The use of water photolysis as a OH and HO₂ radical source for 231 calibration of HO_x instruments has been adopted in a number of studies (Heard and Pilling. 2003; Ren et al., 2003; Faloona et al., 2004; Dusanter et al., 2008; Novelli et al., 2014; Mallik 232 et al., 2018). As an example, the factors required to quantify the known concentrations of OH 233 and HO₂ during calibrations are shown below: 234

235 $[OH] = [HO_2] = [H_2O] \cdot \sigma_{H_2O} \cdot F_{184.9 \text{ nm}} \cdot \phi_{H_2O} \cdot t$

(7)

236 Table 1. Various known methods for OH instrument calibrations.

	Technique	Method	Quoted (1 σ) Uncertainty	Limitations	References
(1)	Water UV- Photolysis	See section 3.1	10-30%	Dependent on lamp, photon flux measurement, and absorption	(Creasey et al., 2003; Heard and Pilling. 2003; Holland et al., 2003; Ren et al., 2003; Faloona et al., 2004; Smith et al., 2006; Martinez et al., 2010; Mallik et al., 2018)
(II)	Pulsed N ₂ - H ₂ O RF discharge	At low pressure (0.1 Torr); OH and NO produced using a low power RF discharge. Concentrations of NO and OH are closely linked	20%	Requires NO measurement using stable ambient air calibrations	(Dilecce et al., 2004; Verreycken and Bruggeman. 2014)
(III)	Low- pressure flow-tube RF discharge	OH radical production by titration of H atoms with NO ₂ . Known amount of H atoms produced using microwave discharge using low pressure flow tube	30%	Stable ambient air calibrations	(Stevens et al., 1994)
(IV)	Continuous ly Stirred Tank Reactor	In a CSTR, OH produced through UV-irradiation of specific Hydrocarbon in presence of H ₂ O and NO. concentration of OH relates to loss of the Hydrocarbon	36%	Time intensive, systematic wall loss of OH in reactor	(Hard et al., 1995; Hard et al., 2002)
(V)	Steady- State O ₃ - alkene	A steady state OH concentration produced from ozonolysis of a known concentration of an alkene	42%	Time consuming, large uncertainties compared to other methods	(Heard and Pilling. 2003; Dusanter et al., 2008)
(VI)	Laser photolysis of Ozone	Photolysis of O_3 with 284 nm light producing $O(^1D)$. Which then reacts with H ₂ O producing OH	40-50%	Requires large apparatus	(Tanner and Eisele. 1995)

238 Where in Eq. (7), the OH and HO₂ concentrations are a product of photolysis of a known 239 concentration of water vapor [H₂O], σ_{H2O} is the absorption cross section of water vapor, 7.22 240 (± 0.22) x 10⁻²⁰ cm² molecule⁻¹ at 184.9 nm (Hofzumahaus et al., 1997; Creasey et al., 2000).

241 $F_{184.9 \text{ nm}}$ is the actinic flux (photons s⁻¹) of the mercury lamp used for photolysis, ϕ_{H2O} is the 242 quantum yield and t is exposure time. The quantum yield of water vapor photolysis at the 184.9

nm band is 1 (Creasey et al., 2000).

244

245 4 APACHE conditions and parametrizations

246 4.1 Flow conditions

With any calibration device, the flow conditions must be characterized to inform subsequent
methods and calibrations. Regarding APACHE, the two main factors to be resolved are (i)
how uniform are the flow speed profiles and therefore exposure times in respect to the
APACHE cross section, and (ii) the impact of OH wall losses.

251 To this end, experimental and model tests were performed to determine whether the 252 combination of the sintered filter, and the stainless steel perforated plates and wool arrangement could provide a homogeneous flow. This means that under operation the flow 253 254 speeds should be uniform along the cross section of APACHE to within the uncertainty of the 255 measurements. This is to ensure that the air masses passing across the lamp have the same 256 exposure times irrespective of where they are in the cross section. Additionally, model simulations can provide an indication of, as a function of APACHE pressure, the development 257 and scale of boundary air conditions where air parcels experience extended contact time with 258 the interior walls of APACHE, and so have pronounced OH wall losses. This highlights 259 260 potential flow conditions where there is sufficient time between the photolysis zone and the 261 HORUS inlet to allow APACHE boundary air to expand into and influence the OH content of the air being sampled by HORUS. 262

263

264 **4.1.1 Flow speed profiles**

During calibration, the pressures within the HORUS instrument had to be controlled and 265 monitored to replicate the inflight conditions. The APACHE chamber pressure is equivalent to 266 267 the inflight pressure in the shroud where the HORUS system samples. The pressure of the detection axes depends on the pressure at the inlet and the efficiency of the pumps. For IPI 268 269 however, the airflow through it is dependent on the pressure gradient between the shroud and the ambient pressure at the IPI exhaust or alternatively the APACHE pressure and pressure in 270 271 front of the XDS 35 scroll pump (post IPI blower). During the campaign, the exhausts of all 272 blowers and pumps of the HORUS system were attached to the passive exhaust system of the aircraft and were thus exposed to ambient pressure. Therefore, in the lab and throughout the 273 274 calibrations, the pressure at the exhaust for every blower and pump involved in the HORUS 275 instrument was matched to the respective in-flight ambient pressures by attaching a separate 276 pressure sensor, needle valve and XDS35 scroll pump system. Figure 4 shows the lab setup 277 described above.

278

Figure 4. The experimental setup with the additional needle valves, pressure sensors and XDS35 scroll pumps attached to the exhausts of all pumps and blowers of HORUS to match in-flight pumping efficiencies when calibrating with APACHE. The red lines depict the low-pressure region within HORUS, the blue is the pressure monitoring line between the booster and scroll pump that drive the HORUS sample flow, and the green show the external gas lines.

280

281 To limit the effect of wall loss, HORUS samples air from the core of the APACHE flow system 282 and draws only a fraction of the total air flow as shown in figure 5. At 900 hPa the HORUS instrument takes 20 % and at 275 hPa HORUS takes 30 % of the total volume flow entering 283 APACHE. To validate that this proportional volume flow into HORUS does not disturb the 284 285 flow conditions within APACHE, flow speed profiles were performed using the Prandtl pitot 286 tube installed directly opposite the HORUS inlet, which can be positioned flush against the internal wall up to 60.5 mm into the APACHE cavity, which is 15 mm from the APACHE 287 288 center. Figure 6 shows the measured flow speed profile (blue data points) when the APACHE 289 pressure was 920 hPa. As the distance between the APACHE wall and the pitot tube inlet 290 increased, no significant change in the flow speed was observed. The largest change observed 291 was between 46.6 and 60.5 mm where the flow speed increased by 0.16 m s⁻¹, which is 22.8 %smaller than the combined uncertainty of these two measurements ± 0.21 m s⁻¹ (2 σ). Compared 292 to the other four measurement points performed at 920 mbar, the 1.54 m s⁻¹ measured at 60.5 293 mm is not significantly different. However, when performing the speed profile tests at the low 294 pressures, the pressure difference measured was close to or below the resolution of the 295 296 differential pressure sensor. Consequently, the flow inside APACHE and the HORUS inlet 297 system was simulated using the computational fluid dynamics (CFD) model from COMSOL multiphysics to gain a better understanding of the flow speed profiles at all pressures. The CFD 298 299 module in COMSOL uses Reynolds Averaged Navier-Stokes (RANS) models (COMSOL. 2019). The standard k-epsilon turbulence model with incompressible flows was used for this 300 study as it is applicable when investigating flow speeds below 115 m s⁻¹ (COMSOL. 2019). 301 An extra fine gridded mesh of a perforated plate with a high solidity ($\sigma_s = 0.96$) was 302 implemented in the turbulence model to generate the turbulence and replicate the flows created 303

304 by the bronze sintered filter (Roach. 1987). The model was constrained with the pressures 305 measured within APACHE and the HORUS inlet. The volume flow was calculated from measured mass flow entering APACHE and temperatures were constrained using the 306 thermistor readings. To gain confidence in the model, the flow speed output data was compared 307 308 to the available measured flow speed profile, see figure 6. Overall, the modelled flow speed profile did not differ significantly from measured. The only point where the model 309 significantly disagreed with measurements was at the boundary (< 4 mm away from the 310 APACHE wall), where the model predicted a flow speed of 1.3 m s^{-1} , which is 6 % lower than 311 the minimum extent of the measurement uncertainty 1.38 m s^{-1} . However, as this is occurring 312 313 within a region that ultimately does not influence the air entering HORUS, see section 4.1.2, the disagreement between modelled and measured flow speeds at distances less than 4 mm 314 315 from the APACHE wall is ignored.

Figure 5. The percentage of the total volume flow entering APACHE, which is sampled by HORUS as a function of pressure within APACHE. All error bars are quoted to 1σ .

Figure 6. The measured (blue) and COMSOL simulated (red) flow speed profiles within APACHE, at 920 hPa. The x-axis is the distance from the internal wall of APACHE. The error bars are quoted to 2σ .

Figure 7 shows the simulated flow speeds at six discreet pressures within APACHE. The black 316 lines depict the streamlines of the HORUS sample flow and the color gradient relates to the 317 flow speed. The flow conditions in the center flow within the HORUS inlet, post pinhole, the 318 center of the streamlines and the undisturbed flow airflow not influenced by the sample flow 319 320 of HORUS are indicated. The figure shows the internal APACHE dimensions starting from the 321 sintered filter to the first perforated stainless steel plate 0.135 m and 0.601 m from the 322 APACHE inlet, respectively. From the simulations, the centerline flow speed differs by less 323 than 0.1 % compared to the undisturbed flow, which is also the case at 275 mbar when HORUS 324 is drawing in the highest percentage of the total volume flow entering APACHE. After the 325 sintered filter the high calculated Reynolds numbers (Re > 2300) support the statement that a 326 turbulent flow regime is created. Additionally, the measurements in conjunction with 327 simulations show that the small pores of the sintered filter release a uniform distribution of 328 small turbulent elements across the diameter of APACHE, which remain prevalent all the way 329 up to the HORUS inlet.

330

331 4.1.2 HOx losses in APACHE

332 The modelled OH mixing ratios (pptv) in figure 8 show the change in OH content as the air 333 flows along the length of APACHE. Mixing ratios were used as they are independent of the changing density within APACHE. In every simulation, the OH and HO₂ concentrations were 334 initialized at zero, and losses at the walls were fixed to 100 % for both OH and HO₂. The radial 335 photolytic production of OH and HO_2 as calculated using Eq. (7) and Eq. (8), occurred when 336 the air passeed the UV ring lamp. For all simulations, the HO_X radical-radical recombination 337 338 loss reactions, (reactions R6-R8), and the measured molecular diffusion coefficient of OH_{Dm} 339 in air (Tang et al., 2014) was used:

 $\label{eq:238.65} \begin{array}{ll} \mbox{340} & OH_{Dm} & = 179 \ (\pm \ 20) \ Torr \ cm^2 \ s^{-1} \end{array} \tag{238.65} \pm 26.7 \ hPa \ cm^2 \ s^{-1})$

341 In literature, there have been no reports of successfully performed tests that accurately measure HO₂ diffusivity coefficients in air. However, calculations of HO₂ diffusion 342 coefficients using the Lennard-Jones potential model have been performed (Ivanov et al., 343 344 2007). Ivanov et al. (2007) performed a series of measurements and Lennard-Jones potential 345 model calculations to quantify the polar analogue diffusion coefficients for OH, HO_2 and O_3 in 346 both air and pure helium. The calculated OH and O_3 diffusion coefficients in air from the Lennard-Jones potential model were in good agreement with the recommended measurement 347 values in Tang et al., (2014) well within the given uncertainties. Therefore, to best replicate the 348 diffusivity of HO₂ within the simulations, the following diffusion coefficient of HO₂ in air from 349 350 the Ivanov et al., (2007) paper was used:

351
$$HO_{2 Dm} = 107.1 \text{ Torr cm}^2 \text{ s}^{-1}$$
 (142.8 hPa cm² s⁻¹)

It is clear from figure 8, that irrespective of pressure the air masses at the boundary (where wall losses are 100 %) do not have sufficient time to expand into the HORUS sample flow streamlines, and influence HO_X content entering HORUS. Lateral exchanges between air at the walls of APACHE and the free air in the center are suppressed due to the preservation of the small turbulence regime between the sintered filter and the HORUS inlet. Table 2 provides, for six pressures, the evolution of OH along the length of APACHE, within the streamlines created by the HORUS sample flow as depicted in figure 8.

Figure 7. COMSOL Multiphysics output data, simulating the flow speed conditions at 6 discreet pressures within APACHE ranging from 275 to 894 mbar, between the sintered filter and the first perforated stainless steel plate. The color represents flow speed in m s⁻¹. The black lines are the streamlines created by the HORUS sample flow. The black arrows depict the flow direction. The x-axis is the distance from the center of APACHE in meters. The y-axis is the distance from the APACHE inlet. The centerline within HORUS inlet tags show the flow conditions in the center of the fully formed flows after the HORUS pinhole, the undisturbed tags show the flow conditions outside of the HORUS streamlines, and the centerline tags show the flow conditions in the center of the streamlines (i.e. the area of flow influenced by HORUS sampling).

360

The L term represents OH mixing ratios on the left most streamline, C represents OH mixing ratios in the center of the streamlines, and R represents OH mixing ratios on the right most streamline. The mean mixing ratio at each APACHE pressure does not change significantly and is thus independent of the distance from the lamp. Conversely, the standard deviations of the OH mixing ratios within the HORUS sampling streamlines decrease as the distance from the lamp increases, indicating that the air is homogenizing. However, figure 8 and table 2, with support from available measurements, indicate that the OH-depleted air masses (i.e. air masses

- that have experienced loss of OH at the APACHE walls) do not expand into and influence the OH content of air that is being sampled by HORUS. The main loss process that influences HO_X entering HORUS is the wall loss at the HORUS inlet itself. On average, $22.2 (\pm 0.8) \%$
- 371 (1 σ) of OH and HO₂ is lost at the inlet, which will form part of the α_{IPI} loss calculation in
- 372 section 5.

Figure 8. COMSOL Multiphysics output data, simulating OH conditions at 6 discreet pressures within APACHE ranging from 275 to 894 mbar, between the sintered filter and the first perforated stainless steel plate. The color is OH mixing ratio (pptv), with initial OH production occurring at the lamp (0.26 m from APACHE inlet), using Eq. (7) and Eq. (8). The black lines are the streamlines created by the HORUS sample flow. The black arrows depict the flow direction. The x-axis is the distance from the center of APACHE in meters. The y-axis is the distance from the APACHE inlet. The centerline within HORUS Inlet tags represent the flow and OH concentrations in the center of the fully formed flows after the HORUS pinhole. The undisturbed tags show the flow conditions outside of the HORUS streamlines, and the centerline tags show the flow conditions in the center of the streamlines (i.e. the area of flow influenced by HORUS sampling).

Table 2. The evolution of OH within the HORUS sample flow streamlines, along the length of APACHE at all six pressures, within the streamlines created by HORUS sampling as depicted in figure 8. The L term represents OH mixing ratios on the left most streamlines, C represents OH mixing ratios in the center of the streamlines,

375 4.2 UV conditions

376 The photolysis lamp is housed in a mount with the side facing into the chamber having an 377 anodized aluminum band with thirty 8 mm apertures installed between it and a quartz wall. The housing was flushed with pure nitrogen to purge any O_2 present before the lamp was turned on. 378 379 The nitrogen flushing was kept on continuously thereafter. After approximately one hour, the 380 lamp reached stable operation conditions, i.e the relative flux emitted by the lamp as measured by a photometer (seen in Figure 1b at the UVL on the underside of the APACHE chamber) 381 was constant. The flux (F_{β}) entering APACHE is not the same as the flux experienced by the 382 383 molecules sampled by HORUS (F). Factors influencing the ratio between F_{β} and F are as follows. (i) Absorption of light by O_2 , which is particularly important as O_2 has a strong 384 absorption band at 184.9 nm and the O_2 density changes in APACHE when calibrating at the 385 different pressures. (ii) The variable radial flux, which is dependent on the geometric setup of 386 the ring lamp and on the location within the irradiation cross section where the molecule is 387 388 passing. These factors were resolved through the combination of two actinometrical crosscheck methods. The advantage of actinometrical methods is that the flux calculated is derived directly 389 390 from the actual flux that is experienced by the molecules themselves as they pass through the 391 APACHE chamber. Therefore, allowing direct calibration of the flux inside APACHE itself.

The first actinometrical method (A) used the ground based calibration device (Martinez et 392 393 al., 2010) to calibrate the HORUS instrument to be used as a transfer standard. Only for the purpose of this experiment, the critical orifice diameter was changed from the airborne 394 configuration of 1.4 mm to a 0.8 mm on-ground* configuration to adapt HORUS to the mass 395 396 flow that the ground based calibration device is able to provide. The asterisk discerns terms that were quantified when the smaller 0.8 mm critical was used. The calculated instrument on-397 398 ground* sensitivity was then used to translate OH and HO₂ concentrations produced by the uv-399 technik Hg ring lamp into a value for F_{β} . Take note that for the calibrations discussed in section 5, the initial 1.4 mm diameter critical orifice used during the airborne campaign was re-400 installed. 401

402 The HORUS on-ground* sensitivity at 1010 mbar for OH and HO₂ are 12.79 (\pm 1.8) and 16.59 (\pm 2.3) cts pptv⁻¹ mW⁻¹ respectively, with the uncertainties quoted to 1 σ . This sensitivity 403 was then used to calculate the OH and HO₂ concentrations at the instrument inlet with the 404 APACHE system installed and operating at 1010 mbar. To ensure sufficient flow stability 405 during calibration at this high pressure, the Edwards GSX160 scroll pump was disengaged. 406 407 Additionally, the water mixing ratios were kept constant ($\sim 3.1 \text{ mmol mol}^{-1}$) and oxygen levels were varied by adding different pure N2 and synthetic air mixtures, via MFCs. The OH and 408 HO₂ concentrations at the HORUS inlet were 1.51 (\pm 0.01) and 1.43 (\pm 0.01) x 10¹⁰ molecules 409 410 cm⁻³ respectively when only pure synthetic air and water vapor were injected into APACHE, the uncertainties here are quoted as measurement variability at 1σ . Using these values, the OH 411 and HO₂ concentrations at the lamp were back calculated accounting for radical-radical loss 412 reactions (R6-R8) using rate constants taken from Burkholder et al. (2015) with temperature 413 414 (T) in Kelvin.

415
$$OH + OH \rightarrow H_2 O + O(^{3}P)$$
 $k = 1.8 \times 10^{-12} \cdot \exp^{\left|\frac{1}{T}\right|}$ (R6)

416
$$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$$
 $k = 3.0 \times 10^{-13} \cdot \exp^{\left|\frac{400}{T}\right|}$ (R7)

E 4 3

[460]

417
$$OH + HO_2 \rightarrow H_2O + O_2$$
 $k = 4.8 \times 10^{-11} \cdot \exp^{\left[\frac{250}{T}\right]}$ (R8)

The chemical losses of OH and HO_2 were found to be 32 % and 30%, respectively, yielding 418 OH concentrations of 2.2 (\pm 0.02) x 10¹⁰ molecules cm⁻³ and HO₂ concentrations of 2.0 (\pm 419 0.02) x 10^{10} molecules cm⁻³ at the lamp, at 1010 mbar, using a water vapor mixing ratio of 3.1 420 421 mmol mol⁻¹ in pure synthetic air. The uncertainties are quoted as measurement variability at 1σ . The photon flux (F) experienced by the air sampled by HORUS, quantified using the OH 422 and HO₂ concentrations stated above, ranged from 3.75 x10¹⁴ photons cm⁻² s⁻¹ to 6.1 x10¹⁴ 423 photons cm⁻² s⁻¹ depending on oxygen concentrations and considering the chemical losses. As 424 described before, Eq.(7) shows how the production of OH at the lamp is calculated: 425

426
$$[OH] = [H_2O] \cdot \sigma_{H_2O} \cdot F_{184.9 \text{ nm}} \cdot \phi_{H_2O} \cdot t$$
 (7)

427 $F_{184,9 \text{ nm } is}$ the absolute flux that is encountered by the water molecules as they pass across 428 the photolysis region, which is dependent on the attenuation of the flux (F_{β}) entering APACHE due to water vapor and O_2 molecules. Whereas the absorption coefficient of water vapor is 429 constant across the linewidth of the 184.9 nm Hg emission line, the effective absorption cross 430 431 section of molecular oxygen (σ_{02}) changes significantly at 184.9 nm within the linewidth of 432 the Hg lamp (Creasey et al., 2000). Therefore, σ_{02} affecting the APACHE calibrations is 433 dependent on O₂ concentration, and the ring lamp temperature and current. Since the operating temperature of the uv-technik Hg lamp and the current applied (0.8 A) was kept constant during 434 the actinometrical experiments and during the APACHE calibrations, any effect on σ_{O2} 435 regarding the ring lamp linewidth does not need to be investigated further in this study. The 436 relationship of $F_{184.9 \text{ nm}}$ to F_{β} can be derived using Beer-Lambert principles: 437

438
$$F_{184.9 \text{ nm}} = F_{\beta} \cdot e^{-(\gamma_{H_2O}[H_2O] + \gamma_{O_2}[O_2])}$$
 (8)

439 Where F_{β} is the flux intensity entering APACHE from ring lamp, with:

$$440 \quad \gamma_{02} = R_{\beta} \cdot \omega \cdot \sigma_{02} \tag{9}$$

441 Where R_{β} is the radial distance of the sampled air parcel to the ring lamp of APACHE, ω a 442 correction factor replicating the integrated product of the absorption cross section and the 443 ring lamp's emission line as modified by the effect of the absorption of O₂ present in between 444 the lamp and the flight path of the sampled air, normalized by σ_{O2} is the effective cross section 445 of O₂. When combining Eq. (7) and Eq. (8) the OH concentration produced at the lamp is 446 quantified as:

447
$$[OH] = [H_2O] \cdot \sigma_{H_2O} \cdot \varphi_{H_2O} \cdot t \cdot F_{\beta} \cdot e^{-(\gamma_{H_2O}[H_2O] + \gamma_{O_2}[O_2])}$$
(10)

449
$$\ln\left[\frac{[0H]}{([H_20] \cdot \sigma_{H_20})}\right] = \ln(F_{\beta} \cdot t \cdot \phi_{H_20}) + (-\gamma_{H_20} \cdot [H_20] - \gamma_{0_2} \cdot [0_2])$$
(11)

Figure 9, shows the measured production of OH, (left side of Eq. (11)) plotted against oxygen concentration. Given that the other terms within Eq. (11) are constant with regards to changing oxygen levels, the plotted gradient of the linear regression in figure 9 yields γ_{02} as a function of oxygen concentration being $1.3 \times 10^{-19} (\pm 0.05 \times 10^{-19}) \text{ cm}^3 \text{ molecule}^{-1}$.

Figure 9. Plot showing the result of Eq. (11) as a function of oxygen concentration.

455 Given that, the y intercept of the linear regression, 29.61, is equal to the natural logarithm 456 of $(E_0 + d_{VPQ})$ the flux entering APACHE E_0 can be characterized:

456 of (F_{β} t ϕ_{H2O}), the flux entering APACHE F_{β} can be characterized:

457
$$F_{\beta} = \frac{e^{29.61}}{t \cdot \phi H20} = 6.9 \text{ x} 10^{14} (\pm 1.1 \text{ x} 10^{14}) \text{ s}^{-1}$$
 (12)

458 The accuracy in F_{β} from this method, which we call method A, is 15.9 % (1 σ).

Table 3. Parameters and uncertainties involved in method A, using HORUS as a transfer standard. The totaluncertainty is the sum of the quadrature of the individual uncertainties.

Parameter	Comments	Total Uncertainty
		1σ(%)
NO Monitor (TEI)	Calibration uncertainty	5.2
NO standard (NPL)	Purity and concentration of the gas	1
N ₂ O cross section	JPL recommendation	2
H ₂ O cross section	JPL recommendation	2
γ02	From method A	3.5
$O(^{1}D)$ yield	Martinez et al. (2010)	1
Kinetic rate coefficients	JPL recommendation	12
F_{β} Variability	From method A	3.5
Photolysis chamber dimensions	Specifications of in-house workshop	3
[H ₂ O]	From calibration with NIST	2
	standard Dew point generator	
[O ₂]	From method A	3.4
Mass flow controllers	Calibration with NIST DryCal	2
Pressure and Temperature	Validated against NIST standard	2
sensors		
Overall Experimental Stability	Variability of measured terms	4
Overall uncertainty		15.9

461

The second actinometrical method (B) involved using an ANSYCO O3 41 M ozone monitor
to measure the ozone mixing ratio profile between the HORUS inlet and the wall surface of

464 APACHE, at ground pressure (1021 mbar). This method utilizes O₂ photolysis at 184.9 nm,

which produces two $O({}^{3}P)$ atoms capable of reacting with a further two O_{2} molecules to produce O_{3} .

467
$$O_2 + hv \rightarrow O({}^{3}P) + O({}^{3}P)$$
 (R9)

468
$$0_2 + 0({}^3P) + M \to 0_3 + M$$
 (R10)

469 The value of $1.3 \times 10^{-19} \text{ cm}^3$ molecule⁻¹ for γ_{02} found in the previous method was used to 470 calculate the actinic flux entering APACHE:

471
$$F_{\beta} = \frac{[0_3]}{[0_2] \cdot \gamma_{0_2} \cdot \phi_{0_2} \cdot t \cdot e^{-(\gamma_{0_2}[0_2])}}$$
(13)

472 Φ₀₂ is the quantum yield of O₂ at 184.9 nm, which has been determined to be 1 between 473 242 and 175 nm (Atkinson et al., 2004). As in method A, the ozone produced at the lamp is 474 quantified by back calculating from the ozone measured at the ANSYCO O3 41 M inlet 475 position. Typical ozone mixing ratios ranged from 45 – 72 ppb depending on the oxygen 476 concentration. From this approach, the calculated F_{β} is 5.7 x 10¹⁴ (± 0.74 x 10¹⁴) s⁻¹ with a total 477 uncertainty of 12.9 % (1σ). From the combination of the two experiments, the final values 478 taken for the UV environment within APACHE are:

479 Actinic flux $(F_{\beta}) = 6.3 \times 10^{14} (\pm 0.9 \times 10^{14}) \text{ s}^{-1}$

480 Accuracy in
$$F_{\beta} = 14.4 \% (1\sigma)$$

Table 4. Parameters and uncertainties involved in Method B, using ANSYCO O3 41 M monitor. The total
 uncertainty is the sum of the quadrature of the individual uncertainties.

Parameter	Comments	Total Uncertainty
		1σ (%)
O ₃ calibrator	Calibrated against a primary standard	2
[O ₃]	Calibration of ANSYCO O3 41 M monitor	4
[O ₂]	From method A	3.4
γ02	From method A	3.5
F_{β} Variability	From method A	3.5
Mass flow controllers	Calibration with NIST DryCal	2
Pressure and Temperature	Validated against NIST standard	2
Error miner entrel. Starbilitar	Vanialitian af an lana	10.1
Experimental Stability	variability of values	10.1
Overall uncertainty		12.9

483

484 5 Results and discussion

485 5.1 Evaluation of instrumental sensitivity

Figure 10 shows the sensitivity curve of HORUS, the quenching effect, the linear fits used to quantify the pressure independent sensitivity coefficients, and relative HO_X transmission values for OH, OH in the second axis, and HO₂ plotted as a function of the HORUS internal density. Table 6 shows the pressure independent sensitivity coefficients for OH in the 1st axis, OH in the 2nd axis, and HO₂ in the 2nd axis found from the slopes in figure 10 row C. As

491 described in section 3.2, the pressure driven wall losses in IPI and post critical orifice both 492 contribute to the overall sensitivity curve. The OH transmission terms (α_{IPI} and α_{HORUS}) can 493 be considered together as the total OH transmission (α_{Total}). According to the COMSOL 494 simulations, the losses of HO_X occur mainly at the inlet itself resulting in for both OH and HO₂ 495 to be 78 (± 0.8, full range) %. To calculate the loss of HO_X within IPI, the following was used:

496
$$\alpha_{IPI OH} = 1 - \left[\frac{OH_{DM}(P) \cdot t_{r IPI}(P,T) \cdot \pi}{IPI_{A} \cdot P_{IPI}} \right]$$
(14)

497
$$\alpha_{\text{IPI HO}_2} = 1 - \left[\frac{\text{HO}_{2 \text{ DM}}(P) \cdot t_{\text{r IPI}}(P,T) \cdot \pi}{\text{IPI}_A \cdot P_{\text{IPI}}} \right]$$
(15)

498 Where t_{rIPI} is the transit time within IPI, i.e. the time it takes air to flow from the IPI inlet to the critical orifice of HORUS. IPI_A is the internal cross sectional area of IPI and P_{IPI} is the 499 500 measured pressure within IPI. The OH_{DM} and HO_{2 DM} terms are the OH and HO₂ diffusion coefficients as described in section 4.1.2. By applying Eq. (14) and Eq. (15), $\alpha_{IPI OH}$ and $\alpha_{IPI HO2}$ 501 502 ranged from 0.98 to 0.995 and 0.99 to 0.997 respectively across the pressure range within IPI 503 of 210 - 1010 mbar and IPI transit times of 90 - 120 milliseconds. Summing the inlet wall 504 loss found from the COMSOL simulations (78 \pm 0.8 %) and $\alpha_{IPI OH}$ and $\alpha_{IPI HO2}$ calculated from Eq. (14) and Eq. (15) results in a combined α_{IPI} term for OH of 76.7 (± 2.2, full range) and for 505 HO₂ of 77.3 (\pm 1.6, full range). However, to calculate α_{Total} , the OH transmission post critical 506 507 orifice, α_{HORUS} , must be resolved. α_{HORUS} regarding OH and HO₂ can be calculated by adapting 508 Eq. (14) and Eq. (15) to the internal HORUS conditions producing:

509
$$\alpha_{\text{HORUS OH}} = 1 - \left[\frac{OH_{\text{DM}}(P) \cdot t_{r1}(P,T) \cdot \pi}{HORUS_A \cdot P_{\text{int}}} \right]$$
 (16)

510
$$\alpha_{\text{HORUS OH}_2} = 1 - \left[\frac{\text{OH}_{\text{DM}}(P) \cdot t_{r_2}(P,T) \cdot \pi}{\text{HORUS}_A \cdot P_{\text{int}}}\right]$$
 (17)

511
$$\alpha_{\text{HORUS HO}_2} = 1 - \left[\frac{\text{HO}_{2 \text{ DM}}(P) \cdot t_{r2}(P,T) \cdot \pi}{\text{HORUS}_A \cdot P_{\text{int}}} \right]$$
(18)

Where t_{r1} and t_{r2} are the transit times within HORUS from the critical orifice to the 1st and 512 513 2^{nd} detection axis respectively. HORUS_A is the internal cross sectional area of HORUS and P_{int} 514 is the measured internal pressure within HORUS. The OH transmission from the critical orifice to the 1st detection cell ($\alpha_{HORUS OH}$) ranged from 0.84 to 0.96, the OH transmission from the 515 critical orifice to the 2^{nd} detection cell ($\alpha_{HORUS OH 2}$) ranged from 0.59 to 0.88, and the HO₂ 516 transmission from the critical orifice to the 2^{nd} detection cell ($\alpha_{HORUS HO2}$) ranged from 0.82 to 517 0.96. These ranges are quoted under the HORUS internal pressure range of 3.7 to 18.4 mbar 518 and internal transit times to the 1st detection axis (3.8 to 4.3 milliseconds) and 2nd detection 519 axis (23.5 to 27.8 milliseconds). The combined α_{Total} values for OH, OH at the second detection 520 axis, and HO₂ are plotted in figure 10 row D as a function of the internal density of HORUS. 521

The two actinometric methods used to calibrate the flux entering APACHE from the uvtechnik ring lamp, yielded encouraging and comparative results. The F_{β} found from ozone actinometric method (5.7 ± 0.74 x 10¹⁴ s⁻¹) and from the HORUS transfer standard actinometric method (6.9 ± 1.1 x 10¹⁴ s⁻¹) agree with the difference of 1.2 x 10¹⁴ s⁻¹ representing only 60 % of the combined 1 σ uncertainty in F_{β} , ± 2 x 10¹⁴ s⁻¹ from the two methods.

527

529 5.2 Absolute Calibration Uncertainty

- 530 The contribution of parameter uncertainties to the respective sensitivities are summarized in
- 531 tables 5 to 8.

Table 5. Parameters within APACHE, their ranges and uncertainties, contributing to the uncertainty in the three
 measurement sensitivities within HORUS.

Parameter (unit)	Range or typical	Precision	Total Uncertainty
	value	(1σ)	(1σ)
F_{β} at 184.9 nm (s ⁻¹)	6.3 x 10 ¹⁴	3.5 %	14.4 %
σH_2O (cm ² molecule ⁻¹)	7.22 x 10 ⁻²⁰	-	2 %
γ_{O2} (cm ³ molecule ⁻¹)	1.30 x 10 ⁻¹⁹	1.8 %	3.5 %
$[O_2]$ (x10 ¹⁸ molecules cm ⁻³)	1.1 - 4.8	1.4 %	3.4 %
$[H_2O]$ (x10 ¹⁶ molecules cm ⁻³)	2.00 - 7.41	1.2 %	2 %
Mass flow controller (sL min ⁻¹)	203 - 988	< 2 %	2 %
Pressure sensors (mbar)	275 - 894	< 1 %	2 %
Temperature sensors (K)	282 - 302	< 1 %	2 %
Overall		5 %	16.2 %

534

535 Table 6. Pressure independent sensitivities and their overall uncertainty from calibrations with APACHE.

Parameter	Value	Precision	Total
(cts cm ³ molecule ⁻¹ s ⁻¹)		$(\pm 1\sigma)$	Uncertainty (1σ)
c0 for OH in OH axis	1.44	4 %	6.9 %
c1 for OH in HO ₂ axis	0.68	4 %	6.9 %
c2 for HO_2 in HO_2 axis	1.3	2 %	5.6 %

536

Table 7. Pressure dependent OH and HO₂ transmission and their overall uncertainty from calibrations with
 APACHE.

Parameter	Value	Precision	Total Uncertainty
(%)		$(\pm 1\sigma)$	(1σ)
α_{Total} (for OH to OH axis)	61 - 72	2.8 %	14.3 - 11.4 %
α_{Total} (for OH to HO ₂ axis)	35 - 65	4.3 %	14.1 - 11.5 %
α_{Total} (for HO ₂ to HO ₂ axis)	54 - 70	2.9 %	7.9 - 4.7 %

539

Table 8. Pressure dependent sensitivities for the three measurement within HORUS, their overall uncertainty from
 calibrations with APACHE. The range in the precision relates to the numbers quoted in the value column.

Parameter (unit)	Value	Precision	Total
		$(\pm 1\sigma)$	Uncertainty (1o)
C_{OH} (cts s ⁻¹ pptv ⁻¹ mW ⁻¹)	7.9 - 26.4	1.1 - 0.5 %	17.6 %
C _{OH (2)} (cts s ⁻¹ pptv ⁻¹ mW ⁻¹)	3.9 - 10.5	2.0 - 0.3 %	17.6 %
C_{HO2} (cts s ⁻¹ pptv ⁻¹ mW ⁻¹)	7.5 - 22.3	0.4 - 0.7 %	17.1 %

543 6 Conclusions

The overall goal of this study was to develop and test a new calibration system capable of 544 545 providing the high flows required by the airborne HORUS system whilst maintaining stable pressures across the pressure ranges experienced during flight. Such systems are critical to 546 suitably characterize airborne systems, (such as a LIF-FAGE measuring HO_X), that have a 547 548 strong pressure dependent sensitivity. In addition, this system is purely based on the use of water-vapor photolysis, which is a frequently adopted technique for HO_X instrument 549 550 calibration (Martinez et al., 2003; Faloona et al., 2004; Dusanter et al., 2008). The COMSOL multiphysics simulations constrained by temperature, pressure and mass flow measurements 551 demonstrated that air masses at the boundary of the APACHE system do not have sufficient 552 time to expand into the streamlines created by the HORUS sample flow and influence the HO_X 553 554 content entering HORUS. The main HO_X wall losses occurred at the HORUS inlet where on average 23.3 % (\pm 1.6, full range) of OH and 22.7 % (\pm 0.9, full range) of HO₂ are lost. While 555 556 the application of these factors contribute to the uncertainty in the overall calibration factor, they proved to be critical in understanding and constraining the UV conditions within 557 558 APACHE. The largest uncertainties result from constraining the flux (F_{β}) entering APACHE $(6.3 \pm 0.9 \times 10^{14} \text{ s}^{-1})$, 1 σ) and the total uncertainty in the pressure independent sensitivity 559 coefficients (ranging from 5.6 to 6.9 %, 1 σ). The two actinometrical methods used to derive F_{β} 560 proved to be in good agreement with one another, with the HORUS transfer standard method 561 yielding $6.9 \pm 1.1 \times 10^{14} \text{ s}^{-1}$ (1 σ) and the ozone monitor method yielding $5.7 \pm 0.74 \times 10^{14} \text{ s}^{-1}$ 562 (1σ) . Furthermore, the APACHE system enabled the total OH and HO₂ pressure dependent 563 564 transmission factors to be characterized as a function of internal pressure using both COMSOL 565 simulations and calculations of HO_x diffusivity to the walls within IPI and the low-pressure regime within HORUS. Overall, the APACHE calibration system sufficiently able to calibrate 566 567 the airborne HORUS system across the pressure range experienced during flight. The relatively 568 low overall uncertainty of 17 - 18 % (1 σ) demonstrates the suitability of this calibration approach, particularly when compared to other calibration methods described earlier. 569

570

Author contributions. K.H, C.E, M.M, H.H, U.J, and M.R formulated the original concept and designed the
APACHE system. D.M, H.H, and U.J prototyped, developed, and characterized the APACHE system. T.K, D.M,
and H.H developed and performed the CFD simulations. D.M prepared the manuscript with contributions from
all coauthors.

575

Acknowledgments. We would like to take this opportunity to give a thank you to the in-house workshop at the
 Max Planck Institute for Chemistry for construction and guidance in the development of APACHE. Additionally,
 a special thank you to Dieter Scharffe for his assistance and advice during the development stage of this project.

- 581
- 582
- 583
- 584

585 References

5	8	6
-	-	•

587	Albrecht, S. R., A. Novelli, A. Hofzumahaus, S. Kang, Y. Baker, T. Mentel, A. Wahner and H. Fuchs,
588	"Measurements of hydroperoxy radicals (HO2) at atmospheric concentrations using bromide
589	chemical ionisation mass spectrometry." Atmospheric Measurement Techniques 12,2: 891-
590	902, 2019.
591	Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi
592	and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I -
593	gas phase reactions of O-x, HOx, NOx and SOx species." Atmospheric Chemistry and Physics 4:
594	1461-1738, 2004.
595	Brauers, T., U. Aschmutat, U. Brandenburger, H. P. Dorn, M. Hausmann, M. Hessling, A. Hofzumahaus,
596	F. Holland, C. PlassDulmer and D. H. Ehhalt, "Intercomparison of tropospheric OH radical
597	measurements by multiple folded long-path laser absorption and laser induced fluorescence."
598	Geophysical Research Letters 23,18: 2545-2548, 1996.
599	Brauers, T., M. Hausmann, A. Bister, A. Kraus and H. P. Dorn, "OH radicals in the boundary layer of the
600	Atlantic Ocean 1. Measurements by long-path laser absorption spectroscopy." Journal of
601	Geophysical Research-Atmospheres 106 , D7: 7399-7414, 2001.
602	Brune, W. H., P. S. Stevens and J. H. Mather, "Measuring OH and HO2 in the Troposphere by Laser-
603	Induced Fluorescence at Low-Pressure." Journal of the Atmospheric Sciences 52,19: 3328-
604	3336, 1995.
605	Burkholder, J. B., S. P. Sander, J. Abbatt, J. R. Barker, R. E. Huie, C. E. Kolb, M. J. Kurylo, V. L. Orkin, D.
606	M. Wilmouth and P. H. Wine, "Chemical Kinetics and Photochemical Data for Use in
607	Atmospheric Studies, Evaluation No. 18." JPL Publication 15-10, 2015.
608	COMSOL, Multiphysics Documentation, version 5.4, [software], 2019.
609	Creasey, D. J., G. E. Evans, D. E. Heard and J. D. Lee, "Measurements of OH and HO2 concentrations in
610	the Southern Ocean marine boundary layer." Journal of Geophysical Research-Atmospheres
611	108, D15, 2003.
612	Creasey, D. J., D. E. Heard and J. D. Lee, "Absorption cross-section measurements of water vapour and
613	oxygen at 185 nm. Implications for the calibration of field instruments to measure OH, HO2
614	and RO2 radicals." Geophysical Research Letters 27,11: 1651-1654, 2000.
615	Dilecce, G., P. F. Ambrico and S. De Benedictis, "An ambient air RF low-pressure pulsed discharge as
616	an OH source for LIF calibration." Plasma Sources Science & Technology 13, 2: 237-244, 2004.
617	Dorn, H. P., R. Neuroth and A. Hofzumahaus, "Investigation of OH Absorption Cross-Sections of
618	Rotational Transitions in the a(2)Sigma(+), V'=0 [- X(2)Pi, V''=0 Band under Atmospheric
619	Conditions - Implications for Tropospheric Long-Path Absorption-Measurements." Journal of
620	Geophysical Research-Atmospheres 100,D4: 7397-7409, 1995.
621	Dusanter, S., D. Vimal and P. S. Stevens, "Technical note: Measuring tropospheric OH and HO2 by laser-
622	induced fluorescence at low pressure. A comparison of calibration techniques." Atmospheric
623	Chemistry and Physics 8,2: 321-340, 2008.
624	Engel, V., V. Staemmler, R. L. Vanderwal, F. F. Crim, R. J. Sension, B. Hudson, P. Andresen, S. Hennig,
625	K. Weide and R. Schinke, "Photodissociation of Water in the 1st Absorption-Band - a Prototype
626	for Dissociation on a Repulsive Potential-Energy Surface." Journal of Physical Chemistry 96,8:
627	3201-3213, 1992.
628	Faloona, I. C., D. Tan, R. L. Lesher, N. L. Hazen, C. L. Frame, J. B. Simpas, H. Harder, M. Martinez, P. Di
629	Carlo, X. R. Ren and W. H. Brune, "A laser-induced fluorescence instrument for detecting
630	tropospheric OH and HO2: Characteristics and calibration." Journal of Atmospheric Chemistry
631	47, 2: 139-167, 2004.
632	Fuchs, H., B. Bohn, A. Hofzumahaus, F. Holland, K. D. Lu, S. Nehr, F. Rohrer and A. Wahner, "Detection
633	of HO2 by laser-induced fluorescence: calibration and interferences from RO2 radicals."
634	Atmospheric Measurement Techniques 4,6: 1209-1225, 2011.

635	Fuchs, H., Z. F. Tan, A. Hofzumahaus, S. Broch, H. P. Dorn, F. Holland, C. Kunstler, S. Gomm, F. Rohrer,
636	S. Schrade, R. Tillmann and A. Wahner, "Investigation of potential interferences in the
637	detection of atmospheric ROx radicals by laser-induced fluorescence under dark conditions."
638	Atmospheric Measurement Techniques 9, 4: 1431-1447, 2016.
639	Hard, T. M., L. A. George and R. J. O'brien, "Fage Determination of Tropospheric OH and HO ₂ ." Journal
640	of the Atmospheric Sciences 52, 19: 3354-3372, 1995.
641	Hard, T. M., L. A. George and R. J. O'Brien, "An absolute calibration for gas-phase hydroxyl
642	measurements." Environmental Science & Technology 36, 8: 1783-1790, 2002.
643	Heard, D. E. and M. J. Pilling, "Measurement of OH and HO2 in the troposphere." Chemical Reviews
644	103, 12: 5163-5198, 2003.
645	Hens, K., A. Novelli, M. Martinez, J. Auld, R. Axinte, B. Bohn, H. Fischer, P. Keronen, D. Kubistin, A. C.
646	Nolscher, R. Oswald, P. Paasonen, T. Petaja, E. Regelin, R. Sander, V. Sinha, M. Sipila, D.
647	Taraborrelli, C. T. Ernest, J. Williams, J. Lelieveld and H. Harder, "Observation and modelling
648	of HOx radicals in a boreal forest." Atmospheric Chemistry and Physics 14,16: 8723-8747,
649	2014.
650	Hofzumahaus, A., T. Brauers, U. Aschmutat, U. Brandenburger, H. P. Dorn, M. Hausmann, M. Hessling,
651	F. Holland, C. PlassDulmer, M. Sedlacek, M. Weber and D. H. Ehhalt, "The measurement of
652	tropospheric OH radicals by laser-induced fluorescence spectroscopy during the POPCORN
653	field campaign and Intercomparison of tropospheric OH radical measurements by multiple
654	folded long-path laser absorption and laser induced fluorescence - Reply." Geophysical
655	Research Letters 24, 23: 3039-3040, 1997.
656	Holland, F., M. Hessling and A. Hofzumahaus, "In-Situ Measurement of Tropospheric Oh Radicals by
657	Laser-Induced Fluorescence - a Description of the Kfa Instrument." Journal of the Atmospheric
658	Sciences 52, 19: 3393-3401, 1995.
659	Holland, F., A. Hofzumahaus, R. Schafer, A. Kraus and H. W. Patz, "Measurements of OH and HO2
660	radical concentrations and photolysis frequencies during BERLIOZ." Journal of Geophysical
661	Research-Atmospheres 108, D4, 2003.
662	Ivanov, A. V., S. Trakhtenberg, A. K. Bertram, Y. M. Gershenzon and M. J. Molina, "OH, HO2, and ozone
663	gaseous diffusion coefficients." Journal of Physical Chemistry A 111, 9: 1632-1637, 2007.
664	Kukui, A., G. Ancellet and G. Le Bras, "Chemical ionisation mass spectrometer for measurements of
665	OH and Peroxy radical concentrations in moderately polluted atmospheres." Journal of
666	Atmospheric Chemistry 61, 2: 133-154, 2008.
667	Lelieveld, J., W. Peters, F. J. Dentener and M. C. Krol, "Stability of tropospheric hydroxyl chemistry."
668	Journal of Geophysical Research-Atmospheres 107, D23, 2002.
669	Mallik, C., L. Tomsche, E. Bourtsoukidis, J. N. Crowley, B. Derstroff, H. Fischer, S. Hafermann, I. Huser,
670	U. Javed, S. Kessel, J. Lelieveld, M. Martinez, H. Meusel, A. Novelli, G. J. Phillips, A. Pozzer, A.
671	Reifts, R. Sander, D. Taraborrelli, C. Sauvage, J. Schuladen, H. Su, J. Williams and H. Harder,
672	"Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling
673	of HOx measurements over Cyprus." Atmospheric Chemistry and Physics 18, 14: 10825-10847,
674	2018.
675	Mao, J., X. Ren, L. Zhang, D. M. Van Duin, R. C. Cohen, J. H. Park, A. H. Goldstein, F. Paulot, M. R. Beaver,
676	J. D. Crounse, P. O. Wennberg, J. P. DiGangi, S. B. Henry, F. N. Keutsch, C. Park, G. W. Schade,
6//	G. M. Wolfe, J. A. Thornton and W. H. Brune, "Insights into hydroxyl measurements and
678	atmospheric oxidation in a California forest." Atmospheric Chemistry and Physics 12,17: 8009-
б/У СРО	8020, 2012.
080	IVIARTINEZ, IVI., H. HARGER, I. A. KOVACS, J. B. SIMPAS, J. BASSIS, K. LESNER, W. H. BRUNE, G. J. FROST, E. J.
081	Williams, C. A. Stroud, B. I. Jobson, J. M. Koberts, S. K. Hall, K. E. Shetter, B. Wert, A. Fried, B.
082 202	Allicke, J. Stutz, V. L. Young, A. B. White and K. J. Zamora, "UH and HUZ concentrations, sources,
601	and loss rates during the southern Oxidants Study in Nashville, rennessee, summer 1999. Journal of Goophysical Posoarch Atmospheres 109 D10, 2002
004	Journal of Geophysical Research-Authospheres 100, 013, 2003.

685 686 687 688	 Martinez, M., H. Harder, D. Kubistin, M. Rudolf, H. Bozem, G. Eerdekens, H. Fischer, T. Klupfel, C. Gurk, R. Konigstedt, U. Parchatka, C. L. Schiller, A. Stickler, J. Williams and J. Lelieveld, "Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements." Atmospheric Chemistry and Physics 10.8: 3759-3773, 2010.
689 690	Mather, J. H., P. S. Stevens and W. H. Brune, "OH and HO2 measurements using laser-induced
691	Novelli, A., K. Hens, C. T. Ernest, D. Kubistin, E. Regelin, T. Elste, C. Plass-Dulmer, M. Martinez, J.
692	Lelieveld and H. Harder, "Characterisation of an inlet pre-injector laser-induced fluorescence
693	instrument for the measurement of atmospheric hydroxyl radicals." Atmospheric
694 605	Measurement Techniques 7,10: 3413-3430, 2014.
696	H Fischer R Sander P lockel R Konjøstedt and I Lelieveld "HOx measurements in the
697	summertime upper troposphere over Europe: a comparison of observations to a box model
698	and a 3-D model." Atmospheric Chemistry and Physics 13 ,21: 10703-10720, 2013.
699	Ren, X. R., H. Harder, M. Martinez, R. L. Lesher, A. Oliger, J. B. Simpas, W. H. Brune, J. J. Schwab, K. L.
700	Demerjian, Y. He, X. L. Zhou and H. G. Gao, "OH and HO2 chemistry in the urban atmosphere
701	of New York City." Atmospheric Environment 37 ,26: 3639-3651, 2003.
702	Roach, P. E., "The Generation of Nearly Isotropic Turbulence by Means of Grids." International Journal
703	Sander S P. B. I. Finlayson-Pitts, R. R. Friedl, D. M. Golden, R. F. Huie, C. F. Kolh, M. I. Kurvlo, M. I.
705	Molina, G. K. Moortgat, V. L. Orkin and A. R. Ravishankara, "Chemical Kinetics and
706	Photochemical Data for Use in Atmospheric Studies." JPL Publication 02-25, 2003.
707	Schlosser, E., B. Bohn, T. Brauers, H. P. Dorn, H. Fuchs, R. Haseler, A. Hofzumahaus, F. Holland, F.
708	Rohrer, L. O. Rupp, M. Siese, R. Tillmann and A. Wahner, "Intercomparison of two hydroxyl
709	radical measurement techniques at the atmosphere simulation chamber SAPHIR." Journal of
/10	Atmospheric Chemistry 56, 2: 187-205, 2007.
711 712	Schlosser, E., T. Brauers, H. P. Dom, H. Fuchs, K. Haseler, A. Horzumanaus, F. Hollanu, A. Wanner, T. Kanaya, Y. Kajii, K. Miyamoto, S. Nishida, K. Watanabe, A. Yoshino, D. Kubistin, M. Martinez,
713	M. Rudolf, H. Harder, H. Berresheim, T. Elste, C. Plass-Dulmer, G. Stange and U. Schurath.
714	"Technical Note: Formal blind intercomparison of OH measurements: results from the
715	international campaign HOxComp." Atmospheric Chemistry and Physics 9,20: 7923-7948,
716	2009.
717	Sjostedt, S. J., L. G. Huey, D. J. Tanner, J. Peischl, G. Chen, J. E. Dibb, B. Lefer, M. A. Hutterli, A. J.
718	Beyersdorf, N. J. Blake, D. R. Blake, D. Sueper, T. Ryerson, J. Burkhart and A. Stohl,
719	Summer 2003 " Atmospheric Environment 41 24: 5122-5137, 2007
721	Smith, S. C., J. D. Lee, W. J. Bloss, G. P. Johnson, T. Ingham and D. E. Heard, "Concentrations of OH and
722	HO2 radicals during NAMBLEX: measurements and steady state analysis." Atmospheric
723	Chemistry and Physics 6: 1435-1453, 2006.
724	Stevens, P. S., J. H. Mather and W. H. Brune, "Measurement of Tropospheric OH and HO_2 by Laser-
725	Induced Fluorescence at Low-Pressure." Journal of Geophysical Research-Atmospheres 99,D2:
726	3543-3557, 1994.
/2/ 720	ang, M. J., R. A. Cox and M. Kalberer, "Compliation and evaluation of gas phase diffusion coefficients
720	Chemistry and Physics 14 17: 9233-9247 2014
730	Tanner, D. J. and F. L. Eisele, "Present OH Measurement Limits and Associated Uncertainties." Journal
731	of Geophysical Research-Atmospheres 100 ,D2: 2883-2892, 1995.
732	Verreycken, T. and P. J. Bruggeman, "OH density measurements in nanosecond pulsed discharges in
733	atmospheric pressure N-2-H2O mixtures." Plasma Sources Science & Technology 23,1, 2014.
734	Winiberg, F. A. F., S. C. Smith, I. Bejan, C. A. Brumby, T. Ingham, T. L. Malkin, S. C. Orr, D. E. Heard and
/35	P. w. seakins, "Pressure-dependent calibration of the OH and HO2 channels of a FAGE HOx

- 736 instrument using the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC)."
- 737 Atmospheric Measurement Techniques **8**,2: 523-540, 2015.
- Zhang, D. H., M. A. Collins and S. Y. Lee, "First-principles theory for the H+H2O, D2O reactions." Science
 290,5493: 961-963, 2000.

740