Supplemental Information for:

## Simultaneous Detection of Ozone and Nitrogen Dioxide by Oxygen Anion Chemical Ionization Mass Spectrometry: A Fast Time Response Sensor Suitable for Eddy Covariance Measurements

Gordon A. Novak, Michael P. Vermeuel, Timothy H. Bertram

Department of Chemistry, University of Wisconsin - Madison, Madison, WI, USA

Correspondence to: Timothy H. Bertram (timothy.bertram@wisc.edu)

| Component                                                     | Voltage (V) |  |
|---------------------------------------------------------------|-------------|--|
| IMR Region (95 mbar)                                          |             |  |
| IMR                                                           | 1.5         |  |
| CDC/ Short Segmented Quadrupole Region (2mbar)                |             |  |
| Lens Nozzle                                                   | -1.1        |  |
| SSQ Entrance Plate                                            | -3.5        |  |
| SSQ Front                                                     | -4.2        |  |
| SSQ Back                                                      | -5.8        |  |
| Lens Skimmer                                                  | -5.7        |  |
| Skimmer                                                       | -3.9        |  |
| Big Segmented Quadrupole Region (1.2 x 10 <sup>-3</sup> mbar) |             |  |
| BSQ Front                                                     | -1.0        |  |
| BSQ Back                                                      | -1.0        |  |
| Skimmer 2                                                     | 5.0         |  |

Table S1: Operational ion optic voltages and chamber pressures for the three front end chambers of the Ox-CIMS. Ion declustering strength is primarily determined by the voltage difference between the Skimmer and BSQ Front. The nomenclature of Brophy and Farmer. (2016) is used for ion optic component labelling.

| Reagent Ion                   | 02 <sup>-</sup><br>(kcal mol <sup>-1</sup> ) | CO <sub>3</sub><br>(kcal mol <sup>-1</sup> ) |
|-------------------------------|----------------------------------------------|----------------------------------------------|
| H <sub>2</sub> O              | -18.97                                       | -13.18                                       |
| H <sub>2</sub> O <sub>2</sub> | -29.42                                       | -21.15                                       |
| CH₃OOH                        | -25.00                                       | -7.92                                        |
| HNO <sub>3</sub>              | -26.76                                       | -24.10                                       |

Table S2: Calculated binding enthalpies in kcal mol<sup>-1</sup> for  $O_2^-$  and  $CO_3^-$  reagent ions to water (H<sub>2</sub>O), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), methyl hydrogen peroxide (CH<sub>3</sub>OOH), and nitric acid (HNO<sub>3</sub>) in kcal mol<sup>-1</sup>. Calculations were performed with the MP2/aug-cc-pvdz-PP theory and basis set.



Figure S1: Distribution of 1 Hz reagent ion signal as the sum of  $O_2^-$  and  $(O_2 \cdot H_2 O)^-$  during the full ambient sampling period from Scripps Pier. Absolute sensitivity to  $O_3^-$  and  $NO_2^-$  scales directly with the magnitude of reagent ion signal. Mean reagent ion signal during the campaign was 1.45 x 10<sup>7</sup> cps corresponding to an absolute sensitivity to  $O_3^-$  and  $NO_2^-$  of 1.8 x 10<sup>5</sup> and 1.05 x 10<sup>5</sup> cps ppbv<sup>-1</sup> respectively at a specific humidity of 8 g kg<sup>-1</sup>.



Figure S2: Normalized count rate of background  $CO_3^-$  signal at the sum of -m/Q 60 and -m/Q 48 as a function of oxygen fraction in the reagent ion precursor flow  $(f_{O_2})$ , with least squares exponential fit line. Reagent ion flow  $f_{O_2}$  was varied while the inlet was overflowed with zero air containing 380 ppmv CO<sub>2</sub>, to isolate the background production of  $CO_3^-$  in the reagent ion generation source. The background O<sub>3</sub> production was 1.5 ppbv at  $f_{O_2}$  of 0.08 (blue square overlay) used during ambient sampling.



Figure S3: (a) Distribution of observed count rates of the sum of  $CO_3^-$  (-60 m/Q) and  $O_3^-$  (-48 m/Q) during the full sampling period from Scripps Pier. The green shaded region shows periods of dry UHP N<sub>2</sub> overflow of the sampling line. (b) Distribution of observed count rates during dry N<sub>2</sub> overflow periods overflow only. Count rates during overflow periods show high consistency between overflow periods with a mean of 3.1 x 10<sup>5</sup> and standard deviation of 5.0 x 10<sup>4</sup> counts per second. Residual  $CO_3^-$  during overflow periods is from generation in the reagent ion source rather than off gassing from instrument surfaces. (c) Distribution of normalized adjacent differences of the mean summed  $CO_3^-$  and  $O_3^-$  signal during each three-minute overflow period. The NAD of overflow periods is a measure of point to point stability of the background over the full campaign. The 1  $\sigma$  deviation of the NAD distribution is 9% which gives an upper limit of the variability between subsequent O<sub>3</sub> backgrounds. A 9% variability in the background corresponds to 110 pptv O<sub>3</sub> at mean overflow signal of 3.1 x 10<sup>5</sup> cps.



Figure S4: Background count rate of ozone detected as  $CO_3^-$  at -60 m/Q and as  $O_3^-$  at -48 m/Q during an N<sub>2</sub> overflow background determination period during ambient sampling at Scripps Pier. Overflow of dry N<sub>2</sub> was started at 0 s and stopped at 120 s. During N<sub>2</sub> overflow periods during field sampling, no CO<sub>2</sub> was added to drive the reaction product to  $CO_3^-$ . This leads to the detection of a portion of the O<sub>3</sub> background signal as  $O_3^-$  during N<sub>2</sub> overflow which must be accounted for. Count rates of  $O_3^-$  were of similar magnitude to the  $CO_3^-$  signal during N<sub>2</sub> overflow periods during field sampling. From lab calibrations the sensitivity to  $O_3^-$  at 0 ppmv CO<sub>2</sub> and 0 g kg<sup>-1</sup> SH is approximately a factor of three higher than  $CO_3^-$ . Accounting for the background signal at  $O_3^-$  increases the mean O<sub>3</sub> background during field sampling by 0.6 ppbv (from approximately 0.7 to a 1.3 ppbv total O<sub>3</sub> background).



Figure S5: Distribution of normalized adjacent differences of 10 Hz O<sub>3</sub> signal during a 2-minute dry N<sub>2</sub> overflow period during ambient sampling at Scripps Pier. The 1 $\sigma$  upper limit of precision is 0.75% corresponding to 7.5 pptv precision in the 1.3 ppbv background O<sub>3</sub> signal Precision limitations from background O<sub>3</sub> generation in the ion source are unlikely to be significant in the overall precision of the instrument during ambient sampling where precision is 300 pptv at 40 ppbv ambient O<sub>3</sub> concentrations.



Figure S6: Allan variance determination of optimal averaging time for (a)  $O_3$  and (b)  $NO_2$  for sampling of a constant calibration source in lab for approximately 10 minutes with 10 Hz data collection. The minimum of the Allan variance curve is the optimum averaging time ( $\tau_{opt}$ ) that results in the lowest achievable LOD. For  $O_3 \tau_{opt}$  was 11 s, and for  $NO_2 \tau_{opt}$  was 19 s.



Figure S7: Regression of O<sub>3</sub> signal against H<sub>2</sub>O<sub>2</sub> from laboratory sampling of approximately 8 ppbv O<sub>3</sub> with fast introduction of a H<sub>2</sub>O<sub>2</sub> source up to 40ppb. Linear regression shows a loss of 0.06 ppbv of the O<sub>3</sub> signal per ppbv H<sub>2</sub>O<sub>2</sub> added. H<sub>2</sub>O<sub>2</sub> is detected as an adduct with  $O_2^-$  the parent ion H<sub>2</sub>O<sub>2</sub> at -m/Q 66. The CO<sub>3</sub> (H<sub>2</sub>O<sub>2</sub>)<sup>-</sup> adduct at -94 m/Q is observed respond with increase with H<sub>2</sub>O<sub>2</sub> introduction but has a persistent high signal which is attributed to a ubiquitous  $O_2(CO_2)$  (H<sub>2</sub>O)<sup>-</sup> adduct.



Figure S8: Short-term instrument precision from distribution of normalized adjacent differences against ion count rate for 10 Hz and 1 Hz data averaging. Normalized adjacent differences were calculated for all masses -30 to -250 m/Q for a 27-minute ambient sampling period. Precision is reported as 1 $\sigma$  of the NAD distribution for each mass. Ion count rates are the mean unnormalized count rate over the 27-minute sampling period.



Figure S9: Histogram of determined lag times determined as the maximum (MAX) absolute magnitude of the autocovariance and from the maximum absolute magnitude of a 10 point moving median (AVG) of the autocovariance over  $a \pm 5 s$  lag window.



Figure S10: Calculation of cross-covariance at very long lag times (-500 to -485 & 485-500 s) used to determine the flux LOD via the LOD<sub>RMSE</sub> and LOD $\sigma$  methods. Covariance in the physically reasonable flux window of lag times (-3 to 3 s) is well resolved from the covariance magnitude at long lag times driven by noise.



Figure S11: Ozone auto-covariance for 10 Hz O<sub>3</sub> signal for a single flux averaging period. White noise only contributes to the auto-covariance at a lag of 0 points. Auto-covariance at other lag times is from real long-term coherence in the signal, either from atmospheric variability or instrument drift.



Figure S12: Ozone flux limit of detection from for 27-minute flux periods determined by the LOD<sub>RMSE</sub> and LOD<sub>σ</sub> methods.

## References

Brophy, P. and Farmer, D. K.: Clustering, methodology, and mechanistic insights into acetate chemical ionization using high-resolution time-of-flight mass spectrometry, Atmos. Meas. Tech., 9(8), 3969–3986, doi:10.5194/amt-9-3969-2016, 2016.