
Comments on ”Filtering of pulsed lidars data using spatial information and a clustering algorithm” 

Anonymous Referee #1 

General comments 

This paper presents alternative wind lidar data recovery methods, over the traditional carrier‐to‐

noise ratio. The paper presents both a clustering technique and a median‐like filter, and evaluates 

results on both synthetic and real lidar data. 

While the paper includes some important results, the presentation is a little clumsy, and I feel the 

paper could be greatly improved. There needs to be general improvements to the usage of English 

throughout, examples of which I have highlighted below. The paper overall reads as if several 

authors composed different sections, there is a lot of repetition of the discussion, and the figures do 

not flow nicely. While some scrolling/page turning is expected, referring to figure 10 on page 7 

requires the reader to turn to page 19. Perhaps there is an alternative way to make your point on 

page 7? Figure 7 also does not seem to be referred to in the text? 

A: The paper will be improved to correct the problems suggested by the reviewer. 

The point I would like to make most clearly is your conclusion states the clustering filter performs 

best in both synthetic and real data, and increases data availability between 22% and 38%, while 

also reducing erroneous measurements between 70% and 80%. This is a significant result, and I feel 

you could make more of this in the paper. There is a lot of discussion on methods used, sometimes 

repeated several times, but I feel comparatively little on your major results. Improving the flow of 

the paper, and removing some of the repeated discussion to focus more on results will greatly 

enhance your paper. 

A: This is an important comment and will be reflected in the corrected version. 

Specific comments 

1) Title should read “lidar” rather than “lidars” 

A: The work presents results from a real and a lidar simulator, this is the reason behind lidars 

instead of lidar. 

2) Page 1 Line 13 – replace “its adoption” with “their adoption” or similar Line 14/15/16 – the 

meaning of the sentence beginning “Their capability to measure: : :.” is unclear. Do you 

mean a single lidar can scan a spatial domain of comparable size to a wind farm? If so, it 

would be helpful to include an indication on the actual size of a windfarm By “their 

increasing accuracy” do you mean increased accuracy over meteorological masts? Line 17 – 

please be more specific with “traditional wind measurement techniques”, for example wind 

profiling radars can also be used, and are also susceptible to atmospheric conditions. What is 

“traditional”? Line 18 – please define “lack of references”, do you mean a second instrument 

to compare wind values to? Line 25 – please define VLOS the first time you use it, rather 

than the second  
A: 

‐ Page 1 Line 13. Corrected. 

‐ Page 1 Line 14/15/16. Since wind farm vary in installed capacity and size, giving one 

number it is not easy. But spacing of large turbines can be in the order of a kilometer 

(assuming 6D streamwise spacing for turbines of around 150m rotor diameter, the long‐

range scanners here can cover up to 7km x 10km, meaning several turbines), for clarity, the 



sentence was deleted. The technology has developed the last years to increase the laser 

energy and the backscatter signal quality. 

‐ Page 1 Line 17. The sentence was corrected to refer to meteorological masts. 

‐ Page 1 Line 18. Yes, clarified in the text. 

‐ Page 1 Line 25. Corrected. 

3) Page 2 Line 26 – remove the “of” in “between of line‐of‐sight: : :.” Line 39 – you don’t need 

both “like” and “e.g.” together Line 39 – please consider rephrasing the sentence beginning 

“Complementing all these features: : :.”. The sentence is very long and difficult to follow. 

Line 45 ‐ “: : :.which are capable of classify large data sets: : :.” needs to be reworded for 

correct English Line 54 – swap the order of “defines” and “always” to read “which always 

defines a unique: : :.” Line 56 – please define/introduce DBSCAN here, rather than on page 

12 Line 58 ‐ “: : :.capable of identify clusters: : :.” should read “: : :.capable of identifying 

clusters: : :.”  

A: 

‐ Page 2 Line 26. Corrected. 

‐ Page 2 Line 39. Corrected. 

‐ Page 2 Line 45. Corrected. 

‐ Page 2 Line 54. Corrected. 

‐ Page 2 Line 56. Corrected. 

‐ Page 2 Line 58. To keep the introduction section short, DBSCAN definition needs its own 

section, this is mentioned in the corrected version. 

‐ Page 2 Line 58. Corrected. 

 

4) Page 3 Line 72 – what do you mean by “the wind speed data covers a large horizontal area”? 

Do you mean you wish to measure winds across a large area? Line 88 – I’m not sure I follow 

what a “wrong observation” is, as compared to an outlier? 

A: 

‐ Page 3 Line 72. It will be rephrased for clarity. 

‐ Page 3 Line 88. It will be rephrased for clarity. 

5) Page 5 Line 99 – change “generate” to “generates” Line 102 – change “make” to “mean” or 

similar. 

A: 

‐ Page 5 Line 99. It will be corrected. 

‐ Page 5 Line 102. It will be corrected. 

6) Page 7 Figure 2 caption – line 3, I believe should read “next” not “nest” Line 149 ‐ “radial” is 

miss‐spelled Line 158 ‐ “en” should be “in”. 

A: 

‐ Page 7 Figure 2 caption. It will be corrected. 

‐ Page 7 Line 149. It will be corrected. 

‐ Page 7 Line 158. It will be corrected. 



7) Page 9 Line 184 ‐ “2” should read “section 2” as done previously Line 189 – the sentence 

beginning “The noisy areas show: : :.” is very long and hard to follow. Please consider 

rewording. 

A: 

‐ Page 9 Line 184. It will be corrected. 

‐ Page 9 Line 189. It will be rephrased for clarity. 

8) Page 10 Line 200 to 203 – these 2 sentences seem to be a repeat of the introduction? 

A: 

‐ Page 10 Line 200 to 203. Sentences It will be eliminated. 

9) Page 11 Line 229 ‐ “non” should read “not” 

A: 

‐ Page 11 Line 229. It will be corrected. 

10) Page 12 Line 240 – similar to the comment above, page 10 lines 200 – 203, this section 

appears to be a repeat of earlier discussions 

A: 

‐ Page 12 Line 240. It will be rephrased. 

11) Page 15 Line 298 – I think you mean “noisy” not “nosy” 

A: 

‐ Page 15 Line 298. It will be corrected. 

12) Referral to figure 7? 
A: 

‐ Referral was only in the caption of Figure  8, which is complementary. It will be corrected in 

the text. 

13) Page 16 Lines 315 to 320 – sentence beginning “This allows us to define: : :.” is very long and 
difficult to follow Line 320 ‐ “this metrics” should read “these metrics” 

A: 

‐Page 16 Line 315 to 320. It will be rephrased. 

 

14) Page 18 Line 344 – I think you are missing “are” in “: : :.that two realizations from the same 

distribution: : :.” Line 365 – should read “: : :.on the other hand: : :.” rather than “in” 

A: 

‐Page 18 Line 344 and 365. It will be corrected. 

 

15) Is there a reason why you can’t do the same tests to the synthetic data as you are for the 

real data? 

A: It is possible, but tests on real data are based on reliable observations on a range of CNR 

values, due to the lack of references available, which is not the case for synthetic data. In the 

ideal case, the test applied on synthetic data would be the best for real data. 

 

16) Page 19 Line 372 – remove the second “then” from “: : :.then becomes relevant then: : :.” 

A: 



‐Page 19 Line 372. It will be corrected. 

 

17) Page 20 Line 387 – remove the comma after “both” to read “: : :.in both noisy and reliable: : 

:.” Line 390 – reverse the order of “be then” to read “then be” Line 391 – replace “its” with 

“their” to read “: : :.distant from their previous location: : :.” Line 401 – remove “be” and 

change “benefited” to “benefit” to read “: : :.filter will benefit by: : :.” Line 403 – add “to” to 

read “: : :.dimensions to the data description.” 

A: 

‐ Page 20 Lines 387, 390, 391 and 401. It will be corrected. 

 

 

18) Page 21 Line 406 – remove “a” to read “: : :.of good measurements: : :.” I don’t get the 

comparison to synthetic data. You site the advantages of using synthetic data are you know 

where the noise is, yet you don’t have plots showing a comparison to the known noise is? 

A: 

‐ Page 21 Line 406. It will be corrected. The position of the noise for an individual scan is 

shown in Figure 3 (c). 

19) Page 27 Line 483 – replace “This” with “These” to read “These possible deviations: : :.” 
A: 

‐ Page 27 Line 483. It will be corrected. 

 



Anonymous Referee #2 

Alcayaga presents a study about filtering methods for Doppler wind lidar measurements.A new 

method based on data clustering is developed and compared against the classical CNR filter and a 

median filter which has become more popular recently. The method is tested in a simulation with 

artificial turbulence and noise as well as in a real experiment. I think the method is promising and 

the results that are shown look very interesting. However the manuscript is way too long, not 

prepared very well and should be rewritten in a much more concise way. The structure currently is 

confusing with many repetitions and lengthy explanations of minor details, but important 

information about the data, the methods and the results are missing. Since the topic of the study is 

relevant and the methods and results could be interesting for the scientific community I would like 

to see a major revision of the manuscript before it could be reconsidered for publication in Wind 

Energy Science. I give general comments about each section as well as specific comments in the 

following. 

General Comments 

1) It has not been shown convincingly that the generated noise in the lidar simulation is 

realistic and the analysis of the filter in the simulation can thus be considered relevant for 

real‐world measurements. 

A: The procedural noise implemented here aims to generate V_LOS values smoother than 

the ones observed at very low CNR, and closer to “reasonable” V_LOS. Figure 1 below shows 

the distributions of synthetic, contaminated V_LOS values and real V_LOS data with CNR 

values below ‐32dB. From this Figure it is possible to see that the synthetic noise generates 

V_los closer to reliable values and thinner tails. The consequence of this is a more subtle 

contamination, which is harder to detect by the filters presented in this work. Additionally, 

the principle of coherent noise is to generate areas of contamination that are smoother in 

space, which also makes more difficult differentiate contaminated observations and clean 

data via the distance generated by V_LOS and for DBSCAN, and a fixed threshold for the 
median‐like filter. In summary, the intention of this implementation is not to recreate real 

noise (its nature is relatively unknown), but to test the filter in harder conditions than real 

situations. 

 

 
Figure 1: Pdf of V_LOS for contaminated synthetic data (one mean wind speed direction) and 

real data from the Balconies experiment at 200 m.a.g.l. 

 

2) The math of the methods is not presented clearly in equations, especially regarding the 

filters. 



A: The iterative operation of DBSCAN on discrete data is non‐linear and is defined 

algorithmically. To the best of my knowledge, there are not references of transfer functions 

or reduced mathematical expressions of its frequency response for instance. Regarding the 

median‐like filter, as mentioned in the paper, its most obvious parallel is the median filter 

used in image processing. As DBSCAN, this filter is non‐linear, and it lacks a defininition in 

frequency domain as a transfer function. The development of theoretical expressions in this 

sense is out of the scope of this work. ### This is stated in the corrected version of the 

paper. 

 

3) The work is not referencing important work in the field of lidar simulation and data filtering 

adequately. 

A: The suggested references will be checked and included accordingly. 

4) Section 3.2: Lidar simulators are not new and similar work can be referenced (e.g. Stawiarski 

et al. 2013, Gasch et al. 2020). Based on these works, the description of the technology 

could be siginificantly shortened. The most important points like the resolution of the 

synthetic data that is used should be highlighted in a concise way. 

A: The references mentioned were considered and the description of the simulator will be 

rewritten in a more concise way. 

5) Section 3.3: The noise generation is described with many words and steps that are very hard 

to follow and confusing. I think it should be possible to describe a noise filter transfer 

function with a concise mathematical expression. I also think that in this section the 

characteristics of the synthetic noise should be compared to what is expected from real lidar 

measurements. Could you for example show a PDF from real measurements of only low CNR 

data in comparison to the artificial noise? Without any information on how realistic the 

synthetic noise is, it is hard to judge the quality of the filter from the simulation results. 

A: The coherent noise implemented here is not linear and is defined, as a parallel to 

DBSCAN, algorithmically. There is not a clear transfer function that defines it a priori and it 

can be better described by the V_LOS distribution after contamination. Figure 1 will be 

included in the corrected version. 

6) Section 4.1 is partly a repetition of things that have been said in the introduction and since 

CNR‐filters are very easy and well known, I think this could be cut much shorter. 

A: Section will be reworded in a more concise way.  

7) Section 4.2 is supposed to describe the median filter, but does not give the most important 

parameters. The median of what database is used? Just single scans, multiple scans, the 

whole scan or just parts of it. Again, I recommend to put the filter description into one or 

two equations, which would describe it in the best concise way. Menke et al. 2019 and 

Menke 2020 (dissertation) introduced a modified three‐stage median filter for spatial scans. 

How does the method applied here relate to that? 

A: As mentioned earlier, the non‐linear median‐filter is defined algorithmically, not via 

equations. The filter is applied on single scans (it is a filter that operates spatially), and this is 

clarified in the corrected text. The filter closely related to the one described by Menke 

(2019), since it uses a moving window in the laser beam direction, the first stage. 

Nevertheless It does not applies a global filtering stage, which is replaced by a second 

moving window in the azimuth direction. The paragraph was reviewed and corrected to 

make it more clear. 

8) Section 4.3 gives a lengthy description of the clustering algorithm, but misses the most 

important point. Where is the connection between the lidar parameters CNR, Vlos etc and 

the filtering algorithm. Please give the filter functions for the concrete problem of lidar 



signals. What is the k‐distance function fo the lidar measurement? How is the data sorted in 

Figurer 8? I doubt that any lidar user can reproduce this method with the information which 

is given in this section. 

A: As mentioned in 2), there is not a mathematical expression in the form of a transfer 

function for DBSCAN, since it is defined algorithmically. The connection between lidar 

parameters, or features, and DBSCAN is the definition of the observational space, where all 

(Euclidian) distances are calculated. This is better explained in the corrected text, as well as 

the k‐distance function, or the function of the distance of each point to its k‐nearest 

neighbor.  

9) Section 5.1: The author introduces many performance metrics here, of which many are not 

very useful in my opinion and only add to the confusion of the reader. To me, the interesting 

metrics are the fraction of good observations (here:  recov) and the false posiƟve rate (i.e. 

the percentage of data points that are considered good observations although they are 

contaminated by noise). 

A: The false positive rate (false negative in the work, positive is noise detection) is equivalent 

to the fraction of noise detected, but it does not consider information of the fraction of 

contaminated observations in the scan. High recovery rates with low false positive rate 

(negative) might be only a low fraction of noise. This is the reason to include also a metric 

that takes into account the noise fraction. 

10) Section 5.2: I would advice the author to focus on just one most appropriate metric for the 

analysis of the similarity of the PDFs, especially since the qualitative results are the same and 

differences between the two metrics are not discussed in Section 6 and 7. 

A: I agree with this comment. The result of one of them will be only mentioned for a fair 

comparison in the corrected text. 

11) Section 6.1: I think the line‐of‐sight threshold should be discussed in Section 4.2 and not 
here. What I miss in this section is a plot of the actual LOS velocity fields recovered with the 

two filters. Lines 403ff give a discussion that is partly repeated in Section 7.1 and should be 

removed here. 

A: Since the results of synthetic scans are presented here, discussion on V_LOS threshold is 

better pictured fter the filters are applied. The discussion will be initiated in 4.2, and a figure 

comparing the two filters will be included in the corrected text. 

12) In section 6.2 the author argues a lot with data recovery, which is not a good metric, 

because without any filter, the data recovery is perfect, but includes a lot of bad data. The 

author should focus on the metrics introduced in section 5.2, which is a good choice and the 

best that can be done. So, I wonder if Figures 15‐17 and Table 5 are really useful for the 

study. One idea would be to replace Figure 16 with a plot of the PDF of the area around the 

hard target only, comparing the three filters and the original data. Same as for data in 

different distances to the lidar. 

A: Data recovery is very important in this work indeed, since the main motivation to explore 

a different filtering technique is to increase the amount of data available, which can be very 

poor when we use the most conservative CNR threshold. However, as the referee suggest, 

this is worthless if data quality is bad. This is the reason to complement the performance 

assessment with the metrics in 5.2. Figure 16 will be modified to consider this suggestion. 

13) I think the title "performance assessment" of sections 7.1 and 7.2 is misleading, because 

those sections mostly evaluate the flaws of the test cases. The performance of the filters is 

already assessed in the results section. 

A: A change in the section title will be made to clarify its intention. 

14) Section 7.3 and 8 could probably be combined. 



A: Even though section 7.3 give some final remarks it still discuss on computational 

performance of the clustering filter and possible imporvements. The section will be revised 

to make this more clear. 

Specific comments 

1) p.1, l.1: simultaneous multi‐point observations are possible with masts if multiple sonics are 

installed. 

A: Indeed this is possible, at a high cost though, and it is not very common for wind resource 

assessment for instance. That is the meaning of the sentence. 

2) p.1, l.2: write "lower" instead of "reduced" 

A: It will be corrected in the text. 

3) p.1, l.4: "reduced data recovery" compared to what? I am also not sure if "data recovery is 

the proper term. 

A: The reduced data recovery is compared to the total amount of data available. 

4) p.1., l.6: "...spatial position, and VLOS smoothness". The abstract needs to be understood 

without reading the whole manuscript. It is not clear at this point what is meant by spatial 

position and smoothness. 

A: It will be rephrased for clarity. 

5) p.1,l.13: "its adoption" ‐ "their acceptance"!? 

A: It will be corrected 

6) p.1.,l.21: Since the CNR thresholds are so divers and depend on the conditions and 

instruments I recommend to not give numbers here. 

A: It will be modified for clarity. The intention is to show values used in the reference cited. 

7) p.2.l.37: typo "approaches" 

A: It will be corrected. 

8) p.2,l.56: "DBSCAN" acronym should be explained here. 

A: It will be corrected 

9) p.3,l.80: Why are the scanning patterns coherent? 

A: It is intented to mean meaningful 

10) p.5,l.105: The term "numerical lidar" is very unusual and irritating. I would recommend "lidar 

simulator" or "virtual lidar". 

A: The term was already used in Meyer (2017) but the suggestion will be considered. 

11) p.5,l.112: What does "coarse" mean here? Numbers should be given. 

A: Coarser means a grid of range gates and beam spacing that is actually much coarser than 

the sampling spacing frequency of the lidar, and represents the spatial and time averaging of 

the instrument. The numbers of this are in table 3. The term will be clarified in the corrected 

text. 

12) p.6,Eq.2: The variable names are somewhat confusing, because what is here  p is  R in the 

references of Smalikho and Banakh and  p in the references is rp here. 

A: The intention was not to use the same notation as Smalikho and Banakh but Meyer (2017) 

13) p.6,l.129: "corresponding range gate center"! 
A: it will be corrected 

14) p.6,l.130: "range gate length" is not very specific. If you give the explanation of rp from 

FWHM, you could also give the explanaƟon of  p from the Ɵme window of the FFT. 

A: Since this terms are well known, their definition was done in simpler terms. 

15) p.7,l.149: typo "radial" 
A: It will be corrected 

16) p.7,l.154: referencing Figure 10 which is introduced much later, is bad style. 



A: It will be corrected 

17) p.7,l.158: type "in" 
A: It will be corrected 

18) p.8,l.177: again, a figure (Figure 5) is referenced before its introduction. 
A: It will be corrected 

19) p.9,l.180: "The fraction of beams contaminated at each band..." 

A: It will be corrected 

20) p.9,l.183: typo "from". 

A: It will be corrected 

21) p.10,l.201: I do not think you can really give a common value for CNR values. They depend 

strongly on instruments and location. 

A: This will be removed in the corrected version. 

22) p.10,l.215f: put citation Huang et al in parantheses. 
A: It will be corrected 

23) p.13,l.251: the m in "m‐dimensional" is not explained. 

A: It will be explained 

24) p.14,l.285: How does dk(n) look like for the lidar signal problem? 

A: It is shown in figure 9. This figure will be probably removed in the final version. 

25) p.15,l.298: typo: "noisy" 
A: It will be corrected 

26) p.15,l.298: Figure 9 is referenced before introduction. 
27) A: It will be corrected 
28) p.15,l.302: Equation 6 is referenced before it appears. Please introduce it before. 

A: It will be corrected 

29) Figure 8b) seems to be moreless the same as Figure 5b. 

A: They come from bad and good scans respectively. It will be probably removed in the 

corrected version. 

30) p.17,l.333: "PDF" should be in capital letters as an abbreviation. 
A: It will be corrected 

31) p.18,l.344: Something is wrong with the grammer in this sentence. 

A: It will be corrected, an “are” was missing. 

32) p.18,l.345: What is the value of that is used in this study?. 

A: The value of alpha is 0.05 

33) p.18,l.345: Again, grammar. 

A: It will be corrected 

34) p.18,l.345f: The numbers about the amount of data that was analyzed should be given in 

Section 2. 

35) A: It will be corrected 
36) p.19,l.372: remove one "then". 

37) A: It will be corrected 
38) p.20,l.386: typo: "account" 

A: It will be corrected 

39) Figure 11: I think this figure is not neccessary. If it is still shown, labels have to be larger. 
A: I agree and it will be removed in the corrected version. 

40) Figure 14: typo, should be "phase 2" 
41) A: It will be corrected 
42) Figure 15: Why is no upper threshold for the CNR filter applied, which would remove the 

wind turbine hard target from the recovered data? 



A: It is applied indeed, this will be written more clear. 

43) Figure 16: I think this plot is not neccessary. 
A: This comment will be considered. 

44) p.23,l.439: What is meant by "quality of the data"? Probably you mean a lower false positive 

rate, but how do you know? 

A: It refers mostly to extreme values when compared to more reliable CNR data distribution. 

45) p.23,l.443: Metrics are introduced in Sect. 5.1. 

A: It will be corrected 

46) p.23,l.443f: Again, quality is undefined. 
A: It will be better explained 

47) p.27,l.502: typo: "from" 

A: It will be corrected 

 



List of changes 

1) Changes (rewording) in the introduction and data description in section 2. 

2) Changes in Figures suggested by reviewers. Figures 3 (now 2), 4 (now 3), 5 (now 4) and 16 

(now 13) were modified. 

3) Figures 7, 8 and 9 are replaced by Figure 6. 

4) Figure 11 is now A1 in appendix A. 

5) Changes in Sections 3 and 4 regarding methodology description (Lidar simulator in 3.2, noise 

generation 3.3 and filters description in 4.1, 4.2 and 4.2) accounts for comments from 

reviewers. 

6) Section 6.1 was modified and results in Figure 8, suggested by Anonymous Reviewer # 2, 

included. 

7) Discussion in sections 7.1, 7.2 and 7.3 were merged in only one section. 

8) Part of 7.3 was moved to 8. 

9) Part of sections 4.2 and 6.1 were moved to Appendix  A. 
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Abstract. Wind lidars present advantages over meteorological masts, including simultaneous multi-point observations, flexi-

bility in measuring geometry, and reduced installation cost; but wind lidars come with the ‘cost’ of increased complexity in

terms of data quality and analysis. Carrier-to-noise ratio (CNR) has been the metric most commonly-used to recover reliable

observations from lidar measurements, but with severely reduced data recovery. In this work we apply a clustering technique

to identify unreliable measurements from pulsed lidars scanning a horizontal plane, taking advantage of all data available from5

the lidars—not only CNR, but also line-of-sight wind speed (VLOS), spatial position, and VLOS smoothness. The performance

of this data filtering technique is evaluated in terms of data recovery and data quality, against both a median-like filter and

a pure CNR-threshold filter. The results show that the clustering filter is capable of recovering more reliable data in noisy

regions of the scans, increasing the data recovery up to 38% and reducing by at least two thirds the acceptance of unreliable

measurements, relative to the commonly used CNR-threshold. Along with this, the need for user intervention in the setup of10

data filtering is reduced considerably, which is a step towards a more automated and robust filter.

1 Introduction

Long range scanning wind lidars are useful tools, and its
::::
their adoption has grown rapidly in recent years in wind energy

applications (Vasiljevic et al., 2016). Their capability to measure the evolution in time and space of atmospheric boundary

layer wind fields in large spatial domains(which can reach a size comparable to a wind farm), their increasing accuracy and15

low
::::::::
Scanning

::::
wind

:::::
lidars

::::
can

:::::::
measure

::::
time

::::::::
evolution

::::
and

:::::
spatial

::::::::::::
characteristics

::
of
:::::

wind
:::::
fields

::::
over

::::
large

::::::::
domains,

::
at
::
a

:::::
lower

cost of installation are important advantages over
::::
than meteorological masts. One disadvantage of these devices with respect to

traditional wind speed measurement techniques is the influence that
:::::::::::
Nevertheless, atmospheric conditions and instrument noise

have
:::
can

::::
have

:::
an

::::::::
important

::::::
impact

:
on the data quality. For long-range scanning lidars , this becomes an important issue due

to the lack of references to identify reliable observations
::::::::
additional

::::::::::
instruments

:::::
placed

::::
over

:::
the

::::::::::::
measurement

::::
area

:::
that

::::::
would20

::
be

:::::
useful

:::
to

:::::::
compare

::::
data

::::::
quality, since noise can contaminate large portions of the scanning domain. The most commonly

used criteria to retrieve reliable observations is a threshold on values of the Carrier-to-noise ratio, CNR, which, depending on

the
::::::::
threshold

:::
that

::::
will

::::::
depend

:::
on

:
site conditions, experimental setup and instrument manufacturer, can take values between

−29 dB, −20 dBand −8 dB, 0 dBas lower and upper bounds, respectively
::
the

::::::::::
instrument

:::::::::::
manufacturer (Gryning et al., 2016;

Gryning and Floors, 2019). This criteria results
::::::
Despite

::::
CNR

::::::::
threshold

::::::
retrieve

::::::
quality

:::::::::::
observations,

:::
its

:::::::::
application

:::::
might

:::::
result25

1



in large amounts of data rejected unnecessarily
::::
good

::::
data

::::::
rejected

:
in regions far from the instrument, due to the nature of CNR

which decreases
:::::
where

:::::
CNR

:::
has

::::::::
decreased

:
rapidly with distance. To cope with this issue Meyer Forsting and Troldborg (2016)

and Vasiljević et al. (2017) have proposed filters based on the smoothness and continuity of the wind field. Such filters work by

detecting discrete or anomalous steps in VLOS which present a difference between of
::::::
(above

:
a
::::::
certain

::::::::
threshold,

:::::::::
predefined

:::
by

::
the

:::::
user)

::
in line-of-sight wind speed, VLOS , and

::::::::
compared

::
to

:
its local (moving) medianabove a certain threshold, predefined by30

the user. Beck and Kühn (2017) first and Karagali et al. (2018) in an adapted version, follow a different approach (here called

KDE filter, from Kernel Density Estimate) based on the statistical self-similarity of the data, which, in simple terms, assumes

:::::
means

:
that reliable observations are alike and will be located close together in the observational space. The probability density

distribution of observations (estimated via KDE) in a dynamically normalized VLOS −CNR space shows that measurements

likely to be valid are located in a high
::::
data density region. Observations sparsely distributed beyond a boundary defined by a35

threshold in the acceptance ratio, or the ratio between the probability density of any observation and the maximum probability

density over the whole set of measurements, are finally identified as noise. Both approaches need the definition of one or more

thresholds and a window size, either in time for the KDE filter, or in space for the wind field smoothness approach. These

parameters are dependent on different characteristics of the data, like the lidar scanning pattern for instance.

Both approaches miss important and complementary information, either neglecting the quality of acquired data (quantified40

in terms of
:::::
stregth

::
of

:::
the

::::::
signal

:::::::::::::
back-scattering

:::::::::
(quantified

:::
by CNR) or the spatial distribution and smoothness of the wind

field. Moreover, in both apporaches
:::::::::
approaches the position of observations is not taken into account, information that can

shed light on areas permanently showing anomalous values of VLOS or CNR, like e.g. hard targets. Complementing
::::::::
Including

all these features within the smoothness approach is difficult, since CNR is not a smooth field like VLOSand including them
:
.

::::::::
Moreover,

::::::::::
considering

::::::::::
smoothness

:::
and

:::::::
position

:
in the KDE filter increase the computational time substantially, since the basis45

to define high density regions and an acceptance ratio is a kernel density estimate
:::::
results

:::
in

:
a
::::::::::::::
computationally

:::::
costly

::::::
kernel

::::::
density

:::::::::
estimation,

::
if

:::
we

::::
look

:::
for

::
an

:::::::
optimal

:::::::::
bandwidth

::::::::
parameter

:
in a higher dimensional space(3 or more features including

spatial position and smoothness), which is computationally intensive due to the estimation of a bandwidth parameter and the

definition of a high density region (hyper-volume) with a good resolution ,
::::
with

:
a
::::
fine

::::::::
resolution

:::
of

::
the

::::::
kernel

::::::
density

:::::::
estimate.

Data self similarity – over any scale in the case of fractals or a range of them in real situations (Mandelbrot, 1983) – is closely50

related to clustering techniques (Backer, 1995), which are capable of
:::
can classify large data sets with many different features

at a relatively low computational cost. For instance, the KDE filter
:::
The

:::::
KDE

::::
filter

::::::::
approach

:
shares some characteristics with

the popular k-means clustering algorithm(first presented by MacQueen (1967))
:::::::::::::::
MacQueen (1967), since they define one (or

several for k−means) specific group of data belonging to an unique category (or cluster) which
:::::
whose

:
size and location on

the observational space will depend on data density or, more specifically, on a kernel density estimation. The main difference55

between these two algorithms is the way they treat sparse data points that fall in low density regions. In k−means, sparse

points are assigned
::::::
Unlike

:::
the

::::
KDE

:::::
filter,

::::::
which

::::::
rejects

:::::
noise

:::
via

:::
the

:::::::::
acceptance

:::::
ratio,

::::::::::
k−means

::::::
assigns

::::::
sparse

::::::
points to

the cluster with the nearest center, no matter if they are outliers or present unlikely values from a physical point of view. The

KDE filter solves this problem introducing an acceptance ratio, which corresponds to a threshold on the probability density of

data points that are to be accepted as cluster members. This threshold must be defined a priori when used on unfiltered data.60
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Additionally, k−means needs to define the number of clusters present in the data beforehand, unlike the KDE filter, which

defines always an unique cluster of valid data points, centered at the origin of the scaled and normalized observational space.

The

:::
The

:::::::
Density

:::::
Based

::::::
Spatial

:::::::::
Clustering

::
for

:::::::::::
Applications

::::
with

:::::
Noise

:::::::::
algorithm,

::
or DBSCANclustering technique (Ester et al., 1996; Pedregosa et al., 2011)

::::::::::::::::::::::::::::::::::
(Ester et al., 1996; Pedregosa et al., 2011)

:
,
:::::::::
introduced

::
in

::::::
Section

::::
4.3, presents several advantages over k-means in detecting65

clusters in a higher dimensional space: 1)
:
it
:
introduces the notion of noise/sparsely distributed observationsand 2)

:
, it does

not need prior knowledge of the number of clusters in the data and it is capable of identify
:::::::::
identifying

:
clusters of arbitrary

shape. To the best of our knowledge, this is the first time that this type of clustering algorithm is applied to identify not reliable

observations from pulsed lidars. This approach, which can be understood as a natural extension of the KDE filter, is compared

to the smoothness based filter on two types of data: synthetic wind fields data as a controlled test case, and real data.70

This paper is organized as follows: Section 2 describes the real data used to test the different filtering approaches, and

Section 3 presents the synthetic data used during a controlled test as well as the methodology to obtain it. Section 4 then gives

a description of the different filters applied in this study to both data sets, to continue with the definition of the performance

tests in Section 5. In Section 6 the performace
:::::::::::
performance tests are presented along with a discussion on their validity

and quality. Section 7 discuses the quality of the methodology behind the tests and the advantages and disadvantages of the75

proposed approach. Section 8 presents the conclusions of this study.

2 Real data: Østerild Balconies experiment

The filtering techniques presented here were tested on lidar measurements made at the Østerild Test Centre located in northern

Jutland, Denmark, see Figure 1. The aim of this experimentwas to characterize the horizontal flow field
::::::
Known

::
as

:::
the

:::::::
Østerild

::::::::
Balconies

:::::::::
experiment

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mann et al., 2017; Karagali et al., 2018; Simon and Vasiljevic, 2018),

::::
this

:::::::::
measuring

::::::::
campaign

::::::
aimed80

::
to

::::::::::
characterize

::::::::
horizontal

::::
flow

:::::::
patterns

:
above a flat, heterogeneous forested landscape at two heights relevant for wind energy

applications. Known as the Østerild Balconies experiment (Mann et al., 2017; Karagali et al., 2018; Simon and Vasiljevic, 2018)

, the wind speed data covers a large horizontal area (
:
,
:::::::
covering

:::
an

:::
area

:::
of around 50 km2), with the possibility of characterizing

flow patterns in ,
:::
and

:
a wide range of scales, both in time and space. However, these advantages come with increased complexity

on data reliability. A larger measurement area is affected by local terrain and atmospheric conditions, like clouds or large hard85

targets. Moreover, at this scale lidars reach their measuring limitations, since the back-scattering from aerosols decrease rapidly

with distance (Cariou, 2015).

The Balconies experiment consists

:::
The

::::::::::
experiment

::::::
consist of two measuring phases (see Table 1) with two long-range WindScanners performing Plan Position

Indicator (PPI) scanning patterns, aligned in the North-South axis and installed at 50 m a.g.l. during phase 1 and 200 m a.g.l.90

in phase 2. WindScanners (Vasiljevic et al., 2016) consist of two or more spatially separated lidars which are synchronized

to perform coherent scanning patterns, allowing the retrieval of two or three dimensional velocity vectors at diffeent
:::::::
different

points in space. These experiments were conducted between April and August of 2016 (Simon and Vasiljevic, 2018). In each

3



Table 1. Characteristics of the Balconies experiment, from Karagali et al. (2018). The scans are not instantaneous neither totally synchronous,

with a horizontal sweep speed of 2◦/s in the azimuth direction in a range of 90◦, with a total time of 45 s per scan.

Phase Measurement start Measurement end

50 m a.g.l. (1) 2016-04-12 12:45:41 2016-06-17 12:48:01

200 m a.g.l. (2) 2016-06-29 13:35:56 2016-08-12 09:09:55

Scanner Location coordinates, [m] Scanning pattern, west

Southern lidar 492768.8 (East) 6322832.3 (North) 344◦-256◦, 2◦ steps

Northern lidar 492768.7 (East) 6327082.4 (North) 196◦-284◦, 2◦ steps

Figure 1. (a) Location of the Østerild Turbine Test Center, place of the Balconies experiments, northern Jutland, Denmark (copyright 2009

Esri). (b) Detail of the test center site, with the location of the meteorological masts where north (blue) and south (red) WindScanners

were installed. During the measurement campaign the PPI scans pointed both west in some periods and both east in other (copyright 2017

DigitalGlobe, Inc.).

phase, the northern and southern lidars scanned in the West and East direction relative to the corresponding meteorological

masts, where they were installed. The data used in this study originated from both phases of the experiment, with PPIs pointing95

to the west. For more details about the experiment, lidars and terrain characteristics see (Karagali et al., 2018; Vasiljevic et al.,

2016; Simon and Vasiljevic, 2018).
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::::
This

::::::
dataset

:
is
::::
well

:::::
suited

::
to

:::
test

::::::::
different

:::
data

:::::::
filtering

::::::::::
techniques.

::
A

::::
large

:::::::::::
measurement

::::
area

:::
will

:::
be

::::::
affected

:::
by

::::
local

::::::
terrain

:::
and

::::::::::
atmospheric

::::::::::
conditions,

:::
like

::::::
clouds

::
or

:::::
large

::::
hard

::::::
targets.

:::::::::
Moreover,

::
at

:::
this

:::::
scale

:::::
lidars

:::::
reach

::::
their

:::::::::
measuring

::::::::::
limitations,

::::
since

:::
the

:::::::::::::
back-scattering

::::
from

:::::::
aerosols

::::::::
decrease

::::::
rapidly

::::
with

:::::::
distance

::::::::::::
(Cariou, 2015)

:
.100

3 Synthetic data

Assessing and comparing the performance of filters is challenging with no reference available to verify that rejected or accepted

observations are truly outliers or simply wrong
::::::
reliable

::
or

:::
bad

:
observations. This is especially difficult for long-range scanning

lidars, since their measurements cover large areas and, due to spatial variability, a valid reference would need several secondary

anemometers scattered over the scanning area. Testing filters on a controlled and synthetic data set, contaminated with a well105

defined noise, presents an option to deal with this problem. In this study, the filters presented in Section 4 are tested on

individual scans sampled from synthetic wind fields generated using the Mann turbulence spectral tensor model (Mann, 1994),

and contaminated with procedural noise (Perlin, 2001).

3.1 Synthetic wind fields generation

Synthetic PPI scans are sampled by a numerical lidar
::::
lidar

::::::::
simulator

:
from synthetic wind fields generated via the Mann-110

model (Mann, 1998) in a horizontal, two-dimensional square domain of 2048 x 2048 grid points, with dimensions 9200 m

x 7000 m. The generated turbulence fields are the result of input parameters of the of turbulence spectral tensor model:
:
,

::::::
namely,

:
length-scale, L, turbulence energy dissipation αε2/3, and anisotropy, Γ. The fields generated correspond to wind speed

fluctuations, which are subsequently added later to a mean flow field to generate the resulting synthetic wind speed fields. An

::
to

:::::
which

:::
the

:::::::
desired

::::::
average

:::::
wind

:::::
speed

:::::
mean

::
is
:::::::::::
subsequently

::::::
added.

::::::::::
Depending

::
on

:::
the

:
initial random seed generate

::::
used,115

different wind field realizations with the
:::::
exact same turbulence statistics

:::
can

::
be

::::::::
generated. For details on wind field generation

using the the Mann-model, refer to Mann (1998). Table 2 shows the range of values used for the generation of two-dimensional

wind fields. Large values of αε2/3 or smaller
:::::
small scale turbulence for instance, make

:::::
mean that sudden spatial changes in

wind speed are more likely, which increase the false identification of outliers. Mean wind direction, turbulence anisotropy and

length scale will also affect the sampling due to the lidars sampling
:::::::::
measuring characteristics.120

3.2 Sampling with a numerical lidar
:::::
Lidar

:::::::::
simulator

The numerical model of a long-range pulsed lidar attemps to mimic what the real instrument does obtaining, for instance, the

data described in Section 2. Even though its implementation is very crude andsimplified, it allows to generate sampled scans

with reasonable spatial smoothness and complexity, but it is, however, not able to reproduce either noise nor CNR values.

Since the interest of this study is to test filters over a large number of scans, its simplicity allows a quick sampling over high125

resolution synthetic wind fields , thus reducing computational time

::::
Lidar

:::::::::
simulators

:::
has

:::::
been

::::::::
presented

:::::::::
previously

::
by

::::::::::::::::::::
Stawiarski et al. (2013)

:::
and

:::::::::::::::::::::::::::::::
Meyer Forsting and Troldborg (2016).

:::::
They

::::::
sample

:::::
VLOS::::::

values
::::
from

:::::
wind

:::::
fields

::::::::
generated

:::
via

::::::
Large

::::
Eddy

:::::::::::
Simulations

::::::
(LES),

:::::::::
mimicking

:::
the

::::::::::
operational

:::::::
principle

:::
of
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Table 2. Synthetic wind field characteristics and parameters.

Parameter Values

L, m 62, 125, 250, 500, 750, 1000

αε2/3, m4/3s−2 0.025, 0.05, 0.075

Γ 0, 1, 2, 2.5, 3.5

Number of seeds used 10

Mean wind speed, U m/s 15

Mean wind speed direction range, degrees 90 to 270

Total number of scans generated 4305

::::
lidars

:::
by

::::::
proper

::::
time

:::
and

::::::
spatial

::::::
(probe

:::::::
volume)

:::::::::
averaging

::
of

:::
the

::::::::::
background

:::::
wind

::::
field.

::::
The

::::
lidar

::::::::
simulator

:::::::::
presented

::::
here

::::::
follows

:::
the

:::::
same

::::::::
principles,

::::
this

::::
time

::::::::
sampling

::::
from

::::::::
synthetic

::::
wind

:::::
fields

::::::::
generated

:::
via

:::::::::::
Mann-model. The sequence followed130

by the model in sampling from the high resolution wind fields is specified below (see also Figure ?? for more details): A coarse

two dimensional mesh in polar coordinates (r, θ) is generated, with radial (range gates) and azimuth ranges and resolution

described in Table 3. A set of non overlapping nested meshes are then constructed locally, centered in each point in an upper

level, coarser mesh . Each nested mesh has 21 x 51 grid points in the radial and azimuth directions, respectively. The resolution

in the radial direction of the nested mesh guarantees at least 1 synthetic observation within grid elements located in the two135

beam range gates closest to the lidar(the closest range gate in this case is 150m from the lidar) , since, even though the resolution

of

:::
The

::::::::
simulator

::::::::
receives

:::::::
scanning

:::::::
pattern

::::::::::::
characteristics

::
as

:::::
input

::::::
(beam

:::::
range,

::::::
range

::::
gate

::::
step,

:::::::
azimuth

::::::
angles

:::::
range

::::
and

::::::
azimuth

:::::
angle

::::::
steps)

::
to

:::::::
generate

:
a
:::::::

primary
:::::
mesh

::::
with

:::
the

::::::::
sampling

::::::::
positions

::
on

::::
top

::
of

::::::::::
background

::::
wind

:::::
field.

:::::::::
Following

:::
the

::::::::
measuring

::::::::
principle

::
of

:::
the

:::::
lidar,

::
the

::::::
VLOS :::::::

observed
::
at

::::
each

:::::::
position

::
in

::::
this

::::
mesh

::::
will

::::::::
represent

:::::::
averages

::
of

::
a

:::::::::
continuous

:::::
along140

::::
each

:::::
range

:::
gate

::::
step

::::
(due

::
to
::::::
probe

::::::
volume

:::::::::
averaging)

:::
and

:::
an

:::::::
average

::
of

:::::
many

:::::::
azimuth

:::::::
positions

::::::
within

:::
the

:::::::
azimuth

::::
step,

::::
due

::
to

:::
the

:::::
almost

::::::::::
continuous

:::::
sweep

::
of

:
the wind field Cartesian grid is high, the size of its elements is comparable with the nested

ones close to the numerical lidar.
:::::
lidar’s

:::::
beam.

::::
The

::::::::
simulator

::::::
mimics

:::
this

:::::::::
generating

::
a

:::::::::
secondary,

::::::
refined

::::
mesh

::::
with

:::
Nr::::::

points

::
in

::::
each

:::::
range

:::
gate

::::
and

:::
Nφ:::::

beams
::::::
within

::::
each

:::::::
azimuth

::::
step.

:
The number of elements in the azimuth direction allows a low grid

aspect ratio at the end of the beam, which is 7km from the lidar. The streamwise and lateral wind speed components from the145

synthetic wind field
::::::::::
background

:::::
wind

::::
field

::::::::::
components, U and V , are linearly interpolated into the nested fine mesh and the

radial component (
::::
then

::::::::::
interpolated

::
on

::::
this

:::::::::
secondary

::::
mesh

::::
and

::::::::
projected

::
on

:::::
each

::::::
refined

:::::
beam

::
to

::::::
obtain VLOS ) calculated

using
::::
using

::::::::
equation (1), with θ being the azimuth angle of the local beam

::::::::::::
corresponding

:::::
beam

:::::::
azimuth

::::
angle.

VLOS = cos(θ)U + sin(θ)V (1)

The numerical lidar mimics the volume averaging in a real lidar by averaging in the radial direction each of the 51 beamsegments150

in the local grid, using
:::
The

::::
final

::::
step

::
is

:::
the

::::::
spatial

::::::
(probe

:::::::
volume)

:::::::::
averaging,

::::
and

:::
the

:::::::
azimuth

:::::::::
(sweeping)

:::::::::
averaging

::::::
around

::::
each

:::::::
position

::
in

:::
the

:::::::
primary

:::::
mesh.

::::::
Spatial

::::::::
averaging

::
is

::::
done

::::::::
applying

:
a
:::::::::
weighting

:::::::
function

:::
on

::
all

:
VLOS values weighted with

6



w defined by

w =
1

2∆p

{
Erf
[

(r−F ) + ∆p/2

rp

]
−Erf

[
(r−F )−∆p/2

rp

]}

::::
along

:::::
each

::::::
refined

::::::
beam.

:::
The

:::::::::
weighting

::::::::
function

::::
used

::::
here

::
is
:::::::
defined

::
in

::::::::
equation (2),

:
as in Banakh and Smalikho (1997)155

and Smalikho and Banakh (2013). Here F is the distance from
::::
This

:::::::
function

::::
will

:::::
assign

:::::::
weights

::
to
:

each point in the beam

to the corresponding range gate , ∆l is the lidar beam’s
::::::
refined

:::::
beam

::::::::
according

::
to
:::

its
:::::::
distance

::
to

:::
the

:::::
range

::::
gate

::::::::
position

::
in

::
the

::::::::
primary

:::::
mesh,

:::
F ,

:::
and

::::
the

:::::::::
instrument

:::::
probe

:::::::
volume

::::::::::
parameters,

:::::::
namely,

:::::
range

::::
gate

::::::
length,

::::
∆p,

::::
and

:
full width at half

maximum(provided by the lidar’s manufacturer), ∆p is the range gate length ,
:::
∆l

:
(cf. Table 3),

Erf(x) =
2√
π

x∫
0

exp(−t2)dt160

denotes .
:::::
Here,

::::::
Erf(x)

:
is
:
the error function, and

rp =
∆l

2
√

ln(2)

is
::
rp the beam width contribution to the volume averaging. This kernel is not truncated, having influence of back-scatter from

more distant positions on the local estimation, thus smoothing the VLOS final field. Even thoughw decays rapidly with distance

for the numerical lidar setup used here, there is still some influence from points located around distant range gates.165

w =
1

2∆p

{
Erf
[

(r−F ) + ∆p/2

rp

]
−Erf

[
(r−F )−∆p/2

rp

]}
; rp =

∆l

2
√

ln(2)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(2)

The result of this beam averaging is one radial velocity,
::::
The

:::::::
azimuth

::::::::
averaging

::
is

:::
the

:::::::::
arithmetic

::::
mean

:::
of

:::
the

:::
Nφ:::::

values
:::

of

VLOS , per range gate , 51 values in total per nested grid, along one arc in the azimuth direction. Pulsed lidars accumulate

:
at
:::::

each
:::::
range

::::
gate

::::
after

::::::
spatial

:::::::::
averaging.

::
It

:::::::::
represents

:::
the

:::::::::::
accumulation

:
information of the back-scattered signal spectra as

they sweep an azimuth sector (2 degrees in our case) before estimation of the spectral peak and VLOS . This continuous sweep170

is modeled here by the 51 discrete values of VLOS along the azimuth arc and their non-weighted average. This step generate

radial wind speeds in each point of the initial coarse polar grid, which constitutes the synthetic scan.

The local fine polar mesh and averaging in the azimuth direction here play the role of the rapid sweeping of the laser

beam, taking into account that the measured VLOS will be the result of the accumulation of information on the back-scattering

spectra within the 2◦ azimuth steps, as well as the radial/line averaging around each range gate. This model is, of course, very175

simplistic and does not contain information about back-scattering spectra nor Doppler effect. Moreover, it does not mimic

the non-instantaneous nature of the real scans, but rather assumes that all beams cross the measuring domain simultaneously,

recording radiual wind speeds at the same time. Nevertheless, it will generate scans with radial speeds projected from a realistic

wind field and can be contaminated with noise (presented in Section 3.3) under controlled conditions, which is the final goal

of this test.180
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Table 3. The characteristics of the numerical
:::
lidar

::::::::
simulator and real

::::::::
long-range

:::
lidar (Karagali et al., 2018; Vasiljevic et al., 2016) long-range

lidars used for the controlled test of the filters.

Numerical
::::::::
Simulator Real

Azimuth range 256◦ - 344◦ 256◦ - 344◦

Azimuth step 2◦ 2◦

Beam length 7000 [m] 7000 [m]

Range gate length
:
,
:::
∆p 35 [m] 35 [m]

Time
:::
Full

:::::
width

::
at

:::
half

::::::::
maximum,

:::
∆l

:
75

:
[
:

m]
::
75 [

:
m]

:::::::
Sweeping

::::
time per scan Instantaneous 45 [s]

Coarse polar grid size (radial-azimuth
::::::
Primary

:::::
mesh

:::
size

:::::
(radial

:
x
:::::::
azimuth) 45 x 198 -

Nested (local) polar grid size (radial-azimuth
:::::::
Secondary

::::
mesh

::::
size

:
at
::::

each
:::::
range

:::
gate

:::
(Nr::

x
:::
Nφ)

: ::
21

:
x
:::
51

:
-

::::
Total

::::::::
secondary

::::
mesh

:::
size

:::
(Nr::

x
:::
Nφ) 21 x 51 -

The numerical lidar mimics the accumulation of information in the spectra of the back-scattered signal (within each 2◦ step)

as the average of 51 discrete beams. The radial wind speed in each of the 51 local range gates is the result of a weighted

contribution of 21 points along each local beam segment, which spans from the previous to the nest range gate. The final VLOS

will be the average of these 51 values. Here the weight, w, for beam averaging, originates from equation .

3.3 Synthetic noise generation185

The most simple noise that can be used to contaminate synthetic scans is sparse, uniformly distributed outliers, taking extreme

values from the tails of non reliable observations (see Figure 7), and always within the detectable range of ± 35 m/s,

characteristic of the pulsed lidar described in Section 2. This noise, also known as salt and pepper noise, is easily detected

and eliminated by median-like filters, when extreme discrete steps affect the smoothness of an image (Huang et al., 1979;

Burger and Burge, 2008). Nevertheless, what one can see from noise in real scans are
:::::
comes

::
as

:
regions of anomalously high190

and/or low VLOS values (see Figure 3 (a)), and , depending on their relative size to the moving window of a median-like

filter (more details en Section 4), they could
::
and

::::
they

::::
can pass through the filter undetectedand unchanged. A more realistic

noise(and also a more difficult to detect, goal of the test), is the procedural noise generated via the simplex noise algorithm,
:
.

:::::::::
Procedural

:::::
noise, introduced by (Perlin, 2001) originally to recreate more natural

::
to

:::::::
recreate synthetic textures on surfaces for

computer graphics applications. This type of noise is an option to generate more natural noisy regions with smoother transitions195

between large VLOS outliers. The basic principle behind this algorithm can be roughly summarized as follows: ,
::::::
creates

:::::::
regions

::
of

:::::::
coherent

:::::
noise

:::
that

:::::::::
resembles

:::::
better

:::
the

:::::
spatial

::::::::::
distribution

::
of

::::::::
scanning

:::::
lidars

::::::::::::
measurements.

:::
For

:::
the

::::::::::::::
two-dimensional

:::::
case,

::
the

:::::::::
procedural

:::::
noise

:::::::
function

:::::::
N(x,y)

:::::
maps

::::::::::::::
two-dimensional

::::::::::
coordinates,

::::::
(x,y),

::::
onto

:::
the

:::::
range

::::::
[−1,1]

::
as

:::::::
follows,

– A relatively coarse two dimensional grid of pseudo random unit gradients is generated
:::::::::::::
two-dimensional

::::
grid

::
of

::
m

:::
by

::
n

:::::::
elements

::
is

:::::::::
generated,

:::
and

:
a
::::::::::::::
pseudo-random,

:::::::::::::
two-dimensional

::::
unit

:::::::
gradient,

::::::::::::
gij = (gx,gy),

::
is
::::::::
assigned

:
to
:::::
each

:::
grid

:::::
point200
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::::::
(xi,yj). The pseudo-randomness is established as follows: a list of permutations (indexes permuted) with

:::
rises

:::::
from

:::
the

:::
fact

::::
that

:::
gij :::

are
::::::
picked

::::
from

::
a

:::::::::::
pre-computed

:::
list

:::
of

:::::::
gradients

:::::
with

:::::
length

::::::::::::
l << m×n.

:::
We

:::::
select

::::::
values

::::
from

::::
this

:::
list

::::
using

:::
the

:::::
index

::::::::::
permutation

::::
grid

::::::::::::
pij ∈ {0, ..., l}::::

also
::::
with

::::::
m×n

::::::::
elements.

:::::
Then,

:::
gij::::

will
:::::::::
correspond

:::
to

:::
the

:::::::
gradient

::
in

::
the

:::::::
position

:::
pij:::

of the same number of elements as the grid will sample gradients from a list of limited length (16 unit

gradient elements in our case).
:::::::::::
pre-computed

::::
list.

:::::::
Elements

:::
pij:::

are
:::::::
shuffled

:::
for

::::
each

::::::::::
realization.205

– A set of points p is arbitrarily distributed within the domain defined by the grid.

– To estimate the noise level of each point p, the contribution from each of the nearest pseudo-random gradients is

calculated as the dot product between the corresponding gradient and the distance vector , d, from the gradient position

to p. Finally, each contribution is added directly after weighting by the inverse of the magnitude of d, and scaled to obtain

values within the range -1, 1.210

– As one could suspect, each p matches one of the positions to contaminate in the synthetic scans.
:::
For

::::
each

::::
grid

:::::
point

::::::
(xi,yj)::::::::

enclosing
::::::
(x,y),

:
a
:::::::
distance

::::::
vector

::::::::::::::::::
di,j = (x−xi,y− yi)::

is
:::::::::
generated.

–
::::::
Finally,

:::
the

:::::
noise

:::::::
function

::
is

:::
the

::::
sum

::
of

:::
dot

::::::::
products,

::::::::::::::::::::::::
N(x,y) =

∑
qwq(g

q
ij ·d

q
i,j),

::
for

::
q
::::
grid

:::::
points

::::::::::
surrounding

::::::
(x,y).

:::::::
Weights

::
wq::::::::::

correspond
::
to

::::::::::::
wq = C 1

‖dq
i,j‖

,
:::
and

::
C
::
a
:::::::::::
normalization

::::::::
constant

::
to

:::::
ensure

::::
that

:::::::::::::::
N(x,y) ∈ [−1,1].

When clouds, rain or atmospheric conditions affecting the concentration of aerosols in the air enter the measuring domain,215

what we see are regions with anomalous line-of-sight wind speeds and low CNR values. One of the advantages of procedural

noise is the generation of areas with noise, with the same size of the scan domain for instance, either in polar or Cartesian

coordinates, via an array of points p distributed over the synthetic measuring domain. In this test, the distribution of points p

over the scanning area aims to follow the decay in the
:::
The

:::::::
function

:::::::
N(x,y)

::::::
allows

:::
the

:::::::::
generation

::
of

::::
noisy

:::::::
regions,

::::
than

:::
can

:::
be

:::::::::
distributed

::::::::
according

::
to back-scatter intensity with distance(See Figure 4). We define three bands per scan,

::::
decay

::::
with

::::::::
distance.220

:::::
Three

:::::
bands centered at 50% , 70% and 90% of the total beam length ,

::::
(and spanning over the entire azimuth rangeand with

a width of
:
)
::::
have

:::
an

:::::::::
increasing

::::::
fraction

:::
of

:::::
noise,

::::::::::::
contaminating

:::
the

:
30% of the beam length in the radial direction. Within

each of these bands a set of uniformly distributed positions are selected. The fraction of beams contaminated at each band, as

we depart from the lidar, are 30%, 60% and 90% , respectively, since it is assumed that after a position of a particular beam

is sampled, the remaining points in the radial direction are all contaminated. The increasing fraction of contaminated points225

tries to be similar to what is observed in real data, since the quality of the signal decrease as we depart form the lidar
::
of

:::
the

::::::::::
observation,

::::::::::
respectively. The noise amplitude is finally scaled by 35 [m/s]; i.e. ,

:
the limit of the observable range of VLOS for

the instruments described in
::::::
Section 2.

Figure 2 (a) and (b) show the
:
c)

:::::
show

::::
one

:::::::::::
contaminated

::::
scan

::::
and

::
its

:::::::::
increasing

:::::::::::
contaminated

::::
area

:::
as

:::
we

:::::
move

:::::
along

:::
the

::::::
beams.

:::
The

:::::
same

::::::
Figure

:::::
shows

:::
the

:
distribution of the noise generated by the simplex algorithm after scaling, and its effects230

on the distribution of
:::
the

:::::::::
probability

::::::::::
distribution

::
of

::::::::::::
contaminated

::::::::
synthetic VLOS , respectively

:::::::
compared

:::
to

:::
real

::::
data

:::::
with

:::
low

:::::
values

:::
of

::::
CNR. The distribution of contaminated observations

:::
real

::::
data presents heavier tails

:::
than

:::
the

::::
ones

:::::::::
generated,

::::
with

:::::
higher

:::::::::
probability

::
of

:::::::::
observing

::::::
extreme

::::::
values

::
of

::::::
VLOS .

::::::::
Modeling

:::
real

:::::
noise

::
is

::::::
difficult, as expected, but also a high probability

9



Figure 2. Contamination with procedural
::::::::
Procedural noise on synthetic scans.(a) Distribution of ∆VLOS,noise, the noise addedto the original

scan. Maximum values are within the observable range between −35 and [
:::
-35, 35] [m/s]. (b) Distribution of non-contaminated

:::
real VLOS

:::
with

:::
low

:::::
CNR

:::::
values (black) and contaminated,

:::::::
synthetic VLOS + ∆VLOS,noise (red) , for all range gates and cases. The distribution of

VLOS show peaks around ±15 m/s, which correspond to the main
:
a
::::
mean

:
wind directions simulated

:::::::
direction

:::::
facing

::
the

::::
scan. (c) Individual

scan showing a realization of the spatial distribution of radial wind speed, VLOS , with increasing fraction of added noise ∆VLOS,noise:::::
(grey)

with distance.

for VLOS values within a range far from the shadowed area of outliers. Therefore, contaminated points are more difficultto spot

by filters that do not consider information about spatial smoothness. Figure 2 (c) shows one contaminated synthetic scan, where235

the noise fraction increases with distance. The noisy areas show relatively smooth transitions in the azimuth direction due to the

grid of gradients is generated in polar coordinates, which makes the noise identification more difficult for median-like filters,

which are good at detecting local discrete steps in VLOS , but have difficulties to do it when the size of its moving window

is comparable to the size of the contaminated area
::::
since

:::
the

:::::::
process

::::
that

::::::::
generates

::
it

:::::::
depends

:::
on

:::
the

:::::::::
measuring

:::::::
principle

:::
of

::
the

:::::
lidar

:::
and

::::::::::
atmospheric

::::::::::
conditions.

:::
The

::::::::
synthetic

:::::
noise

::::
used

::::
here

::::
does

:::
not

::::::
intend

::
to

::
be

::::::
totally

:::::::
realistic,

:::
but

:::::
more

:::::
subtle

::::
and240

:::::::
smoother

::::
than

:::
the

::::
one

:::::::
observed

::
in
::::
real

::::::::::::
measurements,

:::::::
making

:::
the

:::::::::::
identification

::
of

:::::::::::
contaminated

::::::
points

::::
more

:::::::
difficult.

4 Filtering techniques tested
::::::
applied

:
on real and synthetic data

4.1 CNR threshold

Along with the line-of-sight wind speed, lidars give information about the intensity of the back-scattered signal via CNR , which

can take values in a range from 15 to -50 dB, depending on the manufacturer of the instrument. Here, the low CNR values245

correspond to very poor signal back-scattering, due to atmospheric conditions (i.e. low concentrations of aerosols) and high

ratios usually occur when the lidar laser beam hits a hard target
::::
CNR

:::::::::
thresholds

:::
are

:::
well

::::::
known

::::
and

::::
lidar

::::::::::::
manufacturers

::::::
usually

:::::::::
recommend

::::::
values

:::
for

::::::::
rejection

::
of

::::::
signals

::::
with

::::
poor

:::::::::::::
backscattering

::
or

::::::
hitting

::::
hard

::::::
targets (Cariou, 2015). Good and reliable
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measurements will lay in between these too scenarios, and thresholds values have traditionally been used to filter out non

reliable observations (Gryning et al., 2016). Observations with CNR values lying beyond upper and lower thresholds (which250

will depend on the lidar itself, commonly -8 and -24 dB, respectively) are rejected. One problem that arise with the use of this

filtering criteria for long range lidars is that the CNR value worsen rapidly with distance, and observations which might be valid

at spatial points that are distant from the instrument are rejected using this criteria. Figure 3 (b) shows a scatter plot of radial

wind speed, VLOS , against CNR, from 30 consecutive PPI scans from the Balconies experiment, with its typical comb-like

shape. Below the lower threshold (in this case
::::::::
However,

:::
the

::::::::
selection

::
of

::
an

::::::::::
appropriate

::::::::
threshold

:::
for

:::::
CNR

:::
that

:::::::
assures

::::
data255

::::::
quality

:::
and

:::::
good

:::
data

::::::::
recovery

::
is

:::
not

::::
easy.

:::::::
Figures

::
3

:::
and

::
4

::::
show

::::
data

:::::
from

:
a
::::
scan

::::
with

:::::
noisy

:::::::::::
observations

::::
from

:::::
CNR

::::::
values

:::::
below -27 dB) along with extreme .

:::::
Both,

:::::::
extreme

::::
and

::::::
limited values of VLOSwe also find line-of-sight speeds that are not far

from the reliable range above the threshold. The effect of filtering out only observations below the threshold or accepting the

the ones with values within the range of VLOS above the threshold can be seen in Figure 3 (c)and (d). Low CNR values for

reasonable line-of-sight speeds can be understood when the range distance is included in the picture, as in
:
,
::::
show

::::
low

:::::
CNR260

:::::
values

::
in

:::
the

::::::
distant

::::::
region

::
of

:::
the

::::
scan,

::::
and

:::
data

::::
loss

::::::
results

::::
after

:::
the

:::::::::
application

:::
of

:::
the

::::
CNR

::::::::
threshold

:::::::
(Figure

:
4
::::
(b)).

:::::
When

::
a

::::
limit

::
to

:::::
VLOS::

is
::::::
applied

:::::::
instead,

:
Figure 4 : the decay in the back-scattering intensity with distance makes CNR values worse,

but, apparently, the lidar is still able to retrieve some valid observations. The selection of an appropriate threshold for CNR

is not clear, but a lower bound of -29 dB is recommended by Gryning and Floors (2019) before a wind resource assessment,

based on lidar measurements, starts to be dependent on the CNR-threshold
::
(c)

:::::
show

:::
that

:::
the

::::::::::
smoothness

::
in

:::::
VLOS::

is
::::
lost

::
in

:::
the265

:::::
lower

:::
part

::
of

:::
the

:::::
scan.

::
A

::::::::::
conservative

::::::::
threshold

::
of

::::
-24

::
dB

::
is
::::
used

:::::
here,

::::
since

:::
the

::::::::
resulting

:::::
VLOS:::::::::

probability
::::::::::
distribution

:::::
show

::::
very

::::
little

::::::
outliers

::::
and

:
it
:::
can

:::
be

::::
used

::
as

::
a

::::::::
reference

::::
when

:::
the

:::::::::::
performance

::
of

:::
the

:::::
filters

::::::::
proposed

:::
are

::::::::
compared.
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Figure 4. (a) When range gate distance is included in
::::::::
Un-filtered

:::
scan

::::
with

:::::
VLOS:::::

values
::::::

outside
:

the picture
::::
range [

::
-21,the shape of the

distribution of reliable observations gets more complicated, and
:
0]

::
in

:::::
Figure

:
3
::

(adecreasing CNR with distance is now obvious
:
)
::
in

::::
black.

Observations
::
(b)

::::::
Filtered

::::
scan with low CNR values but high probability density can be found at

:
>
:::
-27

:::
and the more distant region

:::::::
resulting

:::
data

:::
loss

::
in

:::
the

:::
uper

::::
part of the scan. (b

:
c) Threshold in the actual values of VLOS (shadowed volumes) recovers distant

:::::
within

::
the

:
[
:::
-21,good

measurements
:
0]

::::
range, but still includes non reliable observations with very low probability density or KDE

::::::
showing

:::::::::
anomalous values

::
in

::
the

:::::
lower

:::
part

::
of

:::
the

::::
scan.

Figure 3. (a) Scan from data measured in the Østerild Balconies Experiment with noisy observations in the far region. (b) Distribution of

CNR and VLOS for the same
:::
one scan

:::
from

::::::::
Balconies

::::::::
experiment, including the probability density estimated via (KDE

:
). Observations with

high CNRvalues
::::
>-27

::
dB

:::::::
(dashed

::
red

::::
line)

:
show a limited range of VLOS (black dashed

::::
black line). A CNR threshold (dashed red line) of

-27 places a portion of reliable observations that belong to a
:::
with

:
high probability density region

:::::
remain

:
in the rejection area. (c

:
b) Since

points
::::
CNR

::
v/s

:::::::
distance

::
for

:::
the

::::
same

::::
data.

::::::::::
Observations with low CNR are located

::::
values

:::
and

::::
high

:::::::::
probability

:::::
density

:::
can

::
be

:::::
found

:
in the

far
:::::
distant

:
region of the scan, a large portion of the measured area is lost after filtering.(d) Values out of the range defined by the dashed black

lines in (d) are rejected instead. The measured area gained still shows some noisy observations

12



4.2 Median-like filter

The main output of scanning lidars is, in the present measuring campaign, a two-dimensional field of line-of-sight wind

speeds. Interpreting this field as an image, a median filter arise as a viable option for detecting erroneous measurements,270

since it is well known that this type of non-linear filter is suited to detect and filter noise that present distributions with large

tails Huang et al. (1979). Here we use an adaptation of the traditional median filter used in the image processing community:

values
::::::::::::::
image-processing

::::::::::
community,

::::::
closely

:::::::
related

::
to

:::
the

::::::::::
three-stage

:::::::
filtering

::::::::
technique

::::::::
described

:::
in

::::::::::::::::
Menke et al. (2019)

:
:

::::::::::
observations

:
are not replaced by the local moving median but labeled as reliable or non reliable according to whether their

values are either under or above a threshold for ∆VLOS, threshold,
:::::::
excluded

::
if the absolute difference between the value and its275

moving median. Another difference is the two-dimensional nature of the original median filter, which estimate the local median

within a two dimensional moving window. Here,
:::
their

:::::
value

:::
and

:
the median-like filter does the same but in

::::
local

::::::
moving

:::::::
median

:
is
::::::
above

:
a
::::::
certain

:::::::::
threshold,

:::::::::::::::
∆VLOS, threshold.

::::::
Unlike

::::::::::::::::
Huang et al. (1979),

::::
The

::::::::::::::
two-dimensional

:::::::
moving

::::::
window

::
is
::::::::
replaced

::
by

:
a
:

two one-dimensional
::::::
window

:
instances, the first in the

::::::::::
line-of-sight

::
or

:
radial direction, r, and finally in the azimuth di-

rection, θ, considering the polar coordinates of the scan. This simplification reduces the computation time , which is the main280

advantage of this filter.
:::::::::
importantly.

:

The input parameters of this filter will be the size (or number of elements) of the moving window
:::::::
windows

:
in the radial

direction,
:::
and

:::::::
azimuth

:::::::::
directions,

:
nr , the size of the window in the azimuth direction, nφ, and a threshold for the difference

between the local radial wind speed value and its corresponding moving median,
::
nφ:::::::::::

respectively,
:::
and

:
∆VLOS, threshold. For

fixed values of ∆VLOS, threshold, nr and nφ, the spatial structure of wind speed fluctuations will have an
::::::::
important

:
effect on285

the recovery rate
:::
and

:::::
noise

::::::::
detection of this filter. Section 6.1 explores this relationship by means of a sensitivity analysis on

the performance of this filter when applied over wind fields with different characteristics.

4.3 Filtering using a clustering algorithm

Assuming no abrupt spatial changes in the different features measured, radial wind speed for instance, observations non affected

by poor back-scattering or noise generated in the lidar itself, will fall in limited regions of the observational space, unlike290

contaminated observations, that will be scattered in wider region. This is noticeable in Figure 4, distinguishing two main

groups: one presenting limited radial wind speeds and CNR values (between -20 and 0
::
A

:::::::::
sensitivity

:::::::
analysis

::::::
carried

::::
out

::::
using

:::
the

:::::::
metrics

::::::::
presented

:::
in

::::::
section

:::
5.1

:::
on

:::
the

::::::::
synthetic

::::
data

:::
set,

::::::
shows

:::
that

::::
the

::::::
optimal

:::
set

:::
of

:::::::::
parameters

::
is

:::
nr ::

=
::
5,

:::
nφ

:
=
::
3
:::
and

:::::::::::::::
∆VLOS, threshold::

=
::::
2.33

:
m/s and 0 and -35 dB, respectively)and another group, less dense and broader, with bad

observations. Also noticeable is an overlapping region that contains observations from both groups. When only VLOS and295

CNR are taken into account (Figure 3 (b)), the overlapping region is more diffuse than when including the range gate distance

in the picture (Figure 4). The two groups are more distinct in the latter representation because their separation increases along

with dimensionality as we consider more features of the data. These considerations inspire us to think the identification of valid

observations as a process, which classifies groups or clusters of good/bad data, using all the information available: temporal
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and spatial information, signal quality via CNR, VLOS values and its smoothness.
:::
(See

:::::::::
Appendix

:::
A).

::::
This

:::
set

::
is

::::
used

::::
both

:::
for300

:::::::
artificial

:::
and

::::
real

::::
data.

:::
The

:::::
filter

::::
does

:::
not

::::::
include

::
a
::::
time

:::::::
window,

:::
and

::
it
::
is

::::::
applied

:::
on

::::::::
individual

::::::
scans.

There exist many clustering algorithms with different characteristics and performance (Rui Xu and Wunsch, 2005; Xu and Tian, 2015)

, each of them suitable to the specific characteristics of the databeing analyzed. Partitions algorithms, like k-means (MacQueen, 1967)

or k-medoids (Park and Jun, 2009) have been popular in the data mining community due to its low computational complexity. In

these algorithms data points are separated in k different groups or clusters, with each observation belonging to the cluster with305

the closest mean/medoid, estimated iteratively by minimization of the within-cluster variance. Even though these algorithms

introduce the notion of density in the data distribution, they have two drawbacks: both need prior knowledge of the number of

clusters present in the data and, if this first problem is sorted, the algorithm assigns all data points to specific clusters, either

good measurements or outliers, which is not desirable for our purpose. The Density Based Spatial Clustering for Applications

with Noise algorithm, or DBSCAN (Ester et al., 1996), on the other hand, is a clustering technique specially designed to deal310

with large-scale data with spatial distribution. When compared to other algorithms, DBSCAN presents several advantages when

applied as a filter to measurements from lidars: 1) it can manage large amounts of data with spatial distribution (its time

complexity is O(n logn), with n the amount of

4.3
:::::::

Filtering
:::::
using

::
a

::::::::
clustering

:::::::::
algorithm

:
If
:::
we

::::::::
represent

::::
lidar

:::::::::::
observations

::
as

:
m-dimensional points in the dataset), 2) it does not need prior knowledge of the number315

of clusters in the data, 3) it is a non-supervised algorithm (meaning that it does not require any fitting with previous training

data), 4) it identifies clusters with arbitrary shapes and 5) it does introduce the notion of a noise set, which are data points

that do not belong to any cluster
::::::
vectors,

::::
with

:::
m

:::
the

::::::
number

::
of

:::::::::::::::::
features/parameters

::
of

:::
the

::::
data,

::::::::::::
measurements

:::
not

:::::::
affected

:::
by

::::
poor

::::::::::::
back-scattering

:::
or

::::
noise

::::
will

::::::
cluster

:::::::
together

::
in

:::::::
regions

::
of

::::
high

::::
data

:::::::
density,

::
as

:::::
shown

:::
in

::::::
Figures

::
4

:::
and

::
3.

::::
The

::::::::
approach

::::::::
presented

::::
here

::::::::
identifies

::::
such

::::::
clusters

::::::::
applying

::::::::
DBSCAN

::
on

::::
data

::::::::
described

:::
by

:::::
CNR,

:::::
VLOS::::

and,
:::::::::::

additionally,
::::::
spatial

:::::::
location320

:::
and

::::::::::
smoothness

:::::::
features,

:::::
which

::::
help

::
to
:::::
make

:::::::
clusters

::::
more

:::::::::::::
distinguishable.

DBSCAN identifies clusters and noise based on two parameters, the :
::
a neighbourhood size, ε, and the

:
a minimum number of

nearest neighbours, NN
::::
NN . The parameter ε is the euclidean distance

::::
from

:::
one

::::::::::
observation

:
to the limits of a neighborhood

in which NN
:::
that

:::::
might

:::::::
contain

::::
NN

:
(or more) nearest neighborsof each point may be located. Intuitively, these parameters

will define the minimum density that a data partition
::::
group

:::
of

:::
data

::::::
points needs to have to be identified as a cluster. In formal325

terms, clusters are defined as a collection of density connected points, the most general category out of four:

:::::::::::
Observations

:::::
within

::
a

:::::
cluster

:::
fall

::::
into

:::
the

::::::::
following

:::::::::
categories,

:

– Core point: A point
:::::
points

:
q is a core point if within its

:::::
whose ε-neighborhood we can find NN

:::::::
contains

::::
NN or more

pointsapart from q.

– Direct density reachable point: A point
:::::
points p is directly density reachable from a core point

:::::
which

:::
are

::::::::
reachable

::
by

:
q330

if p is in the
::
by

::::::
laying

:::::
within

:::
its ε-neighborhoodof q.
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– Density reachable point: A point
::::
points

:
p is density reachable from

::::::::
reachable

::
by

::
a

::::
point

:
r if there exist

::::::
through

:::
one

::
or

:
a

set of core points q directly connected between them and to r and p.

– Density connected points: Points p and r are density connected if they are density reachable for at least one common

core point
::::::
directly

::::::::
connected

::::
core

::::::
points q.335

The euclidean distance here is m-dimensional, because the data is characterized by m features. Since the values taken by

each feature can be very different (VLOS is in a range from -35 to 35 m/s, and range gates can be between 105 and 7000 m

apart from the lidar, for instance), each feature of the data needs to be centered and scaled properly before the application of

DBSCAN to obtain a meaningful distance between points. By using the mean value for centering and the standard deviation for

scaling, this step is very sensitive to the presence of outliers. Therefore, in our case, the mean is replaced by the median and340

the scaling is done using the inter-quartile range instead, which is the range between the 25th and 75th percentiles.

(a) DBSCAN algorithm definitions: direct density reachable point p (reachable by the core point q) and density reachable and

density connected points p and r. Here point n does not belong to any of these categories, but noise. The DBSCAN algorithm

working: (b) The current point being evaluated have the minimum number of nearest neighbours required, NN, within a

neighborhood of size ε, classified as a core point (red) (c) The next point have less than NN neighbours, but one of them is a345

core point and becomes a border point (yellow) (d) A point with neither NN neighbours, nor core points within ε, classified as

noise (brown) (e) The final cluster and noise. The former is a collection of density connected points.

Figure 5 shows schematically how this algorithm works. After centering and scaling, all m-dimensional distances between

points are calculated, and DBSCAN starts traveling across all
:::::
travels

::::::
across

:
data points identifying them with the categories

already presented: core points, or points with NN neighbours within the ε-neighbourhood, border points , or
:::::
border

::::::
points350

:
(density reachable points that do not meet the NN requirement but still have

:::
with

:
at least one core point within the ε-

neighbourhood, and points classified as
:
)
::::
and

:
noise, or points that are not density connected

::
do

::::
not

::::::
belong

::
to
::::

any
::
of
::::

the

::::::::
categories

::::::::
described

::::::
above. Finally, the algorithm define clusters as the

:::::::
separates

:::::::
clusters

::
as

:
individual groups of data with

only density connected pointsand an unique group with points classified as noise, not belonging to any cluster. The .
::::::
Figure

::
5

:::::
shows

:::::::::::
schematically

:::::
these

:::::::::
definitions

:::
and

::::
how

:::
the

:::::::::
algorithm

:::::
works.

:
355

:::
The

:::::
input parameters ε and NN

::::
NN have a significant influence on the number and characteristics of the clusters detectedby

DBSCAN. Large values of .
:::
For

::::::::
example,

:::::
large ε together with small NN will define very sparse clusters , including noiseas

valid cluster members. On the contrary, the requirement of small, densely populated neighborhoods will reject many points

that otherwise are valid cluster members. As we can see, both parameters are closely related, and therefore one can fix one

of them to vary the one remaining. Following the guidelines of the author of DBSCAN in Ester et al. (1996) NN is fixed to 5360

neighbours in this case, no matter the type of data or its distribution, leaving only ε to be estimated according to the structure

of the data
:
a
:::::
small

::::
NN

::::
will

::::
end

::
up

::::
with

::::::
sparse

:::::::
clusters

:::
that

::::::
might

::::::
include

:::::
noise. One way to describe this data structure is

via
::
In

::::
order

::
to
::::
find

:::
the

:::::::::
parameters

:::::::::
separating

:::
the

::::
least

:::::
dense

::::::
cluster

::::
from

::::::
noise,

::
we

:::
fix

::::
NN

::
to

::
a

:::::
certain

:::::
value

::
k

:::
and

:::::::::
determine

:
ε
::::
from

::::
the

::::
data

::::::
density

::::::::::
distribution.

::::
The

:::::
latter

::
is

::::
well

::::::::
described

:::
by

:
the k-distance function, dk(n). This function maps and

sorts in ascending order the distance from each data point to its ,
::::::
which

::::::::
represents

:::
the

::::::::
distances

:::::
from

::
all

::::
data

:::::
point

:
n
:::
to

::::
their365
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Figure 5.
::
(a)

:::::::
DBSCAN

:::::::
algorithm

:::::::::
definitions:

:::::
direct

::::::
density

:::::::
reachable

:::::
point

:
p

:::::::
(reachable

:::
by

:::
the

:::
core

:::::
point

:
q
:
)
:::
and

::::::
density

:::::::
reachable

::::
and

:::::
density

::::::::
connected

:::::
points

:
p

:::
and

:
r.
::::
Here

::::
point

::
n
::::
does

:::
not

:::::
belong

::
to

:::
any

::
of

::::
these

:::::::::
categories,

::
but

:::::
noise.

::::
The

:::::::
DBSCAN

:::::::
algorithm

:::::::
working:

:::
(b)

:::
The

:::::
current

::::
point

:::::
being

:::::::
evaluated

::::
have

::
the

::::::::
minimum

::::::
number

::
of

:::::
nearest

:::::::::
neighbours

:::::::
required,

:::
NN,

:::::
within

:
a
:::::::::::
neighborhood

::
of

:::
size

::
ε,

:::::::
classified

:
as
::

a
:::
core

:::::
point

::::
(red)

::
(c)

:::
The

::::
next

::::
point

::::
have

:::
less

::::
than

:::
NN

:::::::::
neighbours,

:::
but

:::
one

::
of

::::
them

:
is
::

a
:::
core

::::
point

::::
and

::::::
becomes

::
a
:::::
border

::::
point

::::::
(yellow)

::
(d)

::
A

::::
point

::::
with

:::::
neither

:::
NN

:::::::::
neighbours,

:::
nor

::::
core

::::
points

:::::
within

::
ε,
:::::::
classified

::
as
:::::
noise

::::::
(brown)

::
(e)

::::
The

:::
final

:::::
cluster

:::
and

:::::
noise.

:::
The

::::::
former

:
is
::

a

:::::::
collection

::
of

::::::
density

:::::::
connected

::::::
points.

::::::::
respective

:
k-th nearest neighbour. Figure ?? (a) gives an idea of how this function looks when applied on real data. When the

distance to the fifth nearest neighbour (
:
,
:::::
sorted

::
in

:::::::::
ascending

:::::
order.

:::::
When k = NN =

:
is 5 ) is considered we can distinguish four

turning points, or knees: the first, positive, at very small distances, the second, highlighted , represents the limit
::
for

::::::::
instance,

:::::
d5(n)

::
in

::::::
Figure

:
6
::::::
shows

::::::
sudden

:::::::
changes

:::
(or

::::::
knees)

::::
that

::::
give

::::
some

::::::::::
indications

:::::
about

:::
the

::::
data

::::::
density

:::::::::::
distribution.

:::
The

:::::
knee

:::::::::
highlighted

:::::::::
represents

:
a
::::
limit

:::::::
between

::
a

:::::
group of reliable observations and non-reliable, and two more, both in the region where370

k-th distance grows faster within the non structured group of data, identified as noise. These knees in k-dist represents sudden

changes in the data density, and they separate clusters from each other and from mere noise. One way to determine the position

of these knees is to locate the corresponding
::
the

:::
one

::::::::
growing

:::
fast

:::::::
towards

::::
noisy

:::::
data.

:::
The

::::::::
positions

::
of

:::::
these

:::::
knees

::
in

:::
the

:::::
graph

:::::::::
correspond

::
to

:::
the

:
peaks in the curvature of the dk(n)function, κ(n) . Even though dk(n) is discrete,

:
in

:
expression (3)defines

κ(n) from its continuous analog, in which the .
:::
In

:::
this

:::::::::
expression primes correspond to the derivatives

:
of

::::::
dk(n) with respect to375

the "continuous" data point number
:
a n. The continuous representation of the discrete k− dist(n) function

::::::
version

::
of

:::::
dk(n) is

made by spline-fitting on a reduced set of uniformly distributed points over the original data set. By doing this, one can avoid

the selection of local spikes not representing the general structure of the data.

κ= (dk(n))′′/(1 + (dk(n))′2)3/2 (3)
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Figure 6. (a) Scan from the Balconies experiment (phase 1) with a 48% of data points in the range of reliable observations with CNR ∈ [-24,

-8] dB (b)
:::::::
Logarithm

::
of

:::::
sorted

:::::::
distances

::
to

::
the

::::
5-th

::::::
nearest

:::::::
neighbour

:::
for

::::
each

::::
point

::
in

:
a
:::
data

:::
set.

:
The same scan after filtering

:::
total

::::::
number

:
of
::::::::::

observations
:::::::::
corresponds

::
to

::::
three

:::::::::
consecutive

:::::
scans,

::
or

:::::
26730

:::::
points.

::::
The

:::::
sorted

:::
5-th

:::::::
distances

:::::
show

::::
three

::::
knees

::::::::
separating

::::
three

:::::
types

:
of
:::::::::

structures:
::::::
reliable

:::::::::
observations

:
with DBSCAN using VLOS ::::::

distances
:::::
below

:::::
εknee, range gate

::
an

:::::::::
overlapping

:::::
region

:::::
where

:::
the

:::::::
distance

::::::
between

:::::
points

:::::
grows

::::
faster, azimuth angle, CNR and ∆VLOS as features

:::
pure

:::::
noise

::
or

:::
non

:::::::
structured

::::
data.

For scans representing good measurements the relative distance between these knees is well marked and easy to identify.380

This is not the case when scans are very nosy, like the one in Figure 6, and the positions of knees become closer , with a large

number of observations showing
:::::
When

:::::
scans

:::
are

::::
very

:::::
noisy,

:::
the

::::::::
selection

::
of

::
a
::::::
proper

:::::
value

::
of

:
ε
::

is
::::::::
difficult,

::::
since

::::::
knees

:::
are

::::::
located

:::::
closer

:::::::
together

::::
and

:
a
:::::
larger

:::::::
fraction

::
of

:::::::::::
observations

::::
show

:
a fast growing k-th distance. The selection of a ε value that

defines a reliable cluster of good observations is in this caseis difficult but can be eased when
:::::
dk(n),

:::
as

::::::::
expected.

::
In

:::
this

:::::
case,

the fraction of points with
:::::::
showing a reliable CNR value is also

:::::
values

::
is taken into account . In this case the neighborhood385

size is not selected by εknee, which is the ε-distance corresponding to the first noticeable knee from left to right, but by εCNR,

defined by
:::
and

::
ε

:
is
:::::::::
estimated

::
by

:::::::::
expression (4). Here fCNR corresponds to the fraction of very reliable observations in the data

set (or measurements showing
::::::::::
observations

:
CNR values within the range [-24, -8] ) over the total number of points. The

:::
and

::
the

:
constants c1 and c2 are defined by

:::::::
obtained

:::::::
obtained

:::::
from

:::
the

:
upper and lower bounds of ε , defined as the values that

k− dist(n) takes at the first and last knee from left to right in Figure 6 (a)
::
in

:::
the

::::
data, respectively.390

εCNR = c1fCNR + c2 (4)
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Data structure of the scan shown in Figure ??. (a) Logarithm of sorted distances to the 5-th nearest neighbour for each

point in a data set. The total number of observations corresponds to three consecutive scans, or 26730 points. The sorted

5-th distances show three knees separating three types of structures: reliable observations with distances below εknee, an

overlapping region where the distance between points grows faster and pure noise or non structured data. (b) Tri-dimensional395

representation of the data (range gate, CNR and VLOS), where two coherent structures of data points, or clusters, are identified.

The large structure has distances between observations below εknee and corresponds to reliable observations. The vertical line

showing high CNR values are observations of bad VLOS measurements in a group of 7 turbines around 2000 m from the lidar

(see Figure 13).

(a) Scan from phase 1 of the experiment with a 13% of data points in the range of reliable observations with CNR ∈ -24,400

-8dB (b) Data structure of the very noisy data. Here εknee over estimates the neighbourhood distance for a coherent cluster,

and the inclusion of noisy measurements is avoided via εCNR

Regarding the features considered to characterize each data point, depending on whether we filter synthetic or real data ,

these will be radial or line-of-sight wind speed, VLOS ,
:::
The

:::
set

::
of

:::::::
features

::::::::::
considered

::::
when

:::::::
filtering

::::::::
synthetic

::::
data

:::::
does

:::
not

::::::
include

:::::
CNR,

:::::::
because

:
it
::
is
:::
not

::::::::
available

::::
from

:::
the

:::
the

::::
lidar

::::::::
simulator

::::::::
described

::
in
:::::::
Section

::
3.

:::
For

::::::::
synthetic

:::
and

::::
real

:::
data

::::
sets

:::
we405

:::::::
consider

:::::
spatial

:::::::
location

::
(azimuth and radial positionsand ∆VLOS :

)
:::
and

::::::::::
smoothness

::
as

::::::::
additional

:::::::
features. The latter,

::::::::
∆VLOS ,

corresponds to the median difference in radial wind speed of an specific radial and azimuth position with
:::::
VLOS :::::::

between
::
a

::::::
specific

:::::::
position

::::
and its direct neighbours . This feature is included to consider the smooth spatial fluctuations of the radial

wind speed, same assumption used by the median-like filter . The real data will include CNR as an additional feature. The

controlled performance test on synthetic data does not include this feature, because the numerical lidar described in Section 3410

just estimates VLOS .
::
in

:::
one

:::::::::
individual

::::
scan.

:

::::
Since

:::
we

:::::::
consider

:::::::
features

::::
that

::::
vary

:::::::::
importantly

::
in
:::::::::
magnitude

::::::
(CNR

:::
and

:::::
range

::::
gate

:::::::
distance

::
for

:::::::::
instance),

::
we

:::::::::
normalize

:::
the

:::
data

::::::
before

:::
the

:::::::::
application

::::::::
DBSCAN

:
.
::::
This

::::
step

:
is
:::::::::

necessary
:::
for

:::
the

:::::::::
estimation

::
of

:::::::::
meaningful

::::::::
distances

::::::::
between

:::::::::::
observations,

::::
basis

::
of

::::
this

::::::::
approach.

:::::
There

:::
are

::::::
several

:::::
ways

::
to

:::
do

::::
this.

:::::
Here,

:::
the

::::
data

::
in

::::
each

::::::
feature

::
is

:::::::
centered

:::
by

:::::::::
subtracting

:::
its

:::::::
median,

:::
and

:::::
scaled

:::::::::
according

::
to

::
its

:::::::::::
inter-quantile

::::::
range.

::::
This

::::
aims

::
to

::::::::
minimize

:::
the

::::::::
influence

:::::
from

::::::
outliers

::
in

:::
the

::::::::::::
normalization.

:
415

:::
The

:::::::::
clustering

::::
filter

::
is
:::::::::::
implemented

:::
to

::
be

::
a

:::::::::::::
non-supervised

::::::::
classifier,

:::
and

:::::
does

:::
not

::::
need

:::::
more

:::::
input

:::::::::
parameters

:::::
than

:::
the

:::::::
different

:::::::
features

:::
and

::::
the

::::::
number

:::
of

:::::
scans

:::
put

:::::::
together

:::
as

:
a
:::::
batch

::::::
before

::::::::
filtering.

:::
The

:::::
latter

::
is
:::
set

::
to

:::::
three

::
in

::::
this

::::
case,

:::
to

:::::
speed

::
up

::::::::::
calculations

:::
and

:::::
avoid

:::::::
creating

:::::::
clusters

::::
from

:::::
noisy

:::::::
regions.

:::::
From

:::
this

:::::
point

::
of

:::::
view,

:::
this

::::
filter

::
is

::::
also

:::::::
dynamic

::
as

::::
that

::
of

:::::::::::::::::::
Beck and Kühn (2017)

::::
when

:::::::
applied

::
to

::
a
:::
real

::::
data

::::
set,

::::
since

::
it
::::
will

:::::::
consider

::::
the

:::
data

::::::::
structure

::::::
within

:
a
::::::

period
:::::::
limited

::
to

:::
135

:::::::
seconds

::
(3

:::::
scans

::
of

:::
45

:::::::
seconds

::
in

:::
our

:::::
case),

::::
and

::::::::::::
characteristics

::
of

::::::::
temporal

::::::::
evolution

::
of

:::
the

::::
data

::
is

::::::::
indirectly

:::::
taken

::::
into420

:::::::
account.

:::
For

:::
the

::::::::
synthetic

:::
data

::::
used

::
in
::::
this

::::
test,

::::
more

::::
than

:::
one

::::
scan

::::::
filtered

:::
per

::::::::
iteration

::::
gives

:::::::
enough

:::
data

:::::::
density

::
in

::::
noisy

::::
and

::::::
reliable

:::::
areas

::
of

:::
the

:::::::::::
observational

:::::
space.

::::
We

::::::::
speculate

:::
that

:::::
scans

:::
that

:::
are

:::::::::
correlated

::
in

::::
time

::::
will

:::::::
enhance

:::
the

::::::::::::
self-similarity

::
of

::
the

:::::
data,

::::
thus

:::::::::
improving

:::
the

::::::::::
performance

:::
of

:::
the

:::::
filter.

:::::::::
Turbulence

:::::::::
structures

::::
with

:::::
length

::::::
scales

::
in

:
a
:::::
range

::::::::
between

:::
the

:::::
range

:::
gate

::::
size

:::
and

:::
the

::::::::
scanning

::::
area

:::
size

::::
will

::::::
evolve

::
at

:
a
::::::
slower

:::
rate

::::
than

:::
the

::::
time

:::::::
elapsed

:::::::
between

::::::::::
consecutive

:::::
scans.

:
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5 Performance metrics425

5.1 Synthetic data

The advantage of testing the filterson controlled cases is the
::::::::::
Expressions

:
(5)

:
to
::

(7)
::::::
defines

:::::
three

::::::
metrics

:::
to

:::::
assess

::::
the

::::::::::
performance

::
of

:::
the

::::::
filters,

::::
given

:
prior knowledge of the position and magnitude of noise . This allows us to define three metrics

to assess how the median-like and clustering filters perform, namely, 1)
::
in

:
a
:::::::::
controlled

::::
case

::::
with

::
N

:::::::::::
observations.

::::
The

:
fraction

of noise detected, ηnoise, 2) fraction of good observations recovered ηrecov and 3) a total performance metric ηtot, which takes430

into account the relative importance
:::::::
quantify

:::
the

:::::::
relative

:::::::::
importance

::
of

::::
true

::::::::
positives,

::
or

:::
the

:::::::::
difference

:::::::
between

:::::::::::
observations

::::::::
identified

::
as

:::::
noise,

:::::::
Nnoise,:::

and
:::::

false
::::::::
positives,

:::::
Npos,::::

over
:::

the
:::::

total
::::::
number

:
of contaminated observations, Ncont, and

:
.
::::
The

::::::
fraction

::
of

:::::
good

:::::::::::
observations

::::::::
recovered,

:::::::
ηrecov ,

:::
give

:::
an

::::
idea

::
of

:::
the

::::
true

::::::::
negatives

::::
over

:::
the

::::
total

:::::::
number

::
of non-contaminated

observations, Nnon−cont.:::::
True

:::::::
negatives

:::
are

:::
not

:::
not

:::::
equal

::
to

:::::::::::
N − Nnoise,:::::

since
:::
the

::::
latter

::::::
might

::::::
include

::::
false

::::::::
negatives,

::::::
Nneg .

:::
The

:::::::
relative

:::::::::
importance

:::
of

:::
this

::::
two

:::::::
metrics, using the noise fraction

:::
for

:
a
:::::
given

:::::::
fraction

:::
of

:::::
noise

::
in

:
a
::::::::::::

contaminated
:::::
scan,435

fnoiseas weight of the two metricsηnoise:,::
is

::::::::
quantified

:::
by

::::
ηtot,::::::

which
::::
takes

::::
into

:::::::
account

:::::
cases

::::
with

:
a
:::::
large

:::::::
fraction

::
of

:::::
noise

:::::::
detected

:::
and

::::
low

:::::::
recovery

::::
rate,

:
and ηrecov , which are complementary as a large noise detection fraction will have associated

a lower recovery fraction of good measurements. In expressions to this metrics are defined in formal terms, where Nnoise is

the number of observations identified as noise by the filter, N the total number of observations, and Npos and Nneg the total

number of false positives and false negatives, respectively
::::::::
vice-versa.440

ηnoise =
Nnoise−Npos

Ncont
(5)

ηrecov =
N − (Nnoise +Nneg)

Nnon−cont
(6)

ηtot = fnoiseηnoise + (1− fnoise)ηrecov (7)445

5.2 Real data

Unlike the controlled test, in real measurements we do not have any explicit reference to validate the results from the two filters.

The
:
In

:::
the

:::::::
absence

:::
of

::::::::
reference

::::::::::::
measurements,

:::
the

:
quality of the data retrieved after their application

::::::
filtering is assessed by

comparing the distribution of radial wind speeds for very reliable observations (with CNR values within the range between

-24 to -8 dB) with the distribution of filtered observations that fall out of this range. Observations out of the reliable range450

population usually show a probability density function (or pdf
:::
PDF) with heavier tails, like the pdfs in Figure 7. Here we

understand a heavy tailed pdf as a distribution that slowly goes to zero and show higher probability density for values beyond

the 3-σ limit (or 3 standard deviation limit), when compared to the normal distribution, evidence of a higher probability of

occurrence of outliers or extreme values. The recovering rate of observations beyond the [0.003, 0.997] quantile range of the

reliable VLOS (shaded area in Figure 7) could shed information about the quality of the data retrieved by the filter.455
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Other metric is the similarity between pdf of reliable and non reliable data, after filtering. The distance between both prob-

ability density functions can be compared with similarity metrics like the Kolmogorov-Smirnov test (Kolmogorov, 1933) or

Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951). The former test measures the statistical similarity between

two random variables, X1 and X2, by estimating the statistical distance, D (or K-S statistic), between their cumulative distri-

bution functions, F1(x) and F2(x), as the supreme of their difference,460

DK = sup
x
‖F1(x)−F2(x)‖ (8)

The null hypothesis here is that two realizations
::
are

:
from the same distribution, if the K-S statistic is such that its two tailed

p-value is above a certain level α. Due to the amount of data analyzed here is huge—we analyzed over 20000 scans for the

two phases of the Østerild campaign, each with 8910 data points, over almost 10 days—this similarity test is very precise, but

also very strict rejecting the null hypothesis for small deviations between F1(x) and F2(x). Nevertheless, the K-S statistics can465

be used to compare which probability distribution
:::
after

:::::::
filtering

:
is closer to the one representing the reliable observations: the

non-reliable observations after filtering with 1) the median filter or 2) the clustering filter approach.

The KL divergence is a measure of similarity, or overlapping of two distributions P1 and P2 , with realizations X1 and

X2, respectively. It is used in different applications to shed light on the loss of information when X1 is represented by P2 or

vice-versa and is defined by the expression (9).470

DKL =
∑
x

P1(x) log

(
P2(x)

P1(x)

)
(9)

Both metrics will be used to estimate how the distribution of non reliable observations of VLOS is modified after filtering,

and if the new distribution is similar (or close, in a statistical distance sense) to the probability density of reliable observations

of the radial wind speed, shown in Figure 7 for phases 1 and 2 of the measurement campaign, respectively.

Both performance metrics, the recovery rate of abnormal measurements in the tails of the pdf of reliable observations and475

its statistical distance to the pdf of filtered non reliable observations, will be assessed for the median-like filter, the clustering

filter and also for data filtered with a CNR threshold of -29 dB, following (Gryning and Floors, 2019).

6 Results

6.1 Synthetic data

As described in section 4.2, the median filter needs three parameters as input, nr, nφ and ∆VLOS, threshold, which will have a480

large impact on its outcome. For a given window size, both in radial and azimuth directions, a small value of ∆VLOS, threshold

will affect the capacity of the filter to retrieve observations that are valid but reflect large local wind speed fluctuations, affecting

the data recovering rate. A larger value of this parameter in the other hand, will result in many noisy observations that are not

the result of turbulent fluctuations being accepted as valid. The synthetic data set with 4305 scans and different turbulence

characteristics allow us to test different combinations in these three parameters and find the optimal filter, which can be used485
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Figure 7. Probability density function of reliable observations of VLOS (black solid line) and non reliable observations (red, solid line) for

(a) Phase 1 of Balconies experiment with scans performed at 50 m a.g.l. and (b) Phase 2 of the same campaign, with scans performed at 200

m a.g.l.

to compare against the results of the clustering algorithm. The set of parameters used for this purpose are within the range of

odd values from 3 to 13 elements for nr, nφ and in the interval 1 to 6 m/s for ∆VLOS, threshold. Figure A1 shows contours that

present the most optimal value for ηtot among all possible values
::
In

:::::
Figure

::
8
:::
we

:::
can

:::
see

:::
the

:::::
result of ∆VLOS, threshold and nφ,

for nr = 5, the optimal window size in the radial direction. Large ∆VLOS, threshold results in large ηrecov but poor results for

ηnoise and the opposite for
::
the

::::
two

:::::
filters

::::::
applied

::
on

::::
one

:::::::
synthetic

::::
scan

::::::::::::
contaminated

::::
with

:::::::::
procedural

:::::
noise.

:::
The

::::::::::::
contaminated490

::::::::::
observations

:::
are

::::::::
indicated

:::
by

:::
the

::::
grey

::::
area

:::
in

:::
this

:::::
scan.

::::::::
Extreme

:::::
values

:::::::::::::
contaminating

:::::
VLOS:::

are
::::::::
identified

:::
by

::::
both

::::::
filters

::::::
without

:::::::::
problems,

:::
but

:::::
subtle

:::::::::
alterations

:::
on

:::
the

:::::::
original

:
values of the threshold, as expected. The metric ηtot then becomes

relevant then to determine the optimal combination of parameters. From the contours it is possible to see that the performance

in terms of the ηtot metric is less sensitive to nφ than ∆VLOS, threshold. Even though the results here show average metrics for

all the scans simulated, the optimal value of ∆VLOS, threshold increases with the turbulence energy and length scale parameters,495

which is problematic, because it requires previous knowledge of turbulence characteristics that usually are not available before

reconstruction, and more important, data filtering. In order to compare the performance of the
:::
scan

:::
are

::::
hard

::
to
::::::

detect
:::
for

:::
the

median-like filterto the clustering filter, the optimal set nr = 5, nφ = 3 and ∆VLOS, threshold = 2.33 m/s will be used.

Contours of performance metrics for nr = 5 over the ∆VLOS, threshold-nφ space. Each point in in the contour plot corresponds

to the mean value of (a) ηnoise, (b) ηrec and (c) ηtot among all the 4305 synthetic scans filtered. The optimal value corresponds500

to nr = 5, nφ = 3 and ∆VLOS, threshold = 2.33 m/s

:
. The clustering filter uses VLOS , the azimuth and radial positions, r and φ, and ∆VLOS . Due to the nature and simplicity

of the numerical lidar implemented, it is not possible to generate synthetic values of CNR, and this feature can not be included

to characterize the data points. The clustering filter is implemented to be a non-supervised classifier, and does not need more
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Figure 8.
::
(a)

:::::::::::
Contaminated

:::::::
synthetic

:::
scan

::::
with

::::
noise

:::::::
indicated

::
by

::::
grey

::::
area.

::
(b)

::::
Scan

::::::
filtered

::::
using

:::
the

:::::::::
median-like

:::::::
approach.

:::
(c)

::::::::
Clustering

::::
filter.

input parameters than the different features and the number of scans put together as a batch before filtering. The latter is set505

to three in this case, to speed up calculations and avoid creating clusters from noisy regions. From this point of view, this

filter is also dynamic as that of Beck and Kühn (2017) when applied to a real data set, since it will consider the data structure

within a period limited to 135 seconds (3 scans of 45 seconds in our case), and characteristics of temporal evolution of the

data is indirectly taken into accoount. For the synthetic data used in this test, it is useful to have more than one scan filtered

per iteration and have enough density of data points in both, noisy and reliable areas of the observational space. We speculate510

that scans that are correlated in time will enhance the self-similarity of the data, thus improving the performance of the filter.

Turbulence structures with length scales in a range between the range gate size and the scanning area size will evolve at a

slower rate than the time elapsed between consecutive scans. These structures will be then present at positions that are not very

distant from its previous location in the earlier scan. The consequence of this is more dense clusters for good observations than

when we consider independent scans realizations.515

:::::::
performs

::::
very

:::::::::
efficiently

::::::::
detecting

:::
this

::::
type

::
of

:::::::::::
contaminated

:::::::::::
observations

:::
and

:::::
filters

::::::
almost

:::
all

:::
the

:::::
noise.

::::
Both

:::::
filters

::::::
repeat

:::
this

:::::::
behavior

::
in

:::
all

:::
the

:::::::
synthetic

:::::
scans

::::
used

:::
for

:::
this

:::::::::
controlled

:::
test,

::
as

::::
can

::
be

::::
seen

::
in Figure 9,

::::::
which shows the resulting metrics

of the two filters applied on the
:::::
whole synthetic data set. Looking at ηtot, both filters show similar mean values and spread, with

the clustering filter performing slightly better. The difference becomes noticeable when we see ηnoise, which for the clustering

filter show a mean value of 0.95, far larger than the 0.67 of the median-like filter. The latter result could be problematic if the520

median-like filter is used, since noise contaminating the filtered scan will result in non realistic wind fields after reconstruction.

Both filters perform well when evaluated in terms of ηrec, with the median-like filter showing a higher mean fraction of

good observations retrieved, 0.96, compared with the 0.89 of the clustering filter. This result is expected, since the median-

like filter is more permissive regarding fluctuations that can seem locally anomalous for the clustering filter. It is not clear

that the recovering rate of the clustering filter will be benefited by including more features from the data set. The euclidean525

distance used by the clustering algorithm to identify nearest neighbours increases (to a certain level) as we add more features or
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Figure 9. Histograms of the three performance indexes for the total number of synthetic scans (a) Both filters show similar spread but the

clustering filter rejects a rather higher fraction of noise. (b) The higher recovery rate of the median-like filter, and its narrower distribution

is superior than the clustering algorithm, the cost is acceptance of more contaminated observations (c) Both filters have similar mean values

for ηtot around 0.9

dimensions the data description. As a consequence, adding more information to the data set, like CNR for instance, will result

in less dense clusters and noise, making it easier to identify noise and improving the noise detection ratio, but on the other hand

making the identification of good measurements located near the border of a cluster more difficult, especially if the CNR value

of a good measurements is too low/high, due to poor scattering/closeness to hard targets. This might be solved including more530

scans per filtering iteration, but this can not be tested with the synthetic data, given the simplified numerical lidar implemented

here.

6.2 Real data

The data set from the Balconies experiment presents advantages for the clustering filter, since the CNR value can be included as

a feature in describing the data. Nevertheless, as mentioned already in section 2, we do not count on any reference to asses the535

performance of the filter apart from the radial wind speeds distribution of very reliable observations with CNR values within

the range between -24 dB and -8 dB. As mentioned earlier, valid observations in this range might present a similar distribution.

Figure 7 shows this distribution before filtering, shadowing the area of values of VLOS that fall in the region beyond a 99.7% of

the total probability or 3σ limit, usually classified as outliers. Figures 10 and 11 show the recovery fraction for CNR, median-

like and clustering filters when applied on data in the reliable and non reliable CNR ranges for phases 1 and 2 of the Østerild540

experiment. Unlike the clustering filter, the CNR threshold and median-like filters show non negligible recovery rates beyond

the 3-σ limit, particularly significant in the former. This result is very much in line with the ηnoise metric from the synthetic

data. Within the 3-σ range, the CNR and median-like filters perform slightly better than the clustering filter in terms of recovery

fraction, in agreement with the results of ηrec in section 6.1. Even though this might compensate the fact that CNR threshold

and median-like filters fail to filter out the major part of outliers, increasing the availability of measurements, this difference545
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Figure 10. Distribution of recovery fraction per wind speed bin for phase 1 of the experiment of (a) reliable observations (−24 < CNR

< −8) and (b) non reliable data (CNR < −24 or CNR > −8) for the three types of filter. The shadowed area in both graphs corresponds to

the region where observations exceed the 99.7% of probability (or 3-σ limit) in the pdf of reliable observations. The darker shadowed areas

highlights the additional fraction of extreme values non-filtered by the median-like and CNR filters, when the former uses the optimal input

set nr = 5, nφ = 3 and ∆VLOS, threshold) = 2.33 m/s.

does not make the pdf of the filtered data more similar to the pdf of reliable data, as Table 4 shows via the metrics DK and

DKL. According to this metric, the pdf of the data after the application of the clustering approach looks more statistically

similar to reliable observations. This table also show DK and DKL of the non reliable data before filtering, which in all cases

is improved, except for DK for median and CNR threshold filters during phase 2.

Figures 12, 13 and 14 show the performance of the three different filters in different regions of the scan, from respectively550

phase 1 and 2 of the experiment. When the spatial distribution of the recovery fraction is analyzed, we can see that the lowest

values shown by the clustering filter are mostly located in the far region of the scan which, in general, presents low CNR

values. The spatial recovery rate during phase 1 also show that the median-like and clustering filters are able to identify hard

targets, which are also a source of bad observations. For scans recorded at 50 m above ground level in phase 1, back-scatter

is affected by a group of seven turbines located approximately in the middle of the scanning area, with one turbine touching555

the end of the southern beams of the scan and a meteorological mast located very close to the lidar. Figure 13 shows a detail

of the recovery rate associated with the flow in the vicinity of the turbines group, in which we can see that the clustering

filter is able to identify better the turbine locations, recovering more data in the sorroundings
::::::::::
surroundings

:
when compared to
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Figure 11. Distribution of recovery fraction per wind speed bin for phase 1 of the experiment of (a) reliable observations and (b) non reliable

data for CNR, median and clustering filter. The shadowed area in both graphs corresponds to the region where observations exceed the 3-σ

limit in the pdf of reliable observations. Again, darker shadowed areas highlights the additional fraction of extreme values non-filtered by the

median-like and CNR filters, when the former uses the optimal input set nr = 5, nφ = 3 and ∆VLOS, threshold) = 2.33 m/s.

the median-like filter.
:::
The

::::
PDF

::
of

::::::
VLOS ::

in
:::
this

::::
area

::::
also

:::::
show

::::
more

::::::::::
similarities

:::::::
between

:::
the

::::
data

::::::
filtered

::::
with

:::
the

:::::::::
clustering

::::::::
algorithm

:::
and

:::::::::::
observations

::::
with

::::
CNR

::::::
values

::
in

:
[
::::
-24,8]

:
.560

Table 5 shows a summary of the additional data available when the CNR = -29 dB threshold, the median-like and the

clustering filters are applied instead of the more conservative and restrictive CNR = -24 dB threshold filter. Additionally,

this table shows the fraction of observations exceeding the 3-σ limit that are recovered by the three filters. Even though the

clustering filter shows a slightly lower fraction of additional data available when compared to the other filters, most of it comes

from values within the 3-σ region. Moreover the quality of the data recovered by the clustering approach seems to be higher565

when all these results are tested with the performance metrics defined in Section 5.

7 Discussion

7.1 Performance assessment on synthetic data

The metrics introduced in section 6.1
::
5.1

:
attempt to evaluate two different capabilities of the filters: the quality of the

data recovered and the amount of good quality
:::
and

::::::
amount

:::
od

::::
the

:
data recovered. In general these two metrics are in570
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Figure 12. Total recovery fraction for phase 1 of the experiment. The noisy and far region of the scans show a high recovery, above 80%, for

(a) the CNR > -29 dB threshold filter and (b) the median-like filter and below 75% for (c) the clustering filter. Highlighted, it is possible to

see three groups of hard targets (turbines and one meteorological mast, close to the lidar), which are identified by the median and clustering

filter with recovery rates below 20%.

Figure 13. Detail of the recovery rate at the site of the turbines for (a) median filter and (b) clustering filter. The recovery is lower in the flow

regime of the turbines cluster (there are 7 turbines in line) and higher in their surrounding for the clustering filter. Red denotes recovery rates

of 0.5 or higher.
::

(c)
::::::::
Probability

::::::
density

::
of

::::
VLOS::::::

around
::
the

:::::
group

::
of

::::::
turbines

conflict—specially for the median-like filter—every
:::::::
conflict,

:::::
every time a high rate of noise is removed also good measurements

will be removed
:::
will

::::::::
decrease

:::
the

::::
data

:::::::
recovery. The metric ηtot attempts to quantify their relative importance regarding the

noise fraction, which in this study is distributed in a relatively wide range, but on average represents 20% of the total number

of measurements per scan. The impact of the noise fraction distribution on the performance of the filters was not explored, and

variations on its dispersion and mean value might be necessary. Regarding the synthetic scans, they do not allow the identifi-575
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Figure 14. The total recovery fraction of observations for phase 2 of the experiment. The noisy and far region of the scans show a high

recovery, above 70% for (a) and (b), the CNR > -29 dB threshold and median-like filters, respectively. The recovery decreases to 55% in the

same region for the clustering filter, in line with the previous results, assuming that outliers (above the 3σ limit) and noise are more likely to

be located here.

Table 4. Results of pdf similarity test of reliable and non-reliable data after filtering. The CNR = -29 dB threshold is also includedby
:
(Gryning

and Floors (2019))

Phase 1 DK DKL

Non-reliable data before filtering 0.097 0.134

CNR threshold > -29 dB 0.045 0.109

Median filter 0.047 0.126

Clustering filter 0.037 0.105

Phase 2

Non-reliable data before filtering 0.110 0.126

CNR threshold > -29 dB 0.114 0.052

Median filter 0.117 0.057

Clustering filter 0.103 0.045

cation of outliers in the time domain because they are time independent. A time evolving synthetic turbulence fields would be

necessary to generate scans correlated in time and enhance the self similarity of the data. This might improve the performance

of the clustering approach and allow the addition of a time dependence in the median-like filter, used already in Meyer Forsting

and Troldborg (2016).

27



Table 5. Additional data recovered, relative to the amount of observations in the reliable range of CNR, and fraction of data recovered with

values beyond the 3-σ range.

Phase 1, 3σ quantiles = [-18.16, 3.96] m/s Fraction of data recovered beyond 3-σ Additional data recovered

CNR threshold > -29 dB 27.1% 23.4%

Median filter 14.0% 23.1%

Clustering filter 8.6 % 22.1%

Phase 2, 3σ quantiles = [-18.08, 7.35] m/s

CNR threshold > -29 dB 16.5% 40.4%

Median filter 12.6% 42.4%

Clustering filter 3.2% 38.1%

The synthetic wind fields used here do not consider the presence of hard targets. These anomalies in the wind field are580

observed by lidars as points with high CNR values and abnormal VLOS . Assessing the performance of the filters in detecting

such anomalies needs a more realistic model of the pulsed lidar. This numerical lidar
::::
lidar

::::::::
simulator would allow the generation

of information normally available in real lidar measurements, like CNR, and the spread in the power spectra of the heterodyne

signal, Sb. This additional information will benefit the performance assessment of the clustering filter and the simulation of

hard targets. A more realistic lidar model was already implemented by Brousmiche et al. (2007), which can be used to explore585

further these aspects of the filtering process.

7.1 Performance assessment on real data

The data set analyzed from the Balconies experiment corresponds to horizontal scans at 50 and 200 m above the ground level,

limiting the analysis to one scanning pattern. Different scanning patterns, in vertical and horizontal planes, as well as wind

fields over different topography would make this analysis more general, thus shedding light on the capabilities of the filters590

here presented. This is specially critical regarding the median-like filter, which might require again a sensitivity analysis to

select proper parameters that adapt to different scanning patterns and turbulence field characteristics. So far, ∆VLOS, threshold

showed a dependence on theL and αε2/3 parameters during the sensitivity analysis presented in Section 6.1. Larger fluctuations

in the VLOS field, whether they come from larger turbulent structures or higher turbulence energy or both, will need a larger

value of ∆VLOS, threshold to avoid the rejection of good measurements. Range Height Indicator (RHI) scanning patterns can595

pose the challenge of strong vertical shear and small turbulent structures that will need to reduce the window size nr and nφ

for the median-like filter, and the selection of a different set of features (or a new definition for ∆VLOS) for the clustering filter,

in order to keep reliable observations from being filtered out.

Regarding feature selection, the clustering filter could consider the spectral spreading of the heterodyne signal, Sb and time

variation of VLOS , in addition to features already used in this work to characterize and distinguish better cluster of good600
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measurements. Nevertheless, due to the Euclidean distance definition, additional dimensions will make the data more sparse

in higher dimensions, making it necessary to use more data points per filtering step (here we used only 3 scans at a time) to

avoid the identification of good observations as spread, low density noise. It is because of this that the application of a feature

selection method might be necessary (Chandrashekar and Sahin, 2014).

Finally, using
:::::
Using

:
the statistical distances DK and DKL as a metric for the filter performance might not be totally correct.605

At range gates far from the lidar, the distance between beams increases, as well as the area covered by the accumulation of

spectral information in azimuth direction. Averaging VLOS over larger areas as we move forward through each beam, might

affect the statistics and the pdf
:::
PDF

:
of VLOS (specially its spread) in the outer region of the scan. The fact that this region

is where we usually find the non reliable measurements group(the one having CNR values out of the range between -24 and

-8 dB), may make the pdfs
::::
PDFs

:
of reliable and non reliable observations somewhat different. This

:::::
These possible deviations610

need to be investigated further.

7.1 Advantages and limitations of proposed filters

From the results obtained in the analysis of real and synthetic data, the clustering filter show in general a better performance

in noise removal and the recovering of good quality data from regions in the scan with poor CNR values. Moreover, this filter

is based in a non-supervised clustering algorithm and requires little intervention from the user to obtain reliable results. This615

is a step forward to a more robust and automated processing of data from lidars, which ideally should be independent of the

turbulence characteristics of the measured wind field or the scanning pattern used. The latter should be tested on a different

data set, as mentioned earlier.

The selection of features and the amount of scans put together per filtering step/iteration could also be automatized, using

feature selection methods. Nevertheless, this would make the clustering filter more complex in its implementation and more620

computationally expensive, which is the main disadvantage of this approach compared to the median-like filter. Very efficient

median filters can achieve a computational complexity up to O(n), with n being the number of observations in the data set.

Depending on the data structure, DBSCAN shows a computational complexity from O(n log(n)) to O(n2). If the distance

between points is in general smaller than ε, the first limit can be achieved, but clusters with different densities makes the

algorithm less efficient. In the data analyzed here, having clusters with different densities is not an issue. Nevertheless, for non625

homogeneous flows, scans might persistently show regions with VLOS , CNR or other feature with noticeable different values,

may need to revisit the clustering algorithm used and implement a ε-independent clustering approach, like OPTICS (Ankerst

et al., 1999) for instance.

8 Conclusions

The CNR threshold filtering has been the common approach to retrieve reliable observations form lidars measurements. In630

this work we compared this approach against two alternative techniques: a median-like filter, based on the assumption of

smoothness of the wind field, hence, in the smoothness of the radial wind speed observed by a wind lidar, and a clustering filter,
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based in the assumption of self-similarity of the observations captured by the wind lidar and the possibility of clustering them in

groups of good data and noise. A controlled test was carried out on the last two approaches, using a simple numerical lidar
::::
lidar

::::::::
simulator that sampled scans from synthetic wind fields, later contaminated with procedural noise. The results indicate that the635

clustering filter is capable of detecting more added noise than the median-like filter, at a good recovery rate of non contaminated

data. When the three filters are tested on real data, the clustering approach shows a better performance on identifying abnormal

observations, increasing the data availability between 22% and 38% and reducing the recovery of abnormal measurements

between 70 and 80% when compared to a CNR threshold.
:::
This

::
is

:::
an

::::::::
important

:::::
result,

:::::::
because

::::::::
increases

:::
the

::::::
spatial

::::::::
coverage

::
of

:::
the

:::
data

::::::
which

:::
can

::
be

:::::
used

::::
later

:::
for

::::
wind

::::
field

::::::::::::
reconstruction

:::
and

:::::
wind

::::
data

:::::::
analysis,

::::::::
specially

::
in

:::
the

::
far

::::::
region

::
of

:::
the

:::::
scan,640

:::
that

::::::
covers

:::
the

:::::
largest

:::::::::
measured

::::
area.

Even though the median-like filter is computationally efficient, it needs an optimal definition of input parameters, which

are dependent on the turbulence characteristics of the wind field. The clustering filter is more robust in this sense, because it

is capable of automatically adapt its input parameter
:::::::::
parameters to the structure of the data.

:::
This

::
is
::
a
::::
step

::::::
forward

:::
to

:
a
:::::
more

:::::
robust

:::
and

:::::::::
automated

:::::::::
processing

:::
of

:::
data

:::::
from

:::::
lidars,

::::::
which

::::::
ideally

::::::
should

::
be

::::::::::
independent

:::
of

:::
the

:::::::::
turbulence

::::::::::::
characteristics

::
of645

::
the

:::::::::
measured

::::
wind

::::
field

::
or

:::
the

::::::::
scanning

::::::
pattern

:::::
used.
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Appendix A:
:::::::::
Sensitivity

:::::::
analysis

:::
on

::::::::::
median-like

:::::
filter

::::::::::
parameters655

:::::
Figure

:::
A1

::::::
shows

:::::::
contours

::::
that

::::::
present

:::
the

::::
most

:::::::
optimal

:::::
value

:::
for

:::
ηtot::::::

among
:::
all

:::::::
possible

:::::
values

:::
of

::::::::::::::
∆VLOS, threshold:::

and
::::
nφ,

::
for

:::
nr::

=
::
5,

:::
the

:::::::
optimal

:::::::
window

::::
size

::
in

:::
the

::::::
radial

::::::::
direction.

:::::
Large

:::::::::::::::
∆VLOS, threshold ::::::

results
::
in

:::::
large

:::::
ηrecov:::

but
:::::

poor
::::::
results

::
for

::::::
ηnoise:::

and
:::

the
::::::::

opposite
:::
for

::::::
values

::
of

:::
the

::::::::
threshold,

:::
as

::::::::
expected.

::::
The

:::::
metric

::::
ηtot::::

then
::::::::
becomes

:::::::
relevant

::
to

:::::::::
determine

:::
the
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Figure A1.
::::::
Contours

::
of

::::::::::
performance

::::::
metrics

::
for

:::
nr :

=
:
5
::::
over

:::
the

::::::::::::::::
∆VLOS, threshold-nφ :::::

space.
::::
Each

::::
point

::
in

::
in

::
the

::::::
contour

::::
plot

:::::::::
corresponds

:
to
:::

the
:::::
mean

::::
value

::
of

::
(a)

::::::
ηnoise,:::

(b)
:::
ηrec:::

and
:::
(c)

:::
ηtot::::::

among
::
all

:::
the

::::
4305

:::::::
synthetic

::::
scans

::::::
filtered.

:::
The

::::::
optimal

:::::
value

:::::::::
corresponds

::
to

::
nr::

=
::
5,

::
nφ::

=
:
3
:::
and

:::::::::::::
∆VLOS, threshold::

=
:::
2.33

:::
m/s

::::::
optimal

:::::::::::
combination

::
of

::::::::::
parameters.

:::::
From

:::
the

::::::::
contours

:
it
::

is
::::::::

possible
::
to

:::
see

::::
that

:::
the

:::::::::::
performance

::
in

:::::
terms

::
of

:::
the

::::
ηtot::::::

metric

:
is
::::
less

:::::::
sensitive

:::
to

::
nφ:::::

than
:::::::::::::::
∆VLOS, threshold.

::::
Even

::::::
though

:::
the

::::::
results

::::
here

:::::
show

:::::::
average

::::::
metrics

:::
for

:::
all

:::
the

:::::
scans

:::::::::
simulated,660

::
the

:::::::
optimal

:::::
value

::
of

::::::::::::::
∆VLOS, threshold::::::::

increases
::::
with

:::
the

:::::::::
turbulence

::::::
energy

:::
and

::::::
length

::::
scale

::::::::::
parameters,

:::::
which

::
is
:::::::::::
problematic,

::::::
because

::
it
:::::::
requires

::::::::
previous

:::::::::
knowledge

::
of

:::::::::
turbulence

::::::::::::
characteristics

::::
that

::::::
usually

:::
are

:::
not

::::::::
available

::::::
before

::::::::::::
reconstruction,

::::
and

::::
more

:::::::::
important,

::::
data

:::::::
filtering.

:
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