Comments on “Filtering of pulsed lidars data using spatial information and a clustering algorithm”
Anonymous Referee #1

General comments

This paper presents alternative wind lidar data recovery methods, over the traditional carrier-to-
noise ratio. The paper presents both a clustering technique and a median-like filter, and evaluates
results on both synthetic and real lidar data.

While the paper includes some important results, the presentation is a little clumsy, and | feel the
paper could be greatly improved. There needs to be general improvements to the usage of English
throughout, examples of which I have highlighted below. The paper overall reads as if several
authors composed different sections, there is a lot of repetition of the discussion, and the figures do
not flow nicely. While some scrolling/page turning is expected, referring to figure 10 on page 7
requires the reader to turn to page 19. Perhaps there is an alternative way to make your point on
page 77 Figure 7 also does not seem to be referred to in the text?

A: The paper will be improved to correct the problems suggested by the reviewer.

The point | would like to make most clearly is your conclusion states the clustering filter performs
best in both synthetic and real data, and increases data availability between 22% and 38%, while
also reducing erroneous measurements between 70% and 80%. This is a significant result, and | feel
you could make more of this in the paper. There is a lot of discussion on methods used, sometimes
repeated several times, but | feel comparatively little on your major results. Improving the flow of
the paper, and removing some of the repeated discussion to focus more on results will greatly
enhance your paper.

A: This is an important comment and will be reflected in the corrected version.

Specific comments

1) Title should read “lidar” rather than “lidars”

A: The work presents results from a real and a lidar simulator, this is the reason behind lidars
instead of lidar.

2) Page 1 Line 13 —replace “its adoption” with “their adoption” or similar Line 14/15/16 —the
meaning of the sentence beginning “Their capability to measure: : :.” is unclear. Do you
mean a single lidar can scan a spatial domain of comparable size to a wind farm? If so, it
would be helpful to include an indication on the actual size of a windfarm By “their
increasing accuracy” do you mean increased accuracy over meteorological masts? Line 17 —
please be more specific with “traditional wind measurement techniques”, for example wind
profiling radars can also be used, and are also susceptible to atmospheric conditions. What is
“traditional”? Line 18 — please define “lack of references”, do you mean a second instrument
to compare wind values to? Line 25 — please define VLOS the first time you use it, rather
than the second
A:

- Page 1 Line 13. Corrected.

- Page 1 Line 14/15/16. Since wind farm vary in installed capacity and size, giving one
number it is not easy. But spacing of large turbines can be in the order of a kilometer
(assuming 6D streamwise spacing for turbines of around 150m rotor diameter, the long-
range scanners here can cover up to 7km x 10km, meaning several turbines), for clarity, the



3)

4)

5)

6)

sentence was deleted. The technology has developed the last years to increase the laser
energy and the backscatter signal quality.

- Page 1 Line 17. The sentence was corrected to refer to meteorological masts.

- Page 1 Line 18. Yes, clarified in the text.

- Page 1 Line 25. Corrected.

Page 2 Line 26 — remove the “of” in “between of line-of-sight: : :.” Line 39 — you don’t need
both “like” and “e.g.” together Line 39 — please consider rephrasing the sentence beginning
“Complementing all these features: : :.”. The sentence is very long and difficult to follow.
Line 45 - “: : ..which are capable of classify large data sets: : :.” needs to be reworded for
correct English Line 54 — swap the order of “defines” and “always” to read “which always
defines a unique: : :.” Line 56 — please define/introduce DBSCAN here, rather than on page
12 Line 58 - “: : :.capable of identify clusters: : :.” should read “: : :.capable of identifying
clusters: ::.”

A:

- Page 2 Line 26. Corrected.

- Page 2 Line 39. Corrected.

- Page 2 Line 45. Corrected.

- Page 2 Line 54. Corrected.

- Page 2 Line 56. Corrected.

- Page 2 Line 58. To keep the introduction section short, DBSCAN definition needs its own
section, this is mentioned in the corrected version.

- Page 2 Line 58. Corrected.

Page 3 Line 72 — what do you mean by “the wind speed data covers a large horizontal area”?
Do you mean you wish to measure winds across a large area? Line 88 — I’'m not sure | follow
what a “wrong observation” is, as compared to an outlier?

A:

- Page 3 Line 72. It will be rephrased for clarity.
- Page 3 Line 88. It will be rephrased for clarity.

Page 5 Line 99 — change “generate” to “generates” Line 102 — change “make” to “mean” or
similar.
A:

- Page 5 Line 99. It will be corrected.
- Page 5 Line 102. It will be corrected.

Page 7 Figure 2 caption — line 3, | believe should read “next” not “nest” Line 149 - “radial” is
miss-spelled Line 158 - “en” should be “in”.
A:

- Page 7 Figure 2 caption. It will be corrected.
- Page 7 Line 149. It will be corrected.

- Page 7 Line 158. It will be corrected.



7) Page 9 Line 184 - “2” should read “section 2” as done previously Line 189 — the sentence
beginning “The noisy areas show: : :.” is very long and hard to follow. Please consider
rewording.

A:

- Page 9 Line 184. It will be corrected.
- Page 9 Line 189. It will be rephrased for clarity.

8) Page 10 Line 200 to 203 — these 2 sentences seem to be a repeat of the introduction?
A:

- Page 10 Line 200 to 203. Sentences It will be eliminated.

9) Page 11 Line 229 - “non” should read “not”
A:

- Page 11 Line 229. It will be corrected.

10) Page 12 Line 240 — similar to the comment above, page 10 lines 200 — 203, this section
appears to be a repeat of earlier discussions
A:

- Page 12 Line 240. It will be rephrased.

11) Page 15 Line 298 — | think you mean “noisy” not “nosy”
A:

- Page 15 Line 298. It will be corrected.

12) Referral to figure 7?
A:

- Referral was only in the caption of Figure 8, which is complementary. It will be corrected in
the text.

13) Page 16 Lines 315 to 320 — sentence beginning “This allows us to define: : :.” is very long and
difficult to follow Line 320 - “this metrics” should read “these metrics”
A:
-Page 16 Line 315 to 320. It will be rephrased.

14) Page 18 Line 344 — | think you are missing “are” in “: : :.that two realizations from the same
distribution: : :.” Line 365 — should read “: : :.on the other hand: : :.” rather than “in”
A:
-Page 18 Line 344 and 365. It will be corrected.

15) Is there a reason why you can’t do the same tests to the synthetic data as you are for the
real data?
A: It is possible, but tests on real data are based on reliable observations on a range of CNR
values, due to the lack of references available, which is not the case for synthetic data. In the
ideal case, the test applied on synthetic data would be the best for real data.

16) Page 19 Line 372 — remove the second “then” from “: : :..then becomes relevant then: : ..”
A:



-Page 19 Line 372. It will be corrected.

17) Page 20 Line 387 — remove the comma after “both” to read “: : ..in both noisy and reliable: :
..” Line 390 — reverse the order of “be then” to read “then be” Line 391 — replace “its” with
“their” to read “: : :.distant from their previous location: : :.” Line 401 — remove “be” and
change “benefited” to “benefit” to read “: : :.filter will benefit by: : ..” Line 403 — add “to” to
read “: : :..dimensions to the data description.”

A:
- Page 20 Lines 387, 390, 391 and 401. It will be corrected.

18) Page 21 Line 406 — remove “a” to read “: : :.of good measurements: : :.” | don’t get the
comparison to synthetic data. You site the advantages of using synthetic data are you know
where the noise is, yet you don’t have plots showing a comparison to the known noise is?
A:

- Page 21 Line 406. It will be corrected. The position of the noise for an individual scan is
shown in Figure 3 (c).

19) Page 27 Line 483 — replace “This” with “These” to read “These possible deviations: : :.”
A:

- Page 27 Line 483. It will be corrected.



Anonymous Referee #2

Alcayaga presents a study about filtering methods for Doppler wind lidar measurements.A new
method based on data clustering is developed and compared against the classical CNR filter and a
median filter which has become more popular recently. The method is tested in a simulation with
artificial turbulence and noise as well as in a real experiment. | think the method is promising and
the results that are shown look very interesting. However the manuscript is way too long, not
prepared very well and should be rewritten in a much more concise way. The structure currently is
confusing with many repetitions and lengthy explanations of minor details, but important
information about the data, the methods and the results are missing. Since the topic of the study is
relevant and the methods and results could be interesting for the scientific community | would like
to see a major revision of the manuscript before it could be reconsidered for publication in Wind
Energy Science. | give general comments about each section as well as specific comments in the
following.

General Comments

1) It has not been shown convincingly that the generated noise in the lidar simulation is
realistic and the analysis of the filter in the simulation can thus be considered relevant for
real-world measurements.

A: The procedural noise implemented here aims to generate V_LOS values smoother than
the ones observed at very low CNR, and closer to “reasonable” V_LOS. Figure 1 below shows
the distributions of synthetic, contaminated V_LOS values and real V_LOS data with CNR
values below -32dB. From this Figure it is possible to see that the synthetic noise generates
V_los closer to reliable values and thinner tails. The consequence of this is a more subtle
contamination, which is harder to detect by the filters presented in this work. Additionally,
the principle of coherent noise is to generate areas of contamination that are smoother in
space, which also makes more difficult differentiate contaminated observations and clean
data via the distance generated by AV_LOS and for DBSCAN, and a fixed threshold for the
median-like filter. In summary, the intention of this implementation is not to recreate real
noise (its nature is relatively unknown), but to test the filter in harder conditions than real
situations.
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Figure 1: Pdf of V_LOS for contaminated synthetic data (one mean wind speed direction) and
real data from the Balconies experiment at 200 m.a.g.l.

2) The math of the methods is not presented clearly in equations, especially regarding the
filters.



3)

4)

5)

6)

7)

8)

A: The iterative operation of DBSCAN on discrete data is non-linear and is defined
algorithmically. To the best of my knowledge, there are not references of transfer functions
or reduced mathematical expressions of its frequency response for instance. Regarding the
median-like filter, as mentioned in the paper, its most obvious parallel is the median filter
used in image processing. As DBSCAN, this filter is non-linear, and it lacks a defininition in
frequency domain as a transfer function. The development of theoretical expressions in this
sense is out of the scope of this work. ### This is stated in the corrected version of the

paper.

The work is not referencing important work in the field of lidar simulation and data filtering
adequately.

A: The suggested references will be checked and included accordingly.

Section 3.2: Lidar simulators are not new and similar work can be referenced (e.g. Stawiarski
et al. 2013, Gasch et al. 2020). Based on these works, the description of the technology
could be siginificantly shortened. The most important points like the resolution of the
synthetic data that is used should be highlighted in a concise way.

A: The references mentioned were considered and the description of the simulator will be
rewritten in a more concise way.

Section 3.3: The noise generation is described with many words and steps that are very hard
to follow and confusing. | think it should be possible to describe a noise filter transfer
function with a concise mathematical expression. | also think that in this section the
characteristics of the synthetic noise should be compared to what is expected from real lidar
measurements. Could you for example show a PDF from real measurements of only low CNR
data in comparison to the artificial noise? Without any information on how realistic the
synthetic noise is, it is hard to judge the quality of the filter from the simulation results.

A: The coherent noise implemented here is not linear and is defined, as a parallel to
DBSCAN, algorithmically. There is not a clear transfer function that defines it a priori and it
can be better described by the V_LOS distribution after contamination. Figure 1 will be
included in the corrected version.

Section 4.1 is partly a repetition of things that have been said in the introduction and since
CNR-filters are very easy and well known, | think this could be cut much shorter.

A: Section will be reworded in a more concise way.

Section 4.2 is supposed to describe the median filter, but does not give the most important
parameters. The median of what database is used? Just single scans, multiple scans, the
whole scan or just parts of it. Again, | recommend to put the filter description into one or
two equations, which would describe it in the best concise way. Menke et al. 2019 and
Menke 2020 (dissertation) introduced a modified three-stage median filter for spatial scans.
How does the method applied here relate to that?

A: As mentioned earlier, the non-linear median-filter is defined algorithmically, not via
equations. The filter is applied on single scans (it is a filter that operates spatially), and this is
clarified in the corrected text. The filter closely related to the one described by Menke
(2019), since it uses a moving window in the laser beam direction, the first stage.
Nevertheless It does not applies a global filtering stage, which is replaced by a second
moving window in the azimuth direction. The paragraph was reviewed and corrected to
make it more clear.

Section 4.3 gives a lengthy description of the clustering algorithm, but misses the most
important point. Where is the connection between the lidar parameters CNR, Vlos etc and
the filtering algorithm. Please give the filter functions for the concrete problem of lidar



9)

signals. What is the k-distance function fo the lidar measurement? How is the data sorted in
Figurer 8? | doubt that any lidar user can reproduce this method with the information which
is given in this section.

A: As mentioned in 2), there is not a mathematical expression in the form of a transfer
function for DBSCAN, since it is defined algorithmically. The connection between lidar
parameters, or features, and DBSCAN is the definition of the observational space, where all
(Euclidian) distances are calculated. This is better explained in the corrected text, as well as
the k-distance function, or the function of the distance of each point to its k-nearest
neighbor.

Section 5.1: The author introduces many performance metrics here, of which many are not
very useful in my opinion and only add to the confusion of the reader. To me, the interesting
metrics are the fraction of good observations (here: [l recov) and the false positive rate (i.e.
the percentage of data points that are considered good observations although they are
contaminated by noise).

A: The false positive rate (false negative in the work, positive is noise detection) is equivalent
to the fraction of noise detected, but it does not consider information of the fraction of
contaminated observations in the scan. High recovery rates with low false positive rate
(negative) might be only a low fraction of noise. This is the reason to include also a metric
that takes into account the noise fraction.

10) Section 5.2: | would advice the author to focus on just one most appropriate metric for the

analysis of the similarity of the PDFs, especially since the qualitative results are the same and
differences between the two metrics are not discussed in Section 6 and 7.

A: | agree with this comment. The result of one of them will be only mentioned for a fair
comparison in the corrected text.

11) Section 6.1: | think the line-of-sight threshold should be discussed in Section 4.2 and not

here. What | miss in this section is a plot of the actual LOS velocity fields recovered with the
two filters. Lines 403ff give a discussion that is partly repeated in Section 7.1 and should be
removed here.

A: Since the results of synthetic scans are presented here, discussion on V_LOS threshold is
better pictured fter the filters are applied. The discussion will be initiated in 4.2, and a figure
comparing the two filters will be included in the corrected text.

12) In section 6.2 the author argues a lot with data recovery, which is not a good metric,

because without any filter, the data recovery is perfect, but includes a lot of bad data. The
author should focus on the metrics introduced in section 5.2, which is a good choice and the
best that can be done. So, | wonder if Figures 15-17 and Table 5 are really useful for the
study. One idea would be to replace Figure 16 with a plot of the PDF of the area around the
hard target only, comparing the three filters and the original data. Same as for data in
different distances to the lidar.

A: Data recovery is very important in this work indeed, since the main motivation to explore
a different filtering technique is to increase the amount of data available, which can be very
poor when we use the most conservative CNR threshold. However, as the referee suggest,
this is worthless if data quality is bad. This is the reason to complement the performance
assessment with the metrics in 5.2. Figure 16 will be modified to consider this suggestion.

13) I think the title "performance assessment" of sections 7.1 and 7.2 is misleading, because

those sections mostly evaluate the flaws of the test cases. The performance of the filters is
already assessed in the results section.
A: A change in the section title will be made to clarify its intention.

14) Section 7.3 and 8 could probably be combined.



A: Even though section 7.3 give some final remarks it still discuss on computational
performance of the clustering filter and possible imporvements. The section will be revised
to make this more clear.

Specific comments

1) p.1, 1.1: simultaneous multi-point observations are possible with masts if multiple sonics are
installed.

A: Indeed this is possible, at a high cost though, and it is not very common for wind resource
assessment for instance. That is the meaning of the sentence.

2) p.1,1.2: write "lower" instead of "reduced"

A: It will be corrected in the text.

3) p.1, .4: "reduced data recovery" compared to what? | am also not sure if "data recovery is
the proper term.

A: The reduced data recovery is compared to the total amount of data available.

4) p.1.,1.6:"...spatial position, and VLOS smoothness". The abstract needs to be understood
without reading the whole manuscript. It is not clear at this point what is meant by spatial
position and smoothness.

A: It will be rephrased for clarity.

5) p.1,1.13: "its adoption" - "their acceptance"!?
A: It will be corrected

6) p.1.,1.21: Since the CNR thresholds are so divers and depend on the conditions and
instruments | recommend to not give numbers here.

A: It will be modified for clarity. The intention is to show values used in the reference cited.

7) p.2.1.37:typo "approaches"

A: It will be corrected.

8) p.2,1.56: "DBSCAN" acronym should be explained here.
A: It will be corrected

9) p.3,1.80: Why are the scanning patterns coherent?

A: It is intented to mean meaningful

10) p.5,1.105: The term "numerical lidar" is very unusual and irritating. | would recommend "lidar
simulator" or "virtual lidar".

A: The term was already used in Meyer (2017) but the suggestion will be considered.

11) p.5,1.112: What does "coarse" mean here? Numbers should be given.

A: Coarser means a grid of range gates and beam spacing that is actually much coarser than
the sampling spacing frequency of the lidar, and represents the spatial and time averaging of
the instrument. The numbers of this are in table 3. The term will be clarified in the corrected
text.

12) p.6,Eq.2: The variable names are somewhat confusing, because what is here [ p is IR in the
references of Smalikho and Banakh and [l p in the references is rp here.

A: The intention was not to use the same notation as Smalikho and Banakh but Meyer (2017)

13) p.6,1.129: "corresponding range gate center"!

A: it will be corrected

14) p.6,1.130: "range gate length" is not very specific. If you give the explanation of rp from
FWHM, you could also give the explanation of [l p from the time window of the FFT.

A: Since this terms are well known, their definition was done in simpler terms.

15) p.7,1.149: typo "radial"

A: It will be corrected
16) p.7,1.154: referencing Figure 10 which is introduced much later, is bad style.



A: It will be corrected
17) p.7,1.158: type "in"
A: It will be corrected
18) p.8,1.177: again, a figure (Figure 5) is referenced before its introduction.
A: It will be corrected
19) p.9,1.180: "The fraction of beams contaminated at each band..."
A: It will be corrected
20) p.9,1.183: typo "from".
A: It will be corrected
21) p.10,1.201: | do not think you can really give a common value for CNR values. They depend
strongly on instruments and location.
A: This will be removed in the corrected version.
22) p.10,1.215f: put citation Huang et al in parantheses.
A: It will be corrected
23) p.13,1.251: the m in "m-dimensional" is not explained.
A: It will be explained
24) p.14,1.285: How does dk(n) look like for the lidar signal problem?
A: It is shown in figure 9. This figure will be probably removed in the final version.
25) p.15,1.298: typo: "noisy"
A: It will be corrected
26) p.15,1.298: Figure 9 is referenced before introduction.
27) A: It will be corrected
28) p.15,1.302: Equation 6 is referenced before it appears. Please introduce it before.
A: It will be corrected
29) Figure 8b) seems to be moreless the same as Figure 5b.
A: They come from bad and good scans respectively. It will be probably removed in the
corrected version.
30) p.17,1.333: "PDF" should be in capital letters as an abbreviation.
A: It will be corrected
31) p.18,1.344: Something is wrong with the grammer in this sentence.
A: It will be corrected, an “are” was missing.
32) p.18,1.345: What is the value of that is used in this study?.
A: The value of alpha is 0.05
33) p.18,1.345: Again, grammar.
A: It will be corrected
34) p.18,1.345f: The numbers about the amount of data that was analyzed should be given in
Section 2.
35) A: It will be corrected
36) p.19,1.372: remove one "then".
37) A: It will be corrected
38) p.20,1.386: typo: "account”
A: It will be corrected
39) Figure 11: | think this figure is not neccessary. If it is still shown, labels have to be larger.
A: | agree and it will be removed in the corrected version.
40) Figure 14: typo, should be "phase 2"
41) A: It will be corrected
42) Figure 15: Why is no upper threshold for the CNR filter applied, which would remove the
wind turbine hard target from the recovered data?



A: It is applied indeed, this will be written more clear.
43) Figure 16: | think this plot is not neccessary.
A: This comment will be considered.
44) p.23,1.439: What is meant by "quality of the data"? Probably you mean a lower false positive
rate, but how do you know?
A: It refers mostly to extreme values when compared to more reliable CNR data distribution.
45) p.23,1.443: Metrics are introduced in Sect. 5.1.
A: It will be corrected
46) p.23,1.443f: Again, quality is undefined.
A: It will be better explained
47) p.27,1.502: typo: "from"
A: It will be corrected



List of changes

1)
2)

3)
4)
5)

6)
7)

8)
9)

Changes (rewording) in the introduction and data description in section 2.

Changes in Figures suggested by reviewers. Figures 3 (now 2), 4 (now 3), 5 (now 4) and 16
(now 13) were modified.

Figures 7, 8 and 9 are replaced by Figure 6.

Figure 11 is now Al in appendix A.

Changes in Sections 3 and 4 regarding methodology description (Lidar simulator in 3.2, noise
generation 3.3 and filters description in 4.1, 4.2 and 4.2) accounts for comments from
reviewers.

Section 6.1 was modified and results in Figure 8, suggested by Anonymous Reviewer # 2,
included.

Discussion in sections 7.1, 7.2 and 7.3 were merged in only one section.

Part of 7.3 was moved to 8.

Part of sections 4.2 and 6.1 were moved to Appendix A.
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Filtering of pulsed lidars data using spatial information and a
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Abstract. Wind lidars present advantages over meteorological masts, including simultaneous multi-point observations, flexi-
bility in measuring geometry, and reduced installation cost; but wind lidars come with the ‘cost’ of increased complexity in
terms of data quality and analysis. Carrier-to-noise ratio (CNR) has been the metric most commonly-used to recover reliable
observations from lidar measurements, but with severely reduced data recovery. In this work we apply a clustering technique
to identify unreliable measurements from pulsed lidars scanning a horizontal plane, taking advantage of all data available from
the lidars—not only CNR, but also line-of-sight wind speed (Vo s), spatial position, and Vi, og smoothness. The performance
of this data filtering technique is evaluated in terms of data recovery and data quality, against both a median-like filter and
a pure CNR-threshold filter. The results show that the clustering filter is capable of recovering more reliable data in noisy
regions of the scans, increasing the data recovery up to 38% and reducing by at least two thirds the acceptance of unreliable
measurements, relative to the commonly used CNR-threshold. Along with this, the need for user intervention in the setup of

data filtering is reduced considerably, which is a step towards a more automated and robust filter.

1 Introduction

Long range scanning wind lidars are useful tools, and its-their adoption has grown rapidly in recent years in wind energy

applications (Vasiljevic et al., 2016).

speed-me &Sy ues-is-the-influence-that Nevertheless, atmospheric conditions and instrument noise

have-can have an important impact on the data quality. For long-range scanning lidars +-this becomes an important issue due
to the lack of references-to-identify reliable-observationsadditional instruments placed over the measurement area that would
be useful to compare data quality, since noise can contaminate large portions of the scanning domain. The most commonly
used criteria to retrieve reliable observations is a threshold on values of the Carrier-to-noise ratio, CNR, which;-depending-on
the-threshold that will depend on site conditions, experimental setup and instriment-manufacturer-ean-take-values-between

ythe instrument manufacturer (Gryning et al., 2016;

Gryning and Floors, 2019). Fhis-eriteriaresults Despite CNR threshold retrieve quality observations, its application might result
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in large amounts of data-rejected-unnecessarity-good data rejected in regions far from the instrument, due-to-the-nature-of CNR
which-deereases-where CNR has decreased rapidly with distance. To cope with this issue Meyer Forsting and Troldborg (2016)
and Vasiljevic et al. (2017) have proposed filters based on the smoothness and continuity of the wind field. Such filters work by

detecting discrete or anomalous steps iV os-which-present-a-differenee-between-of(above a certain threshold, predefined b

the user) in line-of-sight wind speed, V705, and-compared to its local (moving) medianabove-a-certain-threshold; predefined-by
the-aser. Beck and Kiihn (2017) first and Karagali et al. (2018) in an adapted version, follow a different approach (here called

KDE filter, from Kernel Density Estimate) based on the statistical self-similarity of the data, which, in simple terms, assumes
means that reliable observations are alike and will be located close together in the observational space. The probability density
distribution of observations (estimated via KDE) in a dynamically normalized V705 — CNR space shows that measurements
likely to be valid are located in a high data density region. Observations sparsely distributed beyond a boundary defined by a
threshold in the acceptance ratio, or the ratio between the probability density of any observation and the maximum probability
density over the whole set of measurements, are finally identified as noise. Both approaches need the definition of one or more
thresholds and a window size, either in time for the KDE filter, or in space for the wind field smoothness approach. These
parameters are dependent on different characteristics of the data, like the lidar scanning pattern for instance.

Both approaches miss important and complementary information, either neglecting the guatity-of-acquired-data(quantified
in-terms-of-stregth of the signal back-scattering (quantified by CNR) or the spatial distribution and smoothness of the wind
field. Moreover, in both apperaches-approaches the position of observations is not taken into account, information that can
shed light on areas permanently showing anomalous values of V7,05 or CNR, like e-g-hard targets. Complementing-Including
all these features within the smoothness approach is difficult, since CNR is not a smooth field like V7o Saﬂérme}ﬁdiﬁgfhem

Moreover, considering smoothness and position in the KDE filter 1

ate-results in a computationally costly kernel
density estimation, if we look for an optimal bandwidth parameter in a higher dimensional space(3-er-merefeatures-including

tor-, with a fine resolution of the kernel density estimate.
Data self similarity — over any scale in the case of fractals or a range of them in real situations (Mandelbrot, 1983) —is closely

related to clustering techniques (Backer, 1995), which are-eapable-of-can classify large data sets with many different features
at a relatively low computational cost. Fer-instanee;-the- lKDE-filter- The KDE filter approach shares some characteristics with
the popular k-means clustering algorithm(first-presented-by-MaeQueen(1967)) MacQueen (1967), since they define one (or
several for k — means) specific group of data belonging to an unique category (or cluster) which-whose size and location on

the observational space will depend on data density or, more specifically, on a kernel density estimation. The main difference

between these two algorithms is the way they treat sparse data points that fall in low density regions. fn+—mreans;-sparse
points—are-assigned-Unlike the KDE filter, which rejects noise via the acceptance ratio, k — means assigns sparse points to

the cluster with the nearest center, no matter if they are outliers or present unlikely values from a physical point of view. Fhe
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The Density Based Spatial Clustering for Applications with Noise algorithm, or DBSCANelustering technique(Esteret-al51996; Pedrege

Ester et al., 1996; Pedregosa et al., 2011), introduced in Section 4.3, presents several advantages over k-means in detecting

clusters in a higher dimensional space: H-it introduces the notion of noise/sparsely distributed observationsand-2)-, it does
not need prior knowledge of the number of clusters in the data and it is capable of identify-identifying clusters of arbitrary
shape. To the best of our knowledge, this is the first time that this type of clustering algorithm is applied to identify not reliable
observations from pulsed lidars. This approach, which can be understood as a natural extension of the KDE filter, is compared
to the smoothness based filter on two types of data: synthetic wind fields data as a controlled test case, and real data.

This paper is organized as follows: Section 2 describes the real data used to test the different filtering approaches, and
Section 3 presents the synthetic data used during a controlled test as well as the methodology to obtain it. Section 4 then gives
a description of the different filters applied in this study to both data sets, to continue with the definition of the performance
tests in Section 5. In Section 6 the performace-performance tests are presented along with a discussion on their validity
and quality. Section 7 discuses the quality of the methodology behind the tests and the advantages and disadvantages of the

proposed approach. Section 8 presents the conclusions of this study.

2 Real data: @sterild Balconies experiment

The filtering techniques presented here were tested on lidar measurements made at the @Dsterild Test Centre located in northern

Jutland, Denmark, see Figure 1. The-aim-of-this-experimentwas-to-characterize-the-horizontal-flow-field- Known as the @sterild

Balconies experiment (Mann et al., 2017; Karagali et al., 2018; Simon and Vasiljevic, 2018), this measuring campaign aimed

to characterize horizontal flow patterns above a flat, heterogeneous forested landscape at two heights relevant for wind energy

applications:

M@ee%a&em@%gﬂmeﬁ%ﬁ&mamund 50 kmg}—m%h—%he—pesﬂbfhtybeﬁelﬁrameteﬁﬂﬁg
ﬂew—p&&efﬂ%—m and a wide range of scales, both in time and space. Hewevef{he%e—&dva{%age%—eemeﬂﬂfh—merea%ed—eemple*&y

The experiment consist of two measuring phases (see Table 1) with two long-range WindScanners performing Plan Position

Indicator (PPI) scanning patterns, aligned in the North-South axis and installed at 50 m a.g.l. during phase 1 and 200 m a.g.lL.
in phase 2. WindScanners (Vasiljevic et al., 2016) consist of two or more spatially separated lidars which are synchronized
to perform coherent scanning patterns, allowing the retrieval of two or three dimensional velocity vectors at diffeent-different

points in space. These experiments were conducted between April and August of 2016 (Simon and Vasiljevic, 2018). In each



Table 1. Characteristics of the Balconies experiment, from Karagali et al. (2018). The scans are not instantaneous neither totally synchronous,

with a horizontal sweep speed of 2°/s in the azimuth direction in a range of 90°, with a total time of 45 s per scan.

Phase Measurement start Measurement end
S0ma.gl. (1) 2016-04-12 12:45:41 2016-06-17 12:48:01
200 m a.g.l. (2) 2016-06-29 13:35:56 2016-08-12 09:09:55
Scanner Location coordinates, [m] Scanning pattern, west

Southern lidar 492768.8 (East) 6322832.3 (North) 344°-256°, 2° steps
Northern lidar ~ 492768.7 (East) 6327082.4 (North) 196°-284°, 2° steps

59.4°
5.66 North and south
58.7°1 meteorological masts
58.0°1 256
g
) ==,
57 >
':%’ = —0.55
56.5° 1 S
55-70 | i —3 65
54.9° / X A * = iy A5
. ~0- T 00 410 0.50 5.10
4.1° . Easting [km]
54'16.3° 770920 10.7
Longitude

Figure 1. (a) Location of the @sterild Turbine Test Center, place of the Balconies experiments, northern Jutland, Denmark (copyright 2009
Esri). (b) Detail of the test center site, with the location of the meteorological masts where north (blue) and south (red) WindScanners
were installed. During the measurement campaign the PPI scans pointed both west in some periods and both east in other (copyright 2017

DigitalGlobe, Inc.).

phase, the northern and southern lidars scanned in the West and East direction relative to the corresponding meteorological
95 masts, where they were installed. The data used in this study originated from both phases of the experiment, with PPIs pointing
to the west. For more details about the experiment, lidars and terrain characteristics see (Karagali et al., 2018; Vasiljevic et al.,

2016; Simon and Vasiljevic, 2018).
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This dataset is well suited to test different data filtering techniques. A large measurement area will be affected by local terrain
and atmospheric conditions, like clouds or large hard targets. Moreover, at this scale lidars reach their measuring limitations
since the back-scattering from aerosols decrease rapidly with distance (Cariou, 2015).

3 Synthetic data

Assessing and comparing the performance of filters is challenging with no reference available to verify that rejected or accepted
observations are truty-outliers-or-simply-wrongreliable or bad observations. This is especially difficult for long-range scanning
lidars, since their measurements cover large areas and, due to spatial variability, a valid reference would need several secondary
anemometers scattered over the scanning area. Testing filters on a controlled and synthetic data set, contaminated with a well
defined noise, presents an option to deal with this problem. In this study, the filters presented in Section 4 are tested on
individual scans sampled from synthetic wind fields generated using the Mann turbulence spectral tensor model (Mann, 1994),

and contaminated with procedural noise (Perlin, 2001).
3.1 Synthetic wind fields generation

Synthetic PPI scans are sampled by a numerical-tidar-lidar simulator from synthetic wind fields generated via the Mann-
model (Mann, 1998) in a horizontal, two-dimensional square domain of 2048 x 2048 grid points, with dimensions 9200 m
x 7000 m. The generated turbulence fields are the result of input parameters of the of turbulence spectral tensor model:—,
namely, length-scale, L, turbulence energy dissipation ae?/3, and anisotropy, T'. The fields generated correspond to wind speed

fluctuations, which-are-subsequently-addedtaterto-a-meanflowfield-to-generate-the restltine synthetie-wind-speed-fields—An

to which the desired average wind speed mean is subsequently added. Depending on the initial random seed generate-used,
different wind field realizations with the exact same turbulence statistics can be generated. For details on wind field generation

using the the Mann-model, refer to Mann (1998). Table 2 shows the range of values used for the generation of two-dimensional
wind fields. Large values of ae?/3 or smatter-small scale turbulence for instance, make-mean that sudden spatial changes in
wind speed are more likely, which increase the false identification of outliers. Mean wind direction, turbulence anisotropy and

length scale will also affect the sampling due to the lidars sampling-measuring characteristics.

3.2 Sampling-with-anumeriealHlidarLidar simulator

Lidar simulators has been presented previously by Stawiarski et al. (2013) and Meyer Forsting and Troldborg (2016). The
sample V/ values from wind fields generated via Large Eddy Simulations (LES), mimicking the operational principle of
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Table 2. Synthetic wind field characteristics and parameters.

Parameter Values

L,m 62, 125, 250, 500, 750, 1000
ae?/3, m*/3572 0.025, 0.05, 0.075

r 0,1,2,25,35
Number of seeds used 10

Mean wind speed, U m/s 15

Mean wind speed direction range, degrees 90 to 270

Total number of scans generated 4305

lidars by proper time and spatial (probe volume) averaging of the background wind field. The lidar simulator presented here
follows the same principles, this time sampling from synthetic wind fields generated via Mann-model. Fhe-sequencefolowed

The simulator receives scanning pattern characteristics as input (beam range, range gate step, azimuth angles range and

azimuth angle steps) to generate a primary mesh with the sampling positions on top of background wind field. Following the
measuring principle of the lidar, the Vi.05 observed at each position in this mesh will represent averages of a continuous along.
each range gate step (due to probe volume averaging) and an average of many azimuth positions within the azimuth step, due
to the almost continuous sweep of the win tan-gric-is-highs the size-of i i :

ones elose to-the numerieatfidar-lidar’s beam. The simulator mimics this generating a secondary, refined mesh with N, points
WM@WThSM&MMﬁW%&WM@%

synthetie-wind-field-background wind field components, U and V/, are linearly-interpelated-into-the-nested-fine-mesh-and-the

i then interpolated on this secondary mesh and projected on each refined beam to obtain V; g )ealeulated
using-using equation (1), with 0 being the azimuth-angle-of-the oeal-beamcorresponding beam azimuth angle.

Vios = cos(0)U +sin(6)V ey

in-the-teeal-grid;using-The final step is the spatial (probe volume) averaging, and the azimuth (sweeping) averaging around
each position in the primary mesh. Spatial averaging is done applying a weighting function on all V7 o g values-weighted-with



w-defined-by-

N e e )

155 along each refined beam. The weighting function used here is defined in equation (2), as in Banakh and Smalikho (1997)
and Smalikho and Banakh (2013). HereF-is-the-distancefrem-This function will assign weights to each point in the beam

to-the-correspondingrange-gate—Al-is-the-lidar-beam’srefined beam according to its distance to the range gate position in
the primary mesh, F', and the instrument probe volume parameters, namely, range gate length, Ap, and full width at half

s

maximuméprevided-by-the tidar’s-manufacturer); Ap-is-therange-gatedength-, Al (cf. Table 3);-

160 Erf(z) = %/exp(—ﬁ)dt

denetes-. Here, Erf(x) is the error function, and
Al

rp =

2¢/In(2)

165

we {Erf[(r_FHAp/ﬂ—Erf[M_Am]}; b Al )

Tp Tp

Theresult-of this-beam-averaging-is-oneradial-veloeeity,“The azimuth averaging is the arithmetic mean of the /N values of

Vios —perrange—sate— values—n—total-pernested-erid;—alongonea n—the-azimuth-direction—Pulsed-idars-accumulate

at each range gate after spatial averaging. It represents the accumulation information of the back-scattered signal spectra as
170 they sweep an azimuth sector (Z-degrees-in-our-case)-before estimation of the spectral peak and V7 og. This-continuous-sweep
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Table 3. The characteristics of the numerieatlidar simulator and real long-range lidar (Karagali et al., 2018; Vasiljevic et al., 2016) tong-range
Hidars-used for the controlled test of the filters.

NumeriealSimulator Real

Azimuth range 256° - 344° 256° - 344°
Azimuth step 2° 2°
Beam length 7000 [m] 7000 [m]
Range gate length, Ap 35 [m] 35 [m]
“Fime Full width at half maximum, AL 75 [m] 73 [ml
Sweeping time per scan Instantaneous 45 [s]
Coarse-polar-grid-size-(radial-azimuthPrimary mesh size (radial x azimuth) 45x 198 -
Total secondary mesh size (N, x Ns) 21x51 :

3.3 Synthetic noise generation

The most simple noise that can be used to contaminate synthetic scans is sparse, uniformly distributed outliers;takingextreme

charaeteristic-of thepulsed-lidar-deseribed-in-Seetion—2. This noise, also known as salt and pepper noise, is easily detected

and eliminated by median-like filters, when extreme discrete steps affect the smoothness of an image (Huang et al., 1979;

Burger and Burge, 2008). Nevertheless, what-one-can-see-from-noise in real scans are-comes as regions of anomalously hlgh

and/or low VLos v

Procedural noise, introduced by (Perhn 2001) eﬁgmaﬂy—tefeefeaﬁeﬁefe—ﬂa&malr&m synthetlc textures on surfaces for

computer graphics applications:

51, Creates regions
of coherent noise that resembles better the spatial distribution of scanning lidars measurements. For the two-dimensional case

the procedural noise function N (z,y) maps two-dimensional coordinates, (x,¥), onto the range [—1,1] as follows

two-dimensional grid of m by n
is assigned to each grid point
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(2;,y;). The pseudo-randomness is-established-as-follows=alistof permutations-(indexes-permuted)-withrises from the
fact that g, are picked from a pre-computed list of gradients with length [ << m x n. We select values from this list

the position p;; of the
gradient-elementsinour-ease)—pre-computed list. Elements p;; are shuffled for each realization.

, and C a normalization constant to ensure that N (z.,vy) € [—1.1].

ever—fhe%e&nﬂmgafea—aim%—tefe}}ew—thedeeay—m—me he function N (z,y) allows the generation of noisy regions, than can be

distributed according to back-scatter in n-decay with distance.
Three bands centered at 50% , 70% and 90% of the total beam length -(and spanning over the entire azimuth rangeand-with

a-width-of-) have an increasing fraction of noise, contaminating the 30%~af—%he~beam~}eﬁgfhﬂﬁ+he+ad1alr€hfee&eﬂ—%%hm

observation, respectively. The noise amplitude is finaltysealed-by-35 [m/s];+e-, the limit of the observable range ef¥7.o5-for
the instruments described in Section 2.

Figure 2 (a)-and-(b)-show-the-c) show one contaminated scan and its increasing contaminated area as we move along the
beams. The same Figure shows the distribution of the noise generated by the simplex-algorithm after scaling, and its-effeets
low values of CNR. The distribution of contaminated-observationsreal data presents heavier tails than the ones generated, with

higher probability of observing extreme values of V.. Modeling real noise is difficult, as-expeeted;but-also-a-hich-probability
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Figure 2. Geﬂf&nﬁﬂa&eﬂ—wifh—pfeeedﬁfaﬂj}r\()gg@}ggl\noise on synthetic scans.(a) Distribution of AVLos,noise, the noise addedte-the-originat
seanr. Maximum values are within the observable range between —35-and-{-35, 35] [m/s]. (b) Distribution of ren-contaminated-real VLos
with low CNR values (black) and contaminated, synthetic VLos + AV50S,noise (red) for all-range-gates-and-cases—The-distribution-of
%os—shew—peakrdfeﬁﬂd—f}é—mf&—whtelweﬁespeﬂd—te—fhe—maﬂfa mean wind direetions-simutateddirection facing the scan. (c) Individual
scan showing arealization-ofthe spatit ith-increasing fraction of added noise AVrosmorse(grey)

with distance.

is-comparable-to-thesize-of the-contaminated-areasince the process that generates it depends on the measuring principle of
the lidar and atmospheric conditions. The synthetic noise used here does not intend to be totally realistic, but more subtle and
smoother than the one observed in real measurements, making the identification of contaminated points more difficult.

4 Filtering techniques tested-applied on real and synthetic data

4.1 CNR threshold

NR thresholds are well known and lidar manufacturers usuall
recommend values for rejection of signals with poor backscattering or hitting hard targets (Cariou, 2015). Geed-and-reliable

10
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shape—Below-the-lower-threshold-(in-this—ease-However, the selection of an appropriate threshold for CNR that assures data

uality and good data recovery is not easy. Figures 3 and 4 show data from a scan with noisy observations from CNR values
below -27 dB)-along-with-extreme-, Both, extreme and limited values of Vo swe-alse-find-line-of-sight-speeds-that-arenotfar

lower part of the scan. A conservative threshold of -24 dB is used here, since the resulting V; robability distribution show
very little outliers and it can be used as a reference when the performance of the filters proposed are compared.

11
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Figure 3. (a)

CNR and Vo5 for the-same-one scan from Balconies experiment, including the probability density estimated-via(KDE). Observations with
high-CNRwvates>-27 dB (dashed red line) show a limited range of VLos (black-dashed black line). A €ENR-threshold-(dashed-redtine)-of
-27-places—aportion of reliable-observations that-belong-to-a-with high probability density region-remain in the rejection area. (eb) Sinee
points-CNR v/ distance for the same data. Observations with low CNR areJoeated-values and high probability density can be found in the
far-distant region of the scanﬂﬁfge—pefﬁeﬁeﬂhﬁﬂeaﬁﬁed—afeaﬁ&bs&&ﬁeﬁﬁkem%
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4.2 Median-like filter

speeds—}ﬂ%efpfefmgfht&ﬁe}dﬂs—aﬁfmage—wmedlan filter arise as a viable option for detecting erroneous measurements,
since it is well known that this type of non-linear filter is suited to detect and filter noise that present distributions with large
tails-Huang-et-al(1979). Here we use an adaptation of the traditional median filter used in the image-processing-community:
vatues-image-processing community, closely related to the three-stage filtering technique described in Menke et al. (2019):
observations are not replaced by the local moving median but labeled-as-reliable-ornon-—reliable-accordingto-whether-their
valtms%eeﬁhe%m&de%eﬁ&beve—&thfeﬂm}d#eﬁé%@ﬁm“cluded if the absolute difference between the-value-and-its

wﬁhm—a—fw&émaensteﬂa%mevmg—“ﬂﬂdew%ef&mmwvrv\@vlggggg the med&aﬂ-}ﬁee{ﬂ{efdees—ﬂie&amebuﬁﬂvlvogglgnwm

is above a certain threshold, AV . Unlike Huang et al. (1979), The two-dimensional moving window is replaced

by a two one-dimensional window instances, the first in the-line-of-sight or radial direction, r, and finally in the azimuth di-

rection, #, considering the polar coordinates of the scan. This simplification reduces the computation time ;which-is-the-main

advantage-of this-filker-importantly.

The input parameters of this filter will be the size (or number of elements) of the moving windew-windows in the radial

WWMWWW rme%ﬁ&e#meamdmﬁheﬂﬂm&mdﬁee&%—ﬁyandﬁhfe%he}mﬂ%&éﬁefeme
ng-median; 1y respectively, and AVLos, threshold- For

fixed values of AVL0s, threshold> Tr and n, the spatial structure of wind speed fluctuations will have an important effect on

the recovery rate and noise detection of this filter. Seetion-6-1-explores-this-relationship-by-means-of-a-sensitivity-analysis-on

A sensitivity analysis carried out
using the metrics presented in section 5.1 on the synthetic data set, shows that the optimal set of parameters is n, = 5, n

=3 and AV, reshold = 2.33 m/s an

13
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—(See Appendix A). This set is used both for
artificial and real data. The filter does not include a time window, and it is applied on individual scans.

4.3 Filtering using a clustering algorithm

If we represent lidar observations as m-dimensional

that-de-not belong to-any-clustervectors, with m the number of features/parameters of the data, measurements not affected by
poor back-scattering or noise will cluster together in regions of high data density, as shown in Figures 4 and 3. The approach
presented here identifies such clusters applying DBSCAN on data described by CNR, V.05 and, additionally, spatial location
and smoothness features, which help to make clusters more distinguishable.

DBSCAN identifies clusters and noise based on two parameters;-the-; a neighbourhood size, €, and the-a minimum number of
nearest neighbours, NINJV V. The parameter ¢ is the euclidean distance from one observation to the limits of a neighborhood

in-whieh-NN-that might contain NV (or more) nearest neighborsef-each-peint-may-belocated. Intuitively, these parameters
will define the minimum density that a data-partition-group of data points needs to have to be identified as a cluster. Informal

Observations within a cluster fall into the following categories

— Core point: A-peint-points g is-a-core-pointif-within-its-whose e-neighborhood we-ecan-find-NN-contains NN or more
pointsapartfrom¢.

— Direct density reachable point: A-peint-points p is-directly-density-reachablefrom-a-core-point-which are reachable b
ip tsin-the by laying within its e-neighborhoodet.

14
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— Density reachable point: A-peint-points p is-densityreachablefromreachable by a point r if-there-exist-through one or a
set of eere-points¢ directly-connected-between-them-and-to+ and-p—

— Density-connected-points-Pointsp and—+

eore-point-directly connected core points g.

SV et within-the-c-neig ; border points
(density reachable points that-do—not-meet—the NN-requirement-but—sti-have-with at least one core point within the e-

categories described above. Finally, the algorithm define-elusters-as-the-separates clusters as individual groups of data—with
only-density connected pointsand-an-unique-group-with-peintselassified-as-noise; not-belonging-to-any-eluster—The-, Figure 5
shows schematically these definitions and how the algorithm works.

The input parameters € and NN-/V /V have a significant influence on the number and characteristics of the clusters detectedby

bBSCANLarge-values-of-. For example, large ¢ together with smal-INN-will-define-very-sparse-clusters—ineluding-noiseas

of-the-data—a small NV will end up with sparse clusters that might include noise. One-way-to-deseribe-this-data-struetureis
vie-In order to find the parameters separating the least dense cluster from noise, we fix NV to a certain value k and determine
¢ from the data density distribution. The latter is well described by the k-distance function, dy(n)—Fhis-fanetion-maps-and
sorts-in-ascending order the-distance from-each-data-point-to-its-, which represents the distances from all data point 7 to their

15
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Figure 5. (a) DBSCAN algorithm definitions: direct density reachable point p (reachable by the core point ¢) and density reachable and
density connected points p and r. Here point n does not belong to any of these categories, but noise. The DBSCAN algorithm working: (b)
The current point being evaluated have the minimum number of nearest neighbours required, NN, within a neighborhood of size ¢, classified
as a core point (red) (c) The next point have less than NN neighbours, but one of them is a core point and becomes a border point (yellow)
(d) A point with neither NN neighbours, nor core points within ¢, classified as noise (brown) (¢) The final cluster and noise. The former is a

Mk -th nearest nelghbour. Fig
sorted in ascending order. When k =NN—=-is 5

ds(n) in Figure 6 shows sudden changes (or knees) that give some indications about the data density distribution. The knee
highlighted represents a limit between a group of reliable observations and nen-reliable;-and-twe-mere;both-inthe region-where

ef—these—kﬂees—ts—te—}eeafe—mefeffespeﬂdmgthe one growing fast towards noisy data. The positions of these knees in the graph
correspond to the peaks in the curvature of the dy (n)funetion, x(n) —Even-though-dr{n)-is-disereterin expression (3)defines
re{r)-fromits-continuous-analogin-whieh-the-, In this expression primes correspond to the derivatives of dy (n) with respect to

the"eontinvous™data-pointnumber-a n. The continuous representation-of the-diserete-k—-dist{n)-funetion-version of di(n) is
made by sphne ﬁttlng on a reduced set of umformly distributed points over the original data set. By-doing-this;-one-ecan-aveid

k= (di(n)"/(L+ (dr(n))?)*? @)

16



380

385

390

32.0
a (b)
i = - 24.0 3 Data
6000 A= 1w | log(ecnr)
L 2(ECNR
gl i<
sy, — 16.0 2{ l0g(£xnee)
4 /'t “ ; ok
4000 W . il
7 . //’ o 8.0 — 1
g e v =
= Wil o 1
% /; ’/,/”/”;;}’/,, ) 0.0 S :% 01 Knee
'-g 2000 l"/f"“w/ ’, A - -3
f
!‘JIM’” il ¥ _80 N
»‘M’ .“ ll“'. ---------------------------------------------------------
0 \ {.‘*‘ ~16.0
O (ol
Ml\:\‘\ i‘“ —2]
' X
\,"G“\‘» ' ~24.0
~2000 —31
[ =4 =4
P e S S PR -320 0 5000 10000 19000 20000 25000
Easting m Data point, n

Figure 6. (a) Scan from the Balconies experiment (phase 1) with a 48% of data points in the range of reliable observations with CNR & [-24,

-8] dB (b) Logarithm of sorted distances to the 5-th nearest neighbour for each point in a data set. The same-sean-afterfittering-total number

of observations corresponds to three consecutive scans, or 26730 points. The sorted 5-th distances show three knees separating three types
of structures: reliable observations with BRSEAN using—Vrosdistances below eyne., range-gatean overlapping region where the distance

between points grows faster, azimuth-angle;-ENR-and AV ros-asfeatarespure noise or non structured data.

number-of-observationsshowing-When scans are very noisy, the selection of a proper value of ¢ is difficult, since knees are
located closer together and a larger fraction of observations show a fast growing #-th-distance:The selection-of a=value that
d a-reliab aster-of-good-observations-is-in-this-ecaseis-diffieult-but-ean-be-eased-when-dy (1), as expected. In this case,
the fraction of points with-showing a reliable CNR value-is-alse-values is taken into account —In-this-case-the-neighborhood

ROES d-by-<ErmeeW spending—te firstno ab § © ortghtbutbyeconns

defined-byand ¢ is estimated by expression (4). Here fo g corresponds to the fraction of very-reliable-observations-in-the-data

set-(or-measurements-showing-observations CNR values within the range [-24, -8] }-ever-the-total-number-of points—The-and
the constants c¢; and cy are defined-by-obtained obtained from the upper and lower bounds of ¢ ;-defined-as-the-values-that

dist{r)-takes-atthe-first-and-lastknee-from-lefttorightin-Figure-6-(a)in the data, respectively.

ecNr=c1fcNr+C2 “4)
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these-will-beradial-orline-of-sicht-wind-speed;Vros-The set of features considered when filtering synthetic data does not
include CNR, because it is not available from the the lidar simulator described in Section 3. For synthetic and real data sets we
consider spatial location (azimuth and radial positionsand-AV7o5) and smoothness as additional features. The latter, AV 0,

corresponds to the median difference in radial-wind-speed-of-an-specifieradial-and-azimuth-pesitien-with-1/70 ¢ between a
specific position and its direct neighbours - i i

justestimatesVros-in one individual scan.

Since we consider features that vary importantly in magnitude (CNR and range gate distance for instance), we normalize the
data before the application DBSCAN. This step is necessary for the estimation of meaningful distances between observations,
basis of this approach. There are several ways to do this. Here, the data in each feature is centered by subtracting its median,
and scaled according to its inter-quantile range. This aims to minimize the influence from outliers in the normalization.

The clustering filter is implemented to be a non-supervised classifier, and does not need more input parameters than the
different features and the number of scans put together as a batch before filtering. The latter is set to three in this case, to
speed up calculations and avoid creating clusters from noisy regions. From this point of view, this filter is also dynamic as that
of Beck and Kiihn (2017) when applied to a real data set, since it will consider the data structure within a period limited to
135 seconds (3 scans of 45 seconds in our case), and characteristics of temporal evolution of the data is indirectly taken into
account. For the synthetic data used in this test, more than one scan filtered per iteration gives enough data density in noisy and
reliable areas of the observational space. We speculate that scans that are correlated in time will enhance the self-similarity of
the data, thus improving the performance of the filter. Turbulence structures with length scales in a range between the range
gate size and the scanning area size will evolve at a slower rate than the time elapsed between consecutive scans.
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5 Performance metrics

5.1 Synthetic data

The-advantage-oftesting-thefilterson-—controlled-eases—is—the— Expressions (5) to_ (7) defines three metrics to assess the
erformance of the filters, given prior knowledge of the position and magnitude of noise —This-allews-us-to-define-three-metries

in a controlled case with IV observations. The fraction

of noise detected, ,0ise,

into-aeeount the refative importanee quantify the relative importance of true positives, or the difference between observations
identified as noise, Nyoise, and false positives, Npos, Over the total number of contaminated observations;#Vegrr:-and-. The
fraction of good observations recovered, 7jrqcou, give an idea of the true negatives over the total number of non-contaminated
observations, Nyon —cont. True negatives are not not equal to NV = Nygjse, since the latter might include false negatives, Npeg.
The relative importance of this two metrics, using-thenoisefraction—for a given fraction of noise in a contaminated scan,
fnozsew%mmmmmm&m
Wmﬂd

3 VICE-Versa
Nnoise - Npos
noise — T 7 5
" Ncont ( )
N — (Nnoise + Nneg)
recov = 6
K Nnonfcont ( )
MNtot = fnoisennoise + (1 - fnoise)nTecov (7)

5.2 Real data

The-In the absence of reference measurements, the quality of the data retrieved after their-apphication-filtering is assessed by

comparing the distribution of radial wind speeds for very reliable observations (with CNR values within the range between
-24 to -8 dB) with the distribution of filtered observations that fall out of this range. Observations out of the reliable range
population usually show a probability density function (or pdfPDF) with heavier tails, like the pdfs in Figure 7. Here we
understand a heavy tailed pdf as a distribution that slowly goes to zero and show higher probability density for values beyond
the 3-0 limit (or 3 standard deviation limit), when compared to the normal distribution, evidence of a higher probability of
occurrence of outliers or extreme values. The recovering rate of observations beyond the [0.003, 0.997] quantile range of the

reliable V7,0 g (shaded area in Figure 7) could shed information about the quality of the data retrieved by the filter.
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Other metric is the similarity between pdf of reliable and non reliable data, after filtering. The distance between both prob-
ability density functions can be compared with similarity metrics like the Kolmogorov-Smirnov test (Kolmogorov, 1933) or
Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951). The former test measures the statistical similarity between
two random variables, X; and X5, by estimating the statistical distance, D (or K-S statistic), between their cumulative distri-

bution functions, Fi (z) and F»(x), as the supreme of their difference,
Dy =sup||F1(z) — Fa(z)]] 8)

The null hypothesis here is that two realizations are from the same distribution, if the K-S statistic is such that its two tailed
p-value is above a certain level a. Due to the amount of data analyzed here is huge—we analyzed over 20000 scans for the
two phases of the @sterild campaign, each with 8910 data points, over almost 10 days—this similarity test is very precise, but
also very strict rejecting the null hypothesis for small deviations between Fi () and F5(z). Nevertheless, the K-S statistics can

be used to compare which probability distribution after filtering is closer to the one representing the reliable observations:-the

The KL divergence is a measure of similarity, or overlapping of two distributions P; and P, , with realizations X; and
X, respectively. It is used in different applications to shed light on the loss of information when X is represented by P» or

vice-versa and is defined by the expression (9).
Py(x)
Dk = Py ()1 9
KL Ex 1 () Og(ﬂ(x)) )

Both metrics will be used to estimate how the distribution of non reliable observations of Vg is modified after filtering,

and if the new distribution is similar (or close, in a statistical distance sense) to the probability density of reliable observations
of the radial wind speed, shown in Figure 7 for phases 1 and 2 of the measurement campaign, respectively.

Both performance metrics, the recovery rate of abnormal measurements in the tails of the pdf of reliable observations and
its statistical distance to the pdf of filtered non reliable observations, will be assessed for the median-like filter, the clustering

filter and also for data filtered with a CNR threshold of -29 dB, following (Gryning and Floors, 2019).

6 Results

6.1 Synthetic data
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Figure 7. Probability density function of reliable observations of Vi,0s (black solid line) and non reliable observations (red, solid line) for

(a) Phase 1 of Balconies experiment with scans performed at 50 m a.g.l. and (b) Phase 2 of the same campaign, with scans performed at 200

ma.g.l

490 g and-the-oppositeforthe two filters applied on one synthetic scan contaminated with procedural noise. The contaminated
observations are indicated by the grey area in this scan. Extreme values contaminating V; are identified by both filters
without problems, but subtle alterations on the original values of the threshold;—as—expeeted—TFhe-metrie-nrthen-becomes

495

500




505

510

515

520

0.11
(c)
—1.82 —1.82
6000 -1.82 6000 6000
-3.75 —3.75 4 —3.75
) es L
1000 —5.68 1000 568 1000 568
—7.60 —7.60 —7.60 =2
E
- - sy &
2000 —053 2000 —0.53 2000 —0.53 =
—11.46 —11.46 —11.46
u ~13.39 . _13.30 o _13.30
1532
—15.32 —15.32
—-17.25
—2000 —2000 1725 —2000 —17.25
—G00  —4000 2000 [ 6000 —4000  —2000 [ 6000 —4000  —2000 [i
FEasting m FEasting m Easting m

Figure 8. (2) Contaminated synthetic scan with noise indicated by grey area. (b) Scan filtered using the median-like approach. (c) Clusterin

erforms very efficiently detecting this type of contaminated observations and filters almost all the noise. Both filters repeat
this behavior in all the synthetic scans used for this controlled test, as can be seen in Figure 9, which shows the resulting metrics

of the two filters applied on the whole synthetic data set. Looking at 7., both filters show similar mean values and spread, with
the clustering filter performing slightly better. The difference becomes noticeable when we see 1,05, Which for the clustering
filter show a mean value of 0.95, far larger than the 0.67 of the median-like filter. The latter result could be problematic if the
median-like filter is used, since noise contaminating the filtered scan will result in non realistic wind fields after reconstruction.

Both filters perform well when evaluated in terms of 7., with the median-like filter showing a higher mean fraction of

good observations retrieved, 0.96, compared with the 0.89 of the clustering filter. This result is expected, since the median-

like filter is more permissive regarding fluctuations that can seem locally anomalous for the clustering filter. I-isnot-elear
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Figure 9. Histograms of the three performance indexes for the total number of synthetic scans (a) Both filters show similar spread but the
clustering filter rejects a rather higher fraction of noise. (b) The higher recovery rate of the median-like filter, and its narrower distribution

is superior than the clustering algorithm, the cost is acceptance of more contaminated observations (c) Both filters have similar mean values

for 7¢o+ around 0.9

6.2 Real data

The data set from the Balconies experiment presents advantages for the clustering filter, since the CNR value can be included as
a feature in describing the data. Nevertheless, as mentioned already in section 2, we do not count on any reference to asses the
performance of the filter apart from the radial wind speeds distribution of very reliable observations with CNR values within
the range between -24 dB and -8 dB. As mentioned earlier, valid observations in this range might present a similar distribution.
Figure 7 shows this distribution before filtering, shadowing the area of values of V7, that fall in the region beyond a 99.7% of
the total probability or 3¢ limit, usually classified as outliers. Figures 10 and 11 show the recovery fraction for CNR, median-
like and clustering filters when applied on data in the reliable and non reliable CNR ranges for phases 1 and 2 of the @sterild
experiment. Unlike the clustering filter, the CNR threshold and median-like filters show non negligible recovery rates beyond
the 3-¢ limit, particularly significant in the former. This result is very much in line with the 7,,,;se metric from the synthetic
data. Within the 3-o0 range, the CNR and median-like filters perform slightly better than the clustering filter in terms of recovery
fraction, in agreement with the results of 7,... in section 6.1. Even though this might compensate the fact that CNR threshold

and median-like filters fail to filter out the major part of outliers, increasing the availability of measurements, this difference
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Figure 10. Distribution of recovery fraction per wind speed bin for phase 1 of the experiment of (a) reliable observations (—24 < CNR
< —8) and (b) non reliable data (CNR < —24 or CNR > —8) for the three types of filter. The shadowed area in both graphs corresponds to
the region where observations exceed the 99.7% of probability (or 3-¢ limit) in the pdf of reliable observations. The darker shadowed areas
highlights the additional fraction of extreme values non-filtered by the median-like and CNR filters, when the former uses the optimal input

setn, =5, Ng = 3 and AVLOS’ threshold) =2.33 m/s.

does not make the pdf of the filtered data more similar to the pdf of reliable data, as Table 4 shows via the metrics Dy and
Dy . According to this metric, the pdf of the data after the application of the clustering approach looks more statistically
similar to reliable observations. This table also show Dy and D, of the non reliable data before filtering, which in all cases
is improved, except for D for median and CNR threshold filters during phase 2.

Figures 12, 13 and 14 show the performance of the three different filters in different regions of the scan, from respectively
phase 1 and 2 of the experiment. When the spatial distribution of the recovery fraction is analyzed, we can see that the lowest
values shown by the clustering filter are mostly located in the far region of the scan which, in general, presents low CNR
values. The spatial recovery rate during phase 1 also show that the median-like and clustering filters are able to identify hard
targets, which are also a source of bad observations. For scans recorded at 50 m above ground level in phase 1, back-scatter
is affected by a group of seven turbines located approximately in the middle of the scanning area, with one turbine touching
the end of the southern beams of the scan and a meteorological mast located very close to the lidar. Figure 13 shows a detail
of the recovery rate associated with the flow in the vicinity of the turbines group, in which we can see that the clustering

filter is able to identify better the turbine locations, recovering more data in the serreundings-surroundings when compared to
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Figure 11. Distribution of recovery fraction per wind speed bin for phase 1 of the experiment of (a) reliable observations and (b) non reliable
data for CNR, median and clustering filter. The shadowed area in both graphs corresponds to the region where observations exceed the 3-o
limit in the pdf of reliable observations. Again, darker shadowed areas highlights the additional fraction of extreme values non-filtered by the

median-like and CNR filters, when the former uses the optimal input set n, =5, ny =3 and AVLos, threshotd) = 2.33 m/s.

the median-like filter. The PDF of Vg in this area also show more similarities between the data filtered with the clusterin
algorithm and observations with CNR values in [-24,8].

Table 5 shows a summary of the additional data available when the CNR = -29 dB threshold, the median-like and the
clustering filters are applied instead of the more conservative and restrictive CNR = -24 dB threshold filter. Additionally,
this table shows the fraction of observations exceeding the 3-¢ limit that are recovered by the three filters. Even though the
clustering filter shows a slightly lower fraction of additional data available when compared to the other filters, most of it comes
from values within the 3-0 region. Moreover the quality of the data recovered by the clustering approach seems to be higher

when all these results are tested with the performance metrics defined in Section 5.

7 Discussion

7.1 Perfoermanee-assessment-on-synthetic-data

The metrics introduced in section 6-1-5.1 attempt to evaluate two different capabilities of the filters: the quality ef-the

data-—recovered—and-the—amount-ofgood—quality-and amount od the data recovered. In general these two metrics are in
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Figure 12. Total recovery fraction for phase 1 of the experiment. The noisy and far region of the scans show a high recovery, above 80%, for

(a) the CNR > -29 dB threshold filter and (b) the median-like filter and below 75% for (c) the clustering filter. Highlighted, it is possible to

see three groups of hard targets (turbines and one meteorological mast, close to the lidar), which are identified by the median and clustering

filter with recovery rates below 20%.
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Figure 13. Detail of the recovery rate at the site of the turbines for (a) median filter and (b) clustering filter. The recovery is lower in the flow

regime of the turbines cluster (there are 7 turbines in line) and higher in their surrounding for the clustering filter. Red denotes recovery rates

of 0.5 or higher.(c) Probability density of V7,0 around the group of turbines

confliet—specially-for the-median-like-filter—every-conflict, every time a high rate of noise isremoved-also-good-measurements
wil-be-removedwill decrease the data recovery. The metric 7:,; attempts to quantify their relative importance regarding the

noise fraction, which in this study is distributed in a relatively wide range, but on average represents 20% of the total number

of measurements per scan. The impact of the noise fraction distribution on the performance of the filters was not explored, and

575 variations on its dispersion and mean value might be necessary. Regarding the synthetic scans, they do not allow the identifi-
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Figure 14. The total recovery fraction of observations for phase 2 of the experiment. The noisy and far region of the scans show a high
recovery, above 70% for (a) and (b), the CNR > -29 dB threshold and median-like filters, respectively. The recovery decreases to 55% in the
same region for the clustering filter, in line with the previous results, assuming that outliers (above the 3o limit) and noise are more likely to

be located here.

Table 4. Results of pdf similarity test of reliable and non-reliable data after filtering. The CNR = -29 dB threshold is also includedby (Gryning
and Floors (2019))

Phase 1 Dk Dkr

Non-reliable data before filtering  0.097  0.134

CNR threshold > -29 dB 0.045 0.109
Median filter 0.047 0.126
Clustering filter 0.037 0.105
Phase 2

Non-reliable data before filtering 0.110  0.126

CNR threshold > -29 dB 0.114  0.052
Median filter 0.117 0.057
Clustering filter 0.103  0.045

cation of outliers in the time domain because they are time independent. A time evolving synthetic turbulence fields would be
necessary to generate scans correlated in time and enhance the self similarity of the data. This might improve the performance
of the clustering approach and allow the addition of a time dependence in the median-like filter, used already in Meyer Forsting

and Troldborg (2016).
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Table 5. Additional data recovered, relative to the amount of observations in the reliable range of CNR, and fraction of data recovered with

values beyond the 3-¢ range.

Phase 1, 30 quantiles = [-18.16, 3.96] m/s  Fraction of data recovered beyond 3-0  Additional data recovered

CNR threshold > -29 dB 27.1% 23.4%
Median filter 14.0% 23.1%
Clustering filter 8.6 % 22.1%

Phase 2, 30 quantiles = [-18.08, 7.35] m/s

CNR threshold > -29 dB 16.5% 40.4%
Median filter 12.6% 42.4%
Clustering filter 3.2% 38.1%

The synthetic wind fields used here do not consider the presence of hard targets. These anomalies in the wind field are
observed by lidars as points with high CNR values and abnormal V7 og. Assessing the performance of the filters in detecting
such anomalies needs a more realistic model of the pulsed lidar. This numericaHidarlidar simulator would allow the generation
of information normally available in real lidar measurements, like CNR, and the spread in the power spectra of the heterodyne
signal, Sy. This additional information will benefit the performance assessment of the clustering filter and the simulation of
hard targets. A more realistic lidar model was already implemented by Brousmiche et al. (2007), which can be used to explore

further these aspects of the filtering process.
7.1 Perfoermanee-assessment-onreal-data

The data set analyzed from the Balconies experiment corresponds to horizontal scans at 50 and 200 m above the ground level,
limiting the analysis to one scanning pattern. Different scanning patterns, in vertical and horizontal planes, as well as wind
fields over different topography would make this analysis more general, thus shedding light on the capabilities of the filters
here presented. This is specially critical regarding the median-like filter, which might require again a sensitivity analysis to
select proper parameters that adapt to different scanning patterns and turbulence field characteristics. So far, AVLos, threshoid
showed a dependence on the L and ae/? parameters during the sensitivity analysis presented in Section 6.1. Larger fluctuations
in the V7o field, whether they come from larger turbulent structures or higher turbulence energy or both, will need a larger
value of AVLos, threshotd to avoid the rejection of good measurements. Range Height Indicator (RHI) scanning patterns can
pose the challenge of strong vertical shear and small turbulent structures that will need to reduce the window size n,. and ny
for the median-like filter, and the selection of a different set of features (or a new definition for AV7og) for the clustering filter,
in order to keep reliable observations from being filtered out.

Regarding feature selection, the clustering filter could consider the spectral spreading of the heterodyne signal, Sy, and time

variation of Vg, in addition to features already used in this work to characterize and distinguish better cluster of good

28



605

610

615

620

625

630

measurements. Nevertheless, due to the Euclidean distance definition, additional dimensions will make the data more sparse
in higher dimensions, making it necessary to use more data points per filtering step (here we used only 3 scans at a time) to
avoid the identification of good observations as spread, low density noise. It is because of this that the application of a feature
selection method might be necessary (Chandrashekar and Sahin, 2014).

Finally-using-Using the statistical distances D and D, as a metric for the filter performance might not be totally correct.
At range gates far from the lidar, the distance between beams increases, as well as the area covered by the accumulation of
spectral information in azimuth direction. Averaging V1 og over larger areas as we move forward through each beam, might
affect the statistics and the pdf-PDF of Vg (specially its spread) in the outer region of the scan. The fact that this region

is where we usually find the non reliable measurements group(the-one-having-CNR—values-out-of-the range-between—24-an

-&-dB), may make the pefs-PDFs of reliable and non reliable observations somewhat different. Fhis-These possible deviations

need to be investigated further.

The selection of features and the amount of scans put together per filtering step/iteration could also be automatized, using

feature selection methods. Nevertheless, this would make the clustering filter more complex in its implementation and more
computationally expensive, which is the main disadvantage of this approach compared to the median-like filter. Very efficient
median filters can achieve a computational complexity up to O(n), with n being the number of observations in the data set.
Depending on the data structure, DBSCAN shows a computational complexity from O(nlog(n)) to O(n?). If the distance
between points is in general smaller than e, the first limit can be achieved, but clusters with different densities makes the
algorithm less efficient. In the data analyzed here, having clusters with different densities is not an issue. Nevertheless, for non
homogeneous flows, scans might persistently show regions with V,0s, CNR or other feature with noticeable different values,
may need to revisit the clustering algorithm used and implement a e-independent clustering approach, like OPTICS (Ankerst

et al., 1999) for instance.

8 Conclusions

The CNR threshold filtering has been the common approach to retrieve reliable observations form lidars measurements. In
this work we compared this approach against two alternative techniques: a median-like filter, based on the assumption of

smoothness of the wind field, hence, in the smoothness of the radial wind speed observed by a wind lidar, and a clustering filter,
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based in the assumption of self-similarity of the observations captured by the wind lidar and the possibility of clustering them in
groups of good data and noise. A controlled test was carried out on the last two approaches, using a simple numerical-lidar-lidar
simulator that sampled scans from synthetic wind fields, later contaminated with procedural noise. The results indicate that the
clustering filter is capable of detecting more added noise than the median-like filter, at a good recovery rate of non contaminated
data. When the three filters are tested on real data, the clustering approach shows a better performance on identifying abnormal
observations, increasing the data availability between 22% and 38% and reducing the recovery of abnormal measurements

between 70 and 80% when compared to a CNR threshold. This is an important result, because increases the spatial coverage

of the data which can be used later for wind field reconstruction and wind data analysis, specially in the far region of the scan

that covers the largest measured area.
Even though the median-like filter is computationally efficient, it needs an optimal definition of input parameters, which

are dependent on the turbulence characteristics of the wind field. The clustering filter is more robust in this sense, because it
is capable of automatically adapt its input-parameter-parameters to the structure of the data. This is a step forward to a more
the measured wind field or the scanning pattern used.

Code and data availability. The synthetic data and code is available at https://github.com/lalcayag/Lidar_filtering. Real data can be found
in Simon and Vasiljevic (2018)
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Appendix A: Sensitivity analysis on median-like filter parameters

Figure Al shows contours that present the most optimal value for 7,, among all possible values of AV reshald.and n
for n, = 5, the optimal window size in the radial direction. Large AV, results in large .. but poor results
for m,0ise and the opposite for values of the threshold, as expected. The metric 1+ then becomes relevant to determine the
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Figure A1. Contours of performance metrics for n, = 5 over the AV threshold-Tg Space. Each point in in the contour plot corresponds
to the mean value of (a) Nnoise, (D) Nrec and (c) nior among all the 4305 synthetic scans filtered. The optimal value corresponds to n, =5,
ng =3 and AV hreshold = 2.33 m/s

optimal combination of parameters. From the contours it is possible to see that the performance in terms of the 7,0, metric

660 is less sensitive to ng than AVLos uhreshald: Even though the results here show average metrics for all the scans simulated,
the optimal value of AVLos, threshord. increases with the turbulence energy and length scale parameters, which is problematic,
because it requires previous knowledge of turbulence characteristics that usually are not available before reconstruction, and
more important, data filtering.
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