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Abstract. Polar stratospheric clouds (PSC) play a key role in polar ozone depletion in the stratosphere. Improved observations

and continuous monitoring of PSCs can help to validate and improve chemistry-climate models that are used to predict the

evolution of the polar ozone hole. In this paper, we explore the potential of applying machine learning (ML) methods to classify

PSC observations of infrared limb sounders. Two datasets have been considered in this study. The first dataset is a collection of

infrared spectra captured in Northern Hemisphere winter 2006/2007 and Southern Hemisphere winter 2009 by the Michelson5

Interferometer for Passive Atmospheric Sounding (MIPAS) instrument onboard ESA’s Envisat satellite. The second dataset is

the cloud scenario database (CSDB) of simulated MIPAS spectra. We first performed an initial analysis to assess the basic

characteristics of the CSDB and to decide which features to extract from it. Here, we focused on an approach using brightness

temperature differences (BTDs). From both, the measured and the simulated infrared spectra, more than 10,000 BTD features

have been generated. Next, we assessed the use of ML methods for the reduction of the dimensionality of this large feature10

space using principal component analysis (PCA) and kernel principal component analysis (KPCA) followed by a classification

with the support vector machine (SVM). The random forest (RF) technique, which embeds the feature selection step, has also

been used as classifier. All methods were found to be suitable to retrieve information on the composition of PSCs. Of these, RF

seems to be the most promising method, being less prone to overfitting and producing results that agree well with established

results based on conventional classification methods.15

1 Introduction

Polar stratospheric clouds (PSC) typically form in the polar winter stratosphere between 15 and 30 km of altitude. PSCs can

be observed only at high latitudes, as they exist only at very low temperatures (T < 195K) found in the polar vortices. PSC

are known to play an important role in ozone depletion caused by denitrification of the stratosphere (Solomon, 1999; Toon

et al., 1986), as their surface acts as a catalyst for heterogeneous reactions. Ozone depletion is caused by the presence of20

man-made chlorofluorocarbons (CFCs) in the stratosphere, which have been used for example in industrial compounds present

in refrigerants, solvents, blowing agents for plastic foam. CFCs are inert compounds in the troposphere, but get transformed
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under stratospheric conditions to the chlorine reservoir gases HCl and ClONO2. PSC particles are involved in the release of

chlorine from the reservoirs.

The main constituents of PSCs are three, i. e., nitric acid trihydrate (NAT), super-cooled ternary solutions (STS), and ice

(Lowe and MacKenzie, 2008). Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measurements have been

used to study PSC processes (Arnone et al., 2012; Khosrawi et al., 2018; Tritscher et al., 2019). The infrared spectra acquired5

by MIPAS are rather sensitive to optically thin clouds due to the limb observations geometry. This is particularly interesting

for NAT and STS PSCs, as ice PSCs are in general optically thicker than NAT and STS (Fromm, 2003). As ice clouds form

at a lower temperature than NAT and STS, they are mainly present in the Antarctic, while their presence in the Arctic (where

the stratospheric temperature minimum in polar winter is higher) is only notable for extremely cold winter conditions (e. g.,

Campbell and Sassen, 2008; Pawson et al., 1995).10

Besides using MIPAS measurements, classification has been carried out with different schemes based on the optical proper-

ties of PSCs with LIDAR measurements. A review of those methods is available in Achtert and Tesche (2014). Classification

schemes are based on two features, namely the backscatter ratio and the depolarization ratio. As exposed in (Biele et al., 2001),

particles (type II) with large backscatter ratio and depolarization are likely to be composed of ice. Type I particles are char-

acterized by a low backscatter ratio. The subtype Ia particles show a large depolarization and are composed of NAT, whereas15

subtype Ib particles have low depolarization and consist in STS. The threshold to classify the PSCs types varies among different

works such as Browell et al. (1990); Toon et al. (1990); Adriani (2004); Pitts et al. (2009, 2011). The nomenclature presented

above is a simplification of real case scenarios, since PSCs can occur also with mixtures of particles with different composition

(Pitts et al., 2009). Other methods that are used to measure PSCs are in situ optical and non-optical measurements from balloon

or aircraft as well as microwave observations (Buontempo et al., 2009; Molleker et al., 2014; Voigt, 2000; Voigt et al., 2018;20

Lambert et al., 2012).

The use of machine learning (ML) algorithms increased dramatically during the last decade. ML can offer valuable tools

to deal with a variety of problems. In this paper, we used ML methods for two different tasks. First, for the selection of

informative features from the simulated MIPAS spectra. Second, to classify the MIPAS spectra depending on the composition

of the PSC. In this work we significantly extended the application of ML methods for the analysis of MIPAS PSC observations.25

Standard methods that exploit infrared limb observation to classify PSCs are based on "empirical" approaches. Given physical

knowledge of the properties of the PSC, some features have been extracted from the spectra, as for example the ratio of the

radiances between specific spectral windows. These approaches have been proven to be capable to detect and discriminate

between different PSC classes (Spang et al., 2004; Höpfner et al., 2006).

The purpose of this study is to explore the use of ML methods to improve the PSC classification for infrared limb satellite30

measurements and to potentially gain more knowledge on the impact of the different PSC classes on the spectra. We compare

results from the most advanced "emprical" method, the Bayesian classifier of Spang et al. (2016), with three "automatic"

approaches. The first one relies on principal component analysis (PCA) and kernel principal component analysis (KPCA) for

feature extraction, followed by classification with support vector machine (SVM). The second one is similar to the first, but

uses kernel principal component analysis (KPCA) for feature extraction instead of PCA. The third one is based on the random35
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forest (RF), a classifier that directly embeds a feature selection ((Cortes and Vapnik, 1995; Breiman, 2001; Jolliffe and Cadima,

2016)). A common problem of ML is the lack of annotated data. To overcome this limitation, we used a synthetic dataset for

training and testing, the cloud scenario database (CSDB), especially developed for MIPAS cloud and PSC analyses (Spang

et al., 2012). As a "ground truth" for PSC classification is largely missing, we evaluate the ML results by comparing them with

results from existing methods and show that they are consistent with established scientific knowledge.5

In Sect. 2, we introduce the MIPAS and synthetic CSDB data sets. A brief description of the ML methods used for feature

reduction and classification is provided in Sect. 3. In Sect. 4, we compare results of PCA+SVM, KPCA+SVM, and RF for

feature selection and classification. We present three case studies and statistical analyses for the 2006/2007 Arctic and 2009

Antarctic winter seasons. The final discussion and conclusions are given in Sect. 5.

2 Data10

2.1 MIPAS

The MIPAS instrument (Fischer et al., 2008) was an infrared limb emission spectrometer onboard ESA’s Envisat satellite to

study the thermal emission of the Earth’s atmosphere constituents. Envisat operated from July 2002 to April 2012 in a polar

low Earth orbit with a repeat cycle of 35 days. MIPAS measured up to 87°S and 89°N latitude and therefore provided nearly

global coverage at day- and nighttime. The number of orbits of the satellite per day was equal to 14.3, resulting in a total of15

about 1000 limb scans per day.

The wavelength range covered by the MIPAS interferometer was about 4 to 15 µm. From the beginning of the mission to

spring 2004, the instrument operated in the full resolution (FR) mode (0.025 cm-1 spectral sampling). Lateron, this has to be

changed to the optimized resolution (OR) mode (0.0625 cm-1) due to a technical problem of the interferometer (Raspollini

et al., 2006, 2013). The FR measurements were taken with a constant 3 km vertical and 550 km horizontal spacing, while for20

the OR measurements the vertical sampling depended on altitude, varying from 1.5 to 4.5 km, and a horizontal spacing of 420

km was achieved. The altitude range of the FR and OR measurements varied from 5-70 km at the poles and to 12-77 km at the

equator.

For our analyses, we used MIPAS Level-1B data (version 7.11) acquired at 15 – 30 km of altitude between May and Septem-

ber 2009 at 60 – 90 °S and between November 2006 and February 2007 at 60 – 90 °N. 2009 SH winter presents a slightly higher25

than average PSC activity, especially for ice in June and August. 2006/2007 NH winter is characterized by a large area covered

by NAT, exception made for early January, and some ice is present in late December (this analysis was obtained from NASA

Ozone Watch from their web site at https://ozonewatch.gsfc.nasa.gov ). The high-resolution MIPAS spectra were averaged to

obtain 136 spectral windows of 1 cm-1 width, because PSC particles are expected to typically cause only broader scale fea-

tures. The 1 cm−1 window data used in this study comprise the 8 spectral regions reported in Table 1. In addition to these, five30

windows larger than 1 cm−1 have been considered, as used in the study of Spang et al. (2016).

From the 1 cm−1 windows and the five additional larger windows, more than 10,000 brightness temperature differences

(BTDs) have extracted using a two-step pre-processing. At first, the infrared spectra have been converted from radiance inten-
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sities to BTs. This approach is considered helpful, as variations in the signals are more linear in BT compared to radiances.

Then, the BTDs have been computed by subtracting the BT of each window with respect to the remaining ones. The main

motivation for using BTDs rather than BTs for classification is to try to remove background signals from interfering instrument

effects such as radiometric offsets.

Other wavelength ranges covered by MIPAS have been excluded here as they are mainly sensitive to the presence of trace5

gases. The interference of cloud and trace gas emissions makes it more difficult to analyze the effects of the PSC particles

(Spang et al., 2016). As an example, Fig. 1 shows MIPAS spectra of PSC observations acquired in late August 2009 in Southern

Hemisphere polar winter conditions, with the spectral regions used for PSC detection and classification being highlighted.

2.2 Cloud Scenario Database

A synthetic data set consisting of simulated radiances for the MIPAS instrument provides the training and testing data for this10

study. The CSDB was generated by considering more than 70,000 different cloud scenarios (Spang et al., 2012). The CSDB

spectra have been generated using the Karlsruhe Optimized and Precise Radiative Transfer Algorithm (KOPRA) model (Stiller

et al., 1998). Limb spectra have been simulated from 12 to 30 km tangent height, with 1 km vertical spacing. Cloud top heights

have been varied between 12.5 and 28.5 km, with 0.5 km vertical spacing. The cloud vertical extent varies between 0.5, 1, 2, 4,

and 8 km. The spectral features selected from the CSDB are the same as those for MIPAS (Sect. 2.1, Fig. 1).15

As described in (Spang et al., 2016), the CSDB was calculated with typical particle radii and volume densities of PSCs

(Table 2). Five different PSC compositions have been considered: ice, NAT, STS with 2% H2SO4, 48% HNO3 and 50% H2O

(called later on STS 1), STS with 25% H2SO4, 25% HNO3 and 50% H2O (STS 2), STS with 48% H2SO4, 2% HNO3 and 50%

H2O (STS 3). This values are derived from the model by Carslaw et al. (1995) and span over all possible compositions. The

CSDB does not give any representative frequency of real occurrences in the atmosphere. For this study, we decided to split the20

set of NAT spectra into two classes, large NAT (radius >2 µm) and small NAT (radius <=2 µm). This decision was taken to

assess the capability of the classifiers to correctly separate between the two classes. It is well known that small NAT particles

(radius <=2 µm) produce a specific spectral signature at 820 cm-1 (Spang and Remedios, 2003; Höpfner et al., 2006). Spectra

for large NAT particles are more prone to overlap with those of ice and STS.

To prepare both, the real MIPAS and the CSDB data for PSC classification, we applied the cloud index (CI) method of Spang25

et al. (2004) with a threshold of 4.5 to filter out clear air spectra. In optimal conditions a CI<6 detects clouds with extinction

coefficients down to about 2e-5 km-1 in the mid-infrared (Sembhi et al., 2012). However, in the polar winter regions these

optimal conditions do not persist over an entire winter season. Hence, we selected a threshold of 4.5 that reliably discriminates

clear air from cloudy air in the southern and northern hemisphere polar winter regions as it is sensitive to extinctions down to

5e-4 km-1 (Griessbach et al., 2020).30

4



3 Methods

3.1 Conventional classification methods

Spang et al. (2016) provide an overview on various conventional methods used to classify Envisat MIPAS PSC observations.

Furthermore, a Bayesian approach has been introduced in their study to combine the results of individual classification methods.

This approach is used as benchmark for the new classifiers introduced in the present paper. The Bayesian classifier considers5

a total of 13 features, including correlations between the cloud index (CI) (Spang et al., 2004), the NAT index (NI) (Spang

and Remedios, 2003; Höpfner et al., 2006), and another five additional BTDs. Each feature has been assigned individual

probabilities pi, j in order to discriminate between the different PSC composition classes. The output of the Bayesian classifier

is calculated according to Pj = ∏i pi, j/∑ j
(
∏i pi, j

)
, where the indices i = 1, . . . ,13 and j = 1,2,3 refer to the individual feature

and the PSC constituent, respectively. The normalized probabilities Pj per PSC constituent are used for final classification10

applying the maximum a posteriori principle. The BC composition classes are the following: unknown, ice, NAT, STS_mix,

ICE_NAT, STS_NAT, and ICE_STS. A stepwise decision criterion is applied to classify each spectrum. If the maximum of

Pj(with j = 1...3) > 50%, then the spectrum is assigned a single PSC composition label. If two Pj values are between 40 and

50 %, then a mixed composition class, for example ICE_STS for j = 1 and j = 3, is attributed. If the classification results

in P1, P2, or P3 < 40%, then the spectrum is labeled as "unknown". Considering the SH 2009 case, the NAT_STS mixed15

composition class is populated with more than 4000 spectra, while ICE_STS and ICE_NAT predictions are negligible (Fig.

16). The analysis of the complete MIPAS period (9 SH and 10 NH winters in Spang et al. (2018)) showed that ICE_STS and

ICE_NAT classes are generally only in the sub percentage range and statistically not relevant. The Bayesian classifier requires

a priori information and detailed expert knowledge on the selection of the features to be used as discriminators and in assigning

the individual probabilities pi, j for classification. In this work, we aim at investigating automatic ML approaches instead of20

the manual or empirical methods applied for the Bayesian classifier. Nevertheless, being carefully designed and evaluated, the

results of the Bayesian classifier are used for further reference and comparison in this study.

3.2 Feature extraction using PCA and KPCA

In a first step, we calculated BTDs from the 1 cm-1 downsampled radiances of the CSDB. Calculating the BTDs between the

142 spectral windows resulted in 10,011 BTDs for a total of 70,000 spectra. In a second step, in order to reduce the amount of25

data, we applied a variance threshold to exclude BTD features with relatively low variance (σ2 < 10K2), as this indicates that

the corresponding windows have rather similar information content. In order to further reduce the difficulties and complexity

of the classification task, we decided to even further reduce the number of BTD features before training of the classifiers by

means of feature extraction.

Feature selection methods are used for picking subsets of an entire set of features while keeping the information content as30

high as possible. The methods help to reduce the training time of the classifier and to reduce the risk of overfitting. Feature

selection methods typically belong to three main families (Bolón-Canedo et al., 2016): (i) filter methods, where the importance

of the feature is derived from intrinsic characteristic of it, (ii) wrapper methods, where the features are selected by optimizing
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the performances of a classifier, and (iii) embedded methods, where classification and selection happen at the same time. Here,

we used a more advanced approach to dimensionality reduction, which goes under the name of feature extraction. In this case,

instead of simply selecting a subset of the original features, the set of features itself is transformed to another space where the

selection takes place.

Principal component analysis (PCA) is among the most popular feature extraction methods (Jolliffe and Cadima, 2016). The5

main idea of the PCA is to reproject the data to a space where the features are ranked on the variance that they account for.

At first a centering of the data through the subtraction of the mean is performed. Then, the covariance matrix is calculated

and its eigenvectors and eigenvalues are computed. At this point, selecting the eigenvectors whose eigenvalues are largest, it is

possible to pick the components on which most of the variance of the data lay. PCA already found applications in the analysis

of atmospheric mid-infrared spectra, in particular for the compression of high-resolution spectra and for accelerating radiative10

transfer calculations (e. g., Huang and Antonelli, 2001; Dudhia et al., 2002; Fauvel et al., 2009; Estornell et al., 2013). PCA

has been used in this study for two main purposes, dimensionality reduction and visualization of the data.

Kernel PCA (KPCA) is an extension of the PCA where the original data xxx are first transformed using a mapping function

φ(xxx) to a higher dimensional feature space. The main advantage of using KPCA relies in the fact that it can capture non-linear

patterns, which PCA, being a linear method, may fail to represent well. However the construction of the kernel matrix K for15

mapping can be expensive in terms of memory. This latter problem undermines severely the possibility of using this algorithm

for large datasets. At this point the kernel trick comes into play (Schölkopf et al., 1997). It helps to avoid the inconvenience of

having to compute the covariance matrix in a large transformed space. Instead of translating each data point to the transformed

feature space using the mapping function φ(xxx), the inner product can be calculated as K(xi,x j) = φ(xi)φ(x j), resulting in a

much less demanding computational task. Among the most common kernels there are the radial basis function (RBF) and the20

polynomial (Genton, 2002), which we also considered in this study.

3.3 Classification using Support Vector Machines and Random Forests

Supervised classification is a ML task in which the classes or "labels" of unknown samples are predicted by making use of a

large data set of samples with already known labels. In order to do that, the classification algorithm has first to be trained, i. e.,

it has to learn a map from the input data to its target values. After a classifier is trained, one can give it as input an unlabeled25

set of data points with the aim of predicting the labels. The training of a classifier is usually a computationally demanding task.

However, the classification of unknown samples using an already trained classifier is computationally cheap.

A large number of classifiers exists, based on rather different concepts. Bayesian classifiers follow a statistical approach.

Support vector machines (SVMs) are based on geometrical properties. Random forests (RF) are based on the construction

of multiple decision trees. Neural networks try to emulate the behaviour of the human brain by stacking a number of layers30

composed of artificial neurons (Zeiler and Fergus, 2014). According to the "no free lunch theorem", it is not possible to state

safely which algorithm is expected to perform best for any problem (Wolpert, 1996). In this study, we selected two well

established methods, RFs and SVMs, to test their performance.
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Random Forest is an algorithm that learns a classification model by building a set of decision trees. A decision tree is

composed of decision nodes, which lead to further branches and leaf nodes, which finally represent classification results. RFs

are non-parametric models that do not assume any underlying distribution in the data (Breiman, 2001). RF builds a number

of decision trees selecting a random subset of the original features for each tree. In this way the model becomes more robust

against overfitting. The classification result of the RF model will be the label of the class that has been voted for by the majority5

of decision trees (Liu et al., 2012). An interesting characteristic of the RF classifier is that it can give by calculating the Gini

index (Ceriani and Verme, 2012) also a measure of the feature importance. In this way, the RF classifier can also be exploited

for performing feature selection.

The performance of a RF classification model depends on a number of hyperparameters, which must be defined before

training: (i) The "number of estimators" or decision trees of the forest needs to be defined. (ii) A random subset of the features10

is selected by each decision tree to split a node. The dimension of the subset is controlled by the hyperparameter "maximum

number of features". (iii) The "maximum depth", i. e., the maximum number of levels in each decision tree controls the com-

plexity of the decision trees. In fact, the deeper a decision tree is, the more splits can take place in it. (iv) The "minimum

number of samples before split" that has to be present in a node before it can be split also needs to be defined. (v) A node

without further split, has to contain a "minimum number of samples per leaf" to exist. (vi) Finally, we have to decide whether15

to use "bootstrapping" or not. Bootstrapping is a method used to select a subset of the available data points, introducing further

randomness to increase robustness (Probst et al., 2019).

SVMs became popular around the 90’s (Cortes and Vapnik, 1995). The method is based on the idea of identifying hyper-

planes, which best separate sets of data points into two classes. In particular, SVM aims at maximizing the margin, which is

the distance between few points of the data, referred to as "support vectors", and the hyperplane that separates the two classes.20

The "soft margin" optimization technique takes into account the fact that misclassification can occur due to outliers. For that

reason a tuning parameter C is included in order to allow for the presence of misclassified samples during the optimization of

the margin to a given extent. The choice of the parameter C is a trade-off between minimizing the error on the training data and

finding a hyperplane that may generalize better (Brereton and Lloyd, 2010).

SVM had been originally developed to find linear decision boundaries. However, the introduction of the kernel trick (cf., Sect.25

3.2) enables the possibility for non-linear decision boundaries. Kernel functions, e. g., radial basis functions or polynomials,

are mapping from the original space to a non-linearly transformed space, where the linear SVM is applied (Patle and Chouhan,

2013). In the case of a non-linear kernel, the parameter γ is used to define how much a support vector has influence on deciding

the class of a sample. A small value of γ implies that this support vector also has impact on samples far in the feature space, a

large value of γ has an influence only on samples that are close in the feature space.30

We recap in Fig. 4 the entire pipeline for training and prediction. The BTDs extracted from the CSDB dataset are given as

input to the PCA or KPCA methods, and the extracted featured are fed to the SVM classifier for model training (PCA+SVM

and KPCA+SVM). On the other hand, the RF classifier is given as input BTDs directly, without prior feature extraction.

The input samples (BTDs) are annotated with a label as explained in Sect. 2.2. In prediction (Fig. 4b), the BTDs extracted

from the MIPAS measurements are the input to the three methods PCA+SVM, KPCA+SVM and RF, where the output are35
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the predicted label for each sample. The RF classifier provides a feature importance measure as well. During prediction, the

sample is assigned to one of the following classes representing the main constituent: ice, small NAT, large NAT, STS 1, STS

2,STS 3. Compared to the NAT class of the Bayesian classifier, in the proposed ML methods NAT particles are assigned to

small and large NAT subclasses. The STS_mix class of the BC overlaps with STS 1, STS 2 and STS 3. There are not directly

corresponding classes to the mixed composition ones of the BC. As discussed above in the text, only a few spectra are classified5

by the BC as ICE_STS or ICE_NAT. Samples belonging to the NAT_STS class of the BC, characterized by a non-negligible

population, are labeled by the new ML classes mostly as STS 1 (Fig. 16).

4 Results

4.1 Feature extraction

In this study, we applied PCA and KPCA for feature extraction from a large set of BTDs. Both, PCA and KPCA are reprojecting10

the original BTD features to a new space, where the eigenvectors are ordered in such a way that they maximize variance

contributions of the data. Figure 2a shows a matrix of the normalized variances of the individual BTDs considered here. A

closer inspection shows that the largest variances originate from BTDs in the range from 820 to 840 cm-1 (indicated as spectral

region R1 in in Table 1) and 956 to 964 cm-1 (R2). Another region with high variances originates from BTDs between 820

to 840 cm-1 (part of R1) and 1404 to 1412cm-1 (R4) as well as 1930 to 1935 cm-1 (R5). Around 820, 1408, and 1930 cm−115

the imaginary part (absorption contribution) of the complex refractive index of NAT has pronounced features (Höpfner et al.,

2006), whereas around 960 cm−1 the real part (scattering contribution) of the complex refractive index of ice has a pronounced

minimum (e.g. Griessbach et al., 2016). Even though in our work the ML classifiers are given BTDs (computed from radiance)

as input and refractive indices are not directly used in the classification process, the latter can provide insights on microphysical

properties of the different PSC particles and additional information on the features used by the ML methods.20

The first and second principal components, which capture most of the variance in the data, are shown in Fig. 3. Comparing

PCA and KPCA, we note that they mostly differ in terms of order and amplitude. This means that the eigenvalues change,

but the eigenvectors are rather similar in the linear and non-linear case. For this dataset, the non-linear KPCA method (using a

polynomial kernel) does not seem to be very sensitive to non-linear patterns that are hidden to the linear PCA method. However,

it should be noted that the SVM classifier is sensitive to differences in scaling of the input features as they result from the use25

of PCA and KPCA for feature selection. Therefore, classification results of PCA+SVM and KPCA+SVM can still be expected

to differ and are tested separately.

As discussed in Sect. 3.3, RF itself is considered to be an effective tool not only for classification but also for feature

selection. It is capable of finding non-linear decision boundaries to separate between the classes. However, the method does

not group the features together in components like PCA or KPCA. It is rather delivering a measure of importance of all of the30

individual features. Figure 2b shows the feature importance matrix provided by the RF. Note that the values are normalized,

i. e., the feature importance values of the upper triangular matrix sum up to 1. We can observe that this approach highlights

similar clusters as Fig. 2a.
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Similarly to PCA and KPCA, BTDs between windows in the range from 820 to 840 cm-1 (R1) and from 956 to 964 cm-1

(R2) are considered to be most important by the RF algorithm. BTDs between 1224 to 1250 cm-1 (R3) and 1404 to 1412 cm-1

(R4) are also regarded as important. Furthermore, we can see that the BTDs between 782 to 800 cm-1 and 810 to 820 cm-1

(both belonging to R1), and BTDs between 960 cm-1 (R2) and 1404 to 1412 cm-1 (R4) are quite important. Table 3 specifically

provides the most important BTDs between the different regions. Actually, Fig. 5 shows that all the windows or BTDs found5

here by the RF are associated with physical features of the PSC spectra, namely a peak in the real and imaginary part of the

complex refractive index of NAT around 820 cm-1 or a minimum in the real part of the complex refractive index of ice around

960 cm-1. STS can be identified based on the absence of these features.

A closer inspection reveals an interesting difference between PCA and KPCA on the one hand and RF on the other hand. Two

additionally identified windows around ∼790 and ∼1235 cm−1 are located at features in the imaginary part of the refractive10

index of ice and NAT, respectively (Höpfner et al., 2006). This latter set of BTDs are considered to have a large feature

importance by the RF method but do not show a particularly large variance. This suggests that a supervised method like RF

can capture important features where unsupervised methods like PCA and KPCA may fail.

4.2 Hyperparameter tuning and cross-validation accuracy

Concerning classification, we compared two SVM-based classifiers that take as input the features from PCA and KPCA and15

the RF that uses the BTD features without prior feature selection. The first step in applying the classifiers is training and tuning

of the hyperparameters. Cross-validation is a standard method to find optimal hyperparameters and to validate a ML model

(Kohavi, 1995). For cross-validation the dataset is split in a number of subsets, called folds. The model is trained on all the

folds, except for one, which is used for testing. This procedure is repeated until the model has been tested on all the folds.

The cross-validation accuracy refers to the mean error of the classification results for the testing data sets. Cross-validation20

is considered essential to avoid overfitting while training a ML model. Selecting the best hyperparameters that maximize the

cross-validation accuracy of a ML model is of great importance to exploit the models capabilities at a maximum.

In this study, we applied 5-fold cross-validation on the CSDB dataset. For the SVM models we decided to utilize a grid-

search approach to find the hyperparameters. As the parameter space of the RF model is much larger, a random-search approach

was adopted (Bergstra and Bengio, 2012). The test values and optimum values of the hyperparameters for the SVM and RF25

classifiers are reported in Tables 4 and 5, respectively. For the optimum hyperparameter values, all classification methods

provided an overall prediction accuracy close to 99%. Also, our tests showed that the ML methods considered here for the PSC

classification problem are rather robust against changes of the hyperparameters.

During the training of the classifiers, we conducted two experiments. In the first experiment, we checked how large the

amount of synthetic samples from the CSDB needs to be in order to obtain good cross-validation accuracy. For this experiment,30

we performed the training with subsets of the original CSDB data, using randomly sampled fractions of 50%, 20%, 10%, 5%,

2%, 1%, 0.05%, 0.02%, 0.01%, 0.005%, 0.002%, and 0.001% of the full dataset. This experiment has been run for all three

ML models (PCA+SVM, KPCA+SVM, and RF) using the optimal hyperparameters found during the cross-validation step.

The results in Fig. 6 show that using even substantially smaller datasets (> 0.02% of the original data or about 1200 samples)
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would still result in acceptable prediction accuracy (> 80%). This result is surprising and points to a potential limitation of the

CSDB for the purpose of training ML models that will be discussed in more detail in Sect. 5.

In the second experiment, we intentionally performed and analyzed the training and testing of the RF method with a rather

small subset of data. Although the results from this procedure are less robust, they can help pinpoint potential issues that cannot

be detected using the full data set. We computed different scores to assess the quality of the prediction for the RF classifier5

in the case of 600 randomly selected samples used for training and around 200 samples used for testing. As shown in Table

6, also using a limited number of samples for training leads to very high classification accuracy. The metrics used in Table 6

are precision P = T P/(T P+FP), recall R = T P/(T P+FN), and f1-score F1 = 2(R×P)/(R+P), where T P is the number

of true positives, FP the number of false positives, FN the number of false negatives, and support is the number of samples

(Tharwat, 2018). As reported in Table 6, it is found that ice and small NAT accuracies are higher than the ones of STS. This10

is a hint to the fact that distinguishing small NAT and ice from the other classes is an easier task than separating spectra of

PSC containing larger NAT particles from those populated with STS, which is consistent with previous studies (Höpfner et al.,

2009).

An additional experiment was performed on the CSDB spectra labeled as large NAT. The BC misclassifies a large amount

of those spectra (99% of them classified as STS_mix), whereas the proposed ML methods correctly classify them as large15

NAT (Tab. 7). This experiment suggests that the new classification schemes can help in overcoming the inability of the BC in

discriminating between large NAT and STS.

4.3 Classification using real MIPAS data

4.3.1 Case studies

For three case studies looking at individual days of MIPAS observations, two in the Southern Hemisphere and one in the20

Northern Hemisphere winter season, we compared the results of the different classification methods (Figs. 7 to 9). Early in the

Southern Hemisphere PSC season, on 14 June 2009 (Fig. 7), we found that the classification results are mostly coherent among

all the classifiers, not only from a quantitative point of view but also geographically, especially concerning the separation of ice

and STS PSCs. Further, we found that most of the PSCs, which were labeled as NAT by the Bayesian classifier, were classified

as STS by the ML classification methods. While both SVM classification schemes did not indicate the presence of NAT, the25

RF found some NAT, but mostly at different places than the Bayesian classifier. Note that from a climatological point of view,

NAT PSCs are not expected to be the dominant PSC type until mid to end of June for the SH (Pitts et al., 2018).

Later in the Southern Hemisphere PSC season, on 26 August 2009 (Fig. 8), it is again found that the separation between ice

and non-ice PSCs is largely consistent for all the classifiers. The NAT predictions by the RF classifier tend to agree better with

the Bayesian classifier than the NAT classifications by the SVM method. Overall, the Southern Hemisphere case studies seem30

to suggest that the SVM classifiers (using PCA or KPCA) underestimate the presence of NAT PSCs compared to the BC and

the RF classifiers. We note that separating the NAT and STS classes from limb infrared spectra presents some difficulties.
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As a third case study, we analyzed classification results for 25 January 2007 for the Northern Hemisphere (Fig. 9). This

case was already analyzed to some extent by Hoffmann et al. (2017). It is considered to be particularly interesting, as ice PSCs

have been detected over Scandinavia at synoptic-scale temperatures well above the frost point. Hoffmann et al. (2017) provided

evidence that the PSC formation in this case was triggered by orographic gravity waves over the Scandinavian Mountains. Also

in this case study the classification of ice PSCs over Scandinvia shows a good agreement for the new ML methods with the5

Bayesian classifier. Further, we see that the two SVM and the RF methods identified small NAT where the Bayesian classifier

also found NAT. However, at the locations, where the Bayesian classifier indicates a mixture of NAT and STS the ML methods

indicate STS, and the ML methods indicate large NAT at locations where the Bayesian classifier found STS.

4.3.2 Seasonal analyses

For a seasonal analysis, we first considered MIPAS observations during the months from May to September 2009. Figures 1010

to 12 show the area coverage for each class of PSC along time and altitude. Comparing the times series of the classification

results, we can assess the agreement quantitatively. Taking a look at STS (Fig. 10), all the classifiers predict an early season

appearance. While the RF predicts a time series that resembles quite closely the one predicted by the Bayesian classifier, the

other two ML methods (PCA+SVM and KPCA+SVM) predict a significantly larger coverage of STS clouds over the winter.

Regarding the ice PSCs (Fig. 11), the patterns in the time series are similar between all classifiers. However, we can observe that15

even if the spatiotemporal characteristics are similar, both SVM methods predict a notably larger area covered by ice clouds.

Moreover, the KPCA+SVM classifier predicts an earlier emergence of ice with respect to the other classifiers. Considering

the NAT time series (Fig. 12), all the classifiers predict a late appearance during the season. The classification schemes based

on SVM predict a much lower presence of NAT with respect to the RF and the Bayesian classifier. Furthermore, most of the

bins with a high value of NAT coverage in the Bayesian classification scheme are predicted as small NAT particles. This result20

confirms that the spectral features of small NAT are strong enough to find a good decision boundary, as explained in Sect. 2.2.

Figure 13 shows the overall percentages of the PSC classes for May to September 2009 for the Southern Hemisphere. The

occurrence frequencies of ice PSCs are quite consistent ranging from 32 % for the Bayesian classifier to 39 % for KPCA+SVM.

It is found that the approaches based on SVM slightly overestimate the presence of ice with respect to the RF (35 %) and the

Bayesian classifier. However, the main differences that were encountered are in the separation between STS and NAT. The two25

classification schemes using SVM predict a much smaller amount of NAT PSCs (17 and 26 % taking small and large NAT

together) compared to the RF (37 %) and the Bayesian classifier (38 % taking NAT and NAT_STS together). The RF and the

Bayesian classifier are more coherent between themselves. Other interesting findings are related to the classification between

small and large NAT. Indeed, the vast majority of the NAT predictions in the KPCA+SVM and RF methods belong to the small

NAT class. This suggests once more that the discrimination between small NAT and STS PSCs is more easily possible using30

mid-infrared spectra for classification, while larger NAT PSCs are harder to separate.

In addition to the results presented above, we conducted the seasonal analyses also for MIPAS observations acquired in the

months from November 2006 to February 2007 in the Northern Hemisphere (Fig. 14). As expected, a much smaller fraction

of ice PSCs (4 – 6 %) has been found compared to the Southern Hemisphere. As in the Southern Hemisphere winter, the
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SVM classifiers taking as input the PCA and KPCA features found significantly less NAT (both 6 %) than the Bayesian

classifier (15 %), whereas the RF classifier identified a significantly larger fraction of large NAT spectra (30 %) that resulted

in a significantly higher NAT detection rate (37 %). This finding may point to a potential improvement of the RF classifier

compared to the Bayesian classifier. In fact, it had been already reported by Spang et al. (2016) that the Bayesian classifier

for MIPAS underestimated the fraction of NAT clouds compared to Cloud-Aerosol LIDAR with Orthogonal Polarization5

(CALIOP) observations. Further, the STS partitioning between the three STS subclasses is different between the Southern and

Northern Hemisphere winters. While in the Southern Hemisphere STS 1 is dominating, in the Northern Hemisphere STS 2

is dominating and the fraction of STS 3 is significantly increased. This result is plausible, because the Northern Hemisphere

winters are warmer than the Southern Hemisphere winters, and STS 1 forms at colder temperatures (e.g. ∼189 K) than STS 2

(∼192 K) and STS 3 (∼195 K at 50 hPa, Carslaw et al. (1995)).10

Figures 15 and 16 show cross tabulations between the classification results of the Bayesian classifier and the three ML

methods. They allow us to directly assess how much the different classification schemes agree in terms of their predictions for

the different classes. For instance, considering the ice class of the ML classifiers, it can be seen that almost all of the samples

were classified consistently with the Bayesian method. Concerning NAT, the RF classifier predicts as small NAT more than

80% of what had been classified as NAT class by the Bayesian classifier. The PCA+SVM and KPCA+SVM methods predict15

a smaller fraction of small NAT for the NAT class of the Bayesian classifier, around 50% and 60%, respectively. Since the BC

is designed to take into account the characteristic features of NAT particles with small radius (present in the spectrum at 820

cm-1), this result may suggest that PCA+SVM and KPCA+SVM are not as sensitive as BC for small NAT detection, while

RF is. Considering the STS subclasses of the ML classifiers altogether, they seem to agree with the STS_mix predictions of

the Bayesian classifier. There is a large percentage of spectra predicted as large NAT by the proposed ML methods that are20

instead classified as STS by the BC, especially in the results of the RF scheme. This is probably caused by the fact that the BC

misclassifies spectra of large NAT, as discussed in Sect. 4.1 for the CSDB.

5 Summary and conclusions

In this study, we investigated whether ML methods can be applied for the PSC classification of infrared limb spectra. We

compared the classification results obtained by three different ML methods – PCA+SVM, KPCA+SVM, and RF – with those25

of the Bayesian classifier introduced by Spang et al. (2016). First, we discussed PCA, KPCA, and RF as methods for feature

extraction from mid-infrared spectral regions and showed that the selected features correspond with distinct features in the

complex refractive indices of NAT and ice PSCs. Then we compared classification results obtained by the ML methods with

respect to previous work using conventional classification methods combined with a Bayesian approach.

We presented three case studies as well as seasonal analyses for the validation and comparison of the classification results.30

Based on the case studies, we showed that there is spatial agreement of the ML method predictions between ice and non-ice

PSCs. However, there is some disagreement between NAT and STS. We evaluated time series and pie charts of cloud coverage

for the Southern Hemisphere polar winter 2009 and the Northern Hemisphere polar winter 2006/2007, showing that all methods
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are highly consistent with respect to the classification of ice. For the NAT and STS predictions, RF and the Bayesian classifier

tend to agree best, whereas the SVM methods yielded larger differences. The agreement between the different classification

schemes was further quantified by means of cross tabulation. While the SVM methods found significantly less NAT than the

Bayesian classifier, the RF classifier found slightly more NAT than the Bayesian classifier. The RF results might be more

realistic, because the Bayesian classifier is known to find less NAT for MIPAS compared to CALIOP satellite observations,5

especially for Northern Hemisphere winter conditions (Spang et al., 2016). A practical advantage of RF presented in Sect. 3.3

and further discussed in 4.1, is that it enables a better control on the importance of the features it selects to train the model.

Moreover, RF is a fully supervised method, from feature selection to training, whereas the feature extraction methods PCA

and KPCA are unsupervised methods and may fail to capture important features if they do not show high variance. From the

user point of view, RF is also simpler to deploy since it embeds feature selection and does not require a two-step process of10

feature extraction and training (unlike PCA+SVM and KPCA+SVM). Parallel implementations of the ML methods presented

in this paper are also available, enabling significant acceleration of model training and prediction with large amount of data

(Cavallaro et al., 2015; Genuer et al., 2017).

The Bayesian method developed by Spang et al. (2016) requires a priori knowledge of a domain expert to select the deci-

sion boundaries and to tune the probabilities used for classification for different areas in the feature space. The ML schemes15

proposed in this work are more objective in the premises and rely only on the available training data without additional as-

sumptions. Models have been trained on the CSDB, a simulation dataset that has been created systematically sampling the

parameter space, not reflecting the natural occurrence frequencies of parameters. This point is in our opinion of great impor-

tance, as we demonstrated that ML methods are capable of predicting PSC composition classes without the need of substantial

prior knowledge, providing a mean for consistency checking of subjective assessments. Although the lack of ground truth nar-20

rows the assessment down to comparison with other classification schemes, we found that the classification results of the ML

methods are consistent with spectral features of the PSC particles, in particular, the features found in the real and imaginary

part of their refractive indices. Another important benefit of the proposed ML methods is that they have shown the potential of

extending the prediction to NAT particles with large radius, which was not possible with the BC scheme. This aspect has been

successfully tested on the synthetic CSDB dataset and might be a promising path for future research.25

However, there are still some limitations to the proposed ML approach. First, the feature selection methods found the highest

variance and feature importance at spectral windows where ice and NAT have pronounced features in the complex refractive

indices, whereas the main features of STS are located at wavenumbers not covered by the CSDB. Since the classification of

STS is therefore based on the absence of features in the optical properties and for the large NAT particles the features in the

optical properties vanish as well, the discrimination between STS and large NAT is more complicated than the identification30

of ice. Hence, we suppose that the inclusion of more spectral windows, especially regions where the optical properties of STS

have features, may bear the potential to improve the separation between STS and NAT. Second, we showed that using a much

smaller subset of the original CSDB for training of the ML methods would have been sufficient to achieve similar classification

results. This suggests that the information provided by the CSDB is largely redundant, at least in terms of training of the ML

methods. Despite the fact that the CSDB contains many training spectra, it was calculated only for a limited number of PSC35
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volume densities, particle sizes, and cloud layer heights and depths as well as fixed atmospheric background conditions. It

could be helpful to test the ML methods using a training data set providing better coverage of the micro- and macrophysical

parameter space and more variability in the atmospheric background conditions. Third, in the CSDB and the ML classification

schemes we assumed only pure constituent (ice, NAT, STS 1, STS 2, STS 3) PSCs, whereas in the atmosphere mixed clouds

are frequently observed (e.g. Deshler et al., 2003; Pitts et al., 2018). In future work, mixed PSCs should be included, as an5

investigation of mixed PSCs could be beneficial to assess how far the ML methods applied to limb infrared spectra agree with

predictions from CALIOP measurements that already comprise mixed type scenarios.

In general, the presented classification methods are straightforward to adopt on spectrally resolved measurements of other

infrared limb sensors like the CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) (Offermann

et al., 1999) or the GLObal limb Radiance Imager for the Atmosphere (GLORIA) (Riese et al., 2005; Ungermann et al.,10

2010; Riese et al., 2014) space- or airborne instruments. It could be of interest to extend the methods to combine different

observational datasets, even with different types of sensors providing different spectral and geometrical properties of their

acquisitions. This study has assessed the potential of ML methods in predicting PSC composition classes, which may be a

starting point for new classification schemes for different aerosol types in the upper troposphere and lower stratosphere region

(Sembhi et al., 2012; Griessbach et al., 2014, 2016), helping to answer open questions about the role of these particles in the15

atmospheric radiation budget.
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Table 1. Infrared spectral regions considered for PSC classification.

Spectral region Index range Wavenumber range

[cm-1]

R1 0 – 57 782 – 840

R2 58 – 83 940 – 965

R3 84 – 98 1224 – 1250

R4 99 – 106 1404 – 1412

R5 107 – 112 1930 – 1935

R6 113 – 125 1972 – 1985

R7 126 – 130 2001 – 2006

R8 131 – 136 2140 – 2146

W1 137 788.2 – 796.2

W2 138 832 – 834.4

W3 139 819 – 821

W4 140 832.3 – 834.4

W5 141 947.5 – 950
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Table 2. PSC constituents, particle concentrations, and sizes covered by the CSDB.

PSC constituents Volume density Median radius

[µm3cm-3] [µm]

ice 10, 50, 100 1.0, 2.0, 3.0, 4.0, 5.0, 10.0

NAT 0.1, 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 2.0, 3.0, 4.0, 5.0

STS 0.1, 0.5, 1.0, 5.0, 10.0 0.1, 0.5, 1.0
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Table 3. Top ten list of BTDs providing maximum feature importance as estimated by the RF classifier.

Feature importance BTD indices BTD wavenumbers [cm-1]

0.006815 85 – 105 1225.5 – 1410.5

0.005798 61 – 83 942.5 – 964.5

0.004334 57 – 76 839.5 – 957.5

0.003233 37 – 56 819.5 – 838.5

0.002649 86 – 139 1226.5 – 820

0.002633 58 – 139 840.5 – 820

0.002272 40 – 87 822.5 – 1227.5

0.001677 26 – 139 808.5 – 820

0.001592 27 – 101 809.5 – 1406.5

0.001033 102 – 137 1407.5 – 792.2
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Table 4. Hyperparameter choices considered for the SVM classifier.

Hyperparameter Test values Optimal value

kernel linear, RBF, polynomial RBF

C 1, 10, 100, 1000 1000

γ 0.0001, 0.001, 0.01, 0.1, 1, 10 1 (PCA) / 10 (KPCA)
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Table 5. Hyperparameter choices considered for the RF classifier.

Hyperparameter Test values Optimal value

number of estimators 200,210, . . . ,2000 1000

maximum number of features auto, sqrt auto

maximum depth 10,20, . . . ,110 50

minimum number of samples before split 2, 5, 10 2

minimum number of samples per leaf 1, 2, 4 1

bootstrapping true, false false
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Table 6. Scores of the RF classifier on a small subset of CSDB samples.

Class Precision Recall f1-score Support

ice 1.00 1.00 1.00 56

NAT_large 1.00 0.91 0.95 23

NAT_small 1.00 1.00 1.00 33

STS_1 0.96 0.76 0.85 34

STS_2 0.78 0.97 0.86 33

STS_3 0.94 0.97 0.96 34

total 0.95 0.94 0.94 210
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Table 7. Predicted labels vs CSDB classes, analysis restricted to NAT large (radius >2 µm).

NAT large, CSDB

BC Class pred. by BC proposed ML Class pred. by PCA+SVM pred. by KPCA+SVM pred. by RF

ICE 0 ICE 0 0 0

NAT 0.0012 NAT_small 0 0 0

NAT_large 1 1 1

STS_mix 0.9988 STS_1 0 0 0

STS_2 0 0 0

STS_3 0 0 0

NAT \STS 0

ICE \NAT 0

ICE \STS 0
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Figure 1. MIPAS measurements in Southern Hemisphere polar winter at three tangent altitudes from the same profile showing clear air (light

blue), optically thin (blue), and optically thick (dark blue) conditions. The grey bars indicate the wavenumber regions considered for PSC

classification in this study.

27



(a)

(b)

Figure 2. Variance of normalized BTDs (a) and feature importance as estimated by the RF classifier (b). The BT index numbers on the x-

and y-axis correspond to the spectral regions as listed in Table 1.
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(a)

(b)

Figure 3. Correlations of the first two principal components from the PCA (a) and KPCA (b) analysis applied to the CSDB.

29



(a)

(b)

Figure 4. (a) Flowchart of the training process and (b) prediction. .
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Figure 5. Real (a) and imaginary (b) part of PSC particle refractive indices.
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Figure 6. Prediction accuracy using subsets of the CSDB of different size.
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(a) (b)

(c) (d)

Figure 7. MIPAS observations of PSCs on 14 June 2009 in the Southern Hemisphere at tangent altitudes between 18 and 22 km. The

classification was performed with (a) the Bayesian classifier, (b) the SVM based on PCA features, (c) the SVM based on KPCA features,

and (d) the RF classifier.
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(a) (b)

(c) (d)

Figure 8. Same as Fig. 7, but for 26 August 2009.
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(a) (b)

(c) (d)

Figure 9. Same as Fig. 7, but for 25 January 2007 and the Northern Hemisphere.
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(a) (b)

(c) (d)

Figure 10. Area covered by STS clouds from May to September 2009 in the Southern Hemisphere based on results of (a) the Bayesian

classifier, (b) the PCA+SVM classifier, (c) the KPCA+SVM classifier, and (d) the RF classifier. The bins span a length of 1 day in time and

1 km in altitude. A horizontal (3 days) and vertical (3 km) moving average has been applied for the sake of a smoother representation.
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(a) (b)

(c) (d)

Figure 11. Same as Fig. 10, but for ice.
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(a) (b)

(c) (d)

Figure 12. Same as Fig. 10, but for NAT.
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(a) (b)

(c) (d)

Figure 13. Partitioning of the PSC composition classes for the Southern Hemisphere winter (May to September 2009) derived by (a) the

Bayesian classifier, (b) the PCA+SVM classifier, (c) the KPCA+SVM classifier, and (d) the RF classifier. Percentage values and number of

events are reported in the legends.
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(a) (b)

(c) (d)

Figure 14. Same as Fig. 13, but for November 2006 to February 2007 for the Northern Hemisphere.
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(a) (b)

(c)

Figure 15. Intercomparison of ML and Bayesian classifiers for Southern Hemisphere winter (May to September 2009). Ticks on the x-axis

ticks represent the classes of the KPCA+SVM classifier (a), the PCA+SVM classifier (b), and the RF classifier (c). The y-axis indicates the

fraction of the classes as predicted by the Bayesian classifier.
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(a) (b)

(c)

Figure 16. Intercomparison of ML and Bayesian classifiers for Southern Hemisphere winter (May to September 2009). Ticks on the x-axis

ticks represent the classes of the BC. The y-axis indicates the fraction of the classes as predicted by the KPCA+SVM (a), PCA+SVM

classifier (b), and the RF classifier (c).
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