Review comment amt-2019-488-RC2

Reviewer: Anonymous Referee #2

Dear referee,

Thank you for your detailed review of our article. Our responses to your remarks, questions and considerations can be found in the table below. The performed changes to the manuscript are listed in the Section "Detailed Changes".

Response

Item	Referee comment	Author's response
Fig 1-	The used fonts are to small, enlarge	The plots have been adapted or enlarged. Captions have
3,5,6,11-22		been adapted accordingly.
Fig. 7-9	At least the numbers at the color scales need to be larger. For not so young	The plots have been adapted or enlarged. Captions have
	eyes, the numbers and labels in the printed paper are difficult to read. Please	been adapted accordingly.
	change.	
p1 13,	"processing from 2020 on". From my knowledge, late 2020 is the current	Yes, that is correct. Currently the planning is for <i>late</i>
abstract	foreseen start for the version 2 L1b processor. Please adapt the date, also in	2020. Adapted both occurrences.
	the conclusions.	
p2 l41,	please define the term "orbit types" (probably the measurement sequence	Adapted.
introduction	along the orbit.)	
РЗ,	Please add (at the end of the introduction) a sketch of the instrument design, it	Added a new figure with the functional schematic of
introduction	would be very useful for the following paragraphs: Where is the calibration	TROPOMI. The spatial and spectral direction is now
	unit, what are the light paths, where are the diffuser etc. Please also add a	added to the text several times.
	paragraph or a sketch to the detector layout: row and column is frequently	
	used in the text, but nowhere the spatial and spectral direction is explicitly	
	stated.	
Section 2	It is observed, that the thermal stability is reduced after orbital manoeuvres. Is	Added. The thermal stability is reduced when the
Thermal	there a reason or at least an educated guess for this behaviour? If yes, please	pointing of the radiant cooler is not optimal as can be
stability	add.	the case during manoeuvres.

ltem	Referee comment	Author's response	
Section 7	Are there estimations available, how frequently saturation and charge	Information on the pixel saturation has been added. For	
Pixel	blooming occur? Which are the suspect conditions (snow? tropical clouds?	the blooming we do not have detailed statistics yet as	
saturation,	something else?). Please add.	the new version is not in use yet.	
blooming			
Section 8	p9 l161:or along-rack> or along-track	Adapted.	
Geolocation			
Section 9	It is stated, that the calibration key data for the wavelength calibration are	Currently there is no online Level 1 wavelength	
Spectral	updated according to the wavelength fits in the Level 2 algorithms. Are the key	calibration. The L1 key data is based on on-ground	
annotation	data directly used as wavelength axis? There is no Level 1 wavelength	calibration and adapted with the in-flight insights. L2	
	calibration?	retrieval algorithms perform their own wavelength	
		fitting where the L1 wavelength assignment is used as a	
		starting point.	
Section 10	Especially for this section, the definition of rows/columns versus	Adapted.	
Slit	spatial/spectral direction in the introduction would be very useful!		
irregularity			
Figure 6	Change y-axis name to 'binned row counter' (this is the used name in the text).	This has already been adapted following the initial	
	Please add in the caption, that the row 335-337 corresponds to the binned	review comments.	
	counter 144.		
p 16 303 ff	"The specific degradation curves are perfect exponential curves". Here it is	It was found that the exponential fits resulted in a better	
Section 12	assumed, that the degradation behaves exponential, so write something like:	fit than other functions. We made this clearer in the text	
absolute	"It is assumed, that the diffuser degradation behaves exponential with time.	that this is the model.	
radiometry	Therefore, the specific degradation curves are modelled as exponential		
and	curves". Also the exponential behaviour of D _{com} is an assumption and should		
instrument	be stated as such.		
degradation			
P 16 315 ff	"For each of these super pixels the linear system in Eq. (1) is solved. For the	For UVIS, NIR and SWIR no spectrometer degradation	
Section 12	UVIS, NIR and SWIR no spectrometer degradation D _{spec} could be determined	was found so the term was set to 1.	
absolute	and this term is therefore set to unity." I think, this is the wrong order: For		
radiometry	UVIS, NIR, and SWIR, no spectrometer degradation can be derived, therefore	Added the size of the super pixels and some more	
and	D _{spec} is set to 1.0 for theses channels. With this assumption, the linear	explanation on it.	
instrument	equations system is solved for each super pixel if UVIS, NIR and SWIR. Right?		
degradation	Please also give a number, how many pixels are in one super-pixel.		

Item	Referee comment	Author's response
p 16 317	"The solutions for Dq1 , Dq2 and Dcom are all three exponential decay functions	The phrasing has been changed to make clear that the
Section 12	and perfectly smooth in the temporal dimension." Your model fits exponential	exponential decay is the model.
absolute	decay functions for this quantities, therefore this is trivial message. What	
radiometry	could be stated here is something like: The assumption of an exponential	For the ratio of Dq1/q2 the assumption is made, that the
and	decay for Dq1, Dq2 and Dcom is approved by the small residuals Rk/Pk, as shown	degradation is exposure based, so we use the total time
instrument	by the right plots in Fig 12-14. The explanation for estimating D _{spec} for the UV	of usage as input. The spectral ageing Dspec of the UV
degradation	leaves a few questions open: Dcom is extrapolated to the UV region. What	spectrometer does indeed behave different than the
	about Dq1/Dq2? What type of extrapolation do you use, so what are the	diffuser degradation. The signal increases with time.
	assumptions made? Towards shorter wavelengths, the degradation is	
	expected to increase. According to the left plot in Fig. 11, this is not the case	
	for D _{spec} .	
P 17, 347-	For the forward processing, an extrapolation of the degradation parameters is	Added remark on jumps in the data.
352	used. It is stated, that this new degradation parameters will be regularly	
	updated by incorporating the recent measurements. With the update, also the	
	extrapolation will change. This might introduce jumps in the irradiance time	
	series, which might be an issue for users. Is there a strategy to monitor and/or	
	avoid this? Please add some information about the details here.	
P 22, Table	The *mean* degradation per Band is given, right? Please clarify.	Yes for the bands/ wavelength it's the mean
4		degradation. Rephrased the caption.
13 Absolute	Why is the OMPS irradiance measurement choosen as the reference	The OMPS solar irradiance is not distributed as a
irradiance	measurement for the radiometric calibration? To my knowledge, OMPS is an	separate product, but is part of every L1b file, we added
calibration:	unusual solar reference measurement. OMPS does not even distribute there	additional references.
	irradiance measurements as regular product. The cited literature [Jaross 2014]	We now added explicitly that the reflectance is changing,
	gives no information about the absolute radiometric calibration except a plot	and explained the observed inconsistencies from on-
	together with an unnamed "synthetic" spectrum. If possible, at a reference for	ground calibration.
	the radiometric calibration of the OMPS irradiance. Recently re-calibrated and	The OMPS spectrum was chosen for several reasons: it
	published solar spectra are SOLSPEC (Meftah et al 2018) or SCIAMACHY (Hilbig	has similar instrument characteristics, it is an active
	et al, 2018), which would be a better choice. Both are also independent from	mission and a single instrument spectrum and not a
	other reference spectra. Nothing is said about the radiance calibration. Is the	composite spectrum. This point is made clearer in the
	discontinuity observed in the overlap region also visible in radiances? What	text now.
	about the reflectance? The light path is the same for radiance and irradiance	As shown in the paper we compared the results to
	except the QVD. The QVD is the same for the the UV / UVIS overlap and cannot	different references.

Item	Referee comment	Author's response
	cause the discontinuity. Therefore, in the reflectance the discontinuity should	
	cancel. If only the irradiance is mitigated here, the discontinuity is introduced	
	in the reflectance. The radiance calibration and the impact of the irradiance	
	mitigation on the reflectance needs to be discussed here.	
Conclusions	'v1' / 'v2' change to 'version 1' / 'version 2', radiometry -> radiometric	Adapted.
p 25, l 434/		
436:		
p 25, l 449		
References	Many references contain both the the DOI based URL and a direct URL. Only	Corrected.
	the DOI URL as permanent URL is needed, skip the second URL (which is also	
	not added consistently).	
References	For Ingmann et al. The URL is erroneous	Corrected.

Detailed changes

List of changes to version 2

The page and line numbering in the Table below is according to version 2 which was public on the discussion page. The comments on the version 1 (the one which was initially sent out to the reviewers) have already been included in version 2.

Item	Change		
New figure	Added new figure and caption at the beginning of the article. It shows a functional schematic of TROPOMI. Added a reference to this		
	figure in several places in the text.		
Fig 1-3, 5-9,	Enlarged plots or adapted plots to increase fontsize and improve readability. Adapted captions and the references to the plots		
11-22	accordingly. For Fig.1 added "The triangles in the top panel show the gain ratio as derived from on-ground measurements."		
p1 13,	Changed "processing from 2020 on" to "processing from late 2020 on".		
abstract			
p1 22/23,	Adapted to be consistent with official PRF: 5.6-> 5.5, 7.2 ->7, 28.8->28		
Table 1			
	Replaced "The instrument is measuring the radiance on the day side of each orbit and once a day the irradiance via a dedicated solar		
p2 27 ff	port as described in detail in KNMI (2017) and Kleipool et al. (2018)." By " The instrument is measuring the radiance on the day side of		
	each orbit and once a day the irradiance via a dedicated solar port as shown in Fig.1. Sun light passes through one of the two internal		

Item	Change		
	quasi volume diffusers (QVD1 and QVD2) and is coupled via the folding mirror into the telescope of the instrument. A detailed		
	instrument description canbe found in KNMI (2017) and Kleipool et al. (2018)."		
n 2 41	Changed "The timing and definition of the different orbit types was adapted to match the detected darkness of the eclipse." to "The		
p 2 1 4 1,	timing and definition for the measurement sequences of the different orbit types was adapted to match the detected darkness of the		
introduction	eclipse. "		
p 3 l58	Added "All measurements described in this article were performed at the nominal temperatures with active thermal stabilization."		
p 3 l 62	Added "when the radiant cooler points in a sub-optimal direction"		
p 4 l 75 ff	Replaced "output" by "observed signal"and "detector response".		
- 4100	Added "Depending on the source and its location in the instrument, the listed values can contain contributions from degradation of the		
p 4 i 86	source, its specific optics, the diffusers, the folding mirror, the telescope and the spectrometers."		
p61114	Added "or other housekeeping parameters".		
~ 7 1 1 2 0 1 4 1	Added " in the tropics". Changed "and" to "-". Added " In the tropics typically about 0.2-0.5% of the pixels are flagged for saturation in		
p 7 i 138, 141	bands 4-6, other regions and bands are hardly ever affected."		
-71140	Added: " For the CCD detectors spatial binning is applied: the charge of several successive detector rows is added in the register and then		
p71140	read out."		
p 7 l141	Replace "this" by "the saturation issue"		
p 8 l143	Added:" (spatial direction)"		
p 9 l157	Added: ", so only a narrow spectral range is available per UVN band."		
	Changed "For the SWIR and UVIS detectors the same effect is observed, so a mechanical change within the instrument during launch		
	seems unlikely." to "For the SWIR, UVIS and NIR spectrometers the same effect is observed, so a mechanical change within the		
	instrument itself during launch seems highly unlikely. For UV the signal to noise of the high resolution measurements with their small		
p 10 l 183ff	spectral range is too small to draw conclusions. The light for the UV and SWIR takes the same path up to and including the instrument slit		
	and the UV spectrometer is part of the UVN optical bench as shown in Fig. 1. As the SWIR spectrometer shows the same effect as the		
	UVIS and the NIR spectrometers and no difference is observed between UVIS and NIR, due to the instrument design it is highly unlikely		
	that the UV spectrometer should behave differently."		
p 10 l 188	Added "A further validation is not foreseen, as the nominal radiance measurements have a larger groundpixel size."		
p 11 204	Added "or data for other bands becomes available"		
p 11 208	Added "(spatial direction)"		
	Changed "Therefore not the main instrument slit but the slit in the UV spectrometer is most likely causing the feature. " to "From the		
p 11 210	instrument design as shown in Fig. 1 it can be seen that not the main instrument slit but the slit in the UV spectrometer is most likely		
	causing the feature."		

Item	Change		
p 11 214	Added "as shown in Fig. 1"		
p 11 217	Added " (columns)"		
p 12 236	Changed "400 orbits" to " 400 consecutive orbits (starting in orbit 1247)"		
p 13 241	Added " possible electronic drifts"		
	Added "The fitting window covers the natural yearly solar azimuth variation for the reference orbit with equator crossing time of 13:30		
p 141201	local solar time."		
p 14 263	Changed " see also Section 12" to "see also Section 12 for the description of the residuals"		
n 15 272	Added "The slew manoeuvres are included in the nominal operations baseline as described in Section 14. This reduces the measured		
p131272	azimuth range to less than $\pm 1\circ$ around the reference angle."		
	Changed to "To determine relative electronic drifts, the DLEDs which are situated close to the detectors are used. The optical path of the		
	WLS includes additional elements which are not part of the optical path for light from the Earth or the Sun, and the WLS light does not		
p 15 l286 ff	pass through the QVDs. The internal light sources also show a decrease in output which cannot be separated from instrument		
	degradation as described in Section 4. The internal light sources are therefore less suitable for the calibration of the degradation of the		
	irradiance and radiance optical paths.		
	Changed to "Radiance measurements in general show much variability in themselves and would require too much input from		
n 15 287	atmospheric models to be useful for the derivation and regular update of an independent and sufficiently accurate degradation		
p 131207	correction for operational L1b processing. In the future the derived correction needs to be validated by - for example - using sites with		
	well known reflectance."		
	Changed from "the degradation of the diffusers (QVD1 and QVD2) used for irradiance measurements, a gradual spectrally dependent		
	increase of the throughput in the UV spectrometer and a drift of the CCD gain for the UVN spectrometers." To "the degradation of the		
p 15 291	diffusers (QVD1 and QVD2) used for irradiance measurements, a drift of the CCD gain for the UVN spectrometers and a gradual spectrally		
	dependent increase of the throughput in the UV spectrometer. This spectral ageing in the UV spectrometer is observed for irradiance,		
	radiance and WLS data and cannot be found in on-ground data."		
p 16 300	Changed "composed" to "modelled"		
p 16 304	Changed "perfect" to "are best described"		
p 16 315	Added "For UVN (SWIR) a super pixel stretches over 20 (12) rows in the spatial direction. In the spectral direction (columns) it is 5,10,20		
	and 20 pixels for UV, UVIS, NIR and SWIR respectively. Apart from the spectrometer degradation in the UV, the data is spatially and		
	spectrally smooth, so the super-pixel size has no impact on the result apart from noise reduction."		
p 16 316	Added "Following the postulate of the model, the"		
n 16 318	Added "If the residuals show in the future that the assumption of exponential decay is not justified anymore, a different fitting function		
h 101 210	can be used."		

Item	Change		
n 16 222ff	Rephrased to "In the left part of Fig.13 it can be seen that this spectrometer ageing is stronger than the signal decrease due to the		
p 101 33311	diffuser degradation. In this way the UV spectrometer ageing nullifies the diffuser degradation."		
p 17 347	Added "diffuser"		
n 17 240	Added "The spectrometer specific degradation Dspec in the UV spectrometer is derived for the entire mission so far and the correction is		
p 171549	applied to both the radiance and irradiance. The correction is also applied to the reference orbits for the absolute irradiance calibration"		
p 17 350	Added " and that the steps occurring in the data around updates are minimal."		
n 22 Table 4	Changed "The degradation per band per 1000 orbits as determined up to orbit 9748" to "The mean degradation per 1000 orbits as		
p zz Table 4	determined up to orbit 9748." Added % to the header.		
	Added "An investigation of various on-ground illumination sources via the Sun and the Earth port showed that the discontinuity is		
p 23 362	exclusively observed for the absolute irradiance calibration with the FEL lamp. The absolute radiance calibration with the FEL lamp is		
	consistent with other calibration sources."		
n 22 264	Added "The correction to the absolute irradiance is derived for orbits 2818 (QVD1) and 2819 (QVD2), the same orbits the diffuser		
p 23 1 304	degradation is tied to. The UV spectrometer specific degradation has been corrected in the used data, see Section 12."		
	Changed "A well-known solar reference is the high resolution Dobber spectrum (0.014 nm per pixel) (Dobber et al., 2008) and the Kurucz		
	spectrum (Chance and Kurucz, 2010), which are high resolution composites of different solar measurement campaigns. It covers the		
n 22 265	spectral range of the TROPOMI instrument, but especially in the UV range it is unclear if it is reliable." To "Well-known solar references		
p 23 1 303	are the high resolution Dobber spectrum (±0.014nm per pixel) (Dobber et al., 2008) and the Kurucz spectrum (Chance and Kurucz, 2010),		
	which cover the spectral range of the TROPOMI instrument. They are both high resolution composites of different solar measurement		
	campaigns and not based on a single instrument."		
p 23 l 375	Removed "independently calibrated"		
p 23 l 376	Added two references: Seftor et al., 2014; NASA Goddard Space Flight Center, 2019		
p 23 l 380	Replaced "spectral" by "radiometric"		
	Added "Adapting only the irradiance calibration for UV and UVIS changes the reflectance for these spectral ranges. Initial validations		
p 24 l 402	tests show that this has indeed a positive impact on the L2 retrievals. In the future a more extensive re-assessment of the radiometric		
	accuracy can be performed and any potentially remaining inconsistencies in radiance and irradiance can be addressed."		
p 24 l	Adapted SSD to be consistent with table: 5.6-> 5.5, 7.2 ->7, 28.8->28		
423/424			
p 25, l 434/	Changed v1 / v2 to version 1 /2		
436			
p 449	Changed "radiometry" to "radiometric"		
References	Removed urls where doi is present, removed doi prefix in bib-file.		

Item	Change
Language	Removed phrase "corrected for".

Changes to initial version 1

The changes below have been performed to the initial version 1 sent out to the referees. These changes were already included in the version 2 which was published on the discussion page and are listed below for completeness.

Line number Fig/Table (version1/version2)	Original (version 1)	Update (version 2)
/Table 1		Added table on main characteristics.
24/24		Added " The main characteristics of TROPOMI are listed in Table 1. "
23/23	5.5km x 3.5km	Put non-rounded number to be consistent with new table: 5.6km x 3.6km
420/423	"before it was approximately 7 km	Put non-rounded number to be consistent with new table: "before it was
	at nadir and it is now about 5.5 km.	approximately 7.1km at nadir and it is now about 5.6km. In across-track direction the
	In across-track direction the minimal	minimal sampling distance
	sampling distance	at nadir is around 3.6km for bands 2–6, about 7.2km for bands 7–8 and around 28.8km
	at nadir is around 3.5km for bands	for band 1."
	2–6, about 7km for bands 7–8 and	
	around 28km for band 1."	
Caption Fig.5/Fig.5	"The differences for low and high	Added "(black lines)":
	row numbers are now mostly within	"The differences for low and high row numbers are now mostly within the
	the requirements and more	requirements (black lines) and more
	symmetrical."	symmetrical."
208	335337	Changed to em-dash: "335–337"
Caption Fig.6/Fig.6	"Note that the row numbering is	Changed to "Note that the binned row count is shown in the plots, the affected
	showing the binned count."	detector rows are rows 335337."
220/221		Added: "Detector rows 335 and 336 correspond in this example to the binned row
		counter 144."
263/265	"For double processing, so re-	Re-phrased to: "To validate the integration of processor and key data, double
	analysing data that is corrected with	processing is performed: data that has already been corrected with the derived CKD is
	the derived relative irradiance CKD,	re-analysed for remaining effects. Double processing irradiance data with the derived
	the standard deviation reduces to	relative irradiance CKD reduces the standard deviation to the order of $ imes$ 10 –4 . This

Line number Fig/Table	Original (version 1)	Update (version 2)
(version1/version2)		
	the order of ×10 −4 , this is an order	result is an order of magnitude better than what was achieved with double processing
	of magnitude better than what was	of the CKD derived from on-ground calibration data."
	achieved with the on-ground data."	