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Abstract. Doppler lidars provide two measured parameters, radial velocity and signal-to-noise ratio, from which winds and

turbulent properties are routinely derived. Attenuated backscatter, which gives quantitative information on aerosols, clouds,

and precipitation in the atmosphere, can be used in conjunction with the winds and turbulent properties to create a sophisti-

cated classification of the state of the atmospheric boundary layer. Calculating attenuated backscatter from the signal-to-noise

ratio requires accurate knowledge of the telescope focus function, which is usually unavailable. Inaccurate assumptions of the5

telescope focus function can significantly deform attenuated backscatter profiles, even if the instrument is focused at infinity.

Here, we present a methodology for deriving the telescope focus function using a co-located ceilometer for pulsed heterodyne

Doppler lidars. The method was tested with Halo Photonics Streamline and Streamline XR Doppler lidars, but should also

be applicable to other pulsed heterodyne Doppler lidar systems. The method derives two parameters of the telescope focus

function, the effective beam diameter and the effective focal length of the telescope. Additionally, the method provides uncer-10

tainty estimates for the retrieved attenuated backscatter profile arising from uncertainties in deriving the telescope function,

together with standard measurement uncertainties from the signal-to-noise ratio. The method is best suited for locations where

the absolute difference in aerosol extinction at the ceilometer and Doppler lidar wavelengths is small.

1 Introduction

Coherent Doppler lidar systems are capable of providing accurate radial Doppler velocities at high temporal and spatial res-15

olution, and have been employed across a wide range of scientific and operational fields. Meteorological applications include

the retrieval of turbulent properties to determine the strength, location and source of mixing in the atmospheric boundary layer,

and, with many systems having scanning capability, the retrieval of winds. Information on the targets responsible for the radial

Doppler velocities measured by the Doppler lidar (e.g. aerosol, cloud, precipitation), would greatly aid the interpretation of

both the velocities and the products derived from them, but this requires quantitative use of the signal power received by the20

instrument.
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The performance of a Doppler lidar depends on the signal-to-noise ratio, SNR, of the system, as SNR determines the radial

velocity uncertainty (Rye and Hardesty, 1993; Pearson et al., 2009). The outgoing laser beam can be focused to improve the

SNR at ranges close to the focal length (Pearson et al., 2002), and this is often used to improve the Doppler lidar velocity data

quality and data availability, particularly in the atmospheric boundary layer. The optimal choice of focus will depend on the

atmospheric conditions at the deployment location (Hirsikko et al., 2014).5

Knowledge of how the choice of instrument parameters, such as the effective focal length of the telescope, impact the

SNR profile is necessary in order to obtain profiles of attenuated backscatter coefficient (Zhao et al., 1990). A comprehensive

overview of the theoretical considerations in determining the performance of coherent Doppler lidar systems was given by

Frehlich and Kavaya (1991), who provided analytical expressions for deriving the expected signal measured by the coherent

detector for a given target for a range of instrument configurations, including analytical expressions for the telescope focus10

function (also termed coherent responsivity). Most analytical expressions assume ideal Gaussian beams, which may not always

be appropriate (Hill, 2018), hence experimental approaches have also been used to determine the impact of beam aberrations

(Hu et al., 2013).

The profile of attenuated backscatter coefficient has the potential to be used in real time by weather forecasters (Illingworth

et al., 2019), as it can be used in the same manner as for ceilometers. This includes the detection of liquid, supercooled-liquid,15

mixed-phase and ice clouds (Hogan et al., 2003; Van Tricht et al., 2014; Tonttila et al., 2015), aerosol layer and mixing-height

determination (Flentje et al., 2010; Kotthaus and Grimmond, 2018), and retrieving precipitation parameters (Lolli et al., 2018).

In addition to providing velocity estimates for wind and turbulence, the inclusion of the profile of attenuated backscatter

coefficient is advantageous for Doppler lidar boundary layer classification schemes (Tucker et al., 2009; Harvey et al., 2013;

Manninen et al., 2018) by enhancing the discrimination between aerosol, cloud and precipitation, and can be used for tracking20

elevated aerosol plumes (Hannon et al., 1999). The combination of attenuated backscatter profiles from coherent Doppler lidars

with other profiling instruments permits additional retrievals; for example, together with a ceilometer (Westbrook et al., 2010b),

or with a cloud radar (Träumner et al., 2010), can yield drizzle drop size and precipitation rate. There is also an advantage to

obtaining attenuated backscatter and Doppler velocity measurements in the same measurement volume, since this will simplify

the calculation of cloud or aerosol mass-fluxes (Engelmann et al., 2008).25

Therefore, an accurate profile of attenuated backscatter coefficient requires confidence in the parameters used to generate

the telescope focus function. The parameters may not be known a priori, or may differ from what is assumed, and incorrect

values can result in artefacts and very large biases in attenuated backscatter coefficient. We present a methodology for deriv-

ing the parameters of the telescope focus function experimentally from co-located Doppler lidar and ceilometer observations,

together with the uncertainties in the function parameters. The ceilometer, for which the overlap function is known, provides30

our reference attenuated backscatter profiles. This methodology is relevant for coherent Doppler lidars designed for meteoro-

logical applications with maximum ranges suitable for observing the full extent of the boundary layer and beyond. Note that a

calibration constant may still need to be determined and applied after implementing the calculated telescope focus function to

retrieve the profile of attenuated backscatter coefficient (Westbrook et al., 2010a; Chouza et al., 2015).
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The theoretical description of the telescope focus function is outlined in Sec. 2. In Sec. 3, we introduce the instruments

and the methodology for deriving the parameters of the telescope focus function experimentally. An iterative least-squares

regression using weighted-Mean-Square-Error (MSE) is used to find the best solution for the telescope focus function, where

the weights represent the measurement uncertainties in both instruments. The use of long time periods (one year or more)

also provides an estimate of the uncertainties in the parameters for the telescope focus function, which can then be propagated5

through to uncertainties in the retrieved attenuated backscatter coefficients. The methodology is applied to different instruments

in multiple locations in Sec. 4 and the validation of the method is presented in Sec. 5.

2 Theory

2.1 Telescope focus function

Following Frehlich and Kavaya (1991), the coherent Doppler lidar equation can be expressed as10

SNR(R) =
ηcE

2hνB

Ae(R)

R2
β′(R), (1)

where SNR is the signal-to-noise ratio, varying as a function of range, R, from the instrument, β′ is the attenuated backscatter

coefficient, η is the detector quantum efficiency, c is the speed of light, E is the beam energy, h is Planck’s constant, ν is the

optical frequency, B is the receiver bandwidth, and Ae is the effective receiver area.

For a monostatic system emitting a circular Gaussian beam, using a circular aperture, and having matched filters, the effective15

receiver area is given by (Frehlich and Kavaya, 1991; Henderson et al., 2005)

Ae(R) =
πD2

4

(
1 +

(
πD2

4λR

)2(
1− R

f

)2
+
(
D
2ρ0

)2) , (2)

where D is the 1/e2 effective diameter of a Gaussian beam, λ is the laser wavelength, f is the effective focal length of the

telescope for the transmitter and receiver, and ρ0 is a turbulent parameter, also termed transverse field coherence length.

Collecting the range-dependent terms, we obtain a unitless telescope focus function20

Tf (R) =
Ae(R)

R2
, (3)

which is also termed the coherent responsivity (Frehlich and Kavaya, 1991).

The profile of attenuated backscatter coefficient is then obtained by rearranging (1)

β′(R) =
2hνB

ηcE

SNR(R)

Tf (R)
. (4)

Figure 1a shows how Tf (R) depends on the telescope focal length, f , and Fig. 1b how Tf (R) depends on D. Both figures25

show that the apparent focus — i.e range to the Tf (R) maximum — is always closer than f , and that decreasing D shortens

the apparent focus. This makes estimation of the parameters by eye in Tf (R) prone to errors, since the apparent focus cannot

be translated into f without knowledge of D.
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Figure 1. Telescope focus functions for: a) varying f with D=70 mm, b) varying D with f=1000 m, c) varying D with f being infinity.
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Figure 1c shows that even if the telescope is focused at infinity, knowledge of theD is essential to derive attenuated backscat-

ter coefficient profiles. While the gradient of Tf (R) may be independent ofD at the near and far ranges, the relative magnitude

is not, and the potential variation is high in the range of the profile that is commonly of most interest.

2.2 Uncertainty in attenuated backscatter coefficient

Assuming that the parameters Tf (R) and SNR are independent, and have uncertainties that can be described as Gaussian, the5

relative random uncertainty in attenuated backscatter coefficient is

σβ′ =
√
σS2 +σTf

2, (5)

where σS is the relative uncertainty in the Doppler lidar SNR, and σTf is the relative uncertainty in Tf (R). An expression for

deriving σS is given by Manninen et al. (2018), and we describe our method for obtaining σTf in Section 4.2.

3 Application to data10

There are 3 range-dependent unknowns in (2): f , D, and ρ0. We assume that we can neglect ρ0, and describe a method for

estimating f and D, together with their uncertainties, which can then be propagated to obtain the uncertainty in the attenuated

backscatter coefficient.

3.1 Instruments

We used measurements taken from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM, Mather et al.,15

2016) observatories. We selected 5 sites with co-located ceilometer and Doppler lidar instruments: Southern Great Plains, US

(SGP); Tropical West Pacific, Darwin, Australia (Darwin); Barrow, Alaska, US (NSA); Graciosa, Azores (Graciosa); Ascension

Island, Atlantic, UK (Ascension).

The Doppler lidars operated by ARM comprise both Halo Photonics Streamline, and Streamline XR versions. These are

commercially available heterodyne pulsed systems capable of full-hemispheric scanning and operated at a temporal resolution20

of 1-2 s (see Table 1). The focus for the Streamline version can be set by the operator, whereas the Streamline XR has the focus

set by the manufacturer; however ARM has had some instruments upgraded from their original specification.

The ceilometer at all sites was a Vaisala CL31 ceilometer, which has a coaxial design and full overlap before 100 m and a

temporal resolution of 30 s (more specifications given in Table 2).

3.2 Methodology25

3.2.1 Telescope focus function parameter estimation

The methodology for deriving the parameters of the telescope focus function compares profiles from co-located Doppler lidar

and ceilometer using an iterative least-squares regression to find the best solution. The method follows the process diagram

given in Fig. 2.
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Table 1. Halo Photonics Streamline and Streamline XR heterodyne Doppler lidar specifications. Values in parentheses refer to the specifica-

tion of the Doppler lidar during the first period in Darwin.

Wavelength 1.5 µm

Pulse repetition rate 15 kHz

Nyquist velocity 19.8 m s−1

Sampling frequency 50 MHz

Points per range gate 10 (16)

Range resolution 30 m (48 m)

Pulse duration 0.2 µs

Divergence 33 µrad

Antenna monostatic optic-fibre

coupled

Table 2. Vaisala CL31 ceilometer specifications.

Wavelength 910 nm

Pulse repetition rate 5.57 kHz

Range resolution 30 m

Lens diameter 14.5 cm

Divergence 0.75 mrad

Before input, the Doppler lidar SNR data had a background correction applied to reduce bias (Manninen et al., 2016).

Both ceilometer and Doppler lidar data were averaged to a common 30-minute, 30 m vertical resolution grid, using linear

interpolation where necessary (only for one period from Darwin). After averaging, data below a minimum threshold of -22.2 dB

(Manninen et al., 2018) was discarded.

The data was then filtered to select only those portions of the profiles that are considered reliable for comparison. Ceilometer5

data below 195 m was discarded to ensure that only data with full overlap was used.

Due to the wavelength difference between the Doppler lidar and the ceilometer, it cannot be assumed that the atmospheric

backscattering properties are the same at both wavelengths. However, we are only interested in the profile shape, not the

absolute values, so profiles from the Doppler lidar and the ceilometer can be compared as long as they contain only one type

of scatterer, and one which can be assumed to be distributed homogeneously throughout the portion of the profile used for10

comparison. Hence, the portion of a profile selected for comparison should contain only one aerosol layer, no clouds, and no

precipitating hydrometeors.
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Figure 2. Process diagram of the telescope focus function parameter estimation.

We removed clouds by identifying the range gate 150 m below the cloud base detected by the ceilometer and excluding

all data beyond this. Elevated aerosol layers and precipitating hydrometeors were filtered out by identifying layers using a

convolution of the ceilometer profile with a haar-wavelet to detect changes in the gradient. The base of the second layer

was identified where the gradient was increasing over 2 range gates and all data above this was discarded. This process also

eliminates noisy profiles with low SNR.5

The Tf (R) parameter estimation is performed on a profile-by-profile basis for each profile where the filtering process leaves

8 successive range gates present. From equation 4, dividing the Doppler lidar SNR profile with the appropriate Tf (R) will

generate a Doppler lidar attenuated backscatter profile whose shape should match that of the ceilometer attenuated backscatter

profile.

We use a brute-force approach to iterate through a range of reasonable f and D values, generating a corresponding Tf (R)10

and Doppler lidar attenuated backscatter profile for each combination of values. The ceilometer profile and resulting Doppler
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lidar attenuated backscatter profiles are normalised so that the integral value of the unfiltered portion is unity. We then use

a least-squares regression using weighted-MSE to find the best solution (smallest MSE), where the weights represent the

measurement uncertainties in both instruments. Collecting results over many profiles results in a bi-variate distribution; the

peak of this distribution is chosen as the best estimate of f and D, and hence the best estimate of Tf (R) using (3).

3.2.2 Outlier removal5

Occasionally, data of poor quality passes the filtering step in Fig. 2. The most common issues are noisy ceilometer data, and a

bias in the Doppler lidar SNR profiles. If not screened, these occasional profiles result in significantly altered Tf (R) estimation.

Any noise in the ceilometer data is magnified by the profile length often being relatively short, and hence large uncertainty

in even a single range gate can skew the regression. Doppler lidar SNR bias will impact the normalisation process, changing

the Tf (R) selected by the method due to the now incorrect profile shape. Due to the non-linearity of the Tf (R) parameter10

estimation process, these issues result in regression solutions wildly inconsistent with the estimates based on good data. These

outliers, which do not fall within the normal uncertainty observed in good data, are then removed from the bi-variate distribution

of solutions before calculating the uncertainty estimates.

We used the median absolute deviation, MAD (Huber and Ronchetti, 2009; Leys et al., 2013), to distinguish outliers in the

bivariate distribution of estimated f and D. MAD can be calculated using15

MAD = b med{|xi−med{xi}|}, (6)

where b= 1.4826 when the distribution excluding the outliers is normal. However, the distribution of f and D may not meet

this criterion due to the non-linearity of Tf (R) and the computational Tf (R) estimation process. We expect the distributions

of D and f−2 to be close to normal and will use f−2 rather than f to determine outliers. Additionally, the peak of the bi-

variate distribution may not always coincide with the medians of the uni-variate D and f−2 distributions, and, hence, we use a20

modified form of (6),

MAD = b med{|xi− peak{xi,yi}|}. (7)

We selected 3 MADs as the threshold for flagging outliers:√(
f−2i −med{f

−2
i }

MADf−2

)2

+

(
Di−med{Di}

MADD

)2

≥ 3. (8)

Assuming the distribution excluding the outliers to be normal, 3 MADs correspond to 3 standard deviations of the underlying25

distribution. In cases where f is at infinity, all estimates with a finite f will be flagged as outliers.
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Figure 3. Distributions of Tf (R) parameter estimates from a) Darwin 21 June 2011 to 22 July 2012, b) SGP 1 January 2015 to 2 May 2016,

c) SGP 3 May 2016 to 5 June 2017. Outliers filtered using MAD ≥ 3 are marked in black.
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Table 3. Best estimates of f and D together with their uncertainties for Doppler lidars at 5 ARM sites.

Location Period f D Available Profiles Total estimates Good estimates

Ascension 20160906–20170930 550±34 m 25.3±0.5 mm 18586 62 56

Darwin 20110621–20120722 590±62 m 24.0±0.7 mm 18988 3684 3528

Darwin 20120921–20140626 545±53 m 25.0±0.8 mm 30836 5046 4878

Graciosa 20150124–20161114 625±80 m 23.5±0.7 mm 31124 3737 3161

NSA 20140730–20171231 Infinity 11.8±1.5 mm 56832 1132 589

SGP 20150101–20160502 440±29 m 25.0±0.7 mm 22916 9198 8426

SGP 20160503–20170605 425±74 m 14.0±0.4 mm 14212 5814 5337

4 Results

4.1 Parameter estimation

We applied the Tf (R) estimation method to Doppler lidars at 5 ARM atmospheric observatories. Figure 3a shows the distri-

bution of f and D calculated for the Doppler lidar operating at Darwin in northern Australia between 21 June 2011 and 22

July 2012. This Doppler lidar is a Streamline and the distribution of f is positively skewed, as explained in section 3.2.2. The5

distribution displays a slightly wider peak than expected for a normal distribution.

Figure 3b shows the distribution of f andD for the Streamline Doppler lidar operating at SGP from 1 January 2015 to 2 May

2016. The distribution close to the peak is really tight, while the outliers have substantial spread. Many of the poor estimates

responsible for the outlier spread occur during January and February in both years, while for the rest of the period the estimates

are remarkably consistent. On 3 May 2016 the Doppler lidar at SGP was changed to a Streamline XR and Fig. 3c shows the10

distribution of f and D from 3 May 2016 to 5 June 2017. The change in instrument version, from Streamline to Streamline XR

is clearly seen in the change in D, whereas the best estimate for f did not change. However, inspecting the data by eye would

suggest a significantly shorter apparent focus, and the Tf (R) calculated using the best estimates for f and D also exhibits a

significantly shorter apparent focus. Consequently, the Streamline XR in SGP has been noted to suffer from poor SNR at the

boundary layer top.15

The bi-variate distributions of f and D show notable variations in how tight they are around the peak, and is likely a result

of differences in data quality between the instruments. The best estimates of f and D and their uncertainties for all sites are

presented in Table 3. The Doppler lidar measurements at Darwin were split into two periods, as there was a two month break in

the measurements between these two periods. We performed the Tf (R) parameter estimation separately for both periods. The

best estimates from these periods differ from each other, which is expected as some adjustments were made to the instrument.20

The telescope focal length for this instrument is directly adjustable by any operator while the beam diameter is set by the
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manufacturer and is not modifiable by the operator. We note that the D estimates are the same for these two periods within the

margin of error calculated.

For the sites and instruments selected here, only the Doppler lidar at NSA had f set to infinity. In fact, all Streamlines have

D in the vicinity of 25 mm, whereas D for the Streamline XR versions is about half this. Nevertheless, the variation between

instruments of the same version is not negligible and should be taken into account when calculating Tf (R) and then attenuated5

backscatter.

The final step to obtain attenuated backscatter profiles is to apply a calibration constant, which can be achieved using the

liquid cloud calibration method (Westbrook et al., 2010a; O’Connor et al., 2004).

The parameters f and D calculated for period 1 in Darwin have been used to derive Tf (R) and the results applied in Fig. 4.

This shows the utility of the method, able to provide reliable Doppler lidar attenuated backscatter profiles in Fig. 4b that show10

no over correction below 1 km and display similar in-cloud values to the ceilometer in Fig. 4c. It is expected that the aerosol

attenuated backscatter coefficients will differ due to the different scattering properties of aerosol at the different wavelengths;

the scattering properties of cloud droplets remain similar at the two wavelengths (O’Connor et al., 2004; Westbrook et al.,

2010a).

4.2 Uncertainty15

A computational method was used to calculate the uncertainty in the estimated Tf (R) as it is a non-linear function of f and D.

We used Monte Carlo simulation (MCS) (Morgan and Henrion, 1990) where a distribution of input values is fed into a model,

here the effective receiver area equation (2), and the uncertainty is obtained from the distribution of the output. The input values

can be created either from observed statistics, or by bootstrapping, i.e. re-sampling the data. We created three different sets of

input values for our MCS:20

1. Re-sampling the individual estimates of f and D provided directly by the Tf (R) estimation method (i.e. those displayed

in Fig. 3) after excluding outliers.

2. Generating the values from the statistics presented in Table 3, assuming that D and f−2 are normally distributed and

independent, N(f−2,D).

3. Generating the values from statistics presented in Table 3, assumingD and f to be normally distributed and independent,25

N(f,D).

For each set of input values, the relative uncertainty in Tf (R) is calculated as

σTf (R) =
σTφ(R)

Tf (R)
, (9)

where σTφ(R) is expressed in terms of the mean-squared deviation of the MCS-simulated telescope focus function, Tφ(R),

from the best estimate of Tf (R),30

σTφ(R) =

√
1

N − 1
ΣNi=1(Tφi(R)−Tf (R)), (10)
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Figure 4. a) Doppler lidar attenuated backscatter coefficient assuming a generic Tf (R), b) corrected Doppler lidar attenuated backscatter

coefficient, c) ceilometer attenuated backscatter coefficient, from Darwin on 28 May 2012.
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Figure 5. Distributions of the MCS input values used for calculating σTf (R). Values are obtained from a) re-sampling, b) assuming

N(f−2,D), c) assuming N(f,D). All distributions contain 5337 samples.

to avoid underestimating the uncertainty resulting from the asymmetry in Tφ(R). This also allows us to estimate the impact of

refractive turbulence on the uncertainty estimate.

Examples of the three input parameter distributions are presented in figure 5. Re-sampling (Fig. 5a) is the most accu-

rate method as it does not require assumptions about the parameter distributions and their independence. We recommend

re-sampling as the primary method for uncertainty calculation. Using the N(f−2,D) distribution (Fig. 5b) produces a set of5

input values that appear to be a reasonable approximation, except that the distribution is not as tight around the peak. Using

the N(f,D) distribution (Fig. 5c) produces a set of input values that tend to over-emphasise shorter values of f , and under-

emphasise higher values. We also note that the central bin of the re-sampled distribution contains 50% more samples than the

central bin of the statistically-generated distributions do. We presume that this is a consequence of the variation in SNR not

being necessarily normally distributed.10

Figure 6a displays σTf (R) for Darwin showing the range-dependence of the uncertainty, with much larger uncertainties for

ranges close to either side of the focus (f = 590 m). The profile of uncertainties obtained with each set of MCS input values

exhibit a similar shape, with N(f−2,D) being closer to re-sampling than N(f,D) in the near field.

Figure 6b displays σTf (R) for the Doppler lidar at NSA which has f set to infinity, therefore σTf (R) is only dependent on

the uncertainty in D. Note the reduced uncertainties around 200-400 m, which are expected when examining Fig. 1c.15
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Figure 6. Relative telescope focus function uncertainties, σTf (R), generated using MCS with three different sets of input values for a)

Darwin 21 June 2011 to 22 July 2012, and b) NSA 30 July 2014 to 31 December 2017
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Table 4. σTf (R) uncertainty envelopes generated using MCS with three different sets of input values.

Location Period Re-sampling N(f−2,D) N(f,D)

Ascension 20160906–20170930 0.15 0.14 0.16

Darwin 20110621–20120722 0.21 0.23 0.25

Darwin 20120921–20140626 0.23 0.21 0.28

Graciosa 20150124–20161114 0.23 0.19 0.30

NSA 20140730–20171231 0.32 0.32 0.30

SGP 20150101–20160502 0.20 0.18 0.22

SGP 20160503–20170605 0.13 0.13 0.23

The largest value of σTf (R) provides the uncertainty envelope value for each site, which is presented in Table 4. Re-sampling

provides values ranging from 0.12 for the updated instrument at SGP, to 0.32 at NSA. MCS values created using N(f−2,D)

provided similar values, whereas MCS using N(f,D) often provided much larger uncertainties.

4.3 Impact of refractive turbulence

So far we have neglected the potential impact of turbulence on Tf (R) arising from the refractive turbulent parameter, ρ0, in5

(2). An expression for ρ0 is given in Frehlich and Kavaya (1991),

ρ0(R) = [Hk2
R∫
0

Cn
2(z)(1− z/R)5/3dz]−3/5, (11)

where H = 2.914383, k = 2π/λ, and Cn2(z) is the refractive turbulence at range z. We chose 3 profiles with constant Cn2(z),

and a realistic vertical profile based on the most turbulent case presented by Roadcap and Tracy (2009). Figure 7 shows the

impact that these different profiles have on Tf (R), and the resulting re-sampling calculation of σTf (R) for two Doppler lidar10

instruments with different Tf (R). Values of Cn2 up to 10−14m−2/3 have negligible impact on Tf (R), and even the realistic

profile only showed a slight increase in σTf (R) for the instrument with a focus set closer than infinity. This suggests that the

impact of turbulence can be safely neglected for low values of Cn2, and for most applications, can also be neglected when

operating in the vertical. Hence, turbulence has no significant impact on the methodology described here for deriving the

parameters f and D and their uncertainties from vertical profiles, but can be included for completeness.15

However, it is clear that the turbulent impact should not be ignored when measuring at low elevation angles close to the

horizon, where a profile similar to Cn2 = 10−13m−2/3 may be possible. Fig. 7 shows that such a profile has a major impact

on Tf (R), especially in the far range. In these cases, the parameters f and D obtained from vertical measurements are still

applicable, but ρ0(R) must also be calculated or estimated in order to derive the profile of attenuated backscatter, β′(R).

15



Figure 7. Impact of turbulent parameter, ρ0, on telescope focus function, Tf (R) and relative uncertainties, σTf (R), for differentCn
2 profiles.

a) selected profiles of Cn
2 with range; b) Tf (R) and c) σTf (R) for Darwin, 21 June 2011 to 22 July 2012; d) Tf (R) and e) σTf (R) for

NSA 30 July 2014 to 31 December 2017. 16



5 Validation

The liquid cloud calibration method (O’Connor et al., 2004; Westbrook et al., 2010a) is used to determine a calibration constant

by integrating attenuated backscatter profiles containing fully attenuating liquid clouds, which have well-constrained apparent

lidar ratio, ηS, where η is a multiple scattering factor and S is the lidar ratio. In the absence of multiple scattering, ηS can be

assumed to be independent of the height of the cloud.5

This calibration method can be used to evaluate the estimated Tf (R) for Doppler lidar by checking whether the attenuated

backscatter profiles obtained for the Doppler lidar after applying Tf (R) indeed provide similar ηS values for liquid clouds at

different heights.

Figure 8 shows examples of Doppler lidar attenuated backscatter profiles after calibration and the derived apparent lidar ratio

at two sites, Darwin and NSA. These sites have different values of f , Darwin has f = 590 m and NSA has f set to infinity. For10

both cases, liquid clouds are present throughout the day with altitudes varying from 2 to 6 km. When fully attenuating liquid

clouds are present, the apparent lidar ratio is close to the expected value of 20 sr, regardless of the height of the cloud, thus

confirming that the method of estimating Tf (R) is valid.

5.1 Limitations

Table 3 shows that the proportion of data that can be used for the Tf (R) parameter estimation varies significantly from site to15

site. Over a third of the available profiles from SGP are used, whereas only 0.3% pass the filtering for Ascension. The lack of

suitable profiles at Ascension is explained by the almost constant low cloud cover at this site, with very few profiles having a

sufficient number of successive range gates.

Data quality is also a limiting factor so at sites with very low aerosol optical depth, AOD, such as NSA, the Doppler lidar

SNR decreases so rapidly that again there are few profiles having a sufficient number of successive range gates. Low AOD20

also impacts the performance of the ceilometer, with 48% of the estimates at NSA discarded as outliers even after the initial

filtering was performed. While the outlier removal can separate the good and the poor estimates, the largest uncertainty in D

was at NSA. We attempted to perform the Tf (R) parameter estimation on Doppler lidar from an ARM campaign in Cape Cod,

but could not obtain reliable estimates due to the low SNR of the ceilometer data.

The Tf (R) parameter estimation method is suitable only in situations where there is minimal difference in atmospheric25

extinction within the aerosol layer between the two instrument wavelengths of 910 nm and 1500 nm. Using AERONET AOD

measurements collocated at the ARM atmospheric observatories, the median difference in AOD at 870 nm and 1640 nm varied

from 0.016 and 0.027, which should correspond closely to what might be expected for the difference between ceilometer and

Doppler lidar. Very occasional periods of notable AOD differences were observed at some sites, but including these profiles

in timeseries extending beyond a year will have negligible impact on the Tf (R) parameter best estimate. However, there were30

breaks in the AOD measurements, and some periods experiencing a significant differential extinction may have gone unnoticed.

An additional filter using AERONET AOD measurements to remove profiles experiencing significant differential extinction

could be included in Fig. 2 for those sites where this may be an issue.
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Figure 8. Doppler lidar attenuated backscatter coefficient and apparent lidar ratio, ηS, from a) Darwin on 8 May 2012, b) NSA on 20 August

2014.
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6 Conclusions

We have developed a method for deriving the telescope focus function and its uncertainty for pulsed heterodyne Doppler

lidars, and applied the method to Halo Photonics Streamline and XR Doppler lidars. The method compares profiles of the

Doppler lidar SNR to profiles of attenuated backscatter coefficient from a collocated ceilometer, producing estimates for two

parameters of the Tf (R); the effective focal length for the telescope, f , and the 1/e2 effective diameter of a Gaussian beam,5

D. This method was developed because it also provides uncertainties in f , D and Tf (R), necessary for quantitative use of

the subsequently derived attenuated backscatter profiles. The method can be used to check the manufacturer specifications for

these parameters, calculate them if not known, and also check their stability over time.

The method was applied to data from Doppler lidars with different configurations deployed at 5 ARM sites. Relative uncer-

tainties in f for these instruments ranged from 6% to 17% with the median uncertainty being 10%; the relative uncertainty in10

D ranged from 2% to 12% with median of 3%. The uncertainty in Tf (R) was calculated using Monte Carlo simulation, using

3 methods to prepare the input values. We recommend the direct re-sampling method, but reasonable results were obtained

used statistically-derived input values assuming a normal distribution. The envelope of relative uncertainties in Tf (R) ranged

from 13% to 32%, and depend on both the instrument configuration and the instrument location. We also show that, even for

a Doppler lidar with the focus set at infinity, uncertainty remains in estimating Tf (R) arising from the uncertainty in D. The15

method was validated by calculating the apparent lidar ratio of fully attenuating liquid clouds from Tf (R) corrected profiles of

Doppler lidar attenuated backscatter.

The impact of turbulence on Tf (R) was also investigated and was found to have no significant impact on the methodology

described here for deriving the parameters f andD and their uncertainties from vertical profiles. However, the turbulent impact

should not be ignored when measuring at low elevation angles close to the horizon, as it can modify Tf (R) considerably,20

especially in the far range. In these cases, the parameters f and D obtained from vertical measurements are still applicable, but

the turbulent contribution to Tf (R) should included when deriving the attenuated backscatter coefficient.

The Tf (R) estimation method is suitable only for conditions where the differential extinction at the two wavelengths of

the Doppler lidar and the ceilometer is small, which can be identified, for example, using AOD from co-located AERONET

observations.25
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