
S1 The Radar Equation

This section describes how to derive the absolute reflectivity calibration constant of a Frecuency Mod-
ulated Continuous Wave (FMCW) radar. This procedure can also be applied for pulsed doppler radars
by using their corresponding radar equation.

The radar equation describes the physical power budget of a signal emitted by the radar from the moment
it enters the transmitter antenna until it is received by the receiver antenna. At the beginning, the
transmitted signal is generated by the radar emitter chain. This signal enters the emitter antenna with
a power P ′t (physical power, for example in milliwatt units). Usually radar antennas are very directive,
with one main lobe oriented in the direction of observation. The maximum gain of the transmitter
antenna lobe is defined as Gt.

Figure S1 shows the geometrical configuration of a system with a radar and an scattering object placed
at a distance r. Assuming the radar transmitter antenna is aligned in the angle of maximum gain with
this target, the object will receive a power density Prec(~r) of:

Prec(~r) = P ′t
Gt

4πr2
(S1)

Figure S1: Radar pointing towards a target with cross section Γ, located at a distance r. θ is the beam
width of the antennas.

The Radar Cross Section (RCS) Γ of an object can be understood as the equivalent cross-sectional area
a sphere should have to reflect the same amount of incident power back to the radar receiver. The units
to represent RCS are m2 in physical scale, and dBsm in dB scale (dBsm = 10 log1 0(Γ(m2))) . The the
density of power backscattered by this object, at its position ~r, is:

Prefl(~r) = P ′t
Gt

4πr2
Γ (S2)

The radar used in this experiment has two parallel antennas with a distance between each other compa-
rable to their diameter. If the reflecting object is at a distance several orders of magnitude larger than
the antenna separation, it is possible to assume that the instrument is operating in full antenna overlap
conditions. This means that both antennas share the same field of view at that location. With this
assumption and considering the power spread caused by a wave traveling back to the radar a distance r
and the receiver antenna aperture Ap = Grλ

2/4π, we have a physical power being output at the receiver
antenna end of P ′r.

P ′r =
GtP

′
t

4πr2

Ap
4πr2

Γ =
GtGrλ

2P ′t
(4π)3r4

Γ (S3)
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Equation (S3) is known as the General Radar Equation. From this equation it is theoretically possible
to retrieve the Γ value of a target from P ′r measurements, provided a way to measure its distance r (for
example FMCW radars use signals with varying frequency to measure the distance to the target [Delanoë
et al., 2016]).

Radar operators work with power variables defined by the pair P ′t = LtPt and P ′r = LrPr. Here Lt
and Lr represent all the gains and losses introduced by hardware elements, which determine the actual
physical power emitted. Pt and Pr are emitted and received power values output by the radar in
arbitrary units, proportional to the physical values. The calibration need appears here, because radar
gains and losses are difficult to quantify, and without knowing their values it is impossible to retrieve the
physical power budget. Antenna gain and radome attenuation also plays a role, increasing the amount
of characterizations needed [Anagnostou et al., 2001].

So far we have neglected in the calibration equation the impact of atmospheric attenuation Lat. At-
tenuation is introduced by the presence of gases, which absorb power from the propagating wave. This
attenuation can be significant for W band radars. For example at our site it can be reach values of
≈ 0.8 dB km−1 in the horizontal, depending on absolute humidity and pressure conditions. Including
attenuation, Eq. (S3) becomes:

Pr =
LrGtGrλ

2Pt
Lt(4π)3

Γ

L2
atr

4
(S4)

We begin by defining the constant terms as the RCS calibration term CΓ (Eq. (S5)). We observe that
this term enables the calculation of an observed RCS Γ from Pr and r measurements, by using the Radar
Equation (Eq. (S6)). Atmospheric attenuation can be estimated from measurements of atmospheric
properties and the use of microwave propagation models such as the one proposed by Liebe [1989].

CΓ =
Lt(4π)3

LrGtGrλ2Pt
(S5)

Γ = CΓ L2
atr

4Pr (S6)

As seen by its definition, the calculation of CΓ requires the knowledge of the complete power budget
in transmitter and receiver including antenna gain. This is usually difficult to measure accurately due
to the amount of components and interactions to be tested. However, other methods exist. From Eq.
(S6) it is possible to infer that by placing a discrete object with known cross section Γ = Γ0 at a
known distance r0, and with monitored atmospheric conditions, we become able to retrieve externally
the calibration constant CΓ (Eq. (S7)) by sampling the power Pr(r0) reflected back. This procedure is
known as end-to-end calibration because it characterizes the complete system at once.

CΓ =
Γ0

L2
atr

4
0Pr(r0)

(S7)

Obtaining CΓ is usually enough for many radar applications, since it enables the estimation of the RCS
of an object. Nevertheless, for meteorological radars the main interest is in retrieving the Equivalent
Reflectivity Ze of a volume filled with small scatterers (water droplets or ice crystals). Equivalent reflec-
tivity has the advantage that it enables the comparison between measurements of different wavelength
radars.

FMCW radars have a distance resolution δr which depends on its chirp configuration. These points
of differentiated resolution are called gates. When the instrument operates using antennas with beam
width θ (in radians) and a Gaussian Beam Pattern, each gate will have the effective sampling volume V
indicated in Eq. (S8).
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V =
πδr

2 ln 2

(
rθ

2

)2

(S8)

Assuming that target particles are spheres with a diameter D and a size distribution per unit volume of
N(D), and that most of them have a size factor in the Rayleigh Scattering regime Wallace and Hobbs
[2006], the total cross section of a volume filled with them can be estimated as:

σv =
π5K2

λ4
V

∫ ∞
0

N(D)D6dD (S9)

Where K2 = (ε − 1)2/(ε + 2)2 is a constant with a value which depends on the complex electrical
permittivity ε of the scatterers. From here arises a microphysical definition of Ze, in units of mm6m−3

(Eq. (S10)).

Z = 1018

∫ ∞
0

N(D)D6dD (S10)

Replacing Eqs. (S8), (S9) and (S10) into eq. (S4), one obtains the relationship between Received power
and Reflectivity (Eq. (S11)).

Z =
512 ln(2)λ2Lt1018

GtGrθ2π3K2LrPtδr
L2
atr

2Pr (S11)

From Eq. (S11) we can define a calibration constant for reflectivity: CZ . If the value of K2 chosen
corresponds to that of liquid water (|K| ≈ 0.86 at 95 GHz and 5°C[Meissner and Wentz, 2004]) it is
possible to retrieve the microphysical Equivalent Reflectivity of suspended water droplets in fog or clouds!

Z = CZ L2
atr

2Pr (S12)

As a final remark, we can use Eq. (S13) to link CΓ with CZ . This procedure is easier to do when
compared to the internal calibration, and therefore we propose to calibrate the radar by first retrieving
CΓ from an end-to-end calibration approach, and then use this result to calculate CZ .

CZ =
8 ln(2)λ41018

θ2π6K2δr
CΓ (S13)

S2 Geometrical RCS simulator

This simulator enables the calculation of the perceived RCS for a given geometric configuration of the
system. At this point it works only for trihedral reflectors. For the radar’s antenna pattern it is possible
to use a Gaussian model, or to input a beam shape manually. In this document we’ll only show the
gaussian function, since adapting the equations to consider other shapes is straightforward.

The input arguments for the RCS simulator are shown in Fig. S2 (Left). They are explained as follows:

• Radar position, referenced at the origin O: ~RO = (xr, 0, hr)

• Radar aiming angle, referenced at the origin Or: ~YOr = (1, θr, φr)

– θr: Azimuth angle of the radar’s positioner. 0◦ is vertical aiming.
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Figure S2: Diagram of the geometrical RCS simulator. (Left) shows the coordinate axes and the degrees
of freedom of the simulator. (Right) shows the coordinates used to characterize the beam’s incidence
angle on the target. Right figure is adapted from the one published by Doerry and Brock [2009].

– φr: Azimuth angle of the positioner. The line connecting the radar and the mast base corre-
sponds to φr = 0◦.

• Target position (in spherical coordinates), referenced at the origin O: ~TO = (ρ, θ, φ)

– τ : Mast twist angle. τ = 0◦ when target boresight is parallel to the x axis.

– α: Target tilt angle. When α = 0◦ the target’s z′ axis is parallel to ρ̂. If α > 0◦ then the
target tilts forward.

• a: Target’s size parameter [Brooker, 2006].

• λ: Wavelength

• Antenna properties (if using Gaussian model):

– Θ: antenna beamwidth

Output variables:

• Maximum RCS of the target Γ0[dBm2]

• RCS of the target for the beam’s incidence vector r̂i: Γ(~ri)[dBm
2]

• Effective RCS of the target considering incidence angle and loss L due to positioning ∆D◦ away
from the antenna’s beam center: Γeff = Γ(~ri)− 2L(∆D)[dB]

In the following sections we list the equations used to calculate each term.

S2.1 Max theoretical RCS Γ0

From Brooker [2006], it can be simply calculated as:

Γ0[dBm2] = 10 log10(
4πa4

3λ2
) (S14)
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S2.2 RCS Γ(~ri) for the beam’s incidence vector

We obtain the perspective vector by changing radar aiming vector’s YOr coordinate system from Or to
O, and then multiplying by −1 to reverse the resulting vector’s direction.

~ri = −1
(
−( ~YOr · x̂r)x̂− ( ~YOr · ŷr)ŷ + ( ~YOr · ẑr)ẑr

)
(S15)

Target’s unitary vectors x̂′, ŷ′, ẑ′ (in Fig. S2 (A)):

x̂′ =

√
2

2

[
−sin(θ) cos(φ) sin(α)+cos(θ) cos(φ)(cos(α) cos(τ)+sin(τ))−sin(φ)(cos(α) sin(τ)−cos(τ))

]
x̂

+
[

sin(θ) sin(φ) sin(α) + cos(θ) sin(φ)(cos(α) cos(τ) + sin(τ)) + cos(φ)(cos(α) sin(τ)− cos(τ))
]
ŷ

+
[
− cos(θ)sin(α)− sin(θ)(cos(α) cos(τ) + sin(τ))

]
ẑ (S16)

ŷ′ =

√
2

2

[
−sin(θ) cos(φ) sin(α)+cos(θ) cos(φ)(cos(α) cos(τ)−sin(τ))−sin(φ)(cos(α) sin(τ)+cos(τ))

]
x̂

+
[

sin(θ) sin(φ) sin(α) + cos(θ) sin(φ)(cos(θ) cos(τ)− sin(τ)) + cos(φ)(cos(α) sin(τ) + cos(τ))
]
ŷ

+
[
− cos(θ) sin(α)− sin(θ)(cos(α) cos(τ)− sin(τ))

]
ẑ (S17)

ẑ′ =
[

sin(θ) cos(φ) cos(α) + cos(θ) cos(φ) sin(α) cos(τ)− sin(φ) sin(α) sin(τ)
]
x̂

+
[

sin(θ) sin(φ) cos(α) + cos(θ) sin(φ) sin(α) cos(τ) + cos(φ) sin(α) sin(τ)
]
ŷ

+
[

cos(θ) cos(α)− sin(θ) sin(α) cos(τ)
]
ẑ (S18)

Project perspective vector to target’s coordinate system:

xp = ~ri · x̂′ (S19)

yp = ~ri · ŷ′ (S20)

zp = ~ri · ẑ′ (S21)

Then we can calculate the perspective angles θp and φp:

p =
√
x2
p + y2

p + z2
p (S22)

θp = arccos(zp/p) (S23)
φp = arctan(yp/xp) (S24)

(S25)

Invalid cases: If θp or φp /∈ [0, π2 ], Γ(~ri) is set to Nan (not a number). This avoids ill results that may
happen in configurations where the incident beam is not impacting the interior of the reflector.

Finally, we can use valid θp and φp angles and the equations published by Doerry and Brock [2009] to
calculate Γ(~ri):

5



Γ(~ri) =


4π
λ2 a

4
(

4c1c2
c1+c2+c3

)2

for c1 + c2 ≤ c3
4π
λ2 a

4
(
c1 + c2 + c3 − 2

c1+c2+c3

)2

for c1 + c2 > c3

(S26)

For c1, c2 and c3, we assign one of the terms indicated below, imposing c1 ≤ c2 ≤ c3.

c1

c2

c3

 =


cos(θp)

sin(θp) sin(φp)

sin(θp) cos(φp)

(S27)

S2.3 Effective RCS Γeff considering the incidence vector and beam alignment

Since we already calculated Γ(~ri) in the previous section, we only have left to estimate the losses L(∆D)
in the effective RCS introduced when the target is ∆D off the center of the beam. This calculation
assumes an axially symmetric beam, but can be adjusted to consider beams with other shapes.

First, the vector connecting radar and target position:

~δO = TO −RO (S28)

We now change the origin of ~δO from O to Or:

~δOr = −( ~δO · x̂)x̂r − ( ~δO · ŷ)ŷr + ( ~δO · ẑ)ẑr (S29)

With this vector and the radar’s unitary aiming vector YOr we can proceed to calculate the angular
deviation ∆D of the target from the center of the beam:

∆θ = arccos

(
δOr · ẑr
‖δOr‖

)
− θr (S30)

∆φ = arctan

(
δOr · ŷr
δOr · x̂r

)
− φr (S31)

∆D =
√

∆θ2 + ∆φ2 (S32)
(S33)

And the loss, for the Gaussian antenna lobe of beamwidth Θ, is:

L(∆D) = 10 log10

(
exp

(
−(2.355∆D)2

2Θ2

))
[dB] (S34)

Invalid cases: We have observed that four our antenna the Gaussian approximation works well if ∆D ≤
0.5◦ (figure 3 of the article). Thus, we decided that any ∆D larger than 0.5◦ our calculations will return
an invalid L(∆D) value.

With all these terms and Eq. (S35) we finally calculate the effective RCS Γeff :

Γeff = Γ(~ri)− 2L(∆D)[dB] (S35)
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S3 Misalignment bias in calibration using reference reflectors

Equation (S36) is the Radar Cross Section (RCS) calibration constant, obtained when aiming the radar
towards a reference reflector of RCS Γ0. Lat represents the atmospheric attenuation between the radar
and the reflector, located at a distance r0. Pr(r0) is the power received from the target’s position. This
equation requires a perfect alignment between the target’s boresight and the axis of the antenna lobe.

C0
Γ[dB] = Γ0[dBm2]− 2Lat[dB]− 40 log10(r0)− Pr(r0)− n(T − T0) (S36)

W band radars tend to have very narrow beam lobes, in the order of 0.5 - 1.0o. This implies that an
error of 1o in the system’s alignment may induce a change of the perceived RCS in the order of some
dBs. We define the effective RCS Γi as the RCS that will be observed by the radar when the target is
off the beam center, or when the target is not in its designed positioning. i.e. the RCS that a perfectly
calibrated radar would perceive under a non-ideal alignment.

If we use Eq. (S36) to calibrate assuming RCS = Γ0, but in reality we have an effective RCS Γi = Γ0−εi,
our estimated calibration constant will be biased:

C0
Γi = C0

Γ + εi (S37)

Where C0
Γi and C0

Γ are the experimental and the real RCS calibration coefficients after temperature
correction, and εi is the calibration bias. The value of the bias term εi is difficult to estimate, because
it follows an unkown distribution which depends on the alignment uncertainty of all the components in
the system. Besides, if the average bias value ε 6= 0 (i.e. its distribution is not zero mean), this error
won’t be canceled when averaging C0

Γi values from multiple experiments.

1

N

N∑
i=1

C0
Γi =

1

N

N∑
i=1

(C0
Γ + εi) = C0

Γ + εi (S38)

Figure 6 (B) in the main article shows a sample Γi distribution obtained when including uncertainty in
the experiment’s alingment. We can clearly observe that it’s not zero mean. This implies that without
further correction our calibration constant is bound to have a bias εi, linked to the underlying uncertainty
in the positioning of each element.

To estimate the value of εi for our setup, we use the standard deviation σ between C0
Γ values retrieved in

each experiment as an indicator of their bias distribution, as indicated in Eq. (S39). σε is the standard
deviation of the bias distribution.

σ2 =
1

N

N∑
i=1

(C0
Γi − C0

Γi)
2 = σ2

ε (S39)

By simulating effective RCS values we can relate σε with εi to a given degree of uncertainty. The
procedure for doing this is explained in Sect. S3.1.

S3.1 Estimation of the bias term

In this section we explain how we sample the bias distribution, to calculate the bias correction term and
its uncertainty. We’ll explain the procedure using the results of the 2018 campaign to illustrate (figure
7 of the main article).

The first step we take is to simulate a meta-distribution fεi,σepsilon(εi, σε). This distribution is generated
by calculating the outcome of an experiment with N iterations, with randomly generated uncertainty sets
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as inputs (see section 5.5 in the main article). From each of these outcomes we get a pair (εi, σepsilon),
and their distribution will indicate the shape of f .

For the 2018 campaign we sampled the meta-distribution when performing 6 experiments using the
following uncertainty set generating functions:

• σθr = U([0◦, 0.375◦))

• σφr = U([0◦, 0.375◦))

• σθ = U([0◦, 5◦))

• στ = U([0◦, 10◦))

The region where σθr and σφr are sampled is within 0 and 3 times the nominal resolution of the radar
positioner. For the mast angles θ and τ we have chosen to explore an space much larger than any
deviation we have observed during the experiments. We found that with these parameters the sampling
covers a range of σε values large enough to enable an estimation of the bias in our experiment.

Figure S3 shows the resulting fεi|σε (εi, σε). We can observe that the distribution loses density for
relatively large values of ε and σε. However, the distribution is very well defined around our results of
the calibration experiment of 2018, where we got a value of σε = 0.33.

Figure S3: Simulation of P
(∑N

i=1 εi

)
. This meta-distribution enables the approximation of Λ by select-

ing the points close to the observed σε value. The distribution is very well defined for values of σε below
one dB, and remains the same even after removing randomly half of the points.

To select the data matching our experiment we define the new distribution Λ = fεi|σε=(σ±5%) (εi). The
resulting distribution is shown in Fig. S4.

Since Λ is asymmetric, we use the median Λ̃ as the most likely bias, and its RMSE σΛ as its uncertainty
contribution. This way we can now correct the bias in the calibration using Eq. (S40).

Ĉ0
Γ =

1

N

N∑
i=1

C0
Γi − Λ̃ (S40)
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Figure S4: Lambda distribution

S4 Recommendations for future Calibration Experiments

Here we include recommendations that could be valuable for people interested in repeating the article
experiment at other sites:

1. The target must be positioned far enough to avoid significant antenna overlap losses, and to avoid
receiver saturation. Here a receiver saturation curve is a very valuable asset.

2. Clutter from the target environment must be properly caracterized to determine if target RCS is
enough for the level of accuracy desired. Here a determination of the signal to clutter ratio becomes
essential. First and second points are key to evaluate if the calibration experiment is viable.

3. Several repetitions of setup realignment and calibration sampling are necessary to estimate mis-
alignment bias. To have a valid bias correction both radar and target must be realigned using
always the same protocol. This procedure should be clearly stablished and well known by the
operating team. Mast alignment in particular can be very demanding both in time and skill.

4. A characterization of radar gain variations for different internal temperatures is necessary to confirm
or discard an impact in the calibration stability. This is specially important for radars built with
solid state components.

5. Atmospheric conditions must be monitored at the experiment location. We modeled attenuation
at different levels based on measurements retrieved with a 20 m tower at the SIRTA observatory,
and verified that a single measurement at the surface was representative for our setup. If the
target is installed in a taller mast it is advisable to perform this check, to avoid biases from non-
representative atmospheric attenuation modeling.

6. The experiment has to be carried out under clear conditions at the surface. No fog or precipitation
is tolerable. Also wind speed should remain low (≤ 1 ms−1). We observed that strong wind gusts
can perturb the alignment of the system, and, therefore, modify the calibration results, due to the
aerodynamic resistance of the mast. We found that the best conditions for calibration at our site
usually happen at nightime under clear sky conditions.

7. The use of an electronic aiming device for the target provides logistical advantages, because there
is no more need of physically accesing the mast to perform re-alignments. This drastically reduced
the amount of time needed to perform each iterations, from half a day with the 20 m mast setup
to approximately 5 minutes with the 10 m mast.
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