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Response to Comments from Reviewer #1 AMT-2019-55 

The authors would like to sincerely thank the reviewer #1 for the careful review of the manuscript, the quick feedback, and 

the very constructive comments which helped dramatically improve the manuscript. The reviewer’s comments are in italics, 

the summaries of our responses are in plain font, and the changes in the manuscript are in bold red text. Page and line 

numbers refer to the original document. We also appended a marked-up manuscript version to the end of the responses to 5 
better show all the changes made from this review.  

Reviewer #1 

General Comments: 

First, a better description of the algorithm should be supplied. The equations are not matched well with their descriptions in 

the text, and multiple steps of the process (e.g. the linear regression and Gaussian Process hyperparameter optimization) are 10 
described simultaneously. The diagrams of figure 3 are helpful, but not sufficient to clarify the entire process. A complete 

step-by-step breakdown of an example run of the algorithm could be provided.  

Response: We agree with the reviewer on that the algorithm should be better described in Section 2.3. Based on the 

reviewer’s specific comments, we have now provided more details about how the alpha and beta parameters of Equation 3 

were determined, how the standardization process was implemented, what it meant to re-calibrate a low-cost node based on 15 
its conditional mean, what criteria were used for convergence, and how the predictions were transformed back to the original 

PM scale. Regarding 1) “The equations are not matched well with their descriptions in the text”, we identified problems 

such as lack of the description of the 𝒚𝒊 term in Equation 3, lack of the description of the Γ term in Equation 4, discrepancy 

in the Theta notation between Equations 2 and 5, lack of the description of the Theta term in Equations 2 and 5. We have 

now corrected these issues. Regarding 2) “multiple steps of the process (e.g. the linear regression and Gaussian Process 20 
hyperparameter optimization) are described simultaneously”, we presume that this comment is connected to the 

reviewer’s specific comment on Page 6, Line 19 to Page 7, Line 5. The linear regression step (called low-cost node 

initialization, corresponding to step 2 in Fig. 3, described on page 6, lines 19-23) and the training/optimization of the 

hyperparameters of the GPR model (corresponding to step 3 in Fig. 3, described on page 6, lines 23-29, starting from ‘After 

standardizing’) were previously described separately. To better highlight this fact and in order to avoid confusion, we have 25 
now added additional details to the low-cost node initialization step, have split the descriptions of the two steps into two 

separate paragraphs, have re-organized the places of Equations 3-5, and have added additional texts to explain the terms in 

Equations 3-5. Additionally, we have now placed each critical step under a sub-section (e.g., Sect. 2.3.x) to facilitate reading. 
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Regarding 3) “The diagrams of figure 3 are helpful, but not sufficient to clarify the entire process”, we have now 

revised Figure 3 to make it more informative about and more accurately reflect the entire process and we have now expanded 

the Figure 3 caption to help better carry readers through the algorithm. Regarding 4) “A complete step-by-step breakdown 

of an example run of the algorithm could be provided”, we have now added a detailed algorithm block along with a sub-

section number next to each critical step to indicate under which sub-section the details of that step can be found. The 5 
Section 2.3 has been completely overhauled.  

Modified Section 2.3: 

“2.3 Simultaneous GPR and simple linear regression calibration model 

The simultaneous GPR and simple linear regression calibration algorithm is introduced here as Algorithm 1. The 

critical steps of the algorithm are linked to sub-sections under which the respective details can be found. 10 
Complementing Algorithm 1, a flow diagram illustrating the algorithm is given in Figure 3.  

 

Algorithm 1: Algorithm of simultaneous GPR and simple linear regression 

for each reference node (denote: Refk) in the network do 

      leave Refk out as test sample (see Sect. 2.3.1 for details) 15 
      for each low-cost node (denote: Low-costi) in the network do 

            find Low-costi’s closest reference node (denote: Refi) (Sect. 2.3.2) 

            fit a simple linear regression model between Refi and Low-costi’s PM2.5: 𝑹𝒆𝒇𝒊 = 𝛼) ∙ 𝑳𝒐𝒘 − 𝒄𝒐𝒔𝒕𝒊 +	𝛽) (Sect. 2.3.2) 

            initialize the simple linear regression calibration factors to 𝛼) (slope) and 𝛽)  (intercept) for Low-costi (Sect. 2.3.2) 

            initialize the calibration of Low-costi using 𝛼) and 𝛽)  (Sect. 2.3.2) 20 
      end for 

      initialize GPR hyperparameters 𝚯 = [𝜎78, 𝑙, 𝜎:8] to [0.1, 50, 0.01] (Sect. 2.3.3) 

      standardize the 10 calibrated low-cost and 21 reference nodes at once (Sect. 2.3.3) 

      while convergence criteria not met do 

            update/optimize GPR hyperparameters 𝚯 using the 31 standardized training nodes (Sect. 2.3.3 and .5) 25 
            for each low-cost node (denote: Low-costi) in the network do 

                  for each day (denote: t) of the 59 days do 

                        calculate Low-costi’s mean conditional on the remaining 30 nodes on day t (denote 𝜇=|?)@ ) (Sect. 2.3.4 and .5) 

                  end for 

                  fit a linear regression between  𝝁𝑨|𝑩𝒊 ∈ ℝFGand Low-costi: 𝝁𝑨|𝑩𝒊 = 𝛼) ∙ 𝑳𝒐𝒘− 𝒄𝒐𝒔𝒕𝒊 +	𝛽) (Sect. 2.3.4 and .5) 30 
                  update calibration factors 𝛼) and 𝛽)  for Low-costi (Sect. 2.3.4 and .5) 

                  update the calibration of Low-costi using 𝛼) and 𝛽)  (Sect. 2.3.4 and .5) 
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            end for 

            check convergence criteria (Sect. 2.3.5) 

      end while 

      use the final GPR model to predict on Refk (Sect. 2.3.6) 

      transform the prediction back to original PM2.5 scale (Sect. 2.3.6) 5 
      calculate RMSE and percent error (Sect. 2.3.6) 

end for 

2.3.1 Leave one reference node out 

Because the true calibration factors for the low-cost nodes are not know beforehand, a leave-one-out CV approach (i.e., 

holding one of the 22 reference nodes out of modelling each run for model predictive performance evaluation) was adopted 10 
as a surrogate to estimate our proposed model accuracy of calibrating the low-cost nodes. For each of the 22-fold CV, 31 

node locations (denoted Γ = {𝒙J,… , 𝒙MJ})	were available, where 𝒙) is the latitude and longitude of node i. Let 𝑦)@ represent 

the daily PM2.5 measurement of node i on day t and 𝒚@ ∈ ℝMJ denote the concatenation of the daily PM2.5 measurements 

recorded by the 31 nodes on day t. Given a finite number of node locations, a Gaussian Process (GP) becomes a Multivariate 

Gaussian Distribution over the nodes in the form of: 15 
𝒚@|Γ ∼ 𝑁(𝝁, 𝚺)            (1) 

where 𝝁 ∈ ℝMJ	represents the mean function (assumed to be 𝟎 in this study); 𝚺 ∈ ℝMJ×MJ	with Σ)X = 𝐾Z𝒙), 𝒙X; 𝚯\ represents 

the covariance function/kernel function and 𝚯 is a vector of the GPR hyperparameters.” 

 

For simplicity’s sake, the kernel function was set to a squared exponential (SE) covariance term to capture the spatially-20 
correlated signals coupled with another component to constrain the independent noise: 

 “𝐾Z𝒙), 𝒙X; 𝚯\ = 𝜎78 𝑒𝑥𝑝`−
a𝒙bc𝒙dae

e

8fe
g + 𝜎:8𝑰 (Rasmussen and Williams, 2006)     (2) 

where 𝜎78, 𝑙, and 𝜎:8 are the model hyperparameters (to be optimized) that control the signal magnitude, characteristic length-

scale, and noise magnitude, respectively;	𝚯 ∈ ℝ𝟑	is a vector of the GPR hyperparameters 𝝈𝒔𝟐, 𝒍, and 𝝈𝒏𝟐 .” 

2.3.2 Initialize low-cost nodes’ (simple linear regression) calibrations 25 

What separates our method from standard GP applications is the simultaneous incorporation of calibration for the low-cost 

nodes using a simple linear regression model into the spatial model. Linear regression has previously been shown to be 

effective at calibrating PM sensors (Zheng et al., 2018). Linear regression was first used to initialize low-cost nodes’ 

calibrations (step two in Fig. 3). In this step, each low-cost node i was linearly calibrated to its closest reference node 

using Eq. (3), where the calibration factors 𝜶𝒊 (slope) and 𝜷𝒊 (intercept) were determined by fitting a simple linear 30 
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regression model to all available pairs of daily PM2.5 mass concentrations from the uncalibrated low-cost node i 

(independent variable) and its closest reference node (dependent variable). This step aims to bridge disagreements 

between low-cost and reference node measurements, which can lead to a more consistent spatial interpolation and a faster 

convergence during the GPR model optimization. 

𝒓) = q 𝒚), if	reference	node
𝛼) ∙ 𝒚) +	𝛽) , if	low − cost	node         (3) 5 

where 𝒚𝒊 is either a vector of all the daily PM2.5 measurements of reference node i or a vector of all the daily raw PM2.5 

signals of low-cost node i; 𝒓𝒊 is either a vector of all the daily PM2.5 measurements of reference node i or a vector of all 

the daily calibrated PM2.5 measurements of low-cost node i; 𝛼)  and 𝛽)  are the slope and intercept, respectively, 

determined from the fitted simple linear regression calibration equation with daily PM2.5 mass concentrations of the 

uncalibrated low-cost node i as independent variable and PM2.5 mass concentrations of low-cost node i's closest 10 
reference node as dependent variable. 

2.3.3 Optimize GPR model (hyperparameters) 

In the next step (step three in Fig. 3), a GPR model was fit to each day t’s 31 nodes (i.e., 10 initialized low-cost nodes and 

21 reference nodes) as described in Eq. (4). Prior to the GPR model fitting, all the PM2.5 measurements of the 31 nodes 

over 59 valid days used for GPR model hyperparameters training were standardized. The standardization was 15 
performed by first concatenating all these training PM2.5 measurements (from the 31 nodes over 59 days), then 

subtracting their mean 𝜇@~�):):�  and dividing them by their standard deviation 𝑠@~�):):�  (i.e., transforming all the 

training PM2.5 measurements to have a zero mean and unit variance). It is worth noting that assuming the mean function 

𝝁 ∈ ℝ𝟑𝟏	to be 𝟎 along with standardizing all the training PM2.5 samples in this study is one of the common modelling 

formulations on the GPR model and the simplest one. More complex formulations including a station-specific mean 20 
function (lack of prior information for this project), a time-dependent mean function (computationally expensive), 

and a combination of both were not considered for this paper. After the standardization of training samples, the GPR 

was trained to maximize the log marginal likelihood over all 59 days using Eq. 5 and using an L-BFGS-B optimizer (Byrd 

et al., 1994). To avoid bad local minima, several random hyperparameter initializations were tried and the initialization that 

resulted in the largest log marginal likelihood after optimization was chosen (in this paper, 𝚯 = [𝝈𝒔𝟐 , 𝒍, 𝝈𝒏𝟐] was 25 
initialized to [0.1, 50, 0.01]).” 

𝒓@|Γ ∼ 𝑁(𝝁, 𝚺)            (4) 

where t ranges from 1 (inclusive) to 59 (inclusive); 𝒓𝒕 ∈ ℝ𝟑𝟏	is a vector of all 31 nodes’ PM2.5 measurements (calibrated 

if low-cost nodes) on day t; 𝚪 = {𝒙𝟏,… , 𝒙𝟑𝟏}	denotes 31 nodes’ locations and 𝒙𝒊 ∈ ℝ𝟐	is a vector of the latitude and 

longitude of node i; 𝝁 ∈ ℝ𝟑𝟏	represents the mean function (assumed to be 𝟎 in this study) and	𝚺 ∈ ℝ𝟑𝟏×𝟑𝟏	with 𝚺𝒊𝒋 =30 
𝑲Z𝒙𝒊, 𝒙𝒋; 𝚯\ represents the covariance function/kernel function. 
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arg	max
𝚯
𝐿(𝚯) = arg	max

𝚯
∑ log 𝑝(𝒓@|𝚯)FG
@�J 	= arg	max

𝚯
	(−0.5 ∙ 59 ∙ log|𝚺�| − 0.5∑ 𝒓@�𝚺�cJ𝒓@FG

@�J )  (5)	

where 𝚯 ∈ ℝ𝟑	is a vector of the GPR hyperparameters 𝜎78, 𝑙, and 𝜎:8.” 

2.3.4 Update low-cost nodes’ (simple linear regression) calibrations based on their conditional means 

Once the optimum 𝚯 for the (initial) GPR was found, we used the learned covariance function to find the mean of each low-5 
cost node i’s Gaussian Distribution conditional on the remaining 30 nodes within the network (i.e., 𝜇=|?)@ ) on day t as 

described mathematically in Eq. (6)–(8) and repeatedly did so until all 59 days’ 𝜇=|?)@ 	(i.e., 𝝁𝑨|𝑩𝒊 ∈ ℝ𝟓𝟗)	were found and then 

re-calibrated that low-cost node i based on the 𝝁𝑨|𝑩𝒊 . The re-calibration was done by first fitting a simple linear 

regression model to all 59 pairs of daily PM2.5 mass concentrations from the uncalibrated low-cost node i (𝒚𝒊, 

independent variable) and its conditional mean (𝝁𝑨|𝑩𝒊 , dependent variable) and then using the updated calibration 10 
factors (slope 𝜶𝒊 and intercept 𝜷𝒊) obtained from this newly fitted simple linear regression calibration model to 

calibrate the low-cost node i again (using Eq. 3). This procedure is summarized graphically in Fig. 3 step four and was 

performed iteratively for all low-cost nodes one at a time. The reasoning behind this step is given in the Supplement. A high-

level interpretation of this step is that the target low-cost node is calibrated by being weighted over the remaining nodes 

within the network and the 𝚺𝑨𝑩𝒊𝒕 𝚺𝑩𝑩𝒊𝒕
cJ term computes the weights. In contrast to the inverse distance weighting interpolation 15 

which will weight the nodes used for calibration equally if they are equally distant from the target node, the GPR will value 

sparse information more and lower the importance of redundant information (suppose all the nodes are equally distant from 

the target node) as shown in Fig. S2. 

𝑝 `�𝑟=
)@

𝒓𝑩𝒊𝒕
�g = 	𝑁 `�𝑟=

)@

𝒓𝑩𝒊𝒕
� ; �𝜇=

)@

𝝁𝑩𝒊𝒕
�	�Σ==

)@ 𝚺𝑨𝑩𝒊𝒕

𝚺𝑩𝑨𝒊𝒕 𝚺𝑩𝑩𝒊𝒕
�g        (6) 

𝑟=)@�𝒓𝑩𝒊𝒕	~	𝑁Z𝜇=|?)@ , Σ=|?)@ \        (7) 20 

𝜇=|?)@ =	𝜇=)@ + 𝚺𝑨𝑩𝒊𝒕 𝚺𝑩𝑩𝒊𝒕
cJ(𝒓𝑩𝒊𝒕 −	𝝁𝑩𝒊𝒕)        (8) 

where 𝑟=)@and 𝒓𝑩𝒊𝒕 are the daily PM2.5 measurement(s) of the low-cost node i and the remaining 30 nodes on day t; 𝜇=)@, 𝝁𝑩𝒊𝒕, and 

𝜇=|?)@  are the mean (vector) of the partitioned Multivariate Gaussian Distribution of the low-cost node i, the remaining 30 

nodes, and the low-cost node i conditional on the remaining 30 nodes, respectively, on day t; and Σ==)@ , 𝚺𝑨𝑩𝒊𝒕 , 𝚺𝑩𝑨𝒊𝒕 , 𝚺𝑩𝑩𝒊𝒕 , and 

Σ=|?)@  are the covariance between the low-cost node i and itself, the low-cost node i and the remaining 30 nodes, the remaining 25 
30 nodes and the low-cost node i, the remaining 30 nodes and themselves, and the low-cost node i conditional on the 

remaining 30 nodes and itself, respectively, on day t. 
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2.3.5 Optimize alternately and iteratively and converge 

Iterative optimizations alternated between the GPR hyperparameters and the low-cost node calibrations using the 

approaches described in Sect. 2.3.3 and 2.3.4, respectively (Fig. 3 steps five and six, respectively), until the GPR 

parameters 𝚯 converged with the convergence criteria being the differences in all the GPR hyperparameters between 

the two adjacent runs below 0.01 (i.e., with ∆𝝈𝒔𝟐 ≤ 𝟎. 𝟎𝟏, ∆𝒍 ≤ 𝟎. 𝟎𝟏, 𝒂𝒏𝒅	∆𝝈𝒏𝟐 ≤ 𝟎. 𝟎𝟏).  5 

2.3.6 Predict on the holdout reference node and calculate accuracy metrics 

The final GPR was used to predict the 59-day PM2.5 measurements of the holdout reference node (Fig. 3 step seven) 

following the Cholesky decomposition algorithm (Rasmussen and Williams, 2006) with the standardized predictions being 

transformed back to the original PM2.5 measurement scale at the end. The back transformation was done by multiplying 

the predictions by the standard deviation 𝒔𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 (the standard deviation of the training PM2.5 measurements) and 10 
then adding back the mean 𝝁𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 (the mean of the training PM2.5 measurements). Metrics including root mean 

square errors (RMSE, Eq. 9) and percent errors defined as RMSE normalized by the average of the true measurements of the 

holdout reference node in this study (Eq. 10) were calculated for each fold and further averaged over all 22 folds to assess 

the accuracy and sensitivity of our simultaneous GPR and simple linear regression calibration model. 

RMSE = 	£ J
FG
‖𝒚) − 𝒚¥¦ ‖88           (9) 15 

where 𝒚) and 𝒚¥¦  are the true and model predicted 59 daily PM2.5 measurements of the holdout reference node i. 

 

Percent error = §¨©ª
«¬.		®¯°±¯²³	´µ¶µ´µ·¸µ	¹¨e.º	¸¯·¸.

         (10)” 

 

Modified Figure 3: 20 
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Figure 3: The flow diagram illustrating the simultaneous GPR and simple linear regression calibration algorithm. In step one, for each 
of the 22-fold leave-one-out CVs, one of the 22 reference nodes is held out of modelling for the model predictive performance 
evaluation in step seven; in step two, fit a simple linear regression model between each low-cost node i and its closest reference 
node’s PM2.5, initialize low-cost node i’s calibration model to this linear regression model, and calibrate the low-cost node i using 5 
this model; in step three, first initialize the GPR hyperparameters to [0.1, 50, 0.01] and then update/optimize the hyperparameters 
based on the training samples from the 10 initially calibrated low-cost nodes and 21 reference nodes over 59 days; in step four, 
first compute each low-cost node i’s means conditional on the remaining 30 nodes given the optimized GPR hyperparameters, then 
fit a simple linear regression model between each low-cost node i and its conditional means, update low-cost node i’s calibration 
model to this new linear regression model, and re-calibrate the low-cost node i using this new model; in step five and six, iterative 10 
optimizations alternate between the GPR hyperparameters and the low-cost node calibrations using the approaches described in 
step three and four, respectively, until the GPR hyperparameters converged; in step seven, predict the 59-day PM2.5 measurements 
of the holdout reference node given the finalized GPR hyperparameters and the low-cost node calibrations. 

 

Second, it appears that both the Gaussian process hyperparameter calibration and the linear regression calibration of the 15 
low-cost nodes are carried out over an approximately 60-day period, using all data collected during this period. This would 

seem to preclude the use of your methods for on-line calibration. You may want to examine how this technique could be used 

in an on-line fashion, but designating a “current time” within the dataset and only using data collected prior to that time to 

calibrate the Gaussian Process hyperparameters and linear regression coefficients which are used to correct the data for 

that time. You could then also examine the effect of time history on your model, analyzing how the performance changes as 20 
more or less past data is included in the calibration process. As it currently is, if I am understanding your approach 

correctly, it can only be applied retroactively to a designated period of time for which all sensor data are available.  

1) Leave one reference 
node out 

2) Initialize low-cost 
nodes’ calibration using 
simple linear regression

3) Optimize GPR model 
hyperparameters

5) Update GPR model 
hyperparameters

6) Update low-cost 
nodes calibration

7) Predict on the holdout 
reference node

4) Calibrate each low-
cost node to its 

conditional mean using 
simple linear regression

Iterate

Iterate

converge

Iterative optimizations alternate between the GPR 
hyperparameters and the low-cost node calibration

sim
ultaneous G

PR
 and sim

ple linear 
regression
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Response: We really appreciate the reviewer’s insightful suggestions and have examined both the possibility of using our 

method for online calibration and the effect of time history on our model. We will answer the reviewer’s second question 

first and then circle back to the first question. Regarding the effect of time history on our model, we analyzed how the 

model performance changed when an increment of 2 days’ data were included in the model. The model performance was 

based on the accuracy of model prediction on the 22 reference nodes (within the time periods of the data included) using 5 
leave-one-out CV, as described in Sect. 3.2.1. We observed a surprisingly consistent ~30 % error rate and ~3–4 % standard 

error of the mean (SEM) regardless of how many 2-day increments were used as the training window size. The small effect 

of training window size on the model performance hints that using our method for online calibration/prediction is 

feasible. We assessed the performance of using simple linear regression calibration factors and GPR hyperparameters that 

were optimized from one week to calibrate the 10 low-cost nodes and predict each of the 22 reference nodes in the next week. 10 
For example, the first/second/third/… week data were used as training data to build GPR models and simple linear 

regression models. These simple linear regression models were then used to calibrate the low-cost nodes in the 

second/third/fourth/… week, followed by GPR models to predict each of the 22 reference nodes in that week. The 

performance was still measured by the accuracy of model prediction on the 22 reference nodes using leave-one-out CV, as 

described in Sect. 3.2.1. We found similarly stable 26–34 % online calibration error rates and ~3–7 % SEMs throughout the 15 
weeks. We have now added two sub-sections (i.e., Sect. 3.2.3 GPR model performance as a function of training window 

size and Sect. 3.2.4 GPR model dynamic calibration performance, respectively) to address the time history and online 

calibration questions, respectively. A figure showing the model performance as a function of training window size for Sect. 

3.2.3 was added to the main manuscript as Figure 8. Another figure showing the GPR model dynamic calibration 

performance for each successive week (from weeks 2 to 8) was added to the supplement as Figure S4. We have also updated 20 
the abstract, introduction, and conclusions to include the new results. Finally, all the figure numbers have been changed 

accordingly.  

Added Section 3.2.3: 

3.2.3 GPR model performance as a function of training window size 

So far, the optimization of both GPR model hyperparameters and the linear regression calibration factors for the 25 
low-cost nodes has been carried out over the entire sampling period using all 59 valid daily-averaged data points. It is 

of critical importance to examine the effect of time history on the algorithm, by analyzing how sensitive the model 

performance is to training window size. We tracked the model performance change when an increment of 2 days’ 

data were included in the model training. The model performance was measured by the mean accuracy of model 

prediction on the 22 reference nodes (within the time period of the training window) using leave-one-out CV, as 30 
described in Sect. 3.2.1. Figure 8 illustrates that, throughout the 59 days, the error rate and the standard error of the 

mean (SEM) remained surprisingly consistent at ~30 % and ~3–4 %, respectively, regardless of how many 2-day 
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increments were used as the training window size. The little influence of training window size on the GPR model 

performance is possibly a positive side effect of the algorithm’s time-invariant mean assumption, strong spatial 

smoothing effect, and the additional averaging of the error rates of the 22 reference nodes. The markedly low 

requirement of our algorithm for training data is powerful in that it enables the GPR model hyperparameters and 

the linear regression calibration factors to always be nearly most updated in the field. This helps realize the 5 
algorithm’s full potential for automatically surveilling large-scale networks by detecting malfunctioning low-cost 

nodes within a network (see Sect. 3.3.1) and tracking the drift of low-cost nodes (see Sect. 3.3.2) with as little latency 

as possible. 

 

Added Figure 8: 10 

 
Figure 8: The mean percent error rate of GPR model prediction on the 22 reference nodes using leave-one-out CV (see Sect. 3.2.1) 
as a function of training window size in an increment of 2 days. The error bars represent the standard error of the mean (SEM) of 
the GPR prediction errors of the 22 reference nodes. 

 15 
Added Section 3.2.4: 

3.2.4 GPR model dynamic calibration performance 

The stationary model performance in response to the increase of training data hints that using our method for 

dynamic calibration/prediction is feasible. We assessed the algorithm’s 1 week-ahead prediction performance, by 
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using simple linear regression calibration factors and GPR hyperparameters that were optimized from one week to 

calibrate the 10 low-cost nodes and predict each of the 22 reference nodes, respectively, in the next week. For example, 

the first/second/third/… week data were used as training data to build GPR models and simple linear regression 

models. These simple linear regression models were then used to calibrate the low-cost nodes in the 

second/third/fourth/… week, followed by the GPR models to predict each of the 22 reference nodes in that week. The 5 
performance was still measured by the mean accuracy of model prediction on the 22 reference nodes using leave-one-

out CV, as described in Sect. 3.2.1. We found similarly stable 26–34 % dynamic calibration error rates and ~3–7 % 

SEMs throughout the weeks (see Figure S4). 

 

Added Figure S4: 10 

 
Figure S4: The 1 week-ahead prediction error of the GPR models (which were pre-trained on the current week’s data) as a 
function of the week being predicted. The error bars represent the standard error of the mean (SEM) of the GPR prediction 
errors of the 22 reference nodes. 

 15 
Added text for the Abstract on Page 1, line 25: 

We further demonstrated that our algorithm performance is insensitive to training window size as the mean 

prediction error rate and the standard error of the mean (SEM) for the 22 reference stations remained consistent at 

~30 % and ~3–4 % when an increment of 2 days’ data were included in the model training. The markedly low 
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requirement of our algorithm for training data enables the models to always be nearly most updated in the field, thus 

realizing the algorithm’s full potential for dynamically surveilling large-scale WLPMSNs by detecting malfunctioning 

low-cost nodes and tracking the drift with little latency. Our algorithm presented similarly stable 26–34 % mean 

prediction errors and ~3–7 % SEMs over the sampling period when pre-trained on the current week’s data and 

predicting 1 week ahead, therefore suitable for online calibration. 5 
 

Added text for the Introduction on Page 3, line 17: 

3) examining the sensitivity of our algorithm to the training data size and the feasibility of it for dynamic calibration; 

 

Added text for the Conclusions on Page 13, line 28: 10 
We showed that our algorithm performance is insensitive to training window size as the mean prediction error rate 

and the standard error of the mean (SEM) for the 22 reference stations remained consistent at ~30 % and ~3–4 % 

when an increment of 2 days’ data were included in the model training. The markedly low requirement of our 

algorithm for training data enables the models to always be nearly most updated in the field, thus realizing the 

algorithm’s full potential for dynamically surveilling large-scale WLPMSNs by detecting malfunctioning low-cost 15 
nodes and tracking the drift with little latency. Our algorithm presented similarly stable 26–34 % mean prediction 

errors and ~3–7 % SEMs over the sampling period when pre-trained on the current week’s data and predicting 1 

week ahead, therefore suitable for dynamic calibration. 

 

Third, when analyzing possible failure modes of sensors to determine if the algorithm can detect these modes, only two 20 
modes are considered: linear drift over time and replacement of the sensor signal with random noise. Other common failure 

modes should also be examined. These should include a “random walk” baseline drift (rather than simple linear drift), 

flatlining of the sensor (either at zero or at a non-zero value), and noisy corruption of a true signal (i.e. adding a random 

noise to the original signal, rather than completely replacing the true signal with random noise).  

Response: We thank the reviewer for his/her expertise in the possible failure modes of sensors and his/her scientific rigor. 25 
As we demonstrated in our response to the reviewer’s second general comment, the performance of our algorithm is 

insensitive to the training data size. And we believe that models with a similar prediction accuracy should have a similar 

failure mode detection power. For example, if the prediction accuracy of the model trained on 59 days’ data is virtually the 

same as the accuracy of the model trained on 2 days’ data (as shown previously), and if the model trained on 59 days is able 

to detect the simulated drift, then so should the model trained on 2 days. Then if we reasonably assume that the drift rate 30 
remains roughly unchanged within a 2-day window (as drift is believed to occur on time periods much longer than 2 days), 

then the drift mode (linear or random), which only dictates how the drift rate jumps (usually smoothly as well) between any 

adjacent discrete 2-day windows, does not matter that much anymore. All that matters is to track that one fixed drift rate 

reasonably well within those 2 days, which is virtually the same as what we already did and demonstrated with the entire 59 
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days’ data in Sect. 3.3.2. Therefore, we do not believe that the mode of drift is a major issue. Regarding flatlining, we 

thank the reviewer for mentioning and defining this type of failure mode. Flatlining is in fact the most commonly seen 

failure mode of our PM sensors in Delhi. The raw signals of such malfunctioning PM sensors were observed to flatline at the 

upper end of the sensor output values (typically thousands of µg m-3). The very distinct signals of these flatlining low-cost 

PM nodes make it rather easy to separate them from the rest of the nodes and filter them out at the early pre-processing stage 5 
before analyses without having to resort to our algorithm. Regarding noisy corruption of a true signal, this particular 

failure mode is commonly seen in low-cost electrochemical sensors (such as ozone and nitrogen dioxide) based on redox 

reactions, but rarely seen in low-cost PM sensors that employ a light-scattering approach. Therefore, we consider the noisy 

corruption failure mode not applicable to or out of the scope of our current paper whose main subject is low-cost PM sensors. 

We have now added the discussion about why we do not need our algorithm to detect flatlining and why the mode of drift 10 
will not affect our simulation results to Sect. 3.3.1 and Sect. 3.3.2, respectively.  

Added text on Page 11, line 8: 

“It is worth mentioning that flatlining is another commonly seen failure mode of our low-cost PM sensors in Delhi. 

The raw signals of such malfunctioning PM sensors were observed to flatline at the upper end of the sensor output 

values (typically thousands of µg m-3). The very distinct signals of these flatlining low-cost PM nodes, however, make 15 
it rather easy to separate them from the rest of the nodes and filter them out at the early pre-processing stage before 

analyses, therefore without having to resort to our algorithm.” 

 

Modified text on Page 12, lines 6-9: 

“We can rebuild a model such as every week using a rolling window (to keep the number of observations for model 20 
construction roughly unchanged) to assess the drifts in the model space over time. After that, the true calibration factors 

obtained from the initial collocation with reference instruments prior to deployment can be adjusted accordingly based on the 

model-estimated drifts. This procedure allows for real-time drift corrections to low-cost node measurements.  

It should be noted that the mode of drift (linear or random drift) will not significantly affect our simulation results. 

As we demonstrated in Sect. 3.2.3, the performance of our algorithm is insensitive to the training data size. And we 25 
believe that models with a similar prediction accuracy should have a similar drift detection power. For example, if the 

prediction accuracy of the model trained on 59 days’ data is virtually the same as the accuracy of the model trained 

on 2 days’ data, and if the model trained on 59 days is able to detect the simulated drift, then so should the model 

trained on 2 days. Then if we reasonably assume that the drift rate remains roughly unchanged within a 2-day 

window, then the drift mode (linear or random), which only dictates how the drift rate jumps (usually smoothly as 30 
well) between any adjacent discrete 2-day windows, does not matter anymore. All that matters is to track that one 

fixed drift rate reasonably well within those 2 days, which is virtually the same as what we already did with the entire 

59 days’ data.” 
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Finally, while the body of the paper presents a good discussion of the limitations of the proposed approach (mainly its need 

for spatial homogeneity in the true concentrations to be fully effective), this discussion is missing from the abstract. I believe 

that this observation is an important result of this paper and should be highlighted in the abstract as well.  

Response: We did attempt to convey this message on Page 1, lines 23-25; however, the message might be somewhat subtle. 

We have now more prominently discussed the limitations of the proposed approach. 5 
Modified text on Page 1, lines 23-25: 

“Of the 22 reference stations, high-quality predictions were observed for those stations whose PM2.5 means were close 

to the Delhi-wide mean (i.e., 138 ± 31 µg m-3) and relatively poor predictions for those nodes whose means differed 

substantially from the Delhi-wide mean (particularly on the lower end). We also observed washed-out local 

variability in PM2.5 across the 10 low-cost sites after calibration using our approach, which stands in marked contrast 10 
to the true wide variability across the reference sites. These observations revealed that our proposed technique (and 

more generally the geostatistical technique) requires high spatial homogeneity in the pollutant concentrations to be 

fully effective.” 

Specific Comments: 

Page 1, Lines 25-29: This is a very long and complex sentence; consider splitting in into several sentences and/or revising 15 
how the information is presented. For exam- ple: “Simulations conducted using our algorithm suggest that in addition to 

dynamic calibration, it can also be adapted to automated monitoring of WLPMSNs. In these simulations, the algorithm was 

able to differentiate malfunctioning or singular low-cost nodes by identifying aberrant model-generated calibration factors 

(i.e. slopes close to zero and intercepts close to the global mean of true PM2.5). The algorithm was also able to track the 

drift of low-cost nodes accurately within 4% error for all the simulation scenarios.”  20 
Response: Thank you, we have made the suggested revision to this sentence.  

Modified text on Page 1, lines 25-29: 

“Simulations conducted using our algorithm suggest that in addition to dynamic calibration, the algorithm can also 

be adapted for automated monitoring of large-scale WLPMSNs. In these simulations, the algorithm was able to 

differentiate malfunctioning low-cost nodes (due to either hardware failure or under heavy influence of local sources) 25 
within a network by identifying aberrant model-generated calibration factors (i.e., slopes close to zero and intercepts 

close to the Delhi-wide mean of true PM2.5). The algorithm was also able to track the drift of low-cost nodes 

accurately within 4 % error for all the simulation scenarios.”  

 

Page 1, Line 27: I am not clear on what is meant by a “singular” node.  30 
Response: “Singular” node means an anomalous/abnormal node that reports signals that are spatially uncorrelated with other 

normal nodes within the network, due to under heavy influence of local sources. This echoes Section 3.3.1. The word 
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“singular” was meant to differentiate the situation from sensor failure (“malfunctioning”). Given the confusion this word 

gives, we have removed “singular” throughout the manuscript. Instead, we have clarified that “malfunctioning" corresponds 

to two situations throughout the manuscript (i.e., sensor hardware failure and sensors under heavy influence of local 

sources). 

Modified text on Page 1, lines 26-28: 5 
“In these simulations, the algorithm was able to differentiate malfunctioning low-cost nodes (due to either hardware 

failure or under heavy influence of local sources) within a network by identifying aberrant model-generated calibration 

factors (i.e., slopes close to zero and intercepts close to the global mean of true PM2.5).” 

 

Modified text on Page 11, lines 2-4: 10 
“These two observations indicate that the GPR model enables automated and streamlined process of instantly spotting any 

malfunctioning low-cost nodes (due to either hardware failure or under heavy influence of local sources) within a large-

scale sensor network.” 

 

Modified text on Page 13, lines 30-32: 15 
“Simulations proved our algorithm’s capability of differentiating malfunctioning low-cost nodes (due to either hardware 

failure or under heavy influence of local sources) within a network and of tracking the drift of low-cost nodes accurately 

with less than 4 % errors for all the simulation scenarios.” 

 

Page 2, Line 14: I assume you mean “since the emergence of low-cost AQ sensors” Rather than “since the emergence of 20 
calibration-related issues”. It might be better to state that.  

Response: Thank you for pointing this out, we have revised the sentence accordingly. 

Modified text on Page 2, line 14: 

“On the down side, researchers have been plagued by calibration-related issues since the emergence of low-cost AQ 

sensors.” 25 
 

Page 3, Line 10: These coordinates are likely too precise to denote the city of Delhi generally. It is probably sufficient here 

to just state “Delhi, India”, rather than providing coordinates, unless you are trying to describe a specific location within 

the city.  

Response: Thank you, we have removed the coordinates. 30 
Modified text on Page 3, line 10: 

“…collocation calibration by leveraging all available reference monitors across an area (e.g., Delhi, India).” 

 

Page 3, Line 18: Rather than “drift nodes” I would say “the drift of nodes”.  
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Response: Thank you, we have made the suggested change to wording. 

Modified text on Page 3, line 18: 

“…auto-detect the faulty and auto-correct the drift of nodes within a network via computational simulation, …” 

 

Page 4: Line 15: Use “the” rather than “our”.  5 
Response: Thank you, we have made the suggested change  

Modified text on Page 4, line 15: 

“…KairosDB as the primary fast scalable time series database built on Apache Cassandra, …” 

 

Page 5, Lines 6-7: It is not clear to me why the GPR model would require data from all stations to operate. If it is 10 
interpolating between stations then it should be able to fill in for any missing station data as well.  

Response: The reviewer is correct. Mathematically, the GPR model would only require data from at least one reference 

monitoring station to operate. In this paper, the choice of attempting to interpolate all the stations’ missing data first was 

made based on some practical reasons, specifically the speed of the algorithm/program. Theoretically, relying on GPR model 

to fill in for any missing station data is 59 (the number of daily-averaged data points) times slower. This theoretical upper 15 
bound is 59 because the algorithm will have to loop through each of the 59 days if each day’s missing reference and low-cost 

nodes are different. And this process is relatively computationally expensive because it involves many matrix inversions. In 

reality, the algorithm with interpolating all the stations’ missing data first takes ~10 mins to run 22 times (a complete leave-

one-out process) while the algorithm without any interpolation takes ~200 mins to run 22 times. If a complete leave-one-out 

process takes 200 min to run, it will be nearly impossible to implement the simulation experiments shown in Section 3.3. We 20 
have now clarified our motivation for requiring data from all the stations to operate the GPR model in this paper. 

Modified text on Page 5, lines 6–10: 

“While mathematically the GPR model can operate without requiring data from all the stations to be non-missing on 

each day by relying on only each day’s non-missing stations’ covariance information to make inference, we 

practically required concurrent measurements of all the stations in this paper to drastically increase the speed of the 25 
algorithm (~10 mins to run a complete 22-fold leave-one-out CV, up to ~20 times faster) by avoiding the expensive 

computational cost of excessive amount of matrix inversions that can be incurred otherwise. We therefore linearly 

interpolated the 1 h PM2.5 values for the hours with missing measurements for each station, after which we averaged the 

hourly data to daily resolution as the model inputs.” 

 30 
Page 5, Line 20: The meaning of “with that of after missing data imputation” is not clear.  

Response: “with that of after missing data imputation” means “with 1 h PM2.5’s completeness after missing data imputation”. 

The whole sentence “The comparison of initial 1 h PM2.5’s completeness with that of after missing data imputation for both 

reference and low-cost nodes is detailed in Table 1” means “The comparison between the initial 1 h PM2.5’s completeness 
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and the 1 h PM2.5’s completeness after missing data imputation for both reference and low-cost nodes is detailed in Table 1”. 

We have now revised the sentence to make its meaning clearer. 

Modified text on Page 5, lines 20–21: 

“The comparison of 1 h PM2.5’s completeness before and after missing data imputation for both reference and low-cost 

nodes is detailed in Table 1 and…” 5 
 

Page 5, Line 21: I don’t know if “imputed” is the correct word to use here. 

Response: Imputation just means replacing missing values with estimated values based on available information. Therefore, 

the word “imputed” seems reasonable to me. 

Text remains unmodified. 10 
 

Page 5, Line 29: Should be “while outliers have scores significantly larger than 1”.  

Response: Thank you, we have revised the sentence accordingly. 

Modified text on Page 5, line 29: 

“Normal observations tend to have LOF scores near 1 while outliers have scores significantly larger than 1.” 15 
 

Page 6, Line 19 to Page 7, Line 5: This description could be improved. In particular, it is not clear how the alpha and beta 

parameters of Equation 3 are determined. The description seems to combine a linear regression and a calibration of the 

hyperparam- eters of the Gaussian Process. These two steps should be described separately.  

Response: We agree with the reviewer on that “how the alpha and beta parameters of Equation 3 are determined” should be 20 
more clearly described. The 𝛼) and 𝛽)  parameters of Equation 3 were determined by fitting a simple linear regression model 

to all available pairs of daily PM2.5 mass concentrations from the uncalibrated low-cost node i (independent variable) and its 

closest reference node (dependent variable). The 𝛼) and 𝛽)  parameters are the slope and intercept of the fitted simple linear 

regression calibration model, respectively. As shown in Equation 3, the 𝛼) and 𝛽)  calibration factors were then used to 

calibrate each low-cost node i to its closest reference node to bridge disagreements between low-cost and reference node 25 
measurements which led to a more consistent spatial interpolation and a faster convergence during model optimization. 

Therefore, “the linear regression step (called low-cost node initialization, corresponding to step 2 in Fig. 3, described on 

page 6, lines 19-23) and the training/optimization of the hyperparameters of the GPR model (corresponding to step 3 in Fig. 

3, described on page 6, lines 23-29, starting from ‘After standardizing’)” were previously described separately. To better 

highlight this fact and in order to avoid confusion, we have now added additional details to the low-cost node initialization 30 
step, have split the descriptions of the two steps into two separate paragraphs, have re-organized the places of Equations 3-5, 

and have added additional texts to explain the terms in Equations 3-5. 

Modified text from Page 6, line 19 to Page 7, line 5: 
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“What separates our method from standard GP applications is the simultaneous incorporation of calibration for the low-cost 

nodes using a simple linear regression model into the spatial model. Linear regression has previously been shown to be 

effective at calibrating PM sensors (Zheng et al., 2018). Linear regression was first used to initialize low-cost nodes’ 

calibrations (step two in Fig. 3). In this step, each low-cost node i was linearly calibrated to its closest reference node 

using Eq. (3), where the calibration factors 𝜶𝒊 (slope) and 𝜷𝒊 (intercept) were determined by fitting a simple linear 5 
regression model to all available pairs of daily PM2.5 mass concentrations from the uncalibrated low-cost node i 

(independent variable) and its closest reference node (dependent variable). This step aims to bridge disagreements 

between low-cost and reference node measurements, which can lead to a more consistent spatial interpolation and a faster 

convergence during the GPR model optimization. 

𝒓) = q 𝒚), if	reference	node
𝛼) ∙ 𝒚) +	𝛽) , if	low − cost	node         (3) 10 

where 𝒚𝒊 is either a vector of all the daily PM2.5 measurements of reference node i or a vector of all the daily raw PM2.5 

signals of low-cost node i; 𝒓𝒊 is either a vector of all the daily PM2.5 measurements of reference node i or a vector of all 

the daily calibrated PM2.5 measurements of low-cost node i; 𝛼)  and 𝛽)  are the slope and intercept, respectively, 

determined from the fitted simple linear regression calibration equation with daily PM2.5 mass concentrations of the 

uncalibrated low-cost node i as independent variable and PM2.5 mass concentrations of low-cost node i's closest 15 
reference node as dependent variable. 

 

In the next step (step three in Fig. 3), a GPR model was fit to each day t’s 31 nodes (i.e., 10 initialized low-cost nodes and 

21 reference nodes) as described in Eq. (4). Prior to the GPR model fitting, all the PM2.5 measurements of the 31 nodes 

over 59 valid days used for GPR model hyperparameters training were standardized. The standardization was 20 
performed by first concatenating all these training PM2.5 measurements (from the 31 nodes over 59 days), then 

subtracting their mean 𝜇@~�):):� and dividing them by their standard deviation 𝑠@~�):):�(i.e., transforming all the training 

PM2.5 measurements to have a zero mean and unit variance). After the standardization of training samples, the GPR was 

trained to maximize the log marginal likelihood over all 59 days using Eq. 5 and using an L-BFGS-B optimizer (Byrd et al., 

1994). To avoid bad local minima, several random hyperparameter initializations were tried and the initialization that 25 
resulted in the largest log marginal likelihood after optimization was chosen (in this paper, 𝚯 = [𝝈𝒔𝟐 , 𝒍, 𝝈𝒏𝟐] was 

initialized to [0.1, 50, 0.01]).” 

𝒓@|Γ ∼ 𝑁(𝝁, 𝚺)            (4) 

where t ranges from 1 (inclusive) to 59 (inclusive); 𝒓𝒕 ∈ ℝ𝟑𝟏	is a vector of all 31 nodes’ PM2.5 measurements (calibrated 

if low-cost nodes) on day t; 𝚪 = {𝒙𝟏,… , 𝒙𝟑𝟏}	denotes 31 nodes’ locations and 𝒙𝒊 ∈ ℝ𝟐	is a vector of the latitude and 30 
longitude of node i; 𝝁 ∈ ℝ𝟑𝟏	represents the mean function (assumed to be 𝟎 in this study) and	𝚺 ∈ ℝ𝟑𝟏×𝟑𝟏	with 𝚺𝒊𝒋 =

𝑲Z𝒙𝒊, 𝒙𝒋; 𝚯\ represents the covariance function/kernel function. 
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arg	max
𝚯
𝐿(𝚯) = arg	max

𝚯
∑ log 𝑝(𝒓@|𝚯)FG
@�J 	= arg	max

𝚯
	(−0.5 ∙ 59 ∙ log|𝚺�| − 0.5∑ 𝒓@�𝚺�cJ𝒓@FG

@�J )  (5)	

where 𝚯 ∈ ℝ𝟑	is a vector of the GPR hyperparameters 𝜎78, 𝑙, and 𝜎:8.” 

 

Page 6, Lines 23-24: The process of “standardization” is not clear to me. If this is done separately for each node, wouldn’t 

this eliminate any systematic differences between measurement locations? If this step is only done to the data which are to be 5 
used for calibrating the model hyperparameters, then that should be stated. Even so, it is not clear that this is an appropriate 

step; for example, two node may be systematically higher than other locations, and so should have a mutual correlation, 

while if the means are subtracted, the data from the nodes would no longer be correlated (in other words, two variables can 

be made similar in a GP model either by giving them a high mutual correlation or by giving them a smaller prior variance 

and the same prior mean).  10 
Response: We agree with the reviewer on that the standardization process should be more clearly described. First, the 

standardization was not done separately for each node. The original text (“After standardizing the PM2.5 measurements for 

each node…”) did not describe the process accurately. All the PM2.5 measurements of the 31 nodes over 59 valid days used 

for GPR model hyperparameters training were standardized at once. The standardization was performed by first 

concatenating all these training PM2.5 measurements (from the 31 nodes over 59 days), then subtracting their mean 𝜇@~�):):� 15 
and dividing them by their standard deviation 𝑠@~�):):�(i.e., transforming all the training PM2.5 measurements to have a zero 

mean and unit variance). Therefore, the standardization done in this way will not eliminate any systematic differences 

between measurement locations. Second, the standardization was only done to the data used for training/optimizing the 

hyperparameters of the GPR model (i.e., all the PM2.5 measurements of the 31 nodes over 59 valid days). The holdout node’s 

PM2.5 measurements were never used to calculate the 𝜇@~�):):� and 𝑠@~�):):�. Third, assuming the mean function 𝝁 ∈ ℝMJ	to 20 
be 𝟎 in this study along with standardizing all the training stations’ PM2.5 measurements to have a zero mean and unit 

variance is absolutely an appropriate step and will not destroy the correlations. The correlations can be learned from the 

covariance matrix. Assuming a same mean value for all the stations is one of the common modelling formulations on the 

GPR model and the simplest one. Alternative modelling formulations include a station-specific mean function (lack of prior 

information for this project), a time-dependent mean function (computationally expensive), and a combination of both. These 25 
relatively complex formulations were not considered for this paper.  

Modified text on Page 6, lines 23-26: 

“In the next step (step three in Fig. 3), a GPR model was fit to each day t’s 31 nodes (i.e., 10 initialized low-cost nodes 

and 21 reference nodes) as described in Eq. (4). Prior to the GPR model fitting, all the PM2.5 measurements of the 31 

nodes over 59 valid days used for GPR model hyperparameters training were standardized. The standardization was 30 
performed by first concatenating all these training PM2.5 measurements (from the 31 nodes over 59 days), then 

subtracting their mean 𝜇@~�):):�  and dividing them by their standard deviation 𝑠@~�):):�	(i.e., transforming all the 

training PM2.5 measurements to have a zero mean and unit variance). It is worth noting that assuming the mean function 
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𝝁 ∈ ℝ𝟑𝟏	to be 𝟎 along with standardizing all the training PM2.5 samples in this study is one of the common modelling 

formulations on the GPR model and the simplest one. More complex formulations including a station-specific mean 

function (lack of prior information for this project), a time-dependent mean function (computationally expensive), 

and a combination of both were not considered for this paper. After the standardization of training samples, the GPR 

was trained to maximize the log marginal likelihood over all 59 days using Eq. 5 and using an L-BFGS-B optimizer (Byrd 5 
et al., 1994).” 

 

Equation 4: What is Gamma?  

Response: Gamma, Γ = {𝑥J,… , 𝑥MJ},	denotes 31 nodes’ locations and 𝑥) ∈ ℝ8	is a vector of the latitude and longitude of 

node i. This was originally stated on page 6, lines 5-6. We have now also added the description of the Γ term to Equation 4. 10 
Modified Equation 4: 

“𝒓@|Γ ∼ 𝑁(𝝁, 𝚺)            (4) 

where t ranges from 1 (inclusive) to 59 (inclusive); 𝒓𝒕 ∈ ℝ𝟑𝟏	is a vector of all 31 nodes’ PM2.5 measurements (calibrated 

if low-cost nodes) on day t; 𝚪 = {𝒙𝟏,… , 𝒙𝟑𝟏}	denotes 31 nodes’ locations and 𝒙𝒊 ∈ ℝ𝟐	is a vector of the latitude and 

longitude of node i; 𝝁 ∈ ℝ𝟑𝟏	represents the mean function (assumed to be 𝟎 in this study) and	𝚺 ∈ ℝ𝟑𝟏×𝟑𝟏	with 𝚺𝒊𝒋 =15 

𝑲Z𝒙𝒊, 𝒙𝒋; 𝚯\ represents the covariance function/kernel function.” 

 

Page 7, line 7: What does the bold-face Theta denote? Are these the hyperparameters of the GP model as described in 

Equation 2?  

Response: The bold-face Theta (𝚯 ∈ ℝM) denotes the vector of the GPR hyperparameters 𝜎78, 𝑙, and 𝜎:8. This was originally 20 
stated in Equation 5. Yes, these are the same hyperparameters of the GPR model as described in Equation 2. Thank you for 

pointing out the discrepancy in the Theta notation between Equations 2 and 5. We have now changed the Theta notation in 

both Equations 1 and 2 to bold-face Theta (𝚯 ∈ ℝM). 

Modified Equation 1: 

“𝒚@|Γ ∼ 𝑁(𝝁, 𝚺)            (1) 25 
where 𝝁 ∈ ℝMJ	represents the mean function (assumed to be 𝟎 in this study); 𝚺 ∈ ℝMJ×MJ	with Σ)X = 𝐾Z𝒙), 𝒙X; 𝚯\ represents 

the covariance function/kernel function and 𝚯 is a vector of the GPR hyperparameters.” 

 

Modified Equation 2: 

“𝐾Z𝒙), 𝒙X; 𝚯\ = 𝜎78 𝑒𝑥𝑝 `−
a𝒙bc𝒙dae

e

8fe
g + 𝜎:8𝑰 (Rasmussen and Williams, 2006)     (2) 30 

where 𝜎78, 𝑙, and 𝜎:8 are the model hyperparameters (to be optimized) that control the signal magnitude, characteristic length-

scale, and noise magnitude, respectively;	𝚯 ∈ ℝ𝟑	is a vector of the GPR hyperparameters 𝝈𝒔𝟐, 𝒍, and 𝝈𝒏𝟐 .” 
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Page 7, Lines 10-11: It is not clear what it means to re-calibrate a node based on its posterior mean. I am assuming this 

involves adjusting the alpha and beta parameters, but this is not clear.  

Response: We agree with the reviewer on that not enough details were provided to fully clarify what it means to re-calibrate 

a low-cost node based on its conditional mean. But the reviewer’s assumption is correct. “Re-calibrating a low-cost node 5 
based on its conditional mean” just means first fitting a simple linear regression model to all 59 pairs of daily PM2.5 mass 

concentrations from the uncalibrated low-cost node i (𝒚), independent variable) and its conditional mean (𝝁𝑨|𝑩𝒊 , dependent 

variable) and then using this newly fitted simple linear regression calibration model to calibrate the low-cost node i again. As 

the reviewer said, this is essentially adjusting/updating the calibration factors 𝛼) (slope) and 𝛽)  (intercept) in Equation 3. This 

step is also the “simple linear regression” step of the entire “simultaneous GPR and simple linear regression” algorithm. We 10 
have now added additional descriptions to clarify this process. 

Modified text on Page 7, lines 8-11: 

“Once the optimum 𝚯 for the (initial) GPR was found, we used the learned covariance function to find the mean of each 

low-cost node i’s Gaussian Distribution conditional on the remaining 30 nodes within the network (i.e., 𝜇=|?)@ ) on day t as 

described mathematically in Eq. (6)–(8) and repeatedly did so until all 59 days’ 𝜇=|?)@ 	(i.e., 𝝁𝑨|𝑩𝒊 ∈ ℝ𝟓𝟗)	were found and then 15 

re-calibrated that low-cost node i based on the 𝝁𝑨|𝑩𝒊 . The re-calibration was done by first fitting a simple linear 

regression model to all 59 pairs of daily PM2.5 mass concentrations from the uncalibrated low-cost node i (𝒚𝒊, 

independent variable) and its conditional mean (𝝁𝑨|𝑩𝒊 , dependent variable) and then using the updated calibration 

factors (slope 𝜶𝒊 and intercept 𝜷𝒊) obtained from this newly fitted simple linear regression calibration model to 

calibrate the low-cost node i again (using Eq. 3).” 20 
 

Page 7, Line 29: What criteria are used for convergence?  

Response: The criteria used for convergence are the differences in all the GPR hyperparameters between the two adjacent 

runs below 0.01 (i.e., with ∆𝜎78 ≤ 0.01, ∆𝑙 ≤ 0.01, 𝑎𝑛𝑑	∆𝜎:8 ≤ 0.01). 

Modified text on Page 7, line 29: 25 
“…until the GPR parameters 𝚯  converged with the convergence criteria being the differences in all the GPR 

hyperparameters between the two adjacent runs below 0.01 (i.e., with ∆𝝈𝒔𝟐 ≤ 𝟎. 𝟎𝟏, ∆𝒍 ≤ 𝟎. 𝟎𝟏, 𝒂𝒏𝒅	∆𝝈𝒏𝟐 ≤ 𝟎. 𝟎𝟏).” 

 

Page 7, Line 31: This relates to a previous comment, I believe, but it should be de- scribed how the predictions are 

transformed back into the original PM scale.  30 
Response: We agree that how the back transformation of the predictions was done should be more clearly described. Since 

standardization is just linear transformation, back transformation is relatively simple. The predictions were transformed back 
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by multiplying the standard deviation 𝑠@~�):):�  (the standard deviation of the training PM2.5 measurements) and then adding 

back the mean 𝜇@~�):):� (the mean of the training PM2.5 measurements).  

Modified text on Page 7, line 31: 

“…with the standardized predictions being transformed back to the original PM2.5 measurement scale at the end. The back 

transformation was done by multiplying the predictions by the standard deviation 𝒔𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 (the standard deviation of 5 
the training PM2.5 measurements) and then adding back the mean 𝝁𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈  (the mean of the training PM2.5 

measurements).” 

 

Page 9, Lines 10-12: This sentence can be better written as “. . .the reference node mapping accuracy follows a pattern, with 

relatively high quality prediction for those nodes whose means are close to the global mean (e.g., global mean ± SD as high- 10 
lighted with shading in Table 2) and relatively poor prediction for those nodes whose means differ substantially from the 

global mean (particularly on the lower end)”.  

Response: We appreciate the suggestion and have revised the sentence accordingly. 

Modified text on Page 9, lines 10-12: 

“. . .the reference node mapping accuracy follows a pattern, with relatively high-quality prediction for those nodes whose 15 
means were close to the Delhi-wide mean (e.g., Delhi-wide mean ± SD as highlighted with shading in Table 2) and 

relatively poor prediction for those nodes whose means differed substantially from the Delhi-wide mean (particularly on 

the lower end).” 

 

Page 9, Line 21: It is unclear what the “scale of 10” refers to. 20 
Response: The “scale of 10” refers to the number of the low-cost nodes within the network is 10. We have now clarified this. 

Modified text on Page 9, line 21: 

“While only a marginal improvement with 10 low-cost nodes in the network, …” 

 

Page 12, Line 4: It is unclear what “quality drift estimation” is. 25 
Response: “quality drift estimation” means “high-quality drift estimation”. 

Modified text on Page 12, line 4: 

“The high-quality drift estimation has therefore presented another convincing case …” 

 

Page 12, Line 11: This should be “Questions which remain unsolved”. 30 
Response: Thank you for pointing this out. We have now corrected it. 

Modified text on Page 12, line 11: 

“Questions which remain unsolved are …” 
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Page 13, Lines 24-27: The end of this sentence may be incomplete.  

Response: The sentence on Page 13, lines 21-27 is complete but very long and complex, which has caused confusion. We 

have now split it into several sentences. 

Modified text on Page 13, lines 21-27: 5 
“We closely investigated into 1) the large model calibration errors (~50 %) at two Atmos regional background sites (3-

month mean PM2.5: ~72 µg m-3) where our E-BAMs were collocated; 2) the similarly large model prediction errors at the 

comparatively clean Pusa and Sector 62 reference sites; and 3) the washed-out local variability in the model calibrated low-

cost sites. These observations revealed that the performance of our technique (and more generally the geostatistical 

techniques) can calibrate the low-cost nodes dynamically, but effective only if the degree of urban homogeneity in PM2.5 is 10 
high. High urban homogeneity scenarios can be that the local contributions are as small a fraction of the regional ones as 

possible or the local contributions are prevalent but of similar magnitudes.” 

 

Page 13, Line 31: Again, it is not clear what is meant by a singular node.  

Response: This was addressed previously. “Singular” node means an anomalous/abnormal node that reports signals that are 15 
spatially uncorrelated with other normal nodes within the network, due to under heavy influence of local sources. This 

echoes Section 3.3.1. The word “singular” was meant to differentiate the situation from sensor failure (“malfunctioning”). 

Given the confusion this word gives, we have removed “singular” throughout the manuscript. Instead, we have clarified that 

“malfunctioning" corresponds to two situations throughout the manuscript (i.e., sensor hardware failure and sensors under 

heavy influence of local sources). 20 
Modified text on Page 13, lines 30-32: 

“Simulations proved our algorithm’s capability of differentiating malfunctioning low-cost nodes (due to either hardware 

failure or under heavy influence of local sources) within a network and of tracking the drift of low-cost nodes accurately 

with less than 4 % errors for all the simulation scenarios.” 

 25 
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Response to Comments from Reviewer #2 AMT-2019-55 

The authors would like to sincerely thank the reviewer #2 for the careful review of the manuscript and the very constructive 

comments which helped improve the manuscript. The reviewer’s comments are in italics, the summaries of our responses are 

in plain font, and the changes in the manuscript are in bold red text. Page and line numbers refer to the original document. 

We also appended a marked-up manuscript version to the end of the responses to better show all the changes made from this 5 
review.  

Reviewer #2 

Major Comments: 

1. I am unconvinced by the authors claims that they reduce the uncertainty in the spatial interpolation of reference networks 

– this needs a better description and error analysis to show the 2% improvement is statistically significant and/or applicable 10 
across different parts of the network in both space and time.  

Response: We agree with the reviewer on that the results (i.e., p-values) of rigorous statistical tests can be more convincing 

to readers that modelling with low-cost nodes can decrease the extent of pure interpolation among only reference stations. 

We used the Wilcoxon rank-sum test, also called Mann-Whitney U test (Wilcoxon, 1945; Mann and Whitney, 1947) to 

prove that the accuracy improvement is significant (at least) when the optimum number of reference stations is used. The 15 
Wilcoxon rank-sum test is a non-parametric version of the parametric t-test (involving two independent samples/groups) that 

requires no specific distribution on the measurements (unlike the parametric t-test that assumes a normal distribution). We 

did not use a paired test here because the reference nodes for algorithm training for each simulation run were randomly 

chosen. Specifically in our study, for each number of reference stations, the two independent samples (100 replications per 

sample) are the 100 replications of the mean of the 24 h percent errors (in predicting all the holdout reference nodes) from 20 
the 100 repeated random simulations when modelling with and without the low-cost nodes, respectively. We conducted a 

one-sided test which has the null hypothesis that our model’s mean 24 h prediction percent errors with and without including 

the low-cost nodes are the same (i.e., H0: with = without) against the alternative that the error with the low-cost nodes is 

smaller than the error without them (i.e., H1: with < without). The p-values of the Wilcoxon rank-sum tests are superimposed 

on the original Figure 9 (see the modified Figure 9 below). The level of statistical significance was chosen to be 0.05, which 25 
means that the null hypothesis (i.e., H0: with = without) can be rejected in favor of the alternative (i.e., H1: with < without) 

when p-values are below 0.05. The modified Figure 9 shows that the accuracy improvement is significant (at least) when the 

number of reference stations is optimum (i.e., 19 or 20). Significant accuracy improvements were also observed for 17 and 

18 reference stations that had comparably low prediction errors. We think that it is reasonable/meaningful to view the entire 

sensor network in Delhi as a whole system and analyze, compare, and report how well this whole system performs rather 30 
than segment it into sub-parts. Additionally, given that our sampling period was relatively short, it makes sense to analyze, 
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compare, and report how well this whole system performs over the entire sampling period. We have now added the 

description and the results of the Wilcoxon rank-sum tests to the manuscript. We have also slightly modified our original 

findings based on the statistical test results. 

Modified text on Page 13, lines 5-12: 

“At last, we used the Wilcoxon rank-sum test, also called Mann-Whitney U test (Wilcoxon, 1945; Mann and Whitney, 5 
1947) to prove that modelling with the 10 low-cost nodes can statistically significantly reduce the uncertainty of 

spatial interpolation of the reference node measurements in comparison to modelling without them, (at least) when 

the number of reference stations is optimum. The Wilcoxon rank-sum test is a non-parametric version of the 

parametric t-test (involving two independent samples/groups) that requires no specific distribution on the 

measurements (unlike the parametric t-test that assumes a normal distribution). We did not use a paired test here 10 
because the reference nodes for algorithm training for each simulation run were randomly chosen. Specifically in our 

study, for each number of reference stations, the two independent samples (100 replications per sample) are the 100 

replications of the mean of the 24 h percent errors (in predicting all the holdout reference nodes) from the 100 

repeated random simulations when modelling with and without the low-cost nodes, respectively. We conducted a one-

sided test which has the null hypothesis that our model’s mean 24 h prediction percent errors with and without 15 
including the low-cost nodes are the same (i.e., H0: with = without) against the alternative that the error with the low-

cost nodes is smaller than the error without them (i.e., H1: with < without). The p-values of the Wilcoxon rank-sum 

tests are superimposed on Fig. 9. The level of statistical significance was chosen to be 0.05, which means that the null 

hypothesis (i.e., H0: with = without) can be rejected in favor of the alternative (i.e., H1: with < without) when p-values 

are below 0.05. Figure 9 shows that the accuracy improvement when modelling with the 10 low-cost nodes is 20 
statistically significant when the optimum number of reference stations (i.e., 19 or 20) is used. Significant accuracy 

improvements were also observed for 17 and 18 reference stations that had comparably low prediction errors. 

Therefore, we conclude that when viewing the entire sensor network in Delhi as a whole system over the entire 

sampling period, modelling with the 10 low-cost nodes can decrease the extent of pure interpolation among only 

reference stations, (at least) when the number of reference stations is optimum. including low-cost nodes in the model 25 
building can most of the time reduce the model’s errors notably when more than nine reference nodes are sampled (i.e., 

when the number of simulated reference nodes is favorable for carrying out the technique). And for the comparatively ideal 

17–20 nodes, we even observed approximately non-overlapping 95 % confidence intervals, suggesting significantly lower 

errors are yielded when low-cost nodes are incorporated. The accuracy gains are still relatively minor because of the 

suboptimal size of the low-cost node network (i.e., 10). We postulate that once the low-cost node network scales up to 100s, 30 
the model constructed using the full network information can be more accurate than the one with only the information of 

reference nodes by considerable margins.” 
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Modified Figure 9: 

 
Figure 9: Average 24 h percent errors of the GPR model for predicting the holdout reference nodes in the network as a function of the 5 
number of reference stations used for the model construction under two scenarios — using the full sensor network information by 
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including both reference and low-cost nodes and using only the reference nodes for the model construction. Note each data point (mean 
value) is derived from 100 simulation runs. The error bars indicating 95 % CI of the means are based on 1000 bootstrap iterations. All 
scenarios were given the initial parameter values and bounds that maximize the model performance. The p-value of the Wilcoxon rank-
sum test for each reference station number is superimposed, where p-value below 0.05 means that the error when modelling with 
the 10 low-cost nodes is smaller than the error without them for that reference station number. 5 

 

Added reference on Page 16, line 14: 

“Mann, H. B. and Whitney, D. R.: On a Test of Whether one of Two Random Variables is Stochastically Larger than 

the Other, The Annals of Mathematical Statistics, 18(1), 50–60, doi:10.1214/aoms/1177730491, 1947.” 

 10 
Added reference on Page 17, line 19: 

“Wilcoxon, F.: Individual Comparisons by Ranking Methods, Biometrics Bulletin, 1(6), 80–83, doi: 10.2307/3001968, 

1945.” 

 

2. The authors interpolate data for both reference stations and LCS without any evidence this is a valid assumption. If this is 15 
going to stand, the authors should spend some time convincing the readers this is an appropriate methodology. The authors 

could quite easily show this by taking periods where the data are complete and comparing the linear interpolation results to 

the known concentrations. There is also no mention of the length of time covered by the temporal interpolations – are they 

just interpolating an hour? 12 hours?  

Response: We thank the reviewer for bringing up the validity of interpolation. Mathematically, the GPR model can operate 20 
without requiring data from all the stations to be non-missing on each day by relying on only the non-missing stations’ 

covariance information on each day for inference. In this paper, the choice of attempting to interpolate all the stations’ 

missing data first was made based on some practical reasons, one of the most important being the speed of the 

algorithm/program. Theoretically, relying on only the non-missing stations’ covariance information on each day for 

inference is 59 (the number of daily-averaged data points) times slower. This theoretical upper bound is 59 because the 25 
algorithm will have to loop through each of the 59 days if each day’s missing reference and low-cost nodes are different. 

And this process is relatively computationally expensive because it involves an excessive amount of matrix inversions. In 

reality, with 59 daily-averaged data points, the algorithm with interpolating all the stations’ missing data first takes ~10 mins 

to run 22 times (a complete 22-fold leave-one-out cross-validation) while the algorithm without any interpolation takes ~200 

mins to run 22 times. If a complete 22-fold leave-one-out cross-validation takes 200 mins to run, it will be nearly impossible 30 
to implement the simulation experiments shown in Section 3.3. We are mentioning these because we would like to prove 

that interpolating data for both reference and low-cost nodes is an appropriate methodology for this paper by 

showing that the accuracies of model prediction on the 22 reference nodes with and without interpolation are 

statistically the same. The comparison of the model prediction percent errors for the 22 reference stations with and without 

interpolation is shown in the newly added Table S1 (see below). The percent errors for all the stations are essentially the 35 
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same with only one exception of station Vasundhara whose error without interpolation is 10 % lower than that with 

interpolation. The Delhi-wide mean percent errors averaged over the 22 reference stations are also essentially the same (30 % 

and 29 % for with and without interpolation, respectively). We used the Wilcoxon signed-rank test (Wilcoxon, 1945) to 

prove that the two related paired samples (i.e., the percent errors for the 22 reference stations with and without interpolation) 

are statistically the same. The Wilcoxon signed-rank test is a non-parametric version of the parametric paired t-test 5 
(involving two related/matched samples/groups) that requires no specific distribution on the measurements (unlike the 

parametric paired t-test that assumes a normal distribution). We conducted a two-sided test which has the null hypothesis 

that the percent errors for the 22 reference stations with and without interpolation are the same (i.e., H0: with = without) 

against the alternative that they are not the same (i.e., H1: with ≠ without). The p-value of the test is 0.07. The level of 

statistical significance was chosen to be 0.05, which means that the null hypothesis (i.e., H0: with = without) cannot be 10 
rejected when the p-value is 0.07, above 0.05. Therefore, interpolating data for both reference and low-cost nodes is 

appropriate for this paper because the accuracies of model prediction on the 22 reference nodes with and without 

interpolation are not distinct based on the Wilcoxon signed-rank test result. Regarding there is also no mention of the 

length of time covered by the temporal interpolations, the periods over which 1 h data were imputed for each site are 

already illustrated in Fig. S1; we also already specified on Page 5, lines 8-10 that the interpolation was implemented on the 1 15 
h averaged measurements for each station; additionally, the comparison of 1 h PM2.5’s percentage completeness with respect 

to the entire sampling period (i.e., from January 1, 2018 00:00 to March 31, 2018 23:59, Indian Standard Time, IST, in total 

90 days, 2160 hours) before and after missing data imputation for both reference and low-cost nodes is already provided in 

Table 1 (this means that a 10 % increase in the percentage completeness after interpolation is equivalent to ~216 hours of 

data being interpolated); Given all these pieces of information that have already been provided previously, we believe 1) 20 
readers can have a good understanding of how much data were interpolated for each station (also whether the interpolation 

was done an hour here and there or over a large chunk of time) and 2) curious readers can also easily work out the exact 

number of hours being interpolated for each station. Again, we would like to emphasize that the interpolation approach 

in this paper has little effect on the model’s overall prediction accuracy considering all the 22 reference stations and 

does not affect any of the conclusions in this paper. We have now added the validation of our interpolation approach to 25 
Sect. 3.2.1 of the manuscript, including showing the comparison of accuracies of model prediction on the 22 reference nodes 

with and without interpolation in the newly added Table S1 and proving that they are not distinct based on the Wilcoxon 

signed-rank test. We have now also modified Table 1 caption to make it more informative about how to interpret the 

percentage data completeness such as indicating that a 10 % increase in the percentage completeness after interpolation is 

equivalent to 216 hours of 1 h data being interpolated. 30 
 

Modified text on Page 5, lines 6–10: 

“While mathematically the GPR model can operate without requiring data from all the stations to be non-missing on 

each day by relying on only each day’s non-missing stations’ covariance information to make inference, we 
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practically required concurrent measurements of all the stations in this paper to drastically increase the speed of the 

algorithm (~10 mins to run a complete 22-fold leave-one-out CV, up to ~20 times faster) by avoiding the expensive 

computational cost of excessive amount of matrix inversions that can be incurred otherwise. We therefore linearly 

interpolated the 1 h PM2.5 values for the hours with missing measurements for each station, after which we averaged the 

hourly data to daily resolution as the model inputs. We validate our interpolation approach in Sect. 3.2.1 by showing that 5 
the model accuracies with and without interpolation are statistically the same.” 

 

Added text on Page 9, line 13: 

“In this paper, we interpolated the missing 1 h PM2.5 values for all the reference and low-cost stations to fulfil our 

requirement of concurrent measurements of all the stations. This approach drastically increased the speed of the 10 
algorithm (up to ~20 times faster) by avoiding the expensive computational cost of excessive amount of matrix 

inversions that can be incurred from relying on only each day’s non-missing stations’ covariance information to make 

inference. Here we prove that the interpolation is an appropriate methodology for this paper by demonstrating that 

the model prediction percent errors for the 22 reference stations with and without interpolation are statistically the 

same. The comparison of the errors for each station can be found in Table S1. Table S1 shows that the percent errors 15 
for all the stations are essentially the same with only one exception of station Vasundhara whose error without 

interpolation is 10 % lower than that with interpolation. The Delhi-wide mean percent errors with (30 %) and 

without interpolation (29 %) are also essentially the same. We further used the Wilcoxon signed-rank test (Wilcoxon, 

1945) to prove that the two related paired samples (i.e., the percent errors for the 22 reference stations with and 

without interpolation) are indeed statistically the same. The Wilcoxon signed-rank test is a non-parametric version of 20 
the parametric paired t-test (involving two related/matched samples/groups) that requires no specific distribution on 

the measurements (unlike the parametric paired t-test that assumes a normal distribution). We conducted a two-

sided test which has the null hypothesis that the percent errors for the 22 reference stations with and without 

interpolation are the same (i.e., H0: with = without) against the alternative that they are not the same (i.e., H1: with ≠ 

without). The p-value of the test is 0.07. The level of statistical significance was chosen to be 0.05, which means that 25 
the null hypothesis (i.e., H0: with = without) cannot be rejected when the p-value is 0.07, above 0.05. Therefore, 

interpolating missing 1 h PM2.5 data for both reference and low-cost nodes is appropriate for this paper because the 

accuracies of model prediction on the 22 reference nodes with and without interpolation are not distinct based on the 

Wilcoxon signed-rank test result.” 

 30 
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Added Table S1: 
Table S1: Comparison of the GPR model 24 h prediction percent errors for the 22 reference nodes across the 22-fold leave-one-out 
CV with and without interpolating the missing 1 h PM2.5 values for all the reference and low-cost stations. 5 

Reference nodes Percent error 

 with interpolation without interpolation 

Anand Vihar 32 % 31 % 

Aya Nagar 38 % 37 % 

Burari Cross 39 % 38 % 

CRRI Mathura Road 21 % 21 % 

DTU 36 % 35 % 

Faridabad 18 % 17 % 

IGI Airport Terminal–3 32 % 32 % 

IHBAS, Dilshad Garden 41 % 42 % 

ITO 14 % 12 % 

Lodhi Road 41 % 39 % 

Mandir Marg 14 % 13 % 

North Campus 24 % 24 % 

NSIT Dawarka 19 % 20 % 

Punjabi Bagh 20 % 20 % 

Pusa 70 % 69 % 

R K Puram 20 % 20 % 

Sector125 Noida 23 % 21 % 

Sector62 Noida 60 % 60 % 

Shadipur 22 % 22 % 

Sirifort 18 % 16 % 

US Embassy 18 % 18 % 

Vasundhara, Ghaziabad 44 % 34 % 

Delhi-wide mean 30 % 29 % 

SD 14 % 15 % 

 

Modified Table 1 caption: 
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“Table 1: Delhi PM sensor network sites along with the 1 h data percentage completeness with respect to the entire 

sampling period (i.e., from January 1, 2018 00:00 to March 31, 2018 23:59, Indian Standard Time, IST; in total 90 days, 

2160 hours) before and after 1 h missing-data imputation for each individual site. Note that a 10 % increase in the 

percentage data completeness after 1 h missing-data imputation is equivalent to ~216 hours of 1 h data being 

interpolated.” 5 
 

3. The paper covers 24h averaged data – why not 1h data? Does the ability of the calibration model significantly decay? The 

authors note in the introduction that one of the key advantages of LCS is that they provide high temporal availability. From 

their results, we can only conclude the 30% accuracy applies to 24h measurements which are less resolved than most real-

time reference monitors.  10 
Response: For this comment, we will answer the reviewer’s last question first and then circle back to the first two. 

Regarding the authors note in the introduction that one of the key advantages of LCS is that they provide high 

temporal availability. From their results, we can only conclude the 30% accuracy applies to 24h measurements which 

are less resolved than most real-time reference monitors, the statement “24h measurements which are less resolved than 

most real-time reference monitors” is not really true. Real-time reference monitors that are certified as the Federal 15 
Equivalent Methods (FEMs) by the US Environmental Protection Agency (EPA) are required to provide results comparable 

to the Federal Reference Methods (FRMs) only for a 24 h but not a 1 h sampling period. Met One Instruments b-attenuation 

monitors (most of the reference instruments used in Delhi) can even report 15-min averaged measurements, instruments such 

as Teledyne Model T640s and ThermoScientific Model 5030 SHARP can even report 1-min averaged measurements. But 

just because these real-time reference monitors can report PM2.5 values at more resolved temporal resolutions does not mean 20 
these measurements are certified or can be trusted at these temporal resolutions, particularly b-attenuation monitors which 

are known to be very noisy at finer temporal resolutions. So, to answer the paper covers 24h averaged data – why not 1h 

data, real-time reference monitors that are certified as the FEMs by the US EPA are required to provide results comparable 

to the FRMs only for a 24 h but not a 1 h sampling period. Our algorithm, which essentially relies on the accuracy of the 

reference measurements, can thus only calibrate/predict as well as the reference methods measure. Therefore, in this paper, 25 
we only reported our algorithm’s accuracy on the more reliable 24 h data. Regarding does the ability of the calibration 

model significantly decay, the model’s mean percent error did increase from 30 % at 24 h to 49 % at 1 h. However, as we 

mentioned previously, a large majority of the increase in percent error should arise from the uncertainty about the 1 h 

reference measurements. This 1 h percent error is not a fair representation of our algorithm’s true calibration/prediction 

ability and cannot be used as evidence to suggest that our model’s accuracy will truly get significantly worse at an 1 h 30 
resolution. We have now added why we reported our algorithm’s accuracy on 24 h averaged data only rather than on 1 h data 

to the manuscript. 

Added text on Page 9, line 3: 
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“In this paper, we reported our algorithm’s accuracy on the 24 h data only rather than on the 1 h data because real-

time reference monitors that are certified as the Federal Equivalent Methods (FEMs) by the US Environmental 

Protection Agency (EPA) are required to provide results comparable to the Federal Reference Methods (FRMs) only 

for a 24 h but not a 1 h sampling period. Our algorithm, which essentially relies on the accuracy of the reference 

measurements, can only calibrate/predict as well as the reference methods measure. Therefore, only the percent error 5 
based on the reliable 24 h reference measurements is a fair representation of our algorithm’s true 

calibration/prediction ability.” 

 

4. The author’s base a large chunk of their model on the linear regression for calibrating LCS despite the fact most recent 

literature on the topic suggests this in invalid – relative humidity causes the growth of hygroscopic aerosols through water 10 
uptake which causes the linear regression approach to fall apart at humidities > ~50% depending on the kappa value of the 

aerosol. See work by Birmingham or CMU. This should be discussed at some point since linearity is a major assumption in 

your model as I understand it.  

Response: We thank the reviewer for bringing up the relative humidity (RH) interferences in the PM2.5 measurements of 

nephelometric sensors. We are well aware of and really appreciate the important work published by Birmingham and CMU 15 
on this topic. In fact, our previous work (Zheng et al., 2018) also found a major RH influence in Research Triangle Park 

(RTP), NC, US (1 h RH = 64 ± 22 %) that can explain up to ~30 % of the variance in 1 min to 6 h PMS3003 PM2.5 

measurements. And this previous work also demonstrated that when proper RH corrections are made by empirical non-linear 

equations after using a more precise reference method (such as T640) to calibrate the sensors, the PMS3003s can measure 

PM2.5 concentrations within ~10 % of ambient values. So, when we attempted to improve the model performance, the very 20 
first thing that came to our mind was naturally adjustment for systematic meteorology-induced influences. We attempted RH 

correction by incorporating an RH term in the linear regression models, where the RH values were the measurements from 

each corresponding low-cost sensor package’s embedded Adafruit DHT22 RH and temperature sensor. However, there was 

no improvement in the algorithm’s accuracy at all. A plausible explanation is regarding the infrequently high RH conditions 

during the winter months in Delhi and stronger smoothing effects at longer averaging time intervals (i.e., 24 h). Our previous 25 
work suggested that the PMS3003 PM2.5 measurements exponentially increased only when RH was above ~70%. The Delhi-

wide average of the 3-month RH measured by the 10 low-cost sites was found to be 55 ± 15 %. Only 17 % and 6 % of these 

RH values were greater than 70 % and 80 %, respectively. The infrequently high RH conditions can cause the RH-induced 

biases insignificant. Additionally, while previously a major RH influence was found in 1 min to 6 h PM2.5 measurements in 

RTP, the influence significantly diminished in 12 h PM2.5 measurements and was barely observable in 24 h measurements. 30 
Therefore, longer averaging time intervals can average out the RH biases. We agree with the reviewer on that the discussion 

about our attempt to include RH correction in our algorithm and the possible reasons why no improvements were observed 

should appear in the manuscript. We have now added a subsection (Sect. 3.2.5) to address these issues. 

Added text on Page 10, line 20: 
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3.2.5 RH adjustment to the algorithm 

We attempted RH adjustment to the algorithm by incorporating an RH term in the linear regression models, where 

the RH values were the measurements from each corresponding low-cost sensor package’s embedded Adafruit 

DHT22 RH and temperature sensor. However, there was no improvement in the algorithm’s accuracy after RH 

correction. A plausible explanation is regarding the infrequently high RH conditions during the winter months in 5 
Delhi and stronger smoothing effects at longer averaging time intervals (i.e., 24 h). Our previous work (Zheng et al., 

2018) suggested that the PMS3003 PM2.5 weights exponentially increased only when RH was above ~70%. The Delhi-

wide average of the 3-month RH measured by the 10 low-cost sites was found to be 55 ± 15 %. Only 17 % and 6 % of 

these RH values were greater than 70 % and 80 %, respectively. The infrequently high RH conditions can cause the 

RH-induced biases insignificant. Additionally, our previous work found that even though major RH influences can be 10 
found in 1 min to 6 h PM2.5 measurements, the influence significantly diminished in 12 h PM2.5 measurements and 

was barely observable in 24 h measurements. Therefore, longer averaging time intervals can smooth out the RH 

biases. 

 

5. Delhi has extremely complex air quality (as noted by the authors), but there was very little discussion on how these 15 
specific complexities contribute to the ability or inability of the model to perform. This is especially important for LCS as 

they don’t suffer from random error, but error caused specifically by their inability to account for changes in aerosol 

composition and the underlying particle size distribution. There is a paper out by Gani et al (2019) that contains data in 

Delhi during this time period I think would be useful to this discussion.  

Response: We appreciate the reviewer suggesting the paper by Gani et al. (2019) and acknowledge their unique and 20 
valuable work that provides long-term characterization of the highly time-resolved ambient PM1 composition in Delhi and 

insight into the role of meteorology in the concentration and composition of PM1 in Delhi. However, first, we do not think 

that aerosol composition or size distribution can account for large errors in the calibration of low-cost PM sensors. In our 

current study, two low-cost nodes (i.e., MRU and IITD) were collocated with two E-BAMs throughout the entire study. We 

fit simple linear regression models between 24 h PM2.5 mass concentrations of the two uncalibrated low-cost nodes 25 
(independent variable) and their respectively collocated E-BAMs (dependent variable), then used the regression models to 

calibrate the two low-cost nodes, respectively, and then evaluated the accuracies of the two collocation calibrations based on 

percent error (defined in Eq. 10 of the manuscript). The two low-cost PM nodes both have an error of ~17 % after being 

calibrated by collocation with E-BAMs using simple linear regression models (with the PM2.5 as the sole regressor) at a 24 h 

temporal resolution. The manuscript of E-BAM indicates a conservative 10 % error in the 1 h measurements. This is roughly 30 
equivalent to a 10	/	√24 = 2 % error in the 24 h measurements. This means the upper bound of all sorts of remaining errors 

including aerosol composition or size distribution biases along with any other possible sources of interferences/errors is at 

most ~15 %. Therefore, the contribution of aerosol composition or size distribution to total calibration errors is not likely to 
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be huge. Second, from a practical perspective, to correct for aerosol compositions and size distributions, an additional series 

of instruments such as those detailed in Section 2.1 of Gani et al. (2019) are needed. To adequately capture the variations of 

aerosol compositions and size distributions in Delhi, these high-cost instruments will have to be deployed at several locations 

across Delhi. Dramatically increasing the cost just to gain a few percent of accuracy rates seems to go against the original 

intention of using low-cost sensing, therefore impractical. Third, while the data provided by Gani et al. (2019) are highly 5 
time-resolved, they are not highly space-resolved (measurements taken at one single site, IITD). Even though this single 

site’s speciated PM1 data were very informative about the overall complex air quality issues in Delhi (i.e., influence of both 

primary emissions and potentially more regional secondary processes), they are far from sufficient for a full discussion about 

our spatial model’s performance ability at all 22 reference stations across the entire Delhi. Overall, given the aforementioned 

three reasons, we think that the requested discussion is not applicable to or out of the scope of this paper. 10 
Text remains unmodified. 

Minor Comments: 

P. 1, L. 1: I don’t think it’s necessary to create unneeded acronyms – simply call them “sensor networks”  

Response: We agree with the reviewer on that it is not necessary to create an additional acronym out of “sensor networks”. 

In fact, “sensor networks” were all fully spelled out after abstract in the main manuscript. The only reason that we used 15 
“WLPMSNs” to represent “wireless low-cost particulate matter sensor networks” in the abstract is because “wireless low-

cost particulate matter sensor networks” has been used multiple times in the abstract and fully spelling it out can take too 

much space. Therefore, we decided to keep using the acronym “WLPMSNs” in the abstract. 

Text remains unmodified. 

 20 
P. 2, L. 14: Are LCS really suffering from calibration issues? Or fundamental issues associated with using light scattering to 

determine the mass of particles?  

Response: In the introduction, this “calibration-related issues” term functions as an umbrella term that covers a broad 

category of relevant issues. Regarding using light scattering to determine the mass of particles, calibration factors varying 

with aerosol optical properties and relative humidity interferences (as mentioned on page 2, lines 17-18) are only some (but 25 
not all) of the calibration issues that low-cost PM sensors suffer from. They also suffer severely from degradation and drift, 

which require routine recalibration involving frequent transit of the deployed sensors between the field and the reference 

sites. Therefore, to state that “since the emergence of low-cost PM sensors, researchers have been plagued by (only) the 

fundamental issues of them using light scattering to determine the mass of particles” at the start of the 2nd paragraph in the 

introduction is an oversimplification of the challenges with low-cost PM sensors. Thus, we decided to keep this line 30 
unchanged. 

Text remains unmodified. 
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P. 8, L. 13: The word “global” could be switched for something more specific. Maybe “Delhi-wide” or something more 

descriptive.  

Response: We agree with the reviewer on that “global” can be confusing and should be replaced by more meaningful words. 

We have now changed all “global mean/average” to “Delhi-wide mean/average”. We have also changed all “global trend” to 5 
“regional trend”. 

Modified text on Page 1, line 28: 

“…and intercepts close to the Delhi-wide mean of true PM2.5…” 

Modified text on Page 8, line 13: 

“Spatially, the Delhi-wide average of the 3-month mean PM2.5…” 10 
Modified text on Page 8, line 23: 

“…model majorly captures a regional trend rather than fine-grained local variations.” 

Modified text on Page 9, line 7: 

“…the optimized model’s ability to simulate only the regional trend well.” 

Modified text on Page 9, lines 11-12: 15 
“whose means close to the Delhi-wide mean (e.g., Delhi-wide mean ± SD as highlighted with shading in Table 2) while 

poor prediction for the means wide of the Delhi-wide mean (and particularly in the lower end).” 

Modified text on Page 10, line 12: 

“…those nodes whose means are close to the Delhi-wide mean.” 

Modified text on Page 10, line 15: 20 
“The Delhi-wide mean of the 22 reference sites was 138 µg m-3,…” 

Modified text on Page 10, line 32: 

“…and intercepts close to the Delhi-wide mean of true PM2.5…” 

Modified text on Page 13, line 17: 

“…(Delhi-wide average of the 3-month mean PM2.5…” 25 
Modified text on Page 13, line 28: 

“…those nodes whose means are close to the Delhi-wide mean.” 

Modified text on Page 27, line 4: 

“…[Delhi-wide mean ± SD, i.e., 138 ± 31]…” 

Modified text on Page 27, Table 2: 30 
“Delhi-wide mean” 

 

P. 10, L. 14: I disagree that IITD qualifies to be a background site when it is close to major roadways – see Gani et al 

(2019). They show a huge amount of local influence, especially during certain periods throughout the winter months.  
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Response: We agree that IITD is not really background in the way it is traditionally thought of. The only reason we called it 

a background site is because this site had the lowest mean PM2.5 concentrations of 71 µg m-3 (and significantly lower than the 

Delhi-wide mean of 138 µg m-3) during the sampling period among 24 reference instruments across Delhi. But as shown in 

Gani et al. (2019), black carbon (BC) had a constantly year-round local influence on the IITD site, potentially due to trucks 

(and other diesel vehicles) as discussed in their Section 3.5. As discussed in their Section 3.4.1, the many industrial sites in 5 
the northwest of Delhi that use HCl for steel pickling were arguably the local source that had the strongest influence on the 

downwind IITD site during winter. The predominantly northwestern wind during winter transported extreme levels of 

chloride concentrations to IITD. The single one brief organic episode during winter (discussed in their Section 3.4.2) that 

was due to bonfires burning during the Lohri Festival should be a minor local source to the IITD site when looking at the 

whole winter. Therefore, considering the huge amount of local influences on the IITD site, we decided to remove our 10 
estimate of Delhi’s PM2.5 regional–to–local ratio and instead reference the estimate of Delhi’s PM1 regional/local 

contribution given in Gani et al. (2019). 

Modified text on Page 10, lines 12-19: 

“In this study, our MRU and IITD sites are similar to the IITM site from the studies by Tiwari et al. (2012 and 2015), which 

are all on campus and free from major pollution sources and therefore qualified to be regional background sites. The PM2.5 15 
regional background concentration during winter in Delhi was then estimated to be approximately 72 µg m-3. The global 

mean of the 22 reference sites was 138 µg m-3, thus the mean local contribution across Delhi was roughly 66 µg m-3. Clearly 

this ~1:1 regional–to–local ratio did not fully support the technique. Alternatively, prior information about urban PM2.5 

spatial patterns such as high-spatial-resolution annual average concentration basemap from air pollution dispersion models 

can dramatically improve the on-the-fly calibration performance by correcting for the concentration range-specific biases 20 
(Schneider et al., 2017). Gani et al. (2019) estimated that Delhi’s local contribution to the composition-based 

submicron particulate matter (PM1) was ~30 to 50 % during winter and spring months. Clearly the huge amount of 

local influence in Delhi did not fully support our technique.” 

 

Added reference on Page 15, line 18: 25 
“Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., and Apte, 

J. S.: Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite study, Atmos. 

Chem. Phys., 19, 6843-6859, https://doi.org/10.5194/acp-19-6843-2019, 2019.”  
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Response to Comments from Reviewer #3 AMT-2019-55 

The authors would like to sincerely thank the reviewer #3 for the careful review of the manuscript and the very constructive 

comments which helped improve the manuscript. The reviewer’s comments are in italics, the summaries of our responses are 

in plain font, and the changes in the manuscript are in bold red text. Page and line numbers refer to the original document. 

We also appended a marked-up manuscript version to the end of the responses to better show all the changes made from this 5 
review.  

Reviewer #3 

Major Comments: 

1. Data are interpolated for both monitor types (LCS and reference). Why not perform analyses to validate your 

interpolation? For instance, by removing data of similar size to what is missing from non-missing periods and applying the 10 
same interpolation? How much consecutive data is interpolated? An hour here or there, or larger chunks of time? 
Response: We thank the reviewer for bringing up the validity of interpolation. Mathematically, the GPR model can operate 

without requiring data from all the stations to be non-missing on each day by relying on only the non-missing stations’ 

covariance information on each day for inference. In this paper, the choice of attempting to interpolate all the stations’ 

missing data first was made based on practical reasons. Specifically, interpolating prior to the GPR inference allows matrix 15 
inversions to be shared, greatly speeding the algorithm. To elaborate, with 59 daily-averaged data points, the algorithm with 

interpolating all the stations’ missing data first takes ~10 mins to run 22 times (a complete 22-fold leave-one-out cross-

validation) while the algorithm without any interpolation takes ~200 mins to run 22 times. If a complete 22-fold leave-one-

out cross-validation takes 200 mins to run, it will be unrealistic to implement the simulation experiments shown in Section 

3.3. We are mentioning these because we would like to prove that interpolating data for both reference and low-cost 20 
nodes is an appropriate methodology for this paper by showing that the accuracies of model prediction on the 22 

reference nodes with and without interpolation are statistically the same. The comparison of the model prediction 

percent errors for the 22 reference stations with and without interpolation is shown in the newly added Table S1 (see below). 

The percent errors for all the stations are essentially the same with only one exception of station Vasundhara whose error 

without interpolation is 10 % lower than that with interpolation. The Delhi-wide mean percent errors averaged over the 22 25 
reference stations are also essentially the same (30 % and 29 % for with and without interpolation, respectively). We used 

the Wilcoxon signed-rank test (Wilcoxon, 1945) to prove that the two related paired samples (i.e., the percent errors for the 

22 reference stations with and without interpolation) are statistically the same. The Wilcoxon signed-rank test is a non-

parametric version of the parametric paired t-test (involving two related/matched samples/groups) that requires no specific 

distribution on the measurements (unlike the parametric paired t-test that assumes a normal distribution). We conducted a 30 
two-sided test which has the null hypothesis that the percent errors for the 22 reference stations with and without 
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interpolation are the same (i.e., H0: with = without) against the alternative that they are not the same (i.e., H1: with ≠ 

without). The p-value of the test is 0.07. The level of statistical significance was chosen to be 0.05, which means that the null 

hypothesis (i.e., H0: with = without) cannot be rejected when the p-value is 0.07, above 0.05. Therefore, interpolating data 

for both reference and low-cost nodes is appropriate for this paper because the accuracies of model prediction on the 22 

reference nodes with and without interpolation are not distinct based on the Wilcoxon signed-rank test result. Regarding how 5 
much consecutive data is interpolated and an hour here or there, or larger chunks of time, all the periods over which 1 

h data were interpolated for each site are already illustrated in Fig. S1 (also mentioned on Page 5, lines 21-22); we also 

already specified on Page 5, lines 8-10 that the interpolation was implemented on the 1 h averaged measurements for each 

station; additionally, the comparison of 1 h PM2.5’s percentage completeness with respect to the entire sampling period (i.e., 

from January 1, 2018 00:00 to March 31, 2018 23:59, Indian Standard Time, IST, in total 90 days, 2160 hours) before and 10 
after missing data imputation for both reference and low-cost nodes is already provided in Table 1 (this means that a 10 % 

increase in the percentage completeness after interpolation is equivalent to a total of ~216 hours of data being interpolated); 

We believe these pieces of information are sufficient for readers to have a good understanding of how much data (the exact 

number of hours) was interpolated for each station and whether the interpolation for each station was done an hour here and 

there or over a large chunk of time. Again, we would like to emphasize that the interpolation approach in this paper has 15 
little effect on the model’s overall prediction accuracy considering all the 22 reference stations and does not affect any 

of the conclusions in this paper. We have now added the validation of our interpolation approach to Sect. 3.2.1 of the 

manuscript, including showing the comparison of accuracies of model prediction on the 22 reference nodes with and without 

interpolation in the newly added Table S1 and proving that they are not distinct based on the Wilcoxon signed-rank test. We 

have now also modified Table 1 caption to make it more informative about how to interpret the percentage data 20 
completeness such as indicating that a 10 % increase in the percentage completeness after interpolation is equivalent to 216 

hours of 1 h data being interpolated. 

 

Modified text on Page 5, lines 6–10: 

“While mathematically the GPR model can operate without requiring data from all the stations to be non-missing on 25 
each day by relying on only each day’s non-missing stations’ covariance information to make inference, we 

practically required concurrent measurements of all the stations in this paper to drastically increase the speed of the 

algorithm (~10 mins to run a complete 22-fold leave-one-out CV, up to ~20 times faster) by avoiding the expensive 

computational cost of excessive amount of matrix inversions that can be incurred otherwise. We therefore linearly 

interpolated the 1 h PM2.5 values for the hours with missing measurements for each station, after which we averaged the 30 
hourly data to daily resolution as the model inputs. We validate our interpolation approach in Sect. 3.2.1 by showing that 

the model accuracies with and without interpolation are statistically the same.” 

 

Added text on Page 9, line 13: 



38 
 

“In this paper, we interpolated the missing 1 h PM2.5 values for all the reference and low-cost stations to fulfil our 

requirement of concurrent measurements of all the stations. This approach drastically increased the speed of the 

algorithm (up to ~20 times faster) by avoiding the expensive computational cost of excessive amount of matrix 

inversions that can be incurred from relying on only each day’s non-missing stations’ covariance information to make 

inference. Here we prove that the interpolation is an appropriate methodology for this paper by demonstrating that 5 
the model prediction percent errors for the 22 reference stations with and without interpolation are statistically the 

same. The comparison of the errors for each station can be found in Table S1. Table S1 shows that the percent errors 

for all the stations are essentially the same with only one exception of station Vasundhara whose error without 

interpolation is 10 % lower than that with interpolation. The Delhi-wide mean percent errors with (30 %) and 

without interpolation (29 %) are also essentially the same. We further used the Wilcoxon signed-rank test (Wilcoxon, 10 
1945) to prove that the two related paired samples (i.e., the percent errors for the 22 reference stations with and 

without interpolation) are indeed statistically the same. The Wilcoxon signed-rank test is a non-parametric version of 

the parametric paired t-test (involving two related/matched samples/groups) that requires no specific distribution on 

the measurements (unlike the parametric paired t-test that assumes a normal distribution). We conducted a two-

sided test which has the null hypothesis that the percent errors for the 22 reference stations with and without 15 
interpolation are the same (i.e., H0: with = without) against the alternative that they are not the same (i.e., H1: with ≠ 

without). The p-value of the test is 0.07. The level of statistical significance was chosen to be 0.05, which means that 

the null hypothesis (i.e., H0: with = without) cannot be rejected when the p-value is 0.07, above 0.05. Therefore, 

interpolating missing 1 h PM2.5 data for both reference and low-cost nodes is appropriate for this paper because the 

accuracies of model prediction on the 22 reference nodes with and without interpolation are not distinct based on the 20 
Wilcoxon signed-rank test result.” 
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Added Table S1: 
Table S1: Comparison of the GPR model 24 h prediction percent errors for the 22 reference nodes across the 22-fold leave-one-out 
CV with and without interpolating the missing 1 h PM2.5 values for all the reference and low-cost stations. 

Reference nodes Percent error 

 with interpolation without interpolation 

Anand Vihar 32 % 31 % 

Aya Nagar 38 % 37 % 

Burari Cross 39 % 38 % 

CRRI Mathura Road 21 % 21 % 

DTU 36 % 35 % 

Faridabad 18 % 17 % 

IGI Airport Terminal–3 32 % 32 % 

IHBAS, Dilshad Garden 41 % 42 % 

ITO 14 % 12 % 

Lodhi Road 41 % 39 % 

Mandir Marg 14 % 13 % 

North Campus 24 % 24 % 

NSIT Dawarka 19 % 20 % 

Punjabi Bagh 20 % 20 % 

Pusa 70 % 69 % 

R K Puram 20 % 20 % 

Sector125 Noida 23 % 21 % 

Sector62 Noida 60 % 60 % 

Shadipur 22 % 22 % 

Sirifort 18 % 16 % 

US Embassy 18 % 18 % 

Vasundhara, Ghaziabad 44 % 34 % 

Delhi-wide mean 30 % 29 % 

SD 14 % 15 % 

 

Modified Table 1 caption: 5 
“Table 2: Delhi PM sensor network sites along with the 1 h data percentage completeness with respect to the entire 

sampling period (i.e., from January 1, 2018 00:00 to March 31, 2018 23:59, Indian Standard Time, IST; in total 90 days, 

2160 hours) before and after 1 h missing-data imputation for each individual site. Note that a 10 % increase in the 
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percentage data completeness after 1 h missing-data imputation is equivalent to ~216 hours of 1 h data being 

interpolated.” 

 

2. Speaking of interpolation and missingness: Are data missing in any specific pattern? That is, are areas that are typically 

reading higher levels of pollution more likely to have missing data? Do missing data occur most often on certain days 5 
(weekdays vs weekends)? Is missingness associated with ambient temperature, time of day, etc? Are certain monitors more 

prone to missingness? 

Response: We thank the reviewer for his/her scientific rigor by bringing up the informative missingness. All the periods 

over which 1 h data were interpolated for each site are already illustrated in Fig. S1 (also mentioned on Page 5, lines 21-22). 

We believe that there is no obvious pattern in the data missingness. The low-cost sensors generally had a higher percentage 10 
of data missingness than the reference instruments. This is expected as the low-cost sensors should be overall less robust to 

ambient conditions than the costly reference instruments that are well-built and thoroughly-tested. Certain low-cost sensors 

(e.g., S.D.A. Park, Naraina Vihar, and Hiran Kudna) had higher fractions of data missingness than the rest of the low-cost 

sensors. This is not surprising either given that the quality of these low-cost packages’ electronic circuitry can vary 

drastically from one package to another, especially considering that the 10 low-cost nodes in this study were the very first 15 
generation/prototype of the “Atmos” devices (designed and built on our own) when we first started to build our network and 

we were still trying to figure out how to improve the electronic circuitry’s quality and stability. We are leaning toward not 

classifying these two trends as patterns in the data missingness. We have now clarified that there is no obvious pattern in the 

data missingness in both the manuscript and Fig. S1.  

Added text on Page 5, line 22: 20 
“… in Fig. S1. There is no obvious pattern in the data missingness.” 

 

Modified Figure S1 caption: 

“Figure S1: Periods over which 1 h data were available for each individual site before and after missing-data imputation and 

a total of 59 24 h aggregated observations common to all the nodes in the network used for the on-the-fly calibration 25 
feasibility test. The top 10 sites (i.e., from S.D.A. Park to AIIMS) are the low-cost sites and the remaining sites (i.e., 

from Vasundhara to Anand Vihar) are the reference sites. Note that there is no obvious pattern in the data 

missingness.” 

 

3. Relatedly, QAQC procedures for reference monitors are not described. While this data can be hard to obtain from the 30 
relevant Indian agencies, it is important to more strongly highlight this as a potential shortcoming or to find out more data 

on how and how often reference monitors are maintained and calibrated. 

Response: Unlike the U.S. Embassy, the relevant Indian agencies did not provide any QA/QC (quality assurance/quality 

control) remark in any of their regulatory monitoring stations’ datasets. This was mentioned in the manuscript on Page 5, 
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lines 4-6. We were unable to find such information including the QA/QC procedures (e.g., how and how often reference 

monitors are maintained and calibrated) anywhere else either. Due to lack of relevant QA/QC information (such as error 

flags) to exclude any measurement, all of the hourly PM2.5 concentrations of the 21 monitoring stations operated by the 

Indian agencies were assumed to be correct. We have now more strongly highlighted this as a potential shortcoming for this 

study. 5 
Modified text on Page 5, lines 5-6: 

“however, the same procedure was not applied to the remaining 21 Indian government monitoring stations due to lack of 

relevant information because neither the relevant Indian agencies provided QA/QC remarks or error flags in any of 

their regulatory monitoring stations’ datasets nor can we obtain the QA/QC procedures (e.g., how and how often 

reference monitors are maintained and calibrated) for these reference monitors. Due to lack of relevant QA/QC 10 
information to exclude any measurement, all of the hourly PM2.5 concentrations of the 21 monitoring stations 

operated by the Indian agencies were assumed to be correct. We would like to highlight this as a potential 

shortcoming of using the measurements from the Indian government monitoring stations.” 

 

4. Is any correction – of raw signal or for temperature and/or humidity – performed by the LCS platform? Are any filters 15 
applied at the LCS station or in the cloud? Describe more fully. 
Response: No correction or filter of any kind was applied to the raw signals of the low-cost nodes over the cloud platform 

before we downloaded the data. We have now clarified this in the manuscript. 

Added text on Page 5, line 13: 

“…were downloaded using our custom-designed Application Program Interface (API). No correction or filter of any kind 20 
was applied to the raw signals of the low-cost nodes over the cloud platform before we downloaded the data.” 

 

5. Can you provide and compare data from the India Meteorology Department for aver- age temp and RH across the period 

you performed measurements and for the 59 days of data you used? Are they statistically distinct? 

Response: We retrieved the 30 min temperature and relative humidity (RH) data from the station at the Indira Gandhi 25 
International (IGI) Airport. We used the Wilcoxon rank-sum test, also called Mann-Whitney U test (Wilcoxon, 1945; Mann 

and Whitney, 1947) to evaluate if the daily-averaged temperature and RH measurements from the IGI Airport for the entire 

sampling period (i.e., from January 1 to March 31, 2018, 90 days) were statistically the same as those for the 59 days over 

which our algorithm was analyzed in this study. The Wilcoxon rank-sum test is a non-parametric version of the parametric t-

test (involving two independent samples/groups) that requires no specific distribution on the measurements (unlike the 30 
parametric t-test that assumes a normal distribution). We did not use a paired test here because the two groups had different 

sample sizes (i.e., 59 and 90, respectively). We conducted a two-sided test which has the null hypotheses that the daily-

averaged temperature and RH measurements for the 90 days  (19 ± 5 °C, 59 ± 14 %) and the 59 days (20 ± 5 °C, 59 ± 12 %) 

were the same (i.e., H0: Temperature59 days = Temperature90 days / RH59 days = RH90 days) against the alternatives that they were 
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not the same (i.e., H1: Temperature59 days ≠ Temperature90 days / RH59 days ≠ RH90 days). The p-values for the RH and 

temperature comparisons are 0.59 and 0.28, respectively. The level of statistical significance was chosen to be 0.05, which 

means that the null hypotheses (i.e., H0: Temperature59 days = Temperature90 days / RH59 days = RH90 days) cannot be rejected 

when the p-values are both above 0.05. Therefore, the daily-averaged temperature and RH measurements from the IGI 

Airport for the entire sampling period and for the 59 days were not statistically distinct. Based on the reviewer 2’s comments, 5 
we have also added the discussion about our attempt to include RH correction in our algorithm and the possible reasons why 

no improvements were observed in the manuscript under a new subsection Sect. 3.2.5. The results of RH and temperature 

measurement comparisons between the 90 days and the 59 days are also placed under this new subsection Sect. 3.2.5. 

Added text on Page 10, line 20: 

3.2.5 RH adjustment to the algorithm 10 

We attempted RH adjustment to the algorithm by incorporating an RH term in the linear regression models, where 

the RH values were the measurements from each corresponding low-cost sensor package’s embedded Adafruit 

DHT22 RH and temperature sensor. However, there was no improvement in the algorithm’s accuracy after RH 

correction. A plausible explanation is regarding the infrequently high RH conditions during the winter months in 

Delhi and stronger smoothing effects at longer averaging time intervals (i.e., 24 h). Our previous work (Zheng et al., 15 
2018) suggested that the PMS3003 PM2.5 weights exponentially increased only when RH was above ~70%. The Delhi-

wide average of the 3-month RH measured by the 10 low-cost sites was found to be 55 ± 15 %. Only 17 % and 6 % of 

these RH values were greater than 70 % and 80 %, respectively. The infrequently high RH conditions can cause the 

RH-induced biases insignificant. Additionally, our previous work found that even though major RH influences can be 

found in 1 min to 6 h PM2.5 measurements, the influence significantly diminished in 12 h PM2.5 measurements and 20 
was barely observable in 24 h measurements. Therefore, longer averaging time intervals can smooth out the RH 

biases.  

 

Additionally, while our algorithm was analyzed over the 59 available days in this study, the daily-averaged 

temperature and RH measurements for the entire sampling period (i.e., from January 1 to March 31, 2018, 90 days) 25 
were statistically the same as those for the 59 days. To support this statement, we conducted the Wilcoxon rank-sum 

test, also called Mann-Whitney U test (Wilcoxon, 1945; Mann and Whitney, 1947) on the daily-averaged temperature 

and RH measurements from the Indira Gandhi International (IGI) Airport. The Wilcoxon rank-sum test is a non-

parametric version of the parametric t-test (involving two independent samples/groups) that requires no specific 

distribution on the measurements (unlike the parametric t-test that assumes a normal distribution). We did not use a 30 
paired test here because the two groups had different sample sizes (i.e., 59 and 90, respectively). We conducted a two-

sided test which has the null hypotheses that the daily-averaged temperature and RH measurements for the 90 days 
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(19 ± 5 °C, 59 ± 14 %) and the 59 days (20 ± 5 °C, 59 ± 12 %) were the same (i.e., H0: Temperature59 days = 

Temperature90 days / RH59 days = RH90 days) against the alternatives that they were not the same (i.e., H1: Temperature59 

days ≠ Temperature90 days / RH59 days ≠ RH90 days). The p-values for the temperature and RH comparisons are 0.28 and 

0.59, respectively. The level of statistical significance was chosen to be 0.05, which means that the null hypotheses (i.e., 

H0: Temperature59 days = Temperature90 days / RH59 days = RH90 days) cannot be rejected when the p-values are both above 5 
0.05. Therefore, the daily-averaged temperature and RH measurements from the IGI Airport for the entire sampling 

period and for the 59 days were not statistically distinct. 

Minor Comments: 

P1, L15 – insert comma after “sites is questionable” 

Response: Thanks, we have made the suggested change. 10 
Modified text on Page 1, line 15: 

“…sites is questionable, as calibration factors typically vary with…” 

 

P1, L19 – insert comma after Delhi 

Response: Thanks, we have made the suggested change. 15 
Modified text on Page 1, line 19: 

“We evaluated our method for Delhi, where the PM2.5 measurements…” 

 

P1, L20 – rephrase – perhaps “available for 59 days. . .” If you elect to keep the word “valid”, describe what makes the 

data valid 20 
Response: Thanks, we have made the suggested change. 

Modified text on Page 1, line 20: 

“available for 59 days from January 1, 2018 to March 31, 2018…” 

 

P2, L15 – add “with” between “follow-up” and “routine” 25 
Response: Thanks, we have made the suggested change. 

Modified text on Page 2, line 15: 

“…initial calibration by collocation with reference analyzers before field deployment and follow-up with routine 

recalibration.” 

 30 
P3, L18 – whole sentence is very long, but specifically, for item 3), rephrase “auto-detect the faulty and auto-correct drift 

nodes” to (perhaps) “auto- detect faulty and auto-correct nodes with drift” 
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Response: Thanks, we have rephrased item 3). 

Modified text on Page 3, line 18: 

“…auto-detect faulty nodes and auto-correct the drift of nodes within a network via computational simulation, …” 

 

P4, L15 – replace “our” with “the” 5 
Response: Thanks, we have made the suggested change. 

Modified text on Page 4, line 15: 

“…KairosDB as the primary fast scalable time series database built on Apache Cassandra, …” 

 

P5, L12-13 – describe the API, or remove mention of it s 10 
Response: Thanks, we have removed mention of the API. 

Modified text on Page 5, lines 12-13: 

“Hourly uncalibrated PM2.5 measurements from 10 Atmos low-cost nodes across Delhi between January 1, 2018 and March 

31, 2018 were downloaded from our low-cost sensor cloud platform.” 

 15 
P5, L16 – add “ ‘s “ to location  

Response: Thanks, we have made the suggested change. 

Modified text on Page 5, line 16: 

“…, the locations physical accessibility, …” 

 20 
P6 – describe more fully the “standardization” that occurs  

Response: We agree with the reviewer on that the standardization process should be more fully described. All the PM2.5 

measurements of the 31 nodes over 59 available days used for GPR model hyperparameters training were standardized at 

once. The standardization was performed by first concatenating all these training PM2.5 measurements (from the 31 nodes 

over 59 days), then subtracting their mean 𝜇@~�):):�  and dividing them by their standard deviation 𝑠@~�):):�	 (i.e., 25 
transforming all the training PM2.5 measurements to have a zero mean and unit variance). The standardization was only done 

to the data used for training/optimizing the hyperparameters of the GPR model (i.e., all the PM2.5 measurements of the 31 

nodes over 59 valid days). The holdout node’s PM2.5 measurements were never used to calculate the 𝜇@~�):):� and 𝑠@~�):):� . 

Modified text on Page 6, lines 23-27: 

“In the next step (step three in Fig. 3), a GPR model was fit to each day t’s 31 nodes (i.e., 10 initialized low-cost nodes 30 
and 21 reference nodes) as described in Eq. (4). Prior to the GPR model fitting, all the PM2.5 measurements of the 31 

nodes over 59 valid days used for GPR model hyperparameters training were standardized. The standardization was 

performed by first concatenating all these training PM2.5 measurements (from the 31 nodes over 59 days), then 
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subtracting their mean 𝜇@~�):):�  and dividing them by their standard deviation 𝑠@~�):):�	(i.e., transforming all the 

training PM2.5 measurements to have a zero mean and unit variance). It is worth noting that assuming the mean function 

𝝁 ∈ ℝ𝟑𝟏	to be 𝟎 along with standardizing all the training PM2.5 samples in this study is one of the common modelling 

formulations on the GPR model and the simplest one. More complex formulations including a station-specific mean 

function (lack of prior information for this project), a time-dependent mean function (computationally expensive), 5 
and a combination of both were not considered for this paper. After the standardization of training samples, the GPR 

was trained to maximize the log marginal likelihood over all 59 days using Eq. 5 and using an L-BFGS-B optimizer (Byrd 

et al., 1994).” 

 

P8, L14 – rephrase “Spatially, the global average. . .” – is this the average across all LCS and reference monitors? Or? And 10 
if it is the average across all, then does “spatially” apply?  

Response: The average is across only the 22 reference stations not including any low-cost sensor (as mentioned on Page 8, 

line 13). We have now removed “spatially”. 

Modified text on Page 8, lines 13-14: 

“Spatially, The global average of the 3-month mean PM2.5 across the 22 reference stations was found to be 138 ± 31 µg m-3.” 15 
 

P9, L3 – insert comma after “decent”; consider rephrasing (what does decent mean in this context?)  

Response: Thanks, we have replaced “decent” with “reasonably accurate”. 

Modified text on Page 9, line 3: 

“Although the technique’s performance is reasonably accurate, especially considering the minimal amount of field work 20 
involved, …” 

 

P9, L8-13 – While I understand that GPR would have done better absent local sources, is that realistic for these types of 

urban environments in places like India or China? Or even in the US, in places like Queens, Oakland, or Atlanta? Isn’t the 

spatial heterogeneity exactly why many are considering more spatially and temporally resolved monitoring networks?  25 
Response: We are only confident that in order to use GPR for calibration, the low-cost sensors cannot be placed at sites 

where local sources are dominant. Even for urban environments that are dominated by regional sources, it is still not hard to 

find places that are under heavy influence of local sources. Even for urban environments where local sources are prevalent, it 

is still realistic to find some background stations with careful siting. If low-cost sensors must be placed at sites that are under 

strong local impact for some specific monitoring purposes (e.g., nodes that measure roadside pollutants or restaurant food-30 
cooking emissions within neighborhoods), then calibration by collocation with reference instruments first might be the only 

solution as we believe that hardly any model has the ability to account for fine-grained local contributions and accurately 

calibrate such sensors. The simulation results in this study seem to suggest that GPR is more robust to local source 

disturbance (i.e., spatial heterogeneity) when detecting faulty nodes and the drift of nodes. This finding indicates that when 
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facing strong spatial heterogeneity, even though it may be challenging for GPR to calibrate low-cost sensors well, GPR holds 

great promise as a useful algorithm for large-scale sensor network management. 

Text remains unmodified. 

 

P10, L14 – Neither of these sites are really background sites in the way they are traditionally thought of.  5 
Response: We agree that neither of these sites are really background sites in the way they are traditionally thought of. The 

only reason we called them background sites is because the two sites had the lowest mean PM2.5 concentrations of ~71 and 

73 µg m-3 (and significantly lower than the Delhi-wide mean of 138 µg m-3) during the sampling period among 24 reference 

instruments across Delhi. But as shown in Gani et al. (2019), black carbon (BC) had a constantly year-round local influence 

on the IITD site, potentially due to trucks (and other diesel vehicles) as discussed in their Section 3.5. As discussed in their 10 
Section 3.4.1, the many industrial sites in the northwest of Delhi that use HCl for steel pickling were arguably the local 

source that had the strongest influence on the downwind IITD site during winter. The predominantly northwestern wind 

during winter transported extreme levels of chloride concentrations to IITD. The single one brief organic episode during 

winter (discussed in their Section 3.4.2) that was due to bonfires burning during the Lohri Festival should be a minor local 

source to the IITD site when looking at the whole winter. Therefore, considering the huge amount of local influences on the 15 
IITD site and possibly on the MRU site as well, we decided to remove our estimate of Delhi’s PM2.5 regional–to–local ratio 

based on the assumption that these two sites are background sites and instead reference the estimate of Delhi’s PM1 

regional/local contribution given in Gani et al. (2019). 

Modified text on Page 10, lines 12-19: 

“In this study, our MRU and IITD sites are similar to the IITM site from the studies by Tiwari et al. (2012 and 2015), which 20 
are all on campus and free from major pollution sources and therefore qualified to be regional background sites. The PM2.5 

regional background concentration during winter in Delhi was then estimated to be approximately 72 µg m-3. The global 

mean of the 22 reference sites was 138 µg m-3, thus the mean local contribution across Delhi was roughly 66 µg m-3. Clearly 

this ~1:1 regional–to–local ratio did not fully support the technique. Alternatively, prior information about urban PM2.5 

spatial patterns such as high-spatial-resolution annual average concentration basemap from air pollution dispersion models 25 
can dramatically improve the on-the-fly calibration performance by correcting for the concentration range-specific biases 

(Schneider et al., 2017). Gani et al. (2019) estimated that Delhi’s local contribution to the composition-based 

submicron particulate matter (PM1) was ~30 to 50 % during winter and spring months. Clearly the huge amount of 

local influence in Delhi did not fully support our technique.” 

 30 
Added reference on Page 15, line 18: 

“Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., and Apte, 

J. S.: Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite study, Atmos. 

Chem. Phys., 19, 6843-6859, https://doi.org/10.5194/acp-19-6843-2019, 2019.” 
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P12, L10 – Perhaps rephrase to “The following questions remain:” or somesuch  

Response: Thank you for pointing out this grammatical error. We have now corrected it. 

Modified text on Page 12, line 11: 

“Questions which remain unsolved are …” 5 
 

Figure 2 – consider different shapes and colors (in B&W, the colors are not distinguish- able)  

Response: We thank the reviewer for pointing this out. We have now changed the reference stations’ icon to triangle and the 

reference stations’ text font to italic, so that readers can differentiate between reference and low-cost nodes even when the 

manuscript is printed in black and white. 10 
Modified Figure 2: 

 
Figure 2: Locations of the 22 reference nodes (triangle icons with italic text) and 10 low-cost nodes (circle icons) that form the Delhi PM 
sensor network. 

 15 
Modified text on Page 4, lines 30-31: 

“Figure 2 visualizes the spatial distribution of these 22 reference monitors (triangle icons with italic text) and …” 

 

Modified text on Page 5, lines 13-14: 
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“Figure 2 shows the sampling locations of these 10 low-cost nodes as circle icons and …” 

 

Figure 3 – a more elaborate caption may help better explain the flow (for instance, a sentence for each step) 

Response: We have now expanded the Figure 3 caption to help better carry readers through the algorithm and we have now 

revised Figure 3 to make it more informative about and more accurately reflect the entire process.  5 
Modified Figure 3: 

 
Figure 3: The flow diagram illustrating the simultaneous GPR and simple linear regression calibration algorithm. In step one, for each 
of the 22-fold leave-one-out CVs, one of the 22 reference nodes is held out of modelling for the model predictive performance 
evaluation in step seven; in step two, fit a simple linear regression model between each low-cost node i and its closest reference 10 
node’s PM2.5, initialize low-cost node i’s calibration model to this linear regression model, and calibrate the low-cost node i using 
this model; in step three, first initialize the GPR hyperparameters to [0.1, 50, 0.01] and then update/optimize the hyperparameters 
based on the training samples from the 10 initially calibrated low-cost nodes and 21 reference nodes over 59 days; in step four, 
first compute each low-cost node i’s means conditional on the remaining 30 nodes given the optimized GPR hyperparameters, then 
fit a simple linear regression model between each low-cost node i and its conditional means, update low-cost node i’s calibration 15 
model to this new linear regression model, and re-calibrate the low-cost node i using this new model; in step five and six, iterative 
optimizations alternate between the GPR hyperparameters and the low-cost node calibrations using the approaches described in 
step three and four, respectively, until the GPR hyperparameters converged; in step seven, predict the 59-day PM2.5 measurements 
of the holdout reference node given the finalized GPR hyperparameters and the low-cost node calibrations. 

  20 
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Gaussian Process regression model for dynamically calibrating and 
surveilling a wireless low-cost particulate matter sensor network in 
Delhi 
Tongshu Zheng1, Michael H. Bergin1, Ronak Sutaria2, Sachchida N. Tripathi3, Robert Caldow4, David 
E. Carlson1,5 5 
1Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA 
2Respirer Living Sciences Pvt. Ltd, 7, Maheshwar Nivas, Tilak Road, Santacruz (W), Mumbai 400054, India 
3Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India 
4TSI Inc., 500 Cardigan Road, Shoreview, MN 55126, USA 
5Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA 10 
Correspondence to: Tongshu Zheng (tongshu.zheng@duke.edu) 

Abstract. Wireless low-cost particulate matter sensor networks (WLPMSNs) are transforming air quality monitoring by 

providing PM information at finer spatial and temporal resolutions; however, large-scale WLPMSN calibration and 

maintenance remain a challenge because the manual labor involved in initial calibration by collocation and routine 

recalibration is intensive, the transferability of the calibration models determined from initial collocation to new deployment 15 
sites is questionable, as calibration factors typically vary with urban heterogeneity of operating conditions and aerosol 

optical properties, and the stability of low-cost sensors can develop drift or degrade over time. This study presents a 

simultaneous Gaussian Process regression (GPR) and simple linear regression pipeline to calibrate and monitor dense 

WLPMSNs on the fly by leveraging all available reference monitors across an area without resorting to pre-deployment 

collocation calibration. We evaluated our method for Delhi, where the PM2.5 measurements of all 22 regulatory reference and 20 
10 low-cost nodes were available in for 59 valid days from January 1, 2018 to March 31, 2018 (PM2.5 averaged 138 ± 31 µg 

m-3 among 22 reference stations), using a leave-one-out cross-validation (CV) over the 22 reference nodes. We showed that 

our approach can achieve an overall 30 % prediction error (RMSE: 33 µg m-3) at a 24 h scale and is robust as underscored by 

the small variability in the GPR model parameters and in the model-produced calibration factors for the low-cost nodes 

among the 22-fold CV. We revealed that the accuracy of our calibrations depends on the degree of homogeneity of PM 25 
concentrations, and decreases with increasing local source contributions. Of the 22 reference stations, high-quality 

predictions were observed for those stations whose PM2.5 means were close to the Delhi-wide mean (i.e., 138 ± 31 µg m-3) 

and relatively poor predictions for those nodes whose means differed substantially from the Delhi-wide mean (particularly 

on the lower end). We also observed washed-out local variability in PM2.5 across the 10 low-cost sites after calibration using 

our approach, which stands in marked contrast to the true wide variability across the reference sites. These observations 30 
revealed that our proposed technique (and more generally the geostatistical technique) requires high spatial homogeneity in 

the pollutant concentrations to be fully effective. We further demonstrated that our algorithm performance is insensitive to 

training window size as the mean prediction error rate and the standard error of the mean (SEM) for the 22 reference stations 
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remained consistent at ~30 % and ~3–4 % when an increment of 2 days’ data were included in the model training. The 

markedly low requirement of our algorithm for training data enables the models to always be nearly most updated in the field, 

thus realizing the algorithm’s full potential for dynamically surveilling large-scale WLPMSNs by detecting malfunctioning 

low-cost nodes and tracking the drift with little latency. Our algorithm presented similarly stable 26–34 % mean prediction 

errors and ~3–7 % SEMs over the sampling period when pre-trained on the current week’s data and predicting 1 week ahead, 5 
therefore suitable for online calibration. As by-products of dynamic calibration, our algorithm can be adapted for automated 

large-scale WLPMSN monitoring as simulations proved its capability of differentiating malfunctioning or singular low-cost 

nodes within a network via model-generated calibration factors with the aberrant nodes having slopes close to 0 and 

intercepts close to the global mean of true PM2.5 and of tracking the drift of low-cost nodes accurately within 4 % error for 

all the simulation scenarios. Simulations conducted using our algorithm suggest that in addition to dynamic calibration, the 10 
algorithm can also be adapted for automated monitoring of large-scale WLPMSNs. In these simulations, the algorithm was 

able to differentiate malfunctioning low-cost nodes (due to either hardware failure or under heavy influence of local sources) 
within a network by identifying aberrant model-generated calibration factors (i.e., slopes close to zero and intercepts close to 

the Delhi-wide mean of true PM2.5). The algorithm was also able to track the drift of low-cost nodes accurately within 4 % 

error for all the simulation scenarios. The simulation results showed that ~20 reference stations are optimum for our solution 15 
in Delhi and confirmed that low-cost nodes can extend the spatial precision of a network by decreasing the extent of pure 

interpolation among only reference stations. Our solution has substantial implications in reducing the amount of manual 

labor for the calibration and surveillance of extensive WLPMSNs, improving the spatial comprehensiveness of PM 

evaluation, and enhancing the accuracy of WLPMSNs. 

1 Introduction 20 

Low-cost air quality (AQ) sensors that report high time resolution data (e.g., ≤ 1 h)	in near real time offer excellent potential 

for supplementing existing regulatory AQ monitoring networks by providing enhanced estimates of the spatial and temporal 

variabilities of air pollutants (Snyder et al., 2013). Certain low-cost particulate matter (PM) sensors demonstrated 

satisfactory performance benchmarked against Federal Equivalent Methods (FEMs) or research-grade instruments in some 

previous field studies (Holstius et al., 2014; Gao et al., 2015; SCAQMD, 2015a–b; Jiao et al., 2016; Kelly et al., 2017; 25 
Mukherjee et al., 2017; SCAQMD, 2017a–c; Crilley et al., 2018; Feinberg et al., 2018; Johnson et al., 2018; Zheng et al., 

2018). Application-wise, low-cost PM sensors have had success in identifying urban fine particle (PM2.5, with a diameter of 

2.5 µm and smaller) hotspots in Xi’an, China (Gao et al., 2015), mapping urban air quality with additional dispersion model 

information in Oslo, Norway (Schneider et al., 2017), monitoring smoke from prescribed fire in Colorado, US (Kelleher et 

al., 2018), measuring a traveler’s exposure to PM2.5 in various microenvironments in Southeast Asia (Ozler et al., 2018), and 30 
building up a detailed city-wide temporal and spatial indoor PM2.5 exposure profile in Beijing, China (Zuo et al., 2018).  
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On the down side, researchers have been plagued by calibration-related issues since their the emergence of low-cost AQ 

sensors. One common brute force solution is initial calibration by collocation with reference analyzers before field 

deployment and follow-up with routine recalibration. Yet, the transferability of these pre-determined calibrations at 

collocation sites to new deployment sites is questionable as calibration factors typically vary with operating conditions such 

as PM mass concentrations, relative humidity (RH), temperature, and aerosol optical properties (Holstius et al., 2014; Austin 5 
et al., 2015; Wang et al., 2015; Lewis and Edwards, 2016; Crilley et al., 2018; Jayaratne et al., 2018; Zheng et al., 2018). 

Complicating this further, the pre-generated calibration curves may only apply for a short term as the stability of low-cost 

sensors can develop drift or degrade over time (Lewis and Edwards, 2016; Jiao et al., 2016; Hagler et al., 2018). Routine 

recalibrations which require frequent transit of the deployed sensors between the field and the reference sites are not only too 

labor intensive for a large-scale network but also still cannot address the impact of urban heterogeneity of ambient conditions 10 
on calibration models (Kizel et al., 2018).  

 

As such, calibrating sensors on-the-fly while they are deployed in the field is highly desirable. Takruri et al. (2009) showed 

that the Interacting Multiple Model (IMM) algorithm combined with the Support Vector Regression (SVR)-Unscented 

Kalman Filter (UKF) can automatically and successfully detect and correct low-cost sensor measurement errors in the field; 15 
however, the implementation of this algorithm still requires pre-deployment calibrations. Fishbain and Moreno-Centeno 

(2016) designed a self-calibration strategy for low-cost nodes with no need for collocation by exploiting the raw signal 

differences between all possible pairs of nodes. The learned calibrated measurements are the vectors whose pairwise 

differences are closest in normalized projected Cook-Kress (NPCK) distance to the corresponding pairwise raw signal 

differences given all possible pairs over all time steps. However, this strategy did not include reference measurements in the 20 
self-calibration procedure, and therefore the tuned measurements were still essentially raw signals (although instrument 

noise was dampened). An alternative calibration method involves chain calibration of the low-cost nodes in the field with 

only the first node calibrated by collocation with reference analyzers and the remaining nodes calibrated sequentially by their 

respective previous node along the chain (Kizel et al., 2018). While this node-to-node calibration procedure proved its merits 

in reducing collocation burden and data loss during calibration/relocation/recalibration and accommodating the influence of 25 
urban heterogeneity on calibration models, it is only suitable for relatively small networks because calibration errors 

propagate through chains and can inflate toward the end of a long chain (Kizel et al., 2018).  

 

In this paper, we introduce a simultaneous Gaussian Process regression (GPR) and simple linear regression pipeline to 

calibrate PM2.5 readings of any number of low-cost PM sensors on the fly in the field without resorting to pre-deployment 30 
collocation calibration by leveraging all available reference monitors across an area (e.g., Delhi, India N 28.6139, E 77.2089). 

The proposed strategy is theoretically sound since the GPR (also known as Kriging) can capture the spatial covariance 

inherent in the data and has been widely used for spatial data interpolation (e.g., Holdaway, 1996; Di et al., 2016; Schneider 

et al., 2017) and the simple linear regression calibration can adjust for disagreements between low-cost sensor and reference 
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instrument measurements and lead to more consistent spatial interpolation. This paper focuses on 1) quantifying 

experimentally the daily performance of our dynamic calibration model in Delhi during winter season based on model 

prediction accuracy on the holdout reference nodes during leave-one-out cross-validations (CV) and low-cost node 

calibration accuracy; 2) revealing the potential pitfalls of employing a dynamic calibration algorithm; 3) examining the 

sensitivity of our algorithm to the training data size and the feasibility of it for dynamic calibration; 34) demonstrating the 5 
ability of our algorithm to auto-detect the faulty nodes and auto-correct the drift of nodes within a network via computational 

simulation, therefore the practicality of adapting our algorithm for automated large-scale sensor network monitoring; and 45) 

studying computationally the optimal number of reference stations across Delhi to support our technique and the usefulness 

of low-cost sensors for extending the spatial precision of a sensor network. To the best of our knowledge, this is the first 

study to apply such a non-static calibration technique to a wireless low-cost PM sensor network in a heavily polluted region 10 
such as India and the first to present methods of auto-monitoring dense AQ sensor networks. 

2 Materials and methods 

2.1 Low-cost node configuration 

The low-cost packages used in the present study (dubbed “Atmos”) shown in Fig. 1a were developed by Respirer Living 

Sciences (http://atmos.urbansciences.in/, last access: 30 November 2018) and cost ~ USD 300 per unit. The Atmos monitor 15 
measures 20.3 cm L × 12.1 cm W × 7.6 cm H, weighs 500 g, and is housed in an IP65 (Ingress Protection rating 65) 

enclosure with a liquid crystal display (LCD) on the front showing real-time PM mass concentrations and various debugging 

messages. It includes a Plantower PMS7003 sensor (~ USD 25; dimension: 4.8 cm L × 3.7 cm W × 1.2 cm H) to measure 

PM1, PM2.5, and PM10 mass concentrations, an Adafruit DHT22 sensor to measure temperature and relative humidity, and an 

ultra-compact Quectel L80 GPS model to retrieve accurate locations in real time. The operating principle and configuration 20 
of PMS7003 are similar to its PMS1003, PMS3003, and PMS5003 counterparts and have been extensively discussed in 

previous studies (Kelly et al., 2017; Zheng et al., 2018; and Sayahi et al., 2018, respectively). The inlet and outlet of 

PMS7003 were aligned with two slots on the box to ensure unrestricted airflow into the sensor. The PM and meteorology 

data are read over the serial TTL interface every three seconds, aggregated every 1 min in memory on the device, before 

being transmitted by a Quectel M66 GPRS module through the mobile 2G cellular network to an online database. The Atmos 25 
can also store the data on a local microSD card in case of transmission failure. Users have the option to configure the 

frequencies of data transfer and logging to 5, 10, 15, 30, and 60 minutes via a press key on the device and are able to view 

the settings on the LCD. All components of the Atmos monitors (key parts are labelled in Fig. 1b) are integrated to a custom-

designed printed circuit board (PCB) which is controlled by a STMicroelectronics microcontroller (model STM32F051). 

Each Atmos was continuously powered up by a 5V 2A USB wall charger but also comes with a fail-safe 3.7V–2600 mAh 30 
rechargeable Li-ion battery in case of power outage that can last up to 10 hours at a 1 min transmission frequency and 20 

hours at a 5 min frequency. 
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The Atmos network’s server architecture was also developed by Respirer Living Sciences and built on the following open-

source components: KairosDB as our the primary fast scalable time series database built on Apache Cassandra, custom-made 

Java libraries for ingesting data and for providing XML/JSON/CSV-based access to aggregated time series data, 

HTML5/JavaScript for creating the front-end dashboard, and LeafletJS for visualizing Atmos networks on maps.  5 

2.2 Data description 

2.2.1 Reference PM2.5 data 

Hourly ground-level PM2.5 concentrations from 21 monitoring stations operated by the Central Pollution Control Board 

(CPCB), the Delhi Pollution Control Committee (DPCC), the India Meteorological Department (IMD), and the Uttar 

Pradesh and Haryana States Pollution Control Boards (SPCBs) (https://app.cpcbccr.com/ccr/#/caaqm-dashboard/caaqm-10 
landing, last access: 18 September 2018) and from one monitoring station operated by the U.S. Embassy in New Delhi 

(https://www.airnow.gov/index.cfm?action=airnow.global_summary#India$New_Delhi, last access: 18 September 2018) 

were available in our study domain of Delhi and its satellite cities including Gurgaon, Faridabad, Noida, and Ghaziabad from 

January 1, 2018 to March 31, 2018 (winter season) and were used as the reference measurements in our Delhi PM sensor 

network. The topographical, climatic, and air quality conditions of Delhi are well documented by Tiwari et al. (2012 and 15 
2015) and Gorai et al. (2018). Briefly, Delhi experiences unusually high PM2.5 concentrations over winter season due to a 

combination of increased biomass burning for heating, shallower boundary layer mixing height, diminished wet scavenging 

by precipitation, lower wind speed, and trapping of air pollutants by the Himalayan topology. Figure 2 visualizes the spatial 

distribution of these 22 reference monitors (triangle icons with italic textred icons) and Table 1 lists their latitudes and 

longitudes. No station of the 22 reference monitors is known for regional background monitoring. The complex local built 20 
environment in Delhi arising from the densely and intensively mixed land use (Tiwari, 2002) and the significant 

contributions to air pollution from all vehicular, industrial (small scale industries and major power plants), commercial 

(diesel generators and tandoors), and residential (diesel generators and biomass burning) sectors (CPCB, 2009; Gorai et al., 

2018) render the PM2.5 concentrations relatively unconnected to the land-use patterns. We removed 104 1 h observations 

(labeled invalid and missing) from the U.S. Embassy dataset based on its reported QA/QC (quality assurance/quality control) 25 
remarks; however, the same procedure was not applied to the remaining 21 Indian government monitoring stations because 

neither the relevant Indian agencies provided QA/QC remarks or error flags in any of their regulatory monitoring stations’ 

datasets nor can we obtain the QA/QC procedures (e.g., how and how often reference monitors are maintained and calibrated) 

for these reference monitors. Due to lack of relevant QA/QC information to exclude any measurement, all of the hourly 

PM2.5 concentrations of the 21 monitoring stations operated by the Indian agencies were assumed to be correct. We would 30 
like to highlight this as a potential shortcoming of using the measurements from the Indian government monitoring stations. 

due to lack of relevant information. While mathematically the GPR model can operate without requiring data from all the 
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stations to be non-missing on each day by relying on only each day’s non-missing stations’ covariance information to make 

inference, we practically required concurrent measurements of all the stations in this paper to drastically increase the speed 

of the algorithm (~10 mins to run a complete 22-fold leave-one-out CV, up to ~20 times faster) by avoiding the expensive 

computational cost of excessive amount of matrix inversions that can be incurred otherwise. GPR requires concurrent 

measurements of all the stations but certain stations had a high fraction of missing values. Therefore, to maximize the 5 
number of complete concurrent observations for modelling in order to significantly increase the model accuracy, we We 

therefore linearly interpolated the 1 h PM2.5 values for the hours with missing measurements for each station, after which we 

averaged the hourly data to daily resolution as the model inputs. We validate our interpolation approach in Sect. 3.2.1 by 

showing that the model accuracies with and without interpolation are statistically the same. 

2.2.2 Low-cost node PM2.5 data 10 

Hourly uncalibrated PM2.5 measurements from 10 Atmos low-cost nodes across Delhi between January 1, 2018 and March 

31, 2018 were downloaded from our low-cost sensor cloud platformusing our custom-designed Application Program 

Interface (API). No correction or filter of any kind was applied to the raw signals of the low-cost nodes over the cloud 

platform before we downloaded the data. Figure 2 shows the sampling locations of these 10 low-cost nodes as circle 

iconsblue icons and Table 1 specifies their latitudes and longitudes. In our current study, the factors governing the siting of 15 
these nodes consist of the ground contact personnel availability, the resource availability such as strong mobile network 

signal and 24/7 main power supply, the locations physical accessibility, and some other common criteria for sensor 

deployment (e.g., locations away from major pollution sources, situated in a place where free flow of air is available, and 

protected from vandalism and extreme weather). Similar to the preprocessing of the reference PM2.5 data, we linearly 

interpolated the missing hourly PM2.5 for each low-cost node and then aggregated the hourly data at a daily interval. The 20 
comparison of initial 1 h PM2.5’s completeness with that of before and after missing data imputation for both reference and 

low-cost nodes is detailed in Table 1 and the periods over which data were imputed for each site are illustrated in Fig. S1. 

There is no obvious pattern in the data missingness. To remove the prospective outliers such as erroneous surges/nadirs 

existing in the datasets of the 21 Indian government reference nodes and the 10 low-cost nodes or unreasonable interpolated 

measurements introduced during handling the missing data, we employed the Local Outlier Factor (LOF) algorithm with 20 25 
neighbors considered (a number that works well in general) to remove a conservative ~10% of the 32-dimensional (22 

reference + 10 low-cost nodes) 24 h PM2.5 datasets. LOF is an unsupervised anomaly detection method that assigns each 

multi-dimensional data point an LOF score, defined as the ratio of the average local density of its k nearest neighboring data 

points (k = 20 in our study) to its own local density, to measure the relative degree of isolation of the given data point with 

respect to its neighbors (Breunig, et al., 2000). Normal observations tend to have LOF scores near 1 while outliers have 30 
scores significantly larger than 1. The LOF therefore identifies the outliers as those multi-dimensional observations with the 

top x% (x = 10 in our study) LOF scores. A total of 59 days’ PM2.5 measurements common to all 32 nodes in the network 

were left (see Fig. S1) and used for our model evaluation.  



55 
 

2.3 Simultaneous GPR and simple linear regression calibration model 

Figure 3 shows the overall schema for the simultaneous GPR and simple linear regression dynamic calibration model. The 

simultaneous GPR and simple linear regression calibration algorithm is introduced here as Algorithm 1. The critical steps of 

the algorithm are linked to sub-sections under which the respective details can be found. Complementing Algorithm 1, a 

flow diagram illustrating the algorithm is given in Figure 3. 5 
 
Algorithm 1: Algorithm of simultaneous GPR and simple linear regression 

for each reference node (denote: Refk) in the network do 

      leave Refk out as test sample (see Sect. 2.3.1 for details) 

      for each low-cost node (denote: Low-costi) in the network do 10 
            find Low-costi’s closest reference node (denote: Refi) (Sect. 2.3.2) 

            fit a simple linear regression model between Refi and Low-costi’s PM2.5: 𝑹𝒆𝒇𝒊 = 𝛼) ∙ 𝑳𝒐𝒘 − 𝒄𝒐𝒔𝒕𝒊 +	𝛽) (Sect. 2.3.2) 

            initialize the simple linear regression calibration factors to 𝛼) (slope) and 𝛽)  (intercept) for Low-costi (Sect. 2.3.2) 

            initialize the calibration of Low-costi using 𝛼) and 𝛽)  (Sect. 2.3.2) 

      end for 15 
      initialize GPR hyperparameters 𝚯 = [𝜎78, 𝑙, 𝜎:8] to [0.1, 50, 0.01] (Sect. 2.3.3) 

      standardize the 10 calibrated low-cost and 21 reference nodes at once (Sect. 2.3.3) 

      while convergence criteria not met do 

            update/optimize GPR hyperparameters 𝚯 using the 31 standardized training nodes (Sect. 2.3.3 and .5) 

            for each low-cost node (denote: Low-costi) in the network do 20 
                  for each day (denote: t) of the 59 days do 

                        calculate Low-costi’s mean conditional on the remaining 30 nodes on day t (denote 𝜇=|?)@ ) (Sect. 2.3.4 and .5) 

                  end for 

                  fit a linear regression between 𝝁𝑨|𝑩𝒊 ∈ ℝFGand Low-costi: 𝝁𝑨|𝑩𝒊 = 𝛼) ∙ 𝑳𝒐𝒘 − 𝒄𝒐𝒔𝒕𝒊 +	𝛽) (Sect. 2.3.4 and .5) 

                  update calibration factors 𝛼) and 𝛽)  for Low-costi (Sect. 2.3.4 and .5) 25 
                  update the calibration of Low-costi using 𝛼) and 𝛽)  (Sect. 2.3.4 and .5) 

            end for 

            check convergence criteria (Sect. 2.3.5) 

      end while 

      use the final GPR model to predict on Refk (Sect. 2.3.6) 30 
      transform the prediction back to original PM2.5 scale (Sect. 2.3.6) 

      calculate RMSE and percent error (Sect. 2.3.6) 
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end for 

2.3.1 Leave one reference node out 

Under the context of not knowing beforehandBecause the true calibration factors for the low-cost nodes are not known 

beforehand, a leave-one-out CV approach (i.e., holding one of the 22 reference nodes out of modelling each run for model 

predictive performance evaluation) was adopted as a surrogate to estimate our proposed model accuracy of calibrating the 5 
low-cost nodes. For each of the 22-fold CV, 31 node locations (denoted Γ = {𝒙J, … , 𝒙MJ})	were available, where 𝒙) is the 

latitude and longitude of node i. Let 𝑦)@ represent the daily PM2.5 measurement of node i on day t and 𝒚@ ∈ ℝMJ denote the 

concatenation of the daily PM2.5 measurements recorded by the 31 nodes on day t. Given a finite number of node locations, a 

Gaussian Process (GP) becomes a Multivariate Gaussian Distribution over the nodes in the form of: 

𝒚@|Γ ∼ 𝑁(𝝁, 𝚺)            (1) 10 
where 𝝁 ∈ ℝMJ	represents the mean function (assumed to be 𝟎 in this study); and	𝚺 ∈ ℝMJ×MJ	with Σ)X = 𝐾Z𝒙), 𝒙X; 𝚯𝜃\ 

represents the covariance function/kernel function and 𝚯 is a vector of the GPR hyperparameters. 

 

For simplicity’s sake, the kernel function was set to a squared exponential (SE) covariance term to capture the spatially-

correlated signals coupled with another component to constrain the independent noise: 15 

𝐾Z𝒙), 𝒙X;𝚯𝜃\ = 𝜎78 𝑒𝑥𝑝 `−
a𝒙bc𝒙dae

e

8fe
g + 𝜎:8𝑰 (Rasmussen and Williams, 2006)     (2) 

where 𝜎78, 𝑙, and 𝜎:8 are the model hyperparameters (to be optimized) that control the signal magnitude, characteristic length-

scale, and noise magnitude, respectively;	𝚯 ∈ ℝM	is a vector of the GPR hyperparameters 𝜎78, 𝑙, and 𝜎:8. 

2.3.2 Initialize low-cost nodes’ (simple linear regression) calibrations 

What separates our method from standard GP applications is the simultaneous incorporation of calibration for the low-cost 20 
nodes using a simple linear regression model into the spatial model. Linear regression has previously been shown to be 

effective at calibrating PM sensors (Zheng et al., 2018). Linear regression was first used to initialize low-cost nodes’ 

calibrations (step two in Fig. 3). In this stepInitially (step two in Fig. 3), each low-cost node i was linearly calibrated based 

onto its closest reference node using (Eq. 3), where the calibration factors 𝛼) (slope) and 𝛽)  (intercept) were determined by 

fitting a simple linear regression model to all available pairs of daily PM2.5 mass concentrations from the uncalibrated low-25 
cost node i (independent variable) and its closest reference node (dependent variable). This step aims to bridge 

disagreements between low-cost and reference node measurements, which can led lead to a more consistent spatial 

interpolation and a faster convergence during the GPR model optimization.  

𝒓) = q 𝒚), if	reference	node
𝛼) ∙ 𝒚) +	𝛽) , if	low − cost	node         (3) 
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where 𝒚𝒊 is either a vector of all the daily PM2.5 measurements of reference node i or a vector of all the daily raw PM2.5 

signals of low-cost node i; 𝒓𝒊 is either a vector of all the daily PM2.5 measurements of reference node i or a vector of all the 

daily calibrated PM2.5 measurements of low-cost node i; 𝛼) and 𝛽)  are the slope and intercept, respectively, determined from 

the fitted simple linear regression calibration equation with daily PM2.5 mass concentrations of the uncalibrated low-cost 

node i as independent variable and PM2.5 mass concentrations of low-cost node i's closest reference node as dependent 5 
variable. 

2.3.3 Optimize GPR model (hyperparameters) 

After standardizing the PM2.5 measurements for each node by subtracting the mean and scaling to unit variance (i.e., 

transforming the PM2.5 measurements to have a zero mean and unit variance) In the next step (step three in Fig. 3), a GPR 

model was fit to each day t’sall 31 nodes (i.e., 10 initialized low-cost nodes and 21 reference nodes) as described in Eq. (4). 10 
Prior to the GPR model fitting, all the PM2.5 measurements of the 31 nodes over 59 valid days used for GPR model 

hyperparameters training were standardized. The standardization was performed by first concatenating all these training 

PM2.5 measurements (from the 31 nodes over 59 days), then subtracting their mean 𝜇@~�):):� and dividing them by their 

standard deviation 𝑠@~�):):�  (i.e., transforming all the training PM2.5 measurements to have a zero mean and unit variance). 

and step three in Fig. 3. It is worth noting that assuming the mean function 𝝁 ∈ ℝMJ	to be 0 along with standardizing all the 15 
training PM2.5 samples in this study is one of the common modelling formulations on the GPR model and the simplest one. 

More complex formulations including a station-specific mean function (lack of prior information for this project), a time-

dependent mean function (computationally expensive), and a combination of both were not considered for this paper. After 

the standardization of training samples, Then the GPR was trained to maximize the log marginal likelihood over all 59 days 

(using Eq. 5) and using an L-BFGS-B optimizer (Byrd et al., 1994). To avoid bad local minima, several random 20 
hyperparameter initializations were tried and the initialization that resulted inwith the best largest log marginal likelihood 

after optimization was chosen (in this paper, 𝚯 = [𝜎78, 𝑙, 𝜎:8] was initialized to [0.1, 50, 0.01]). 

𝒓) = q 𝒚), if	reference	node
𝛼) ∙ 𝒚) +	𝛽) , if	low − cost	node         (3) 

𝒓@|Γ ∼ 𝑁(𝝁, 𝚺)            (4) 

where t ranges from 1 (inclusive) to 59 (inclusive); 𝒓𝒕 ∈ ℝMJ	is a vector of all 31 nodes’ PM2.5 measurements (calibrated if 25 
low-cost nodes) on day t; Γ = {𝒙𝟏,… , 𝒙𝟑𝟏}	denotes 31 nodes’ locations and 𝒙𝒊 ∈ ℝ8	is a vector of the latitude and longitude 

of node i; 𝝁 ∈ ℝMJ	represents the mean function (assumed to be 𝟎 in this study) and	𝚺 ∈ ℝMJ×MJ	with Σ)X = 𝐾Z𝒙𝒊, 𝒙𝒋; 𝚯\ 

represents the covariance function/kernel function. 

where 𝛼) and 𝛽)  are the slope and intercept, respectively, of the calibration equation for low-cost node i based on its closest 

reference node; 𝒓) is all the daily PM2.5 measurements of either the initially-calibrated low-cost node i or reference node i; 30 
and 𝒓@ is the concatenation of all 31 nodes’ PM2.5 measurements on day t. 
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arg	max
𝚯
𝐿(𝚯) = arg	max

𝚯
∑ log 𝑝(𝒓@|𝚯)FG
@�J 	= arg	max

𝚯
(−0.5 ∙ 59 ∙ log|𝚺�| − 0.5∑ 𝒓@�𝚺�cJ𝒓@)FG

@�J    (5)	

where 𝚯 ∈ ℝM	is a vector of the GPR hyperparameters 𝜎78, 𝑙, and 𝜎:8. 

2.3.4 Update low-cost nodes’ (simple linear regression) calibrations based on their conditional means 

Once the optimum 𝚯 for the (initial) GPR was found, we used the learned covariance function to find the mean of each low-5 
cost node i’s Gaussian Distribution conditional on the remaining 30 nodes within the network (i.e., 𝜇=|?)@ ) on day t as 

described mathematically in Eq. (6)–(8) and repeatedly did so until all 59 days’ 𝜇=|?)@ 	(i.e., 𝝁𝑨|𝑩𝒊 ∈ ℝFG)	were found and then 

re-calibrated that low-cost node i based on the 𝝁𝑨|𝑩𝒊 . The re-calibration was done by first fitting a simple linear regression 

model to all 59 pairs of daily PM2.5 mass concentrations from the uncalibrated low-cost node i (𝒚𝒊, independent variable) and 

its conditional mean (𝝁𝑨|𝑩𝒊 , dependent variable) and then using the updated calibration factors (slope 𝛼) and intercept 𝛽)) 10 
obtained from this newly fitted simple linear regression calibration model to calibrate the low-cost node i again (using Eq. 3). 
This procedure is summarized graphically in Fig. 3 step four and was performed iteratively for all low-cost nodes one at a 

time. The reasoning behind this step is given in the Supplement. A high-level interpretation of this step is that the target low-

cost node is calibrated by being weighted over the remaining nodes within the network and the 𝚺𝑨𝑩𝒊𝒕 𝚺𝑩𝑩𝒊𝒕
cJ term computes the 

weights. In contrast to the inverse distance weighting interpolation which will weight the nodes used for calibration equally 15 
if they are equally distant from the target node, the GPR will value sparse information more and lower the importance of 

redundant information (suppose all the nodes are equally distant from the target node) as shown in Fig. S2. 

𝑝 `�𝑟=
)@

𝒓𝑩𝒊𝒕
�g = 	𝑁 `�𝑟=

)@

𝒓𝑩𝒊𝒕
� ; �𝜇=

)@

𝝁𝑩𝒊𝒕
�	�Σ==

)@ 𝚺𝑨𝑩𝒊𝒕

𝚺𝑩𝑨𝒊𝒕 𝚺𝑩𝑩𝒊𝒕
�g        (6) 

𝑟=)@�𝒓𝑩𝒊𝒕	~	𝑁Z𝜇=|?)@ , Σ=|?)@ \        (7) 

𝜇=|?)@ =	𝜇=)@ + 𝚺𝑨𝑩𝒊𝒕 𝚺𝑩𝑩𝒊𝒕
cJ(𝒓𝑩𝒊𝒕 −	𝝁𝑩𝒊𝒕)        (8) 20 

where 𝑟=)@and 𝒓𝑩𝒊𝒕 are the daily PM2.5 measurement(s) of the low-cost node i and the remaining 30 nodes on day t; 𝜇=)@, 𝝁𝑩𝒊𝒕, and 

𝜇=|?)@  are the mean (vector) of the partitioned Multivariate Gaussian Distribution of the low-cost node i, the remaining 30 

nodes, and the low-cost node i conditional on the remaining 30 nodes, respectively, on day t; and Σ==)@ , 𝚺𝑨𝑩𝒊𝒕 , 𝚺𝑩𝑨𝒊𝒕 , 𝚺𝑩𝑩𝒊𝒕 , and 

Σ=|?)@  are the covariance between the low-cost node i and itself, the low-cost node i and the remaining 30 nodes, the remaining 

30 nodes and the low-cost node i, the remaining 30 nodes and themselves, and the low-cost node i conditional on the 25 
remaining 30 nodes and itself, respectively, on day t. 

2.3.5 Optimize alternately and iteratively and converge 

Iterative optimizations alternated between the GPR covariance functionhyperparameters and the low-cost node calibrations 

using the approaches described in Sect. 2.3.3 and 2.3.4, respectivelymeasurements (Fig. 3 steps five and six, respectively), 
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until the GPR parameters 𝚯 converged with the convergence criteria being the differences in all the GPR hyperparameters 

between the two adjacent runs below 0.01 (i.e., with ∆𝜎78 ≤ 0.01, ∆𝑙 ≤ 0.01, 𝑎𝑛𝑑	∆𝜎:8 ≤ 0.01).  

2.3.6 Predict on the holdout reference node and calculate accuracy metrics 

The final GPR was used to predict the 59-day PM2.5 measurements of the holdout reference node (Fig. 3 step seven) 

following the Cholesky decomposition algorithm (Rasmussen and Williams, 2006) with the standardized predictions being 5 
transformed back to the original PM2.5 measurement scale at the end. The back transformation was done by multiplying the 

predictions by the standard deviation 𝑠@~�):):�  (the standard deviation of the training PM2.5 measurements) and then adding 

back the mean 𝜇@~�):):� (the mean of the training PM2.5 measurements). Metrics including root mean square errors (RMSE, 

Eq. 9) and percent errors defined as RMSE normalized by the average of the true measurements of the holdout reference 

node in this study (Eq. 10) were calculated for each fold and further averaged over all 22 folds to assess the accuracy and 10 
sensitivity of our simultaneous GPR and simple linear regression calibration model. 

RMSE = 	£ J
FG
‖𝒚) − 𝒚¥¦ ‖88           (9) 

where 𝒚) and 𝒚¥¦  are the true and model predicted 59 daily PM2.5 measurements of the holdout reference node i. 

 

Percent error = §¨©ª
«¬.		®¯°±¯²³	´µ¶µ´µ·¸µ	¹¨e.º	¸¯·¸.

         (10) 15 

3 Results and discussion 

3.1 Spatial variation of PM2.5 across Delhi 

Figure 4a presents the box plot of the daily averaged PM2.5 at each available reference site across Delhi from January 1, 2018 

to March 31, 2018. The Vasundhara and DTU sites were the most polluted stations with the PM2.5 averaging 194 ± 104 µg 

m-3 and 193 ± 90 µg m-3, respectively. The Pusa and Sector 62 sites had the lowest mean PM2.5, averaging 86 ± 40 µg m-3 and 20 
88 ± 36 µg m-3, respectively. Spatially, the The global Delhi-wide average of the 3-month mean PM2.5 of across the 22 

reference stations was found to be 138 ± 31 µg m-3. This pronounced spatial variation in mean PM2.5 in Delhi (as reflected by 

the high SD of 31 µg m-3) coupled with the stronger temporal variation for each station even at a 24 h scale (range: 35–104 

µg m-3, see Fig. 4a) caused nonuniform calibration performance of the GPR model across Delhi, as detailed in Sect. 3.2. 

3.2 Assessment of GPR model performance 25 

The optimum values of the GPR model parameters including the signal variance (𝜎78), the characteristic length-scale (𝑙), and 

the noise variance (𝜎:8) are shown in Fig. S3. The 𝜎78, 𝑙, and 𝜎:8 from the 22-fold leave-one-out CV averaged 0.53 ± 0.02, 

97.89 ± 5.47 km, and 0.47 ± 0.01, respectively. The small variability in all the parameters among all the folds indicates that 
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the model is fairly robust to the different combinations of reference nodes. The learned length-scale can be interpreted as the 

modeled spatial pattern of PM2.5 being relatively consistent within approximately 98 km, suggesting that the optimized 

model majorly captures a global regional trend rather than fine-grained local variations in Delhi.  

3.2.1 Accuracy of reference node prediction 

We start by showing the accuracy of model prediction on the 22 reference nodes using leave-one-out CV (when the low-cost 5 
node measurements were included in our spatial prediction). Without any prior knowledge of the true calibration factors for 

the low-cost nodes, the holdout reference node prediction accuracy is a statistically sound proxy for estimating how well our 

technique can calibrate the low-cost nodes. The performance scores (including RMSE and percent error) for each reference 

station sorted by the 3-month mean PM2.5 in descending order are listed in Table 2. An overall 30 % prediction error 

(equivalent to an RMSE of 33 µg m-3) at a 24 h scale was achieved on the reference nodes following our calibration 10 
procedure. In this paper, we reported our algorithm’s accuracy on the 24 h data only rather than on the 1 h data because real-

time reference monitors that are certified as the Federal Equivalent Methods (FEMs) by the US Environmental Protection 

Agency (EPA) are required to provide results comparable to the Federal Reference Methods (FRMs) only for a 24 h but not 

a 1 h sampling period. Our algorithm, which essentially relies on the accuracy of the reference measurements, can only 

calibrate/predict as well as the reference methods measure. Therefore, only the percent error based on the reliable 24 h 15 
reference measurements is a fair representation of our algorithm’s true calibration/prediction ability. Although the 

technique ’s performance is decent reasonably accurate, especially considering the minimal amount of field work involved, 

its calibration error is nearly 3 times higher than the one of the low-cost nodes that were well calibrated by collocation with 

an environmental b-attenuation monitors (E-BAM) in our previous study (error: 11 %; RMSE: 13 µg m-3) under similar 

PM2.5 concentrations at the same temporal resolution (Zheng et al., 2018). The suboptimal on-the-fly mapping accuracy is a 20 
result of the optimized model’s ability to simulate only the global regional trend well. From a different perspective, the GPR 

method would have modeled the spatial pattern of PM2.5 in Delhi well had the natural spatial covariance among the nodes not 

been disturbed by the complex and prevalent local sources there. As a substantiation of the flawed local PM2.5 variation 

modelling, the reference node mapping accuracy follows a pattern, with relatively high-quality prediction for those nodes 

whose means were close to the global Delhi-wide mean (e.g., global Delhi-wide mean ± SD as highlighted with shading in 25 
Table 2) while and relatively poor prediction for those nodes whosethe means wide ofdiffered substantially from the global 

Delhi-wide mean (and particularly in on the lower end).  

 

In this paper, we interpolated the missing 1 h PM2.5 values for all the reference and low-cost stations to fulfil our requirement 

of concurrent measurements of all the stations. This approach drastically increased the speed of the algorithm (up to ~20 30 
times faster) by avoiding the expensive computational cost of excessive amount of matrix inversions that can be incurred 

from relying on only each day’s non-missing stations’ covariance information to make inference. Here we prove that the 

interpolation is an appropriate methodology for this paper by demonstrating that the model prediction percent errors for the 
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22 reference stations with and without interpolation are statistically the same. The comparison of the errors for each station 

can be found in Table S1. Table S1 shows that the percent errors for all the stations are essentially the same with only one 

exception of station Vasundhara whose error without interpolation is 10 % lower than that with interpolation. The Delhi-

wide mean percent errors with (30 %) and without interpolation (29 %) are also essentially the same. We further used the 

Wilcoxon signed-rank test (Wilcoxon, 1945) to prove that the two related paired samples (i.e., the percent errors for the 22 5 
reference stations with and without interpolation) are indeed statistically the same. The Wilcoxon signed-rank test is a non-

parametric version of the parametric paired t-test (involving two related/matched samples/groups) that requires no specific 

distribution on the measurements (unlike the parametric paired t-test that assumes a normal distribution). We conducted a 

two-sided test which has the null hypothesis that the percent errors for the 22 reference stations with and without 

interpolation are the same (i.e., H0: with = without) against the alternative that they are not the same (i.e., H1: with ≠ 10 
without). The p-value of the test is 0.07. The level of statistical significance was chosen to be 0.05, which means that the null 

hypothesis (i.e., H0: with = without) cannot be rejected when the p-value is 0.07, above 0.05. Therefore, interpolating 

missing 1 h PM2.5 data for both reference and low-cost nodes is appropriate for this paper because the accuracies of model 

prediction on the 22 reference nodes with and without interpolation are not distinct based on the Wilcoxon signed-rank test 

result. 15 
 

It is of particular interest to validate the value of establishing a relatively dense wireless sensor network in Delhi by 

examining if the addition of the low-cost nodes can truly lend a performance boost to the spatial interpolation among sensor 

locations. We juxtapose the interpolation performance using the full sensor network (including both the reference and low-

cost nodes) with that using only the reference nodes in Fig. 5. In this context, the unnormalized RMSE is less representative 20 
than the percent error of the model interpolation performance because of the unequal numbers of overlapping 24 h 

observations for all the nodes (59 data points) and for only the reference nodes (87 data points). The comparison revealed 

that the inclusion of the 10 low-cost devices on top of the regulatory grade monitors can reduce mean and median 

interpolation error by roughly 2 %. While only a marginal improvement with 10 low-cost nodes in the networkat the scale of 

10, the outcome hints that densely-deployed low-cost nodes can have great promise of significantly decreasing the amount of 25 
pure interpolation among sensor locations, therefore benefitting the spatial precision of a network. We will explore more 

about the significance of the low-cost nodes for the network performance in Sect. 3.3.3. 

3.2.2 Accuracy of low-cost node calibration 

Next we describe the technique’s accuracy of low-cost node calibration. The model-produced calibration factors are shown 

in Fig. 6. The intercepts and slopes for each unique low-cost device varied little among all the 22 CV folds, reiterating the 30 
stability of the GPR model. The values of these calibration factors resemble those obtained in the previous field work, with 

slopes comparable to South Coast Air Quality Management District’s evaluations on the Plantower PMS models (SCAQMD, 

2017a–c) and intercepts comparable to our Kanpur, India post-monsoon study (Zheng et al., 2018). 
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Two low-cost nodes (i.e., MRU and IITD) were collocated with two E-BAMs throughout the entire study. This allows us to 

take their model-derived calibration factors and calibrate the corresponding raw values of the low-cost nodes before 

computing the calibration accuracy based on the ground truth (i.e., E-BAM measurements). Figures 7a and 7b show the 

scatterplots of the collocated E-BAM measurements against the model-calibrated low-cost nodes at the MRU and the IITD 5 
sites, respectively. The two sites had similarly large calibration errors (~50 %) because their concentrations were both near 

the lower end of PM2.5 spectrum in Delhi. These high error rates echo the conditions found at the comparatively clean Pusa 

and Sector 62 reference sites. The scatterplots also reveal the reason why the technique especially has trouble calibrating 

low-concentration sites—the technique overpredicted the PM2.5 concentrations at the low-concentration sites to match the 

levels as if subject to the natural spatial variation. The washed-out local variability after model calibration more obviously 10 
manifests in Fig. 4b, which stands in marked contrast to the true wide variability across the reference sites (Fig. 4a). In other 

words, the geostatistical techniques can calibrate the low-cost nodes dynamically, with the important caveat that it is 

effective only if the degree of urban homogeneity in PM2.5 is high (e.g., the local contributions are as small a fraction of the 

regional ones as possible or the local contributions are prevalent but of similar magnitudes). Otherwise, quality predictions 

will only apply for those nodes whose means are close to the global Delhi-wide mean. Gani et al. (2019) estimated that 15 
Delhi’s local contribution to the composition-based submicron particulate matter (PM1) was ~30 to 50 % during winter and 

spring months. Clearly the huge amount of local influence in Delhi did not fully support our technique. In this study, our 

MRU and IITD sites are similar to the IITM site from the studies by Tiwari et al. (2012 and 2015), which are all on campus 

and free from major pollution sources and therefore qualified to be regional background sites. The PM2.5 regional 

background concentration during winter in Delhi was then estimated to be approximately 72 µg m-3. The global mean of the 20 
22 reference sites was 138 µg m-3, thus the mean local contribution across Delhi was roughly 66 µg m-3. Clearly this ~1:1 

regional–to–local ratio did not fully support the technique. Alternatively, prior information about urban PM2.5 spatial patterns 

such as high-spatial-resolution annual average concentration basemap from air pollution dispersion models can dramatically 

improve the on-the-fly calibration performance by correcting for the concentration range-specific biases (Schneider et al., 

2017). 25 

3.2.3 GPR model performance as a function of training window size 

So far, the optimization of both GPR model hyperparameters and the linear regression calibration factors for the low-cost 

nodes has been carried out over the entire sampling period using all 59 available daily-averaged data points. It is of critical 

importance to examine the effect of time history on the algorithm, by analyzing how sensitive the model performance is to 

training window size. We tracked the model performance change when an increment of 2 days’ data were included in the 30 
model training. The model performance was measured by the mean accuracy of model prediction on the 22 reference nodes 

(within the time period of the training window) using leave-one-out CV, as described in Sect. 3.2.1. Figure 8 illustrates that, 
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throughout the 59 days, the error rate and the standard error of the mean (SEM) remained surprisingly consistent at ~30 % 

and ~3–4 %, respectively, regardless of how many 2-day increments were used as the training window size. The little 

influence of training window size on the GPR model performance is possibly a positive side effect of the algorithm’s time-

invariant mean assumption, strong spatial smoothing effect, and the additional averaging of the error rates of the 22 reference 

nodes. The markedly low requirement of our algorithm for training data is powerful in that it enables the GPR model 5 
hyperparameters and the linear regression calibration factors to always be nearly most updated in the field. This helps realize 

the algorithm’s full potential for automatically surveilling large-scale networks by detecting malfunctioning low-cost nodes 

within a network (see Sect. 3.3.1) and tracking the drift of low-cost nodes (see Sect. 3.3.2) with as little latency as possible. 

3.2.4 GPR model dynamic calibration performance 

The stationary model performance in response to the increase of training data hints that using our method for dynamic 10 
calibration/prediction is feasible. We assessed the algorithm’s 1 week-ahead prediction performance, by using simple linear 

regression calibration factors and GPR hyperparameters that were optimized from one week to calibrate the 10 low-cost 

nodes and predict each of the 22 reference nodes, respectively, in the next week. For example, the first/second/third/… week 

data were used as training data to build GPR models and simple linear regression models. These simple linear regression 

models were then used to calibrate the low-cost nodes in the second/third/fourth/… week, followed by the GPR models to 15 
predict each of the 22 reference nodes in that week. The performance was still measured by the mean accuracy of model 

prediction on the 22 reference nodes using leave-one-out CV, as described in Sect. 3.2.1. We found similarly stable 26–34 % 

dynamic calibration error rates and ~3–7 % SEMs throughout the weeks (see Figure S4). 

3.2.5 RH adjustment to the algorithm 

We attempted RH adjustment to the algorithm by incorporating an RH term in the linear regression models, where the RH 20 
values were the measurements from each corresponding low-cost sensor package’s embedded Adafruit DHT22 RH and 

temperature sensor. However, there was no improvement in the algorithm’s accuracy after RH correction. A plausible 

explanation is regarding the infrequently high RH conditions during the winter months in Delhi and stronger smoothing 

effects at longer averaging time intervals (i.e., 24 h). Our previous work (Zheng et al., 2018) suggested that the PMS3003 

PM2.5 weights exponentially increased only when RH was above ~70%. The Delhi-wide average of the 3-month RH 25 
measured by the 10 low-cost sites was found to be 55 ± 15 %. Only 17 % and 6 % of these RH values were greater than 70 % 

and 80 %, respectively. The infrequently high RH conditions can cause the RH-induced biases insignificant. Additionally, 

our previous work found that even though major RH influences can be found in 1 min to 6 h PM2.5 measurements, the 

influence significantly diminished in 12 h PM2.5 measurements and was barely observable in 24 h measurements. Therefore, 

longer averaging time intervals can smooth out the RH biases. 30 
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Additionally, while our algorithm was analyzed over the 59 available days in this study, the daily-averaged temperature and 

RH measurements for the entire sampling period (i.e., from January 1 to March 31, 2018, 90 days) were statistically the 

same as those for the 59 days. To support this statement, we conducted the Wilcoxon rank-sum test, also called Mann-

Whitney U test (Wilcoxon, 1945; Mann and Whitney, 1947) on the daily-averaged temperature and RH measurements from 

the Indira Gandhi International (IGI) Airport. The Wilcoxon rank-sum test is a non-parametric version of the parametric t-5 
test (involving two independent samples/groups) that requires no specific distribution on the measurements (unlike the 

parametric t-test that assumes a normal distribution). We did not use a paired test here because the two groups had different 

sample sizes (i.e., 59 and 90, respectively). We conducted a two-sided test which has the null hypotheses that the daily-

averaged temperature and RH measurements for the 90 days (19 ± 5 °C, 59 ± 14 %) and the 59 days (20 ± 5 °C, 59 ± 12 %) 

were the same (i.e., H0: Temperature59 days = Temperature90 days / RH59 days = RH90 days) against the alternatives that they were 10 
not the same (i.e., H1: Temperature59 days ≠ Temperature90 days / RH59 days ≠ RH90 days). The p-values for the temperature and 

RH comparisons are 0.28 and 0.59, respectively. The level of statistical significance was chosen to be 0.05, which means 

that the null hypotheses (i.e., H0: Temperature59 days = Temperature90 days / RH59 days = RH90 days) cannot be rejected when the p-

values are both above 0.05. Therefore, the daily-averaged temperature and RH measurements from the IGI Airport for the 

entire sampling period and for the 59 days were not statistically distinct. 15 

3.3 Simulation results 

While the exact values of the calibration factors derived from the GPR model fell short of faithfully recovering the original 

picture of PM2.5 spatiotemporal gradients in Delhi, these values of one low-cost node relative to another in the network (Sect. 

3.3.1) or relative to itself over time (Sect. 3.3.2) turned out to be useful in facilitating automated large-scale sensor network 

monitoring.  20 

3.3.1 Simulation of low-cost node failure or under heavy influence of local sources 

One way to simulate the conditions of low-cost node failure or under heavy influence of local sources is to replace their true 

signals with values from random number generators so that the inherent spatial correlations are corrupted. In this study, we 

simulated how the model-produced calibration factors change when all (10), nine, seven, three, and one of the low-cost 

nodes within the network malfunction or are subject to strong local disturbance. We have three major observations from 25 
evaluating the simulation results (Fig. 8 9 and Fig. S4S5). First, the normal calibration factors are quite distinct from those of 

the low-cost nodes with random signals. Compared to the normal values (see Fig. 8 9 bottom right panel), the ones of the 

low-cost nodes with random signals have slopes close to 0 and intercepts close to the global Delhi-wide mean of true PM2.5 

in Delhi (most clearly shown in Fig. 8 9 top left panel). Second, the calibration factors of the normal low-cost nodes are not 

affected by the aberrant nodes within the network (see Fig. 8 9 top right, middle left, middle right, and bottom left panels). 30 
These two observations indicate that the GPR model enables automated and streamlined process of instantly spotting any 

malfunctioning or singular low-cost nodes (due to either hardware failure or under heavy influence of local sources) within a 
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large-scale sensor network. Third, the performance of the GPR model seems to be rather uninfluenced by changing the true 

signals to random numbers (see Fig. S4S5, 33 % error rate when all low-cost nodes are random vs. baseline 30 % error rate). 

One possible explanation is that the prevalent and intricate air pollution sources in Delhi have already dramatically 

weakened the natural spatial correlations. This means that a significant degree of randomness has already been imposed on 

the low-cost nodes in Delhi prior to our complete randomness experiment. It is worth mentioning that flatlining is another 5 
commonly seen failure mode of our low-cost PM sensors in Delhi. The raw signals of such malfunctioning PM sensors were 

observed to flatline at the upper end of the sensor output values (typically thousands of µg m-3). The very distinct signals of 

these flatlining low-cost PM nodes, however, make it rather easy to separate them from the rest of the nodes and filter them 

out at the early pre-processing stage before analyses, therefore without having to resort to our algorithm. Nevertheless, our 

not so accurate on-the-fly calibration model has created a useful algorithm for supervising large-scale sensor networks in real 10 
time as a by-product.  

3.3.2 Simulation of low-cost node drift 

We further investigated the feasibility of applying the GPR model to track the drift of low-cost nodes accurately over time. 

We simulated drift conditions by first setting random percentages of intercept and slope drift, respectively, for each 

individual low-cost node and for each simulation run. Next, we adjusted the signals of each low-cost node over the entire 15 
study period given these randomly selected percentages using Eq. (11). Then, we rebuilt a GPR model based on these drift-

adjusted signals and evaluated if the new model-generated calibration factors matched our expected predetermined 

percentage drift relative to the true (baseline) calibration factors. 

 

𝒚𝒊_𝒅𝒓𝒊𝒇𝒕 = 	
𝒚𝒊

(JcÆµ´¸µ·³«µ	Ç°¯Æµ	±´È¶³É)
+ 	Æµ´¸µ·³«µ	È·³µ´¸µÆ³	±´È¶³É	∙	³´²µ	È·³µ´¸µÆ³É(JcÆµ´¸µ·³«µ	Ç°¯Æµ	±´È¶³É)∙	³´²µ	Ç°¯ÆµÉ

     (11) 20 

where 𝒚𝒊, 	true	interceptÈ, true	slopeÈ , percentage	intercept	driftÈ, percentage	slope	driftÈ, and 𝒚𝒊_𝒅𝒓𝒊𝒇𝒕 are a vector of the 

true signals, the standard model-derived intercept, the standard model-derived slope, the randomly generated percentage of 

intercept drift, the randomly generated percentage of slope drift, and a vector of the drift-adjusted signals, respectively, over 

the full study period for low-cost node i. 

 25 
The performance of the model for predicting the drift was examined under a variety of scenarios including assuming that all 

(10), eight, six, four, and two of the low-cost nodes developed various degrees of drift such as significant (11 %–99 %), 

marginal (1 %–10 %), and a balanced mixture of significant and marginal. The testing results for 10, six, and two low-cost 

nodes are displayed in Table 3 and those for eight and four nodes are in Table S1S2. Overall, the model demonstrates 

excellent drift predictive power with less than 4 % errors for all the simulation scenarios. The model proves to be most 30 
accurate (within 1 % error) when low-cost nodes only drifted marginally regardless of the number of nodes drift. In contrast, 

significant and particularly a mixture of significant and marginal drifts might lead to marginally larger errors. We also notice 
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that the intercept drifts are slightly harder to accurately capture than the slope drifts. Similar to the simulation of low-cost 

node failure/under strong local impact as described in Sect 3.3.1, the performance of the model for predicting the 

measurements of the 22 holdout reference nodes across the 22-fold leave-one-out CV was untouched by the drift conditions 

(see Fig. S5S6). This unaltered performance can be attributable to the fact that the drift simulations only involve simple 

linear transformations as shown in Eq. (11). The high-quality drift estimation has therefore presented another convincing 5 
case of how useful our original algorithm can be applied to dynamically monitoring dense sensor networks, as a by-product 

of calibrating low-cost nodes. We can rebuild a model such as every week using a rolling window (to keep the number of 

observations for model construction roughly unchanged) to assess the drifts in the model space over time. After that, the true 

calibration factors obtained from the initial collocation with reference instruments prior to deployment can be adjusted 

accordingly based on the model-estimated drifts. This procedure allows for real-time drift corrections to low-cost node 10 
measurements. 

 

It should be noted that the mode of drift (linear or random drift) will not significantly affect our simulation results. As we 

demonstrated in Sect. 3.2.3, the performance of our algorithm is insensitive to the training data size. And we believe that 

models with a similar prediction accuracy should have a similar drift detection power. For example, if the prediction 15 
accuracy of the model trained on 59 days’ data is virtually the same as the accuracy of the model trained on 2 days’ data, and 

if the model trained on 59 days is able to detect the simulated drift, then so should the model trained on 2 days. Then if we 

reasonably assume that the drift rate remains roughly unchanged within a 2-day window, then the drift mode (linear or 

random), which only dictates how the drift rate jumps (usually smoothly as well) between any adjacent discrete 2-day 

windows, does not matter anymore. All that matters is to track that one fixed drift rate reasonably well within those 2 days, 20 
which is virtually the same as what we already did with the entire 59 days’ data. 

3.3.3 Optimal number of reference nodes 

Questions which remain unsolved are 1) what the optimum or minimum number of reference instruments is to sustain this 

technique and 2) if the inclusion of low-cost nodes can effectively assist in lowering the technique’s calibration/mapping 

inaccuracy. It is interesting to note that optimizing the model’s calibration accuracy can not only directly fulfill the 25 
fundamental calibration task, but also help better the sensor network monitoring capability as an added bonus. To address 

these two outstanding issues, we randomly sampled subsets of all the 22 reference nodes within the network in increments of 

one node (i.e. from 1 to 21 nodes) and implemented our algorithm with and without incorporating the low-cost nodes, before 

finally computing the mean percent errors in predicting all the holdout reference nodes. To get the performance scores as 

close to truth as possible but without incurring excessive computational cost in the meantime, the sampling was repeated 100 30 
times for each subset size. The calibration error in this section was defined as the mean percent errors in predicting all the 

holdout reference nodes further averaged over 100 simulation runs for each subset size.  
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Figure 9 10 describes the 24 h calibration percent error rate of the model as a function of the number of reference stations 

used for modelling with and without involving the low-cost nodes. The error rates generally decrease as the number of 

reference instruments increases (full network: from ~40 % with 1 node to ~29 % with 21 nodes; network excluding low-cost 

nodes: from ~43 % to ~30 %) but are somewhat locally variable and most pronounced when five, seven, and eight reference 

nodes are simulated. These bumps might simply be the result of five, seven, and eight reference nodes being relatively non-5 
ideal (with regard to their neighboring numbers) for the technique, although the possibility of non-convergence due to the 

limited 100 simulation runs for each scenario cannot be ruled out. The 19 or 20 nodes emerge as the optimum numbers of 

reference nodes with the lowest errors of close to 28 %, while 17 to 21 nodes all yield comparably low inaccuracies (all 

below 30 %). The pattern discovered in our research shares certain similarities with Schneider et al. (2017) who studied the 

relationship between the accuracy of using colocation-calibrated low-cost nodes to map urban AQ and the number of 10 
simulated low-cost nodes for their urban-scale air pollution dispersion model and kriging-fueled data fusion technique in 

Oslo, Norway. Both studies indicate that at least roughly 20 nodes are essential to start producing acceptable degree of 

accuracy. Unlike Schneider et al. (2017) who further expanded the scope to 150 nodes by generating new synthetic stations 

from their established model and showed a “the more, the merrier” trend up to 50 stations, we restricted ourselves to only 

realistic data to investigate the relationship since we suspect that stations created from our model with approximately 30 % 15 
errors might introduce large noise which could misrepresent the true pattern. We agree with Schneider et al. (2017) that such 

relationships are location-specific and cannot be blindly transferred to other study sites.  

 

At last, we used the Wilcoxon rank-sum test/Mann-Whitney U test again to prove that modelling with the 10 low-cost nodes 

can statistically significantly reduce the uncertainty of spatial interpolation of the reference node measurements in 20 
comparison to modelling without them, (at least) when the number of reference stations is optimum. We did not use a paired 

test here because the reference nodes for algorithm training for each simulation run were randomly chosen. Specifically in 

our study, for each number of reference stations, the two independent samples (100 replications per sample) are the 100 

replications of the mean of the 24 h percent errors (in predicting all the holdout reference nodes) from the 100 repeated 

random simulations when modelling with and without the low-cost nodes, respectively. We conducted a one-sided test which 25 
has the null hypothesis that our model’s mean 24 h prediction percent errors with and without including the low-cost nodes 

are the same (i.e., H0: with = without) against the alternative that the error with the low-cost nodes is smaller than the error 

without them (i.e., H1: with < without). The p-values of the Wilcoxon rank-sum tests are superimposed on Fig. 10. The level 

of statistical significance was chosen to be 0.05, which means that the null hypothesis (i.e., H0: with = without) can be 

rejected in favor of the alternative (i.e., H1: with < without) when p-values are below 0.05. Figure 10 shows that the accuracy 30 
improvement when modelling with the 10 low-cost nodes is statistically significant when the optimum number of reference 

stations (i.e., 19 or 20) is used. Significant accuracy improvements were also observed for 17 and 18 reference stations that 

had comparably low prediction errors. Therefore, we conclude that when viewing the entire sensor network in Delhi as a 

whole system over the entire sampling period, modelling with the 10 low-cost nodes can decrease the extent of pure 
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interpolation among only reference stations, (at least) when the number of reference stations is optimum. including low-cost 

nodes in the model building can most of the time reduce the model’s errors notably when more than nine reference nodes are 

sampled (i.e., when the number of simulated reference nodes is favorable for carrying out the technique). And for the 

comparatively ideal 17–20 nodes, we even observed approximately non-overlapping 95 % confidence intervals, suggesting 

significantly lower errors are yielded when low-cost nodes are incorporated. The accuracy gains are still relatively minor 5 
because of the suboptimal size of the low-cost node network (i.e., 10). We postulate that once the low-cost node network 

scales up to 100s, the model constructed using the full network information can be more accurate than the one with only the 

information of reference nodes by considerable margins. 

4 Conclusions 

This study introduced a simultaneous GPR and simple linear regression pipeline to calibrate wireless low-cost PM sensor 10 
networks (up to any scale) on the fly in the field by capitalizing on all available reference monitors across an area without the 

requirement of pre-deployment collocation calibration. We evaluated our method for Delhi, where 22 reference and 10 low-

cost nodes were available from January 1, 2018 to March 31, 2018 (global Delhi-wide average of the 3-month mean PM2.5 

among 22 reference stations: 138 ± 31 µg m-3), using a leave-one-out CV over the 22 reference nodes. We demonstrated that 

our approach can achieve excellent robustness and decent reasonably high accuracy, as underscored by the low variability in 15 
the GPR model parameters and model-produced calibration factors for low-cost nodes and by an overall 30 % prediction 

error (equivalent to an RMSE of 33 µg m-3) at a 24 h scale, respectively, among the 22-fold CV. Closer investigationsWe 

closely investigated into 1) the large model calibration errors (~50 %) at two low-cost Atmos regional background sites 

(MRU and IITD with 3-month mean PM2.5: of ~72 µg m-3) where our E-BAMs were collocated; 2) the similarly large model 

prediction errors at the comparatively clean Pusa and Sector 62 reference sites; and 3) and the washed-out local variability in 20 
the model calibrated low-cost sites. These observations revealed that the performance of our technique (and more generally 

the geostatistical techniques) can calibrate the low-cost nodes dynamically, but effective only if the degree of urban 

homogeneity in PM2.5 is high. High urban homogeneity scenarios can be that(e.g., the local contributions are as small a 

fraction of the regional ones as possible or the local contributions are prevalent but of similar magnitudes). Otherwise, 

quality predictions will only apply for those nodes whose means are close to the global Delhi-wide mean. We showed that 25 
our algorithm performance is insensitive to training window size as the mean prediction error rate and the standard error of 

the mean (SEM) for the 22 reference stations remained consistent at ~30 % and ~3–4 % when an increment of 2 days’ data 

were included in the model training. The markedly low requirement of our algorithm for training data enables the models to 

always be nearly most updated in the field, thus realizing the algorithm’s full potential for dynamically surveilling large-

scale WLPMSNs by detecting malfunctioning low-cost nodes and tracking the drift with little latency. Our algorithm 30 
presented similarly stable 26–34 % mean prediction errors and ~3–7 % SEMs over the sampling period when pre-trained on 

the current week’s data and predicting 1 week ahead, therefore suitable for dynamic calibration. Despite our algorithm’s 
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non-ideal calibration accuracy for Delhi, it holds the promise of being adapted for automated and streamlined large-scale 

wireless sensor network monitoring and of significantly reducing the amount of manual labor involved in the surveillance 

and maintenance. Simulations proved our algorithm’s capability of differentiating malfunctioning or singular low-cost nodes 

(due to either hardware failure or under heavy influence of local sources) within a network and of tracking the drift of low-

cost nodes accurately with less than 4 % errors for all the simulation scenarios. Finally, our simulation results confirmed that 5 
the low-cost nodes are beneficial for the spatial precision of a sensor network by decreasing the extent of pure interpolation 

among only reference stations, highlighting the substantial significance of dense deployments of low-cost AQ devices for a 

new generation of AQ monitoring network. 

 

Two directions are possible for our future work. The first one is to expand both the longitudinal and the cross-sectional 10 
scopes of field studies and examine how well our solution works for more extensive networks in a larger geographical area 

over longer periods of deployment (when sensors are expected to actually drift, degrade, or malfunction). This enables us to 

validate the practical use of our method for calibration and surveillance more confidently. The second is to explore the 

infusion of information about urban PM2.5 spatial patterns such as high-spatial-resolution annual average concentration 

basemap from air pollution dispersion models (Schneider et al., 2017) into our current algorithm to further improve the on-15 
the-fly calibration performance by correcting for the concentration range-specific biases. 
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Figure 1: (a) Front view of the low-cost node. (b) Key components of the low-cost node.  
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Figure 2: Locations of the 22 reference nodes (triangle icons with italic textred icons) and 10 low-cost nodes (circle iconsblue icons) 
that form the Delhi PM sensor network.   
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Figure 3: The overall schema forflow diagram illustrating the simultaneous GPR and simple linear regression calibration 
modelalgorithm. In step one, for each of the 22-fold leave-one-out CVs, one of the 22 reference nodes is held out of modelling for 
the model predictive performance evaluation in step seven; in step two, fit a simple linear regression model between each low-cost 5 
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node i and its closest reference node’s PM2.5, initialize low-cost node i’s calibration model to this linear regression model, and 
calibrate the low-cost node i using this model; in step three, first initialize the GPR hyperparameters to [0.1, 50, 0.01] and then 
update/optimize the hyperparameters based on the training samples from the 10 initially calibrated low-cost nodes and 21 
reference nodes over 59 days; in step four, first compute each low-cost node i’s means conditional on the remaining 30 nodes given 
the optimized GPR hyperparameters, then fit a simple linear regression model between each low-cost node i and its conditional 5 
means, update low-cost node i’s calibration model to this new linear regression model, and re-calibrate the low-cost node i using 
this new model; in step five and six, iterative optimizations alternate between the GPR hyperparameters and the low-cost node 
calibrations using the approaches described in step three and four, respectively, until the GPR hyperparameters converged; in 
step seven, predict the 59-day PM2.5 measurements of the holdout reference node based on the finalized GPR hyperparameters and 
the low-cost node calibrations.  10 
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Figure 4: a) Box plots of the 24 h aggregated true ambient PM2.5 mass concentrations measured by the 22 government reference 
monitors across Delhi from January 1 to March 31, 2018. b) Box plots of the low-cost node 24 h aggregated PM2.5 mass 
concentrations calibrated by the optimized GPR model. In both a) and b), mean and SD of the PM2.5 mass concentrations for each 
individual site are superimposed on the box plots. 5 
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Figure 5: Box plots of the GPR model 24 h performance scores (including RMSE and percent error) for predicting the 
measurements of the 22 holdout reference nodes across the 22-fold leave-one-out CV under two scenarios — using the full sensor 
network by including both reference and low-cost nodes and using only the reference nodes for the model construction. Note both 
scenarios were given the initial parameter values and bounds that maximize the model performance. 5 
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Figure 6: Box plots of the learned calibration factors (i.e., intercept and slope) for each individual low-cost node from the 22 
optimized GPR models across the 22-fold leave-one-out CV. 

 
Figure 7: Correlation plots comparing the GPR model-calibrated low-cost node PM2.5 mass concentrations to the collocated E-5 
BAM measurements at a) MRU and b) IITD sites. In both a) and b), correlation of determination (R2), RMSE, percent error, and 
mean of the true ambient PM2.5 mass concentrations throughout the study (from January 1 to March 31, 2018) are superimposed 
on the correlation plots.  

a b
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Figure 8: The mean percent error rate of GPR model prediction on the 22 reference nodes using leave-one-out CV (see Sect. 3.2.1) 
as a function of training window size in an increment of 2 days. The error bars represent the standard error of the mean (SEM) of 
the GPR prediction errors of the 22 reference nodes. 

  5 
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Figure 89: Learned calibration factors for each individual low-cost node from the optimized GPR models by replacing 
measurements of all (top left), nine (top right), seven (middle left), three (middle right), one (bottom left), and zero (bottom right) 
of the low-cost nodes with random integers bounded by the min and max of the true signals reported by the corresponding low-
cost nodes. Note that the nine, seven, three, and one low-cost nodes (whose true signals are replaced with random integers) were 5 
randomly chosen. 
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Figure 910: Average 24 h percent errors of the GPR model for predicting the holdout reference nodes in the network as a function 
of the number of reference stations used for the model construction under two scenarios — using the full sensor network 
information by including both reference and low-cost nodes and using only the reference nodes for the model construction. Note 
each data point (mean value) is derived from 100 simulation runs. The error bars indicating 95 % CI of the means are based on 5 
1000 bootstrap iterations. All scenarios were given the initial parameter values and bounds that maximize the model performance. 
The p-value of the Wilcoxon rank-sum test for each reference station number is superimposed, where p-value below 0.05 means 
that the error when modelling with the 10 low-cost nodes is smaller than the error without them for that reference station number.  
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Table 1: Delhi PM sensor network sites along with the 1 h percentage data completeness with respect to the entire sampling period 
(i.e., from January 1, 2018 00:00 to March 31, 2018 23:59, Indian Standard Time, IST; in total 90 days, 2160 hours) before and 
after 1 h missing-data imputation for each individual site. Note that a 10 % increase in the percentage data completeness after 1 h 
missing-data imputation is equivalent to ~216 hours of 1 h data being interpolated. 

Category Site names Latitude Longitude Initial 1 h  
data completeness 

1 h data completeness  
after missing-data imputation 

Reference  

Anand Vihar N 28.6468350 E 77.3160320 88 % 100 % 
Aya Nagar N 28.4706914 E 77.1099364 97 % 100 % 

Burari Cross N 28.7258390 E 77.2033350 98 % 100 % 
CRRI Mathura Road N 28.5512005 E 77.2735737 98 % 100 % 

Delhi Technological University (DTU) N 28.7500499 E 77.1112615 96 % 100 % 
Faridabad N 28.4088421 E 77.3099081 98 % 100 % 

IGI Airport Terminal-3 N 28.5627763 E 77.1180053 95 % 100 % 
IHBAS, Dilshad Garden N 28.6811736 E 77.3025234 98 % 100 % 
ITO Metro Station (ITO) N 28.6316945 E 77.2494387 98 % 100 % 

Lodhi Road N 28.5918245 E 77.2273074 93 % 100 % 
Mandir Marg N 28.6364290 E 77.2010670 96 % 100 % 
North Campus N 28.6573814 E 77.1585447 94 % 100 % 
NSIT Dawarka N 28.6090900 E 77.0325413 95 % 100 % 
Punjabi Bagh N 28.6740450 E 77.1310230 94 % 100 % 

Pusa N 28.6396450 E 77.1462620 99 % 100 % 
R K Puram N 28.5632620 E 77.1869370 95 % 100 % 

Sector62 Noida N 28.6245479 E 77.3577104 93 % 99 % 
Sector125 Noida N 28.5447608 E 77.3231257 90 % 97 % 

Shadipur N 28.6514781 E 77.1473105 97 % 100 % 
Sirifort N 28.5504249 E 77.2159377 78 % 100 % 

US Embassy N 28.5980970 E 77.1880330 95 % 100 % 
Vasundhara, Ghaziabad N 28.6603346 E 77.3572563 100 % 100 % 

Low-cost  

All India Institute of Medical Science (AIIMS) N 28.5545006 E 77.2124023 89 % 100 % 
Hiran Kudna N 28.6674995 E 77.0089035 80 % 97 % 

Indian Institute of Technology Delhi (IITD) N 28.5473003 E 77.1909027 88 % 99 % 
Indian Institute of Tropical Meteorology (IITM) N 28.6303400 E 77.1750400 98 % 100 % 

Kaushambi N 28.6410008 E 77.3199005 84 % 100 % 
Manav Rachna University (MRU) N 28.4477005 E 77.3084030 87 % 100 % 

Mayur Vihar N 28.6079998 E 77.2906036 85 % 93 % 
Naraina Vihar N 28.6289005 E 77.1391983 70 % 79 % 

New Friends Colony N 28.5676994 E 77.2687988 99 % 100 % 
S.D.A. Park N 28.5517006 E 77.2031021 66 % 97 % 

 5 
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Table 2: Summary of the GPR model 24 h performance scores (including RMSE and percent error) for predicting the 
measurements of the 22 holdout reference nodes across the 22-fold leave-one-out CV when the full sensor network is used. The 
mean of the true ambient PM2.5 mass concentrations throughout the study (from January 1 to March 31, 2018) for each individual 
reference node is provided. The reference nodes with the means of true PM2.5 inside the range of [global Delhi-wide mean ± SD, i.e., 
138 ± 31] are indicated with shading. 5 

Reference nodes RMSE Percent error Mean of true PM2.5 
 (µg m-3)  (µg m-3) 

Vasundhara, Ghaziabad 68 44 % 195 
DTU 56 36 % 194 

Anand Vihar 47 32 % 181 
Sector125 Noida 31 23 % 169 

Punjabi Bagh 26 20 % 163 
NSIT Dawarka 25 19 % 153 

R K Puram 26 20 % 153 
Sirifort 22 18 % 147 

US Embassy 21 18 % 144 
North Campus 27 24 % 144 

CRRI Mathura Road 27 21 % 142 
Mandir Marg 16 14 % 142 

ITO 15 14 % 136 
Faridabad 21 18 % 133 
Shadipur 23 22 % 132 

Burari Cross 36 39 % 109 
Lodhi Road 34 41 % 107 

IGI Airport Terminal–3 29 32 % 106 
Aya Nagar 34 38 % 105 

IHBAS, Dilshad Garden 38 41 % 105 
Sector62 Noida 47 60 % 89 

Pusa 48 70 % 86 
Global Delhi-wide mean 33 30 % 138 

SD 13 14 % 31 
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Table 3: Comparison of predetermined percentages of drift to those estimated from the GPR model for intercept and slope, 
respectively, for each individual low-cost node, assuming all (10), six, and two of the low-cost nodes developed various degrees of 
drift such as significant (11 %–99 %), marginal (1 %–10 %), and a balanced mixture of significant and marginal. Note the sensors 
that drifted, the percentages of drift, and which sensors drifted significantly or marginally are randomly chosen. The results 
reported under each scenario are based on averages of 10 simulation runs. 5 

Drift category Low-cost nodes 

All low-cost nodes drift Six low-cost nodes drift Two low-cost nodes drift 
Intercept drift 

(%) 
Slope drift 

(%) 
Intercept drift 

(%) 
Slope drift 

(%) 
Intercept drift 

(%) 
Slope drift 

(%) 
True Estimated True Estimated True Estimated True Estimated True Estimated True Estimated 

Significant 

AIIMS 58 % 57 % 54 % 54 % 74 % 71 % 46 % 47 % 0 % -1 % 0 % -1 % 

Hiran Kudna 43 % 30 % 50 % 52 % 66 % 61 % 53 % 53 % 62 % 64 % 45 % 44 % 

IITD 51 % 52 % 52 % 51 % 0 % -1 % 0 % -2 % 0 % 1 % 0 % -3 % 

IITM 54 % 53 % 56 % 55 % 61 % 58 % 48 % 48 % 0 % -1 % 0 % -2 % 

Kaushambi 61 % 62 % 73 % 72 % 70 % 70 % 49 % 48 % 0 % 0 % 0 % -2 % 

MRU 55 % 56 % 56 % 56 % 58 % 61 % 41 % 39 % 0 % -1 % 0 % -2 % 

Mayur Vihar 60 % 65 % 48 % 47 % 0 % 1 % 0 % -3 % 0 % 1 % 0 % -3 % 

Naraina Vihar 56 % 54 % 76 % 76 % 0 % -4 % 0 % 1 % 0 % -1 % 0 % -1 % 

New Friends Colony 66 % 68 % 68 % 67 % 55 % 55 % 48 % 47 % 59 % 61 % 37 % 36 % 

S.D.A. Park 53 % 47 % 48 % 50 % 0 % -4 % 0 % 2 % 0 % -1 % 0 % 0 % 

Mean absolute difference 3 % 1 % 2 % 1 % 1 % 2 % 

50 % significant and 50 % marginal 

AIIMS 4 % 2 % 5 % 6 % 0 % -4 % 0 % 2 % 0 % 1 % 0 % -2 % 

Hiran Kudna 51 % 42 % 51 % 52 % 50 % 42 % 50 % 52 % 0 % 1 % 0 % -2 % 

IITD 6 % 4 % 6 % 6 % 5 % 2 % 6 % 8 % 0 % 0 % 0 % -2 % 

IITM 56 % 52 % 40 % 40 % 64 % 58 % 47 % 48 % 0 % 1 % 0 % -3 % 

Kaushambi 60 % 60 % 42 % 41 % 5 % 2 % 5 % 7 % 0 % 0 % 0 % -2 % 

MRU 6 % 5 % 4 % 3 % 0 % -6 % 0 % 3 % 6 % 3 % 5 % 5 % 

Mayur Vihar 57 % 59 % 55 % 55 % 5 % 2 % 5 % 6 % 0 % 1 % 0 % -2 % 

Naraina Vihar 4 % 0 % 5 % 7 % 0 % -4 % 0 % 2 % 57 % 65 % 64 % 63 % 

New Friends Colony 6 % 5 % 6 % 5 % 0 % -3 % 0 % 2 % 0 % -1 % 0 % -1 % 

S.D.A. Park 53 % 48 % 61 % 61 % 59 % 58 % 64 % 64 % 0 % 0 % 0 % -1 % 

Mean absolute difference 3 % 1 % 4 % 2 % 2 % 2 % 

Marginal 

AIIMS 5 % 5 % 5 % 4 % 8 % 8 % 5 % 5 % 0 % 0 % 0 % -1 % 

Hiran Kudna 3 % 4 % 6 % 5 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

IITD 5 % 6 % 7 % 5 % 7 % 8 % 5 % 4 % 6 % 7 % 5 % 4 % 

IITM 5 % 5 % 5 % 5 % 0 % 0 % 0 % -1 % 0 % 0 % 0 % -1 % 

Kaushambi 5 % 5 % 5 % 4 % 5 % 6 % 7 % 6 % 0 % 0 % 0 % -1 % 

MRU 5 % 7 % 4 % 2 % 6 % 8 % 5 % 3 % 5 % 7 % 6 % 4 % 

Mayur Vihar 7 % 7 % 5 % 4 % 0 % 1 % 0 % -1 % 0 % 1 % 0 % -1 % 

Naraina Vihar 6 % 6 % 7 % 6 % 7 % 7 % 6 % 5 % 0 % 0 % 0 % -1 % 

New Friends Colony 7 % 8 % 7 % 5 % 0 % 1 % 0 % -2 % 0 % 1 % 0 % -1 % 

S.D.A. Park 5 % 5 % 7 % 6 % 6 % 6 % 6 % 6 % 0 % 0 % 0 % -1 % 

Mean absolute difference 1 % 1 % 1 % 1 % 1 % 1 % 
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Reasoning behind step four of the schema for the simultaneous GPR and simple linear regression calibration model 

Once the optimum 𝚯 for the (initial) GPR was found, we used the learned covariance function to find the mean of each low-

cost node i’s Gaussian Distribution conditional on the remaining 30 nodes within the network (i.e., 𝜇=|?)@ ) on day t as 

described mathematically in Eq. (S1)–(S4) and repeatedly did so until all 59 days’ 𝜇=|?)@ 	(i.e., 𝝁𝑨|𝑩𝒊 )	were found and then re-

calibrated that low-cost node i based on the 𝝁𝑨|𝑩𝒊 . This procedure was performed iteratively for all low-cost nodes one at a 5 
time. 

𝑝 `�𝑟=
)@

𝒓𝑩𝒊𝒕
�g = 	𝑁 `�𝑟=

)@

𝒓𝑩𝒊𝒕
� ; �𝜇=

)@

𝝁𝑩𝒊𝒕
�	�Σ==

)@ 𝚺𝑨𝑩𝒊𝒕

𝚺𝑩𝑨𝒊𝒕 𝚺𝑩𝑩𝒊𝒕
�g        (S1) 

𝑟=)@�𝒓𝑩𝒊𝒕	~	𝑁Z𝜇=|?)@ , Σ=|?)@ \        (S2) 

𝜇=|?)@ =	𝜇=)@ + 𝚺𝑨𝑩𝒊𝒕 𝚺𝑩𝑩𝒊𝒕
cJ(𝒓𝑩𝒊𝒕 −	𝝁𝑩𝒊𝒕)        (S3) 

Σ=|?)@ =	Σ==)@ −	𝚺𝑨𝑩𝒊𝒕 𝚺𝑩𝑩𝒊𝒕
cJ𝚺𝑩𝑨𝒊𝒕 = 𝑎	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	𝑓𝑜𝑟	𝑙𝑜𝑤 − 𝑐𝑜𝑠𝑡	𝑛𝑜𝑑𝑒	𝑖	𝑟𝑒𝑔𝑎𝑟𝑑𝑙𝑒𝑠𝑠	𝑜𝑓	𝑑𝑎𝑦	t = Σ=|?)    (S4) 10 

where 𝑟=)@and 𝒓𝑩𝒊𝒕 are the daily PM2.5 measurement(s) of the low-cost node i and the remaining 30 nodes on day t; 𝜇=)@, 𝝁𝑩𝒊𝒕, and 

𝜇=|?)@  are the mean (vector) of the partitioned Multivariate Gaussian Distribution of the low-cost node i, the remaining 30 

nodes, and the low-cost node i conditional on the remaining 30 nodes, respectively, on day t; and Σ==)@ , 𝚺𝑨𝑩𝒊𝒕 , 𝚺𝑩𝑨𝒊𝒕 , 𝚺𝑩𝑩𝒊𝒕 , and 

Σ=|?)@  are the covariance between the low-cost node i and itself, the low-cost node i and the remaining 30 nodes, the remaining 

30 nodes and the low-cost node i, the remaining 30 nodes and themselves, and the low-cost node i conditional on the 15 
remaining 30 nodes and itself, respectively, on day t. 

 

The reasoning behind recalibrating each low-cost node i based on the 𝝁𝑨|𝑩𝒊  is given as follows: 

 

The conditional log-likelihood under the Univariate Gaussian distribution on day t is: 20 

log 𝑝Z𝑟=)@�𝒓𝑩𝒊𝒕\ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 0.5Σ=|?)@
c8(𝑟=)@ − 𝜇=|?)@ )8         (S5) 

Then the complete log-likelihood over all 59 days is therefore given by: 

∑ log 𝑝Z𝑟=)@�𝒓𝑩𝒊𝒕\FG
@�J = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∙ ∑ (𝑟=)@ − 𝜇=|?)@ )8FG

@�J      (S6) 

The objective is to maximize the complete log-likelihood over all 59 days (i.e., S6), that is equivalent to minimizing the term 

of ∑ (𝑟=)@ − 𝜇=|?)@ )8FG
@�J : 25 

max
𝒓𝑨
𝒊
∑ log 𝑝Z𝑟=)@�𝒓𝑩𝒊𝒕\FG
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𝒓𝑨
𝒊
a𝒓𝑨𝒊 − 𝝁𝑨|𝑩𝒊 a

8
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and 𝒓𝑨𝒊 = 𝒀𝒊𝜷𝒊        (S8) 
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where	𝒀𝒊 =	 Õ
1 𝑦)@
⋮ ⋮
1 𝑦)FG

× and 𝜷𝒊 is a vector of the intercept and slope (to be learned) of the simple linear regression calibration 

equation for low cost node i. 

 

And to minimize a𝒀𝒊𝜷𝒊 − 𝝁𝑨|𝑩𝒊 a
8

8
 is then equivalent to optimizing a simple linear regression model to re-calibrate the raw 

low-cost node signals based on the mean of each node’s Gaussian Distribution conditional on the remaining 30 nodes within 5 
the network (i.e., 𝝁𝑨|𝑩𝒊 ). 
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Figure S1: Periods over which 1 h data were available for each individual site before and after missing-data imputation and a total 
of 59 24 h aggregated observations common to all the nodes in the network used for the on-the-fly calibration feasibility test. The 
top 10 sites (i.e., from S.D.A. Park to AIIMS) are the low-cost sites and the remaining sites (i.e., from Vasundhara to Anand Vihar) 
are the reference sites. Note that there is no obvious pattern in the data missingness. 5 
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Figure S2: Simplified illustration of the relative importance (i.e., importance normalized by the max value) of each node within the 
network when using GPR to calibrate the target low-cost node and when all the nodes used for calibration are equally distant from 
the target node. 

  5 
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Figure S3: Box plots of the learned optimum Gaussian Process Regression model parameters including the signal variance (𝝈𝒔𝒊𝒈𝟐 ), 
the characteristic length scale (𝒍), and the noise variance (𝝈𝒏𝒐𝒊𝒔𝒆𝟐 ) from the 22-fold leave-one-out cross-validation. The mean and 
SD of each parameter are superimposed on the box plots. 

  5 
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Figure S4: The 1 week-ahead prediction error of the GPR models (which were pre-trained on the current week’s data) as a 
function of the week being predicted. The error bars represent the standard error of the mean (SEM) of the GPR prediction 
errors of the 22 reference nodes. 

  5 
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Figure S4S5: Gaussian Process Regression model 24 h performance scores (including RMSE and percent error) for predicting the 
measurements of the 22 holdout reference nodes across the 22-fold leave-one-out cross-validation using the full sensor network, 
when measurements of all (top left), nine (top center), seven (top right), three (bottom left), one (bottom center), and zero (bottom 
right) of the low-cost nodes are replaced with random integers bounded by the min and max of the true signals reported by the 5 
corresponding low-cost nodes. 
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Figure S5S6: Gaussian Process Regression model 24 h performance scores (including RMSE and percent error) for predicting the 
measurements of the 22 holdout reference nodes across the 22-fold leave-one-out cross-validation using the full sensor network, 
when measurements of two (bottom/1st row), four (2nd row), six (3rd row), eight (4th row), and all ten (top/5th row) of the low-cost 
nodes developed significant (11 %–99 %, left column), marginal (1 %–10 %, right column), and a balanced mixture of significant 5 
and marginal drifts. Note the sensors that drifted, the percentages of drift, and which sensors drifted significantly or marginally 
are randomly chosen. The results reported under each scenario are based on averages of 10 simulation runs. 
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Table S1: Comparison of the GPR model 24 h prediction percent errors for the 22 reference nodes across the 22-fold leave-one-out 
CV with and without interpolating the missing 1 h PM2.5 values for all the reference and low-cost stations. 

Reference nodes Percent error 
 with interpolation without interpolation 

Anand Vihar 32 % 31 % 
Aya Nagar 38 % 37 % 

Burari Cross 39 % 38 % 
CRRI Mathura Road 21 % 21 % 

DTU 36 % 35 % 
Faridabad 18 % 17 % 

IGI Airport Terminal–3 32 % 32 % 
IHBAS, Dilshad Garden 41 % 42 % 

ITO 14 % 12 % 
Lodhi Road 41 % 39 % 

Mandir Marg 14 % 13 % 
North Campus 24 % 24 % 
NSIT Dawarka 19 % 20 % 
Punjabi Bagh 20 % 20 % 

Pusa 70 % 69 % 
R K Puram 20 % 20 % 

Sector125 Noida 23 % 21 % 
Sector62 Noida 60 % 60 % 

Shadipur 22 % 22 % 
Sirifort 18 % 16 % 

US Embassy 18 % 18 % 
Vasundhara, Ghaziabad 44 % 34 % 

Delhi-wide mean 30 % 29 % 
SD 14 % 15 % 
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Table S21: Comparison of pre-determined percentages of drift to those estimated from the Gaussian Process Regression model for 
intercept and slope, respectively, for each individual low-cost node, assuming eight and four of the low-cost nodes developed 
various degrees of drift such as significant (11 %–99 %), marginal (1 %–10 %), and a balanced mixture of significant and 
marginal. Note the sensors that drifted, the percentages of drift, and which sensors drifted significantly or marginally are 
randomly chosen. The results reported under each scenario are based on averages of 10 simulation runs. 5 

Drift category Low-cost nodes 

Eight low-cost nodes drift Four low-cost nodes drift 

Intercept drift (%) Slope drift (%) Intercept drift (%) Slope drift (%) 

True Estimated True Estimated True Estimated True Estimated 

Significant 

AIIMS 55 % 54 % 55 % 55 % 0 % -2 % 0 % 0 % 

Hiran Kudna 57 % 43 % 54 % 56 % 47 % 42 % 54 % 54 % 

IITD 68 % 70 % 61 % 61 % 0 % -1 % 0 % -1 % 

IITM 0 % -2 % 0 % -1 % 0 % -2 % 0 % -1 % 

Kaushambi 0 % -1 % 0 % -1 % 0 % -1 % 0 % -1 % 

MRU 45 % 46 % 52 % 51 % 0 % -4 % 0 % 1 % 

Mayur Vihar 56 % 59 % 48 % 47 % 42 % 44 % 57 % 56 % 

Naraina Vihar 63 % 61 % 57 % 57 % 51 % 51 % 48 % 48 % 

New Friends Colony 53 % 53 % 57 % 57 % 70 % 71 % 39 % 38 % 

S.D.A. Park 55 % 50 % 55 % 56 % 0 % -4 % 0 % 2 % 

Mean absolute difference 3 % 1 % 2 % 1 % 

50 % significant and 50 % marginal 

AIIMS 0 % -1 % 0 % -1 % 0 % -1 % 0 % -1 % 

Hiran Kudna 47 % 40 % 58 % 58 % 0 % -9 % 0 % 3 % 

IITD 57 % 62 % 58 % 57 % 0 % 0 % 0 % -2 % 

IITM 6 % 5 % 6 % 3 % 4 % 3 % 7 % 6 % 

Kaushambi 4 % 4 % 5 % 1 % 0 % 0 % 0 % -2 % 

MRU 47 % 54 % 55 % 53 % 0 % -1 % 0 % -1 % 

Mayur Vihar 56 % 62 % 46 % 43 % 44 % 48 % 70 % 68 % 

Naraina Vihar 5 % 3 % 4 % 3 % 58 % 56 % 46 % 47 % 

New Friends Colony 6 % 7 % 6 % 2 % 5 % 6 % 6 % 3 % 

S.D.A. Park 0 % -3 % 0 % 1 % 0 % -3 % 0 % 2 % 

Mean absolute difference 3 % 2 % 2 % 2 % 

Marginal 

AIIMS 5 % 6 % 4 % 3 % 0 % 0 % 0 % -1 % 

Hiran Kudna 6 % 6 % 7 % 6 % 0 % 0 % 0 % 0 % 

IITD 6 % 7 % 6 % 4 % 0 % 1 % 0 % -1 % 

IITM 5 % 5 % 5 % 4 % 0 % 0 % 0 % -1 % 

Kaushambi 5 % 5 % 5 % 4 % 5 % 6 % 7 % 6 % 

MRU 7 % 9 % 4 % 2 % 7 % 8 % 5 % 4 % 

Mayur Vihar 0 % 1 % 0 % -1 % 6 % 7 % 4 % 3 % 

Naraina Vihar 6 % 7 % 6 % 5 % 0 % 0 % 0 % -1 % 

New Friends Colony 0 % 1 % 0 % -2 % 0 % 1 % 0 % -1 % 

S.D.A. Park 5 % 6 % 4 % 3 % 7 % 7 % 5 % 4 % 

Mean absolute difference 1 % 1 % 1 % 1 % 

 


