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Abstract.

This study presents and evaluates an updated algorithm for quantification of absorbing aerosols above clouds (AACs) from

passive satellite measurements. The focus is biomass burning in the south-eastern Atlantic Ocean during the 2016 and 2017

ObserRvations of Aerosols above CLouds and their interactionS (ORACLES) field campaign deployments. The algorithm re-

trieves the above-cloud aerosol optical depth (AOD) and underlying liquid cloud optical depth, and is applied to measurements5

from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometers (MODIS), and

Visible Infrared Imaging Radiometer Suite (VIIRS) from 1997-2017. Airborne NASA Ames Spectrometers for Sky-Scanning,

Sun-Tracking Atmospheric Research (4STAR) and NASA Langley High Spectral Resolution Lidar 2 (HSRL2) data collected

during ORACLES provide important validation for spectral AOD for MODIS and VIIRS; as the SeaWiFS mission ended in

2010, it cannot be evaluated directly. The 4STAR and HSRL2 comparisons are complementary and reveal performance gen-10

erally in line with uncertainty estimates provided by the Optimal Estimation retrieval framework used. At present the two

MODIS-based data records seem the most reliable, although there are differences between the deployments, which may indi-

cate that the available data are not yet sufficient to provide a robust regional validation. Spatiotemporal patterns in the data sets

are similar, and the time series are very strongly correlated with each other (correlation coefficients from 0.95-0.99). Offsets

between the satellite data sets are thought to be chiefly due to differences in absolute calibration between the sensors. The avail-15

able validation data for this type of algorithm are limited to a small number of field campaigns, and it is strongly recommended

that such airborne measurements continue to be made, both over the southern Atlantic Ocean and elsewhere.
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1 Introduction

Spaceborne monitoring of absorbing aerosols above clouds (AACs), typically smoke or mineral dust aerosols above liquid-

phase clouds, has been a topic of increasing research interest in recent years. Yu and Zhang (2013) provide a review of the

field, and Kacenelenbogen et al. (2018) a more recent list of approaches to their quantification. These AACs are important for5

multiple reasons. Their direct radiative effects can be very different from those above cloud-free surfaces (Hsu et al., 2003;

Meyer et al., 2013; Zhang et al., 2014; Feng and Christopher, 2015), and they can have indirect and semi-direct effects on

cloud formation, life cycle, and precipitation (Wilcox, 2012; Zhou et al., 2017). Their presence can lead to biases in retrieval

of cloud optical depth (COD) and cloud effective radius (CER) if they are not accounted for, as they alter the brightness and

spectral shape of the top of atmosphere (TOA) signal observed by passive sensors in a systematic way (Haywood et al., 2004).10

Additionally, they are largely missing from satellite aerosol optical depth (AOD) data sets derived from passive spaceborne

imaging radiometers, which typically process only cloud-free scenes. Global aerosol and cloud fields tend to show similar

regional and seasonal variations year after year, and AACs frequently occur downwind of some important aerosol source

regions. These include, for example, smoke outflow from south-eastern Asia or southern Africa, as well as dust from the

Sahara, Arabian Peninsula, and deserts in north-eastern Asia (e.g. Herman et al., 1997; Remer et al., 2008; King et al., 2013;15

Tsay et al., 2013; Lin et al., 2014). This interannual repeatability means that AOD data sets can have a persistent coverage gap

in these regions, which biases estimates of the total atmospheric aerosol burden, and hinders aerosol transport analyses.

Semi-quantitative AAC observations from space began with the Total Ozone Monitoring Spectrometer (TOMS) sensor

series, which used an ultraviolet aerosol index (UVAI) to take advantage of the spectral darkening of AACs (Herman et al.,

1997). The large footprint size of TOMS (24-62 km at nadir dependent on sensor), however, was a limiting factor to quantitative20

applications. Similar observations are available from the Global Ozone Monitoring Instrument (GOME) sensor series. While

simple to calculate, UVAI is only a semi-quantitative measure of AOD as it depends in a nonlinear way on aerosol, cloud, and

surface properties as well as solar/view geometry (Hsu et al., 1999). Quantitative analysis benefited from the 2006 launch of

the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which is able to provide vertical profiles of aerosol/cloud

backscatter and depolarization (Winker et al., 2013), and opened up a new era of quantitative spaceborne AAC research (e.g.25

Chand et al., 2008; Costantino and Bréon, 2013; Meyer et al., 2013; Zhang et al., 2014; Alfaro-Contreras et al., 2016; Kar

et al., 2018). More recently, this was supplemented by analyses based on the Cloud Aerosol Transport System (CATS) lidar

on the international space station from 2015-2017 (Rajapakshe et al., 2017). While these sensors still have some limitations,

the particular features of AACs provide constraints which can obviate some of the assumptions required for these standard

backscatter lidar aerosol retrieval algorithms (Hu et al., 2007; Kacenelenbogen et al., 2014, 2018; Liu et al., 2015), improving30

the quantification of AOD and lidar ratio for these cases.

Over the past decade or so, novel algorithmic techniques have been developed for spaceborne quantification of AACs from

other sensors. Torres et al. (2012) used the improved spatial, spectral, and radiometric capabilities of the Ozone Monitor-
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Figure 1. VIIRS true-colour image from September 4, 2017 showing smoke generated in central/southern Africa transported above marine

stratocumulus clouds in the south-eastern Atlantic Ocean. Red dots indicate active fire detections. Region shown corresponds approximately

to 36 ◦S-2 ◦S, 3 ◦W-38 ◦E. Image obtained from NASA Worldview, https://worldview.earthdata.nasa.gov.

ing Instrument (OMI) over TOMS/GOME to use UVAI to make a more quantitative assessment of the AOD from AACs.

This approach was subsequently refined to improve regional assumptions by Jethva et al. (2018), enabling global application.

Jethva et al. (2013) also applied a conceptually-similar approach to Moderate Resolution Imaging Spectroradiometer (MODIS)

measurements. de Graaf et al. (2012) used Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIA-

MACHY) data to estimate the radiative effect of smoke AACs above the south-eastern Atlantic. Here, AOD and COD were5

not retrieved, but rather the total shortwave radiative effect was estimated by considering separately those parts of the spectrum

measured by SCIAMACHY strongly and weakly influenced by AACs, and inferring the aerosol-induced contribution. Meyer

et al. (2015) developed an extension of the MODIS cloud optical properties retrieval algorithm for the south-eastern Atlantic,

with a goal to remove the biases in retrieved COD and CER resulting from the neglect of AACs in the standard MODIS cloud

data set. Sayer et al. (2016) developed a similar technique but focused on filling AAC-related gaps in the Deep Blue (DB)10

aerosol data set. This was demonstrated with MODIS data, but was in principle also applicable to the Sea-viewing Wide-field

of view Sensor (SeaWiFS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors to which DB AOD retrieval algo-

rithms have also been applied (e.g. Hsu et al., 2013). The Polarisation and Directionality of Earth’s Reflectance (POLDER)

instrument’s multidirectional and polarimetric measurement capabilities provide greater information content for aerosols and

clouds compared to single-view passive sensors. As a result, several POLDER-based techniques have also been used to quantify15

AACs (Waquet et al., 2013; Peers et al., 2015).

Much of this research has focussed on African biomass burning. From approximately June to October, agricultural fires

move south from central Africa, generating large volumes of smoke which is transported into the south-eastern Atlantic Ocean

3
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(a) MODIS Aqua cloud fraction, Sep
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(b) MODIS Aqua clear-sky 550 nm AOD, Sep
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(c) MODIS Aqua fire counts, Sep
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Figure 2. Long-term (2002-2015) mean MODIS Aqua (a) daytime cloud fraction, (b) clear-sky total column AOD at 550nm, and (c) total

fire counts for the month of September for central and southern Africa and surrounding regions. Cloud and aerosol data are at 1◦ horizontal

resolution, while fire counts are at 0.5◦ horizontal resolution. The green box (25 ◦S-0 ◦N, 15 ◦W-15 ◦E) denotes the approximate region of

focus for the ORACLES campaign flights.

where it passes over persistent large-scale marine stratocumulus cloud decks (Swap et al., 1996; Roberts et al., 2009; Zuidema

et al., 2016). Figure 1 shows a case from September 4, 2017 where smoke (appearing greyish-brown) from widespread fires
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is seen blanketing much of Angola and northern Namibia, and covering part of a marine stratocumulus cloud deck which has

formed along the coastline. Taking a larger perspective, Figure 2 shows the long-term (2002-2015) average daytime cloud

fraction (from the MODIS Collection 6.1 cloud mask; Platnick et al., 2003), clear-sky total column AOD at 550 nm (from the

MODIS Collection 6.1 Deep Blue/Dark Target merged product; Sayer et al., 2014b) and cloud-corrected overpass-corrected

MODIS Collection 5 fire counts (Giglio et al., 2003, 2006) for the month of September. Intense burning across the continent5

causes large-scale AOD features over land, which are transported both over the stratocumulus deck to the west, and in a so-

called ‘river of smoke’ to the southeast into the Indian Ocean (Swap et al., 2002, 2003; Kar et al., 2018). Discontinuities in the

AOD field in this composite are due in part to sampling ( due to the coastal discontinuity in cloud cover), as well as land/ocean

algorithm differences. Cloud fraction over portions of the Atlantic approaches 100 %, meaning few clear-sky AOD retrievals

are possible; cloud cover over the southern Indian Ocean is lower.10

These features make this region a natural laboratory for AAC studies, and several field campaigns have been carried out to

better understand aerosol-cloud-precipitation-radiation interactions in this region. Of most interest to the present analysis are

the Southern African Regional Science Initiative (SAFARI) year 2000 campaign (Swap et al., 2002, 2003), and the ObseRva-

tions of Aerosols above CLouds and their interactionS (ORACLES) campaign (Zuidema et al., 2016), which had deployments

in the 2016-2018 burning seasons. These campaigns included suites of airborne instrumentation for characterisation of AACs,15

which have also provided invaluable data for the validation of AAC retrieval algorithms. Indeed, SAFARI-2000 data were

used by Sayer et al. (2016) in the evaluation of the demonstration AAC retrieval algorithm further developed here. Additional

field campaigns with different foci related to the southern African aerosol/cloud system have been carried out during the same

period as ORACLES (Zuidema et al., 2016, 2018); these include Layered Atlantic Smoke Interactions with Clouds (LASIC),

CLoud-Aerosol-Radiation Interactions and Forcing (CLARIFY), and AErosol RadiatiOn and CLOuds in Southern Africa20

(AeroClo-SA). Deployments and flights generally took place within the area outlined in green in Figure 2. The measurements

from ORACLES are most directly suited to the evaluation of AAC retrieval algorithms, so are used here.

The purpose of this study is to describe updates to the initial AAC retrieval algorithm presented by Sayer et al. (2016),

in preparation for its implementation in the DB aerosol data product suite, and use data collected during the 2016 and 2017

ORACLES deployments to further evaluate the algorithm. The study is organised as follows. Section 2 describes relevant25

features of the SeaWiFs, MODIS, and VIIRS satellite sensors, provides a summary of the retrieval algorithm introduced by

Sayer et al. (2016), and describes recent updates. Section 3 details the airborne data obtained during ORACLES and uses

these observations to evaluate the updated AAC retrieval algorithm. Finally, the updated algorithm has been applied to process

SeaWiFS, MODIS, and VIIRS observations across the large domain (40 ◦S-10 ◦N, 30 ◦W-60 ◦E) shown in Figure 2 from the

start of the satellite missions to the end of 2017. Section 4 presents an initial look at this time series and compares results from30

the different platforms. These AAC retrievals are available upon request to the authors. A separate multi-algorithm comparison

exercise is planned for a follow-up study; the purpose here is to introduce, evaluate, and examine the updated algorithm which

will eventually be included within the DB data sets. The 2018 ORACLES deployment, and evaluation of the COD retrievals,

will likewise be considered in a future study.
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2 Satellite AAC retrieval algorithm summary and updates

2.1 Relevant sensor characteristics

Sayer et al. (2016) developed the AAC retrieval algorithm with a goal of implementation being as similar as feasible across the

different sensors, relying on only those bands common to the three instrument types. SeaWiFS (McClain et al., 2004), MODIS

(Barnes et al., 1998), and VIIRS (Cao et al., 2013) are all passive broad-swath imaging radiometers. SeaWiFS operated from5

late 1997 to December 2010; MODIS provides data on the Terra platform from late February 2000, MODIS on the Aqua

platform from July 2002, and VIIRS on the Suomi National Polar-orbiting Partnership (SNPP) from March 2012. Both MODIS

sensors and SNPP VIIRS are still operational. SNPP VIIRS was followed with an additional VIIRS sensor launched in late

2017 (not considered in this study), and more are scheduled for the future.

SeaWiFS measured reflected solar radiation at the top of atmosphere (TOA) in eight bands with centres from 412-865 nm;10

MODIS and VIIRS have additional solar bands, as well as thermal infrared (tIR) channels. The AAC retrieval relies on common

bands centred near blue (470 nm for MODIS, 490 nm for SeaWiFS and VIIRS), green (550 nm), red (650 nm for MODIS,

670 nm for SeaWiFS and VIIRS) and near-infrared (nIR, 865 nm) wavelengths. These calibrated and geolocated measurements

are referred to as Level 1b (L1b) data. Note that in this study these approximate wavelengths and/or band colour names (e.g.

"green" for 550 nm) are sometimes referred to for simplicity, although all radiative transfer (RT) calculations use full sensor15

relative spectral response (RSR) functions. Specifically, the TOA reflectance ρ for band i is defined

ρi =
πD2
�
∫∞
0
Lλ(λ)Φi(λ)dλ

µ0

∫∞
0
Eλ(λ)Φi(λ)dλ

(1)

where Lλ is the spectral radiance passing into the satellite field of view at TOA,Eλ the downwelling solar spectral irradiance at

TOA, perpendicular to the Sun and at 1 Astronomical Unit (AU), and Φi the sensor RSR for band i, all functions of wavelength

λ. The factor D� is the Earth-Sun distance in AU (variable throughout the year), and µ0 the cosine of the solar zenith angle,20

which affect the total solar radiation received. Note that Lλ and so ρi depend on solar/observation geometry (and of course

surface and atmospheric state), omitted here for simplicity of notation.

For MODIS, nominal horizontal pixel sizes vary from 0.25-1 km (dependent on band); here, the finer-resolution bands are

aggregated and coregistered to 1 km. For VIIRS, the nominal pixel size for the relevant bands is 0.74 km. For SeaWiFS, pixel

sizes are 1.1 km but on-board resampling performed for Global Area Coverage (GAC) mode subsamples these to provide25

an effective horizontal resolution of ∼4.4 km at nadir. As GAC data are a subsampling rather than an average, it is most

appropriate to consider these as 1.1 km pixels with gaps between them (as opposed to the continuous swaths of MODIS and

VIIRS). All quoted pixel sizes are for nadir viewing geometries, at which pixels are approximately square. Away from nadir

the pixels enlarge, begin to overlap, and become more distorted in shape due to the scan geometry and Earth’s curvature. This

distortion is largest for MODIS (Sayer et al., 2015a), and smallest for VIIRS (Wolfe et al., 2013). Swath widths are 1502 km30

for SeaWiFS (GAC mode), 2330 km for MODIS, and 3040 km for VIIRS (meaning VIIRS has no inter-orbit gaps). Around

the Equator SeaWiFS also tilted to decrease the fraction of the swath affected by Sun glint in each hemisphere; this tilt led

to several scan lines near the Equator being missing. Figure 3 shows the resultant fraction of days when each of the sensors
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Figure 3. Fraction of days a given point (longitude) in the retrieval domain (Figure 2) is observed at least once by the individual SeaWiFS,

MODIS, and VIIRS sensors, as a function of latitude.

sampled a given location within the region, as a function of latitude. For SeaWiFS, coverage over the core of the stratocumulus

deck (Figure 2) was obtained on about 60 % of days, potentially leading to larger sampling biases than the other sensors. For

MODIS this value is closer to 85 % at the Equator and becomes 100 % poleward of ∼ 25◦; for VIIRS, the whole region is

imaged at least once per day. All the sensors are on platforms in Sun-synchronous polar orbits; MODIS Terra has a daytime

Equatorial crossing time of 10:30 (local solar time) while MODIS Aqua and VIIRS have an overpass time of approximately5

13:30 local solar time. SeaWiFS crossed near local noon at launch, although drifted in the later years of the mission (and ended

around 13:30-14:00 in 2010). It is possible that these differences in overpass time will lead to differences in the retrieval results;

for AAC cases, however, downwind travel takes places over periods of several days and so it is unlikely that, far from sources,

the AOD will have changed significantly between satellite overpasses.

The DB aerosol retrieval algorithm (Hsu et al., 2013) has also been applied to all these sensors to retrieve AOD for cloud-free10

scenes over land. The main data product from DB is the AOD at 550 nm; in this study mentions of AOD without a specific

wavelength indicated refer to 550 nm. For the SeaWiFS and VIIRS applications of DB (but not MODIS, at present), a Satellite

Aerosol Retrieval Algorithm (SOAR) is applied over water surfaces to provide a near-global picture (Sayer et al., 2012, 2018a,

b). This combination of DB and SOAR is often colloquially referred to as the "Deep Blue" data product suite, even though DB

and SOAR are separate algorithms which use different bands and assumptions due to the differing characteristics of the aerosol15

retrieval problem over land and water surfaces.

This study uses the latest L1b data versions. For SeaWiFS this is obtained from the SeaWiFS operational Data Analysis

System (SeaDAS) software package version 7.5 (available at https://seadas.gsfc.nasa.gov/). SeaDAS applies vicarious calibra-

tion coefficients obtained as described in Franz et al. (2007) to SeaWiFS TOA reflectances. For MODIS and VIIRS the current

L1b data versions are Collection 6.1 (C6.1) and version 2 respectively. The main difference between C6.1 and the previous20

Collection 6 (C6) L1b data is the development and implementation of a fix for crosstalk in MODIS Terra’s tIR bands due to

sensor degradation, which hindered the cloud mask in C6 in recent years (Moeller et al., 2017). For the VIIRS application of
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SOAR, and for the AAC retrievals discussed here, VIIRS TOA reflectances are cross-calibrated to bring them into radiomet-

ric consistency with MODIS Aqua using the method and coefficients of Sayer et al. (2017); the residual uncertainty on this

correction is approximately 0.5-1 % for the bands used here (not counting any error on the MODIS Aqua calibration itself).

DB/SOAR aerosol retrieval processing uses these L1b data at full resolution, but provides output level 2 (L2, geophysical

data) products at coarser resolution. These L2 aggregations are 3×3, 10×10, and 6×6 L1b pixels for SeaWiFS, MODIS,5

and VIIRS, respectively, giving L2 at-nadir horizontal pixel sizes of 13.5, 10, and 6 km respectively. To distinguish between

native L1b pixels and the coarser L2 resolution, these latter sizes are often known as L2 "cells" rather than "pixels". The bulk

of retrieval uncertainty (for both total-column AOD and AAC cases) is not due to radiometric noise but rather algorithmic

assumptions; the coarsening has therefore been historically mostly to aid in pixel selection and post-retrieval quality filtering

via analysis of L2 cell statistics (discussed later), and decrease the computational and data storage burden. This corresponds10

to one and two cells per scan line for MODIS and VIIRS, respectively; SeaWiFS imaged only one along-track pixel per scan.

These output resolutions are also adopted here, due to the motivation for incorporation into the main DB data products.

2.2 Summary of the Sayer et al. (2016) AAC retrieval algorithm

The physical principle behind the demonstration AAC retrieval algorithm presented in Sayer et al. (2016) is that, in the presence

of light-absorbing aerosols above a liquid-phase cloud, increases in COD brighten the TOA signal (as clouds tend to be bright15

and white) while AACs darken the signal as AOD increases. This darkening is more pronounced at the shorter wavelengths

due to the tendency for increased absorption AOD (AAOD) at shorter wavelengths. For smoke aerosols this is due to the rapid

increase of AOD with decreasing wavelength, while for dust it arises from the low SSA (strong absorption) at blue and green

wavelengths but SSA close to 1 at red and nIR wavelengths. Quantitative information about AACs can be extracted from the

magnitude and spectral shape of TOA reflectance across this wavelength range (470-870 nm).20

Sayer et al. (2016) retrieved AOD and COD at 550 nm (the state vector, x) simultaneously by a weighted multispectral

least-squares fit of TOA reflectances in the four (blue, green, red, nIR) bands to modelled TOA reflectances stored in a lookup

table (LUT). The RT calculations used to create the LUT were performed with a tool based on the Vectorised Linear Discrete

Ordinates (VLIDORT) code (Spurr, 2006). The same VLIDORT-based tool is used in the present study. The solution is found

by iterative minimisation of the squared residuals (differences between measured and LUT TOA reflectances) using the Opti-25

mal Estimation (OE) technique (Rodgers, 2000). OE propagates measurement and forward model uncertainties to provide an

estimate Sx of the uncertainty on the retrieved state x,

Sx =
(

KTSyK
)−1

, (2)

where the covariance matrix Sy represents the uncertainty on the measurements (both radiometric and terms arising from

forward model assumptions), and K (also known as the weighting function or Jacobian matrix) is the gradient of observations30

with respect to state measurements at the solution. More detail is given in Section 3.1 of Sayer et al. (2016). OE also provides

a metric describing the level of agreement between measurement and modelled reflectances at the retrieval solution relative to
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the expected level of disagreement (retrieval "cost", J), which is what is minimised iterativively in the retrieval:

J(x) =
(

ym(x)− yLUT (x)
)T

S−1y

(
ym(x)− yLUT (x)

)
(3)

This is the sum of square residuals between measured (ym) and modeled LUT (yLUT ) reflectances relative to their expected

magnitudes given in Sy, for a given point x in state space (i.e. combination of AOD and COD). Assuming Sy has realistic

values and the measurements are informative on the state variables, J is expected to take values around the number of degrees5

of freedom (here two, as four measurements are being used to retrieve two parameters). These metrics are useful for quality

assessment (QA) of the retrieval output; they are only quantitatively robust if the underlying forward model is appropriate,

the input uncertainties well-quantified, and the forward model approximately linear near the solution (Povey and Grainger,

2015). OE can optionally also account for a priori information on the state vector, but that has not been included in the present

implementation. LUTs are interpolated linearly during the retrieval, and K calculated numerically. The first guess at x is taken10

as the LUT node point with the lowest cost, and convergence is typically obtained within 3-4 iterations.

Based on typical features of aerosol/cloud systems, instrument capabilities, sensitivity analyses, and retrieval simulations,

the RT forward model is set up as follows (cf. Section 3.1 of Sayer et al., 2016, and references therein). The cloud is assumed

to consist of a homogeneous and fully overcast layer with a top altitude of 1.5 km above surface level, geometric thickness of

0.3 km, and be composed of liquid water droplets with size conforming to a gamma distribution with an effective radius of15

12µm and effective variance of 0.1. The underlying surface is assumed to be Lambertian (see also Sections 2.3.4 and 2.3.5).

The aerosol is assumed to lie in a homogeneous layer with a top height 1 km above the cloud top, and be 0.5 km thick.

Sayer et al. (2016) considered six different optical models for AACs, corresponding to four different types of smoke aerosols

from different source regions, and dust aerosols with two different SSAs. These optical models were based on results from

Aerosol Robotic Network (AERONET) almucantar scan inversions (Dubovik and King, 2000) representative of various source20

regions and aerosol types. Other sources of AACs such as volcanic ash were not included due to their comparative rarity and

the fact that they have less repeatable and well-defined optical properties. Retrieval simulations in Sayer et al. (2016) indicated

that the information content of the measurements was not always sufficient for the retrieval to select the correct aerosol type

out of the six using the cost function alone. Therefore here the optical model representing strongly-absorbing smoke derived

from AERONET inversions in Mongu (Zambia) is used in all cases; based on previous studies this is expected to be reasonably25

representative of the smoke AACs encountered in the study region (Piketh et al., 1999; Eck et al., 2003, 2013; Swap et al., 2003;

Reid et al., 2005; Queface et al., 2011). An exception is periodic additional contributions from mineral dust in the northern

part from December-February (Pandithurai et al., 2001; Ben-Ami et al., 2009). Over the main ORACLES domain (green box

in Figure 2), and during the peak burning season, however, other AAC sources are expected to be negligible.

The Mongu smoke aerosol model was described by Sayer et al. (2014a). It is a bimodal lognormal optical model, such that30

fine (subscripted f throughout) and coarse (subscripted c throughout) mode volume size distributions are each of the form

dV (r)

d ln(r)
=

Cv√
2πσ

e
−

1

2

(
ln(r)− ln(rv)

σ

)2

, (4)
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Table 1. Spectral complex refractive index for the smoke aerosol optical model used in this study, after Sayer et al. (2014a).

Wavelength Fine mode Coarse mode

440nm 1.51-0.024i 1.45-0.0035i

675nm 1.52-0.022i 1.45-0.0015i

870nm 1.52-0.021i 1.45-0.0015i

1020nm 1.52-0.021i 1.45-0.0015i

for particles of size r, given total mode particle volume Cv, mode (which is also median and geometric mean) radius rv, and

width σ. Sayer et al. (2014a) found that the modal radius (in µm) of the fine mode was dependent on the fine-mode AOD at

550 nm (τf ) as follows:

rv,f = 0.161 + 0.013ln(0.63τf) (5)

The spread σ (dimensionless) of the fine mode was found to have a weak dependence on (τf ),5

σf = 0.469 + 0.023ln(0.074τf), (6)

i.e. for higher smoke loadings the fine-mode particles were larger on average and had a broader distribution. In contrast, rv,c

and σc were found to be AOD-independent (across the small range of coarse-mode AOD observed) and take typical values of

3.34µm and 0.67 respectively. Sayer et al. (2016) assumed a representative fine mode fraction (FMF) of AOD at 550 nm, i.e.

τf/(τf + τc), of 0.9 for these smoke AACs, based on typical values from Sayer et al. (2014a). The assumed aerosol refractive10

index is shown for AERONET wavelengths in Table 1. These values are interpolated in log-log space to the satellite band

centres for calculation of aerosol phase matrix elements and SSA. The resulting SSA (discussed further in Section 3.5.2) is

weakly dependent on the AOD and in general varies from ∼0.86 in the blue band to ∼0.82 in the nIR band.

Table 2 provides a brief summary of the main factors contributing to the retrieval error budget (in terms of effect on TOA

reflectance), and when they are important. This is arranged in rough order of severity, based on results in Sayer et al. (2016) and15

discussion here, and with a focus on application to the ORACLES study region. Due to nonlinearity of the retrieval system it is

not trivial to map these into uncertainty on retrieved AOD/COD, as it is quite context-dependent, e.g. a large error on surface

albedo would be important for AOD/COD retrieval for an optically-thin cloud but is negligible for an opaque cloud with e.g. a

COD of 10. As such Table 2 cannot be too specific as this would be misleading. The ability to assess sensitivities and provide

uncertainty estimates on a case-by-case basis (Equation 2) is an advantage of the OE retrieval framework applied here. The20

three leading factors added in quadrature provide the 3 % uncertainty on TOA reflectance assumed in the retrieval.

2.3 Algorithm updates since Sayer et al. (2016)

The same overall approach and RT forward model described in Section 2.2 is used in the present study, with updates described

below. These are intended to improve upon approximations made in Sayer et al. (2016), in particular for retrievals for clouds

above land surfaces, and prepare the AAC retrieval for integration with the standard DB and SOAR data products.25
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Table 2. Magnitude of the main contributions to the total uncertainty on the TOA signal.

Uncertainty in factor Typical importance to total retrieval uncertainty budget

Sensor absolute calibration Systematic (∼2 %) and always a factor

Aerosol SSA Around 1.5 % at TOA; possible regional/seasonal biases from static assumption

Cloud effective radius Around 1.5 % at TOA; assumption contributes about 20 % of total AOD uncertainty

Cloud structure Possible 3D effects and masking errors near edges; hard to quantify

Surface albedo Negligible (� 1% at TOA) provided cloud is opaque (COD '4)

Aerosol vertical layering Potentially significant if multiple layers with distinct SSA/aerosol type present

Aerosol FMF Generally < 1% at TOA unless aerosol type (smoke/dust) incorrect

Cloud altitude Generally negligible (� 1% at TOA)

Trace gas absorption correction Generally negligible (� 1% at TOA)

Cloud effective variance Generally negligible (� 1% at TOA)

Sensor random error (noise) Generally negligible (� 1% at TOA)

LUT interpolation Generally negligible (� 1% at TOA)

Surface pressure error Generally negligible (� 1% at TOA)

2.3.1 Pixel selection and aggregation

For the two test case scenes in Sayer et al. (2016), the AAC retrieval algorithm was applied to MODIS data at full (nominal

1 km) resolution. Here, to prepare for integration into the main DB/SOAR AOD data sets, the retrieval is instead performed at

the equivalent pixel aggregations for the L2 products for each sensor (cf. Section 2.1). This is achieved by taking the median

spectral TOA reflectance for suitable L1b pixels within each L2 cell. Use of medians rather than means decreases sensitivity to5

cloud masking errors and 3D RT effects which are not accounted for by the forward model (Várnai and Marshak, 2002; Cho

et al., 2015). A cell is only processed if the proportion of suitable pixels within the cell is greater than 75% (i.e. at least 75/100

for MODIS, 48/64 for VIIRS, or 7/9 for SeaWiFS), as the forward model is less appropriate for broken clouds. A suitable pixel

is defined as one which is thought to represent a liquid-phase cloud (with or without an overlying absorbing aerosol layer).

For MODIS Terra and Aqua, the standard cloud mask product is used, and cloud phase is taken from the standard MODIS10

cloud optical properties data sets (Platnick et al., 2003; Frey et al., 2008). Both of these are available within the C6.1

MOD06_L2 (for Terra) and MOD06_L2 (for Aqua) data files. For VIIRS, the equivalent cloud mask product (VNPCLDMK)

is used from the current version 1. No VIIRS cloud phase product is available at the time of writing, so water clouds were iden-

tified empirically by assuming that any cloudy pixel with a brightness temperature (BT) in the VIIRS 12 µm band below 270 K

corresponded to an ice or mixed-phase cloud and discarding it. While empirical, this threshold seems appropriate in this case15

based on manual examination of the data, as the vast majority of AAC cases in this region correspond to marine stratocumulus

clouds with warmer BTs. For both MODIS and VIIRS, only pixels identified as "probably cloudy" or "confidently cloudy" are

considered.
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SeaWiFS has no equivalent cloud mask product, and lacked the tIR bands useful for determining cloud phase. The historical

background for this is that SeaWiFS data were mostly intended and used for monitoring of ocean colour over water, and land

vegetation indices, for which a clear-sky conservative mask (i.e. few missed clouds) was necessary. Because of this SeaWiFS

cloud masking in those data products is simple and aims to identify and remove not only clouds but aerosol-laden scenes, as

well as pixels close to those scenes (e.g. Patt et al., 2003; Banks and Mélin, 2015). Here, the focus is different, as the desire5

is to retain optically-thick clouds which are likely to be liquid water, and so tests and thresholds are modified, although follow

similar principles to the above references. As a result, a separate cloud mask has been developed, drawing from that developed

for the DB/SOAR SeaWiFS aerosol products (Hsu et al., 2004, 2013; Sayer et al., 2012). Specifically, land and water surfaces

have different TOA reflectance brightness tests, such that a pixel is marked as cloudy and suitable if

ρ412 ≥
0.1µ0

π
(7)10

over land, or

ρ865 ≥
0.07µ0

π
(8)

over water. The factor of µ0 in the numerator accounts for the fact that reflectance approaches infinity as the Sun approaches

the horizon (Equation 1), while with this normalisation the reflectance of an optically-thick cloud is less dependent on solar

zenith angle. The specific bands chosen for land and water are those at which the surface reflectance tends to be smallest,15

offering the best discrimination between cloudy and cloud-free scenes, and thresholds robust to the presence of AACs.

These tests have been found to be fairly effective at identifying optically-thick clouds, over the range of solar zenith angles

encountered in the study region (typically from 10-60◦ with an average around 30◦). Alternate cloud masking strategies may be

needed for SeaWiFS for other regions. As there is also no cloud phase mask for SeaWiFS, additional tests are implemented to

identify optically-thin clouds (such as cirrus, but also residual optically-thin liquid phase). This is based on spatial variability at20

the 412 nm band (where clouds tend to show greater spatial variability than cloud-free scenes). This considers 3×3 groupings

of L1b pixels, marking the central pixel cloudy if the test is passed, and again has separate tests for land and water pixels. Over

land, the pixel is marked as cloudy but unsuitable if the ratio between the maximum and minimum reflectance at 412 nm is

greater than 1.5, but the absolute brightness test is not passed. Over water, it is marked as cloudy but unsuitable if the standard

deviation of reflectance over water pixels within the 3×3 pixel box is greater than 0.01µ0/π, but the absolute brightness test is25

not passed.

Only detected clouds passing the brightness tests are processed with the AAC retrieval algorithm for SeaWiFS (provided the

cell they are in meets the 75 % suitability threshold described above). The TOA reflectance thresholds remove optically-thin

cirrus clouds from consideration, and output QA filtering (described below) removes others. The spatial variability tests are

intended to provide a summary view of the true (i.e. total suitable plus unsuitable) cloud fraction, for comparison with the30

other sensors. However, this limitation does mean that the total cloud fraction and suitable pixels on which AAC retrieval is

attempted may differ between SeaWiFS and the MODIS/VIIRS applications of the algorithm.
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2.3.2 Surface elevation

In Sayer et al. (2016), the two MODIS test cases examined were predominantly over water, for which the assumption of 1

standard atmosphere pressure is reasonable. This is not necessarily the case over land; Figure S1 shows that much of the

study region is above 1 km in altitude. Not accounting for this has the potential for regional biases in the algorithm results,

as atmospheric pressure determines the total Rayleigh scattering and its interaction with atmospheric multiple scattering and5

absorption. This could be particularly evident across land/ocean boundaries, e.g. off the coasts of Namibia and Angola where

the stratocumulus deck is often encountered. As a result, an additional dimension has been added to the retrieval LUT to

account for elevation-dependent changes in surface pressure. Surface elevation (z) provided within the L1b files for each pixel

is converted to surface pressure (p) according to the relationship

p= p0e

(
−z
H

)
, (9)10

where the reference pressure p0 is taken as 1013.25 mbar and the atmospheric scale height H is assumed to be 7.4 km (sen-

sitivity to this number is small). The LUT contains nodes at 1013.25, 700, and 400 mbar surface pressure, sufficient to cover

the range of elevations encountered here with minimal (generally <0.5 %) interpolation error in TOA reflectance, and is (as in

other dimensions) interpolated linearly.

2.3.3 Ancillary meteorological data15

As in the routinely-produced DB/SOAR AOD data sets, ancillary meterological data are needed to correct the TOA reflectance

for absorption by trace gases (for the bands considered here, chiefly H2O and O3) and provide a near-surface (10 m) wind speed

to calculate Sun glint reflectance over water (see Section 2.3.5). For MODIS and VIIRS, these are obtained from the NASA

Goddard Earth Observing System Model, Version 5 (GEOS-5, Rienecker et al., 2008) Forward Processing for Instrument

Teams (FP-IT) data stream, available from http://gmao.gsfc.nasa.gov/products, which is also used in VIIRS DB/SOAR data20

processing (Sayer et al., 2018a). This begins in 2000, so is unavailable for the inital years of the SeaWiFS mission; as a result,

the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2, Gelaro et al., 2017), available

from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2, is used for the full SeaWiFS record instead. MERRA2 is built on an

earlier version of the GEOS-5 model; for the quantities used here (column H2O, column O3, and 10 m wind speed) the

differences between FP-IT and MERRA2 are generally small and the differences introduce negligible additional uncertainty.25

These fields are at 0.5◦ latitude by 0.625◦ longitude resolution, with timesteps of 1 (MERRA2) and 3 (FP-IT) hours, and the

data are interpolated linearly in space and time to each L1b pixel.

Trace gas absorption correction follows the method and coefficients of Patadia et al. (2018), as in VIIRS DB/SOAR data, for

MODIS and VIIRS. For SeaWiFS, coefficients from the SeaDAS software (which follows the same basic approach) are used.

The purpose of this correction is to simplify retrieval LUT generation by removing the need to include variations in these gas30

absorbers within the LUTs. The assumption is made that trace gas absorption can be decoupled from other (Rayleigh, aerosol,

cloud, surface, and their interaction) scattering and absorption. Then, the TOA reflectances are brightened by dividing by the
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estimated transmittance as a result of these absorbers, giving the TOA reflectance which would be observed in the absence of

these species. For O3 this is reasonable because the bulk of the absorption occurs in the stratosphere and is separated from the

bulk of the atmospheric signal; in addition, ozone varies fairly smoothly in space and time. For H2O this is less valid as water

vapour varies on finer spatiotemporal scales, and is more heterogeneous in its vertical distribution through the atmosphere.

Here, as in Sayer et al. (2017, 2018a), the assumption is made that half the water vapour lies below the cloud (and is not seen)5

and half above. For the bands used in the AAC retrieval, H2O absorption is fairly weak and, except for the nIR band, O3 is the

dominant absorber. Total atmospheric gaseous transmittance varies dependent on band, solar/view geometry, and atmospheric

constituents, but generally ranges from ∼0.99 (for the blue bands) to ∼0.8 (for a low Sun and oblique view in the green bands,

with a high ozone concentration). Hence, while large errors in the O3 absorption correction are thought to be unlikely, a larger

potential error of order 50 % in H2O absorption causes an error of only 1 % or less in TOA reflectance at these bands.10

Although NO2 absorbs in the blue part of the spectrum, no absorption correction is applied. This is (as with many other

AOD retrieval algorithms) in part due to no availability of this parameter in standard reanalysis data streams ingested for

satellite data processing and in part because for the present application it is expected to be a second-order effect. Although

potentially significant for fields such as ocean colour analysis near source regions (Ahmad et al., 2007), NO2’s short lifetime

means it often has a low abundance away from sources and outside the boundary layer. Since the majority of scenes here are15

far from potential strong NO2 sources (e.g. industry), and AAC cases are typically around the top of the boundary layer (i.e.

the neglected absorption would be below-cloud), this is expected to be a second-order contribution to the total uncertainty in

TOA reflectance in the blue band.

2.3.4 Land surface reflectance

When a cloud is opaque, the TOA reflectance across the visible part of the spectrum is largely insensitive to the underlying20

surface albedo. Hence, the demonstration algorithm in Sayer et al. (2016) made the simplifying assumption of a spectrally-

neutral surface albedo of 0.05 in all bands. However, when the cloud is optically thin, there is a surface contribution to the TOA

signal and assumptions about surface albedo become more important. While the QA tests described below filter out low-COD

scenes, if the underlying surface reflectance is brighter than assumed, it is possible that a low-COD cloud could be erroneously

retrieved as a combination of higher-COD with a higher AOD and pass the QA tests under some circumstances. As a result, in25

the present study, the surface albedo assumption over land is updated using a climatology derived from MODIS data.

For this purpose the gap-filled snow-free albedo product (MCD43GF, Sun et al., 2017) is used as a basis. MCD43GF is

derived using the MODIS bidirectional reflectance distribution function (BRDF) Terra/Aqua combined product (MCD43A1,

Schaaf et al., 2002) and applying additional filtering and spatial/temporal constraints to provide BRDF model parameters at

30 arc second resolution, once per eight days from 2003-2015. Note that the inputs used for the currently-available version of30

MCD43GF derive from the MODIS Collection 5 processing.

While MCD43GF provides full BRDF model parameters, for computational simplicity these are used to calculate white-sky

(Lambertian) albedo for use in the retrieval forward model. This approximation is justifiable because under a cloudy sky it is

likely that most of the light field below the cloud will be diffuse. For example, for a COD of 1 and vertical incidence only 37 %
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(∼ e−1) of photons entering the top of the cloud will be directly transmitted without being scattered at least once or absorbed.

Above- and below-cloud aerosol and Rayleigh scattering and absorption will further decrease this proportion.

Additionally, to decrease the storage overhead and enable processing outside the 2003-2015 time frame, the source MCD43GF

are spatiotemporally aggregated to provide a data base for a representative year (retaining the 8-day time steps) at 0.05◦ resolu-

tion. The spatial aggregation is done first, taking the source MCD43GF products and recording the median albedo within each5

0.05◦ grid cell. After the spatial aggregation, for each grid cell, spectral band, and eight-day period (out of 46 in a year), the

median albedo from up to 13 years is taken as representative of that location and time of year. This collapses the interannual

variation to provide, for each point, the annual cycle of surface albedo, which is used in the AAC retrieval.

As a measure of the uncertainty introduced by the spatial coarsening, Figure S2 shows the mean of the spatial standard

deviation of albedo within each grid cell. For all bands except 865 nm, this is generally small (<0.02); even at 865 nm,10

generally <0.04. This indicates reasonable homogeneity of surface brightness on these scales. The exceptions tend to be salt

pans, e.g. the Makgadikgadi Pans in Botswana. Figure S3 shows the mean (across all eight-day periods) temporal standard

deviation (across the 13 years) of surface albedo, i.e. a measure of the interannual variability at each location. Spatial patterns

are broadly in line with S2, although the magnitudes tend to be slightly higher. This is expected as interannual variability in

weather patterns influences vegetation growth and harvest, which influences the surface albedo, especially at 865 nm, which15

is strongly linked to vegetation cover (Tucker, 1979). Sun et al. (2017) assessed the gap-filling procedure in MCD43GF by

randomly removing input data and comparing the gap-filled result with that withheld data. For white-sky albedo, this gave root

mean square errors (RMSEs) of 0.020 and 0.027 for red and nIR bands respectively. These are similar to or smaller than the

quadrature sum of the spatial and temporal aggregation variabilities shown in Figures S2 and S3. Many of the areas with higher

spatiotemporal variability are also associated with lower cloud cover (e.g. Figure 2), meaning they are areas less likely to have20

an AAC retrieval in the first place, although it is possible that these regions do not represent real cases of smaller variability,

but rather more cloudiness means less source data available as input to MCD43GF. Sun et al. (2017) did not show results for

blue or green bands, but based on the results here it is likely they would be similar or smaller. It is therefore reasonable to

assume that the method applied here to generate a climatological data base for the AAC retrieval does not significantly degrade

the utility of the MODIS albedo product for this application. The resulting annual cycles of surface albedo are shown for four25

sample locations, representing different surface types, in Figure S4. In all cases the annual cycle tends to be larger than the

interannual variability, which is encouraging as the year-to-year changes are neglected in the present approach.

In the AAC retrieval, surface albedo is assigned at full L1b resolution using the nearest 0.05◦ grid cell in the climatology

from the 8-day period of the year into which the granule falls. Analogously to the aggregation of TOA reflectance, the cell

median surface albedo is also used during the retrieval process. The same data base is used for all three sensors, as the source30

BRDF products are at present only available for MODIS, although an equivalent VIIRS data processing suite is in development.

Differences in band centres and widths thus have the potential to introduce additional error for SeaWiFS and VIIRS retrievals

using this MODIS-derived data base, although these are expected to be smaller than 0.02. This is a second-order contribution

to the total forward model error in terms of TOA reflectance, especially for optically-thick clouds.
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2.3.5 Water surface reflectance

Analogously to the over-land surface reflectance treatment, the assumption of a spectrally-neutral albedo of 0.05 from Sayer

et al. (2016) is also updated over water surfaces. The reflectance is instead modelled as a combination of a wind-roughened

surface using the wind-isotropic model of Cox and Munk (1954a, b), with the ancillary data described in Section 2.3.3 as input,

added to a reflectance of 0.05, 0.04, 0.03, and 0.03 to represent ocean colour and whitecap contributions for the blue, green,5

red, and nIR bands respectively. Real deviations from this are expected to be of the order ±0.01, which is again a second-order

contribution to the total forward model error in terms of TOA reflectance under optically-thin clouds, and becomes negligible

for opaque clouds.

2.3.6 Retrieval QA

As in Sayer et al. (2016), QA metrics are used to filter the retrievals to remove scenes where the retrieval was not able to10

find a good fit between measured and modelled reflectances, or where unphysical spatial structure suggests that the forward

model may have been inappropriate. These tests are similar to those described in Sayer et al. (2016), with updates based

on examination of the larger data volume processed for this study. An example showing the overall QA flag and results for

individual tests is given in Figure 4. Pixels are only retained if the following criteria are all met:

– The retrieval cost (Equation 3) is less than 5, indicating that the forward model is able to match the spectral TOA15

reflectance well. In practice cost function values tend to cluster in the range 0-2 or else be much higher than 5, so the

results are only weakly sensitive to the value of this threshold.

– The COD≥2, as for optically-thinn clouds the retrieval solution is often ambiguous and more sensitive to errors in

surface reflectance assumptions. These factors do not always lead to a high value of the cost function. This is a slight

relaxation of the COD threshold of 4 used in Sayer et al. (2016), due to the improved surface reflectance models used in20

this work. It can increase the potential data volume by 50 % or more in some cases, although some of these retrievals are

subsequently removed by other QA tests.

– The retrieval has two or more (out of a possible eight) neigbours. Cases with zero or one neighbours are often found

in conditions of broken cloudiness (e.g. cloud fragments in the middle of open-celled stratocumulus), which again may

mean the forward model is not appropriate but does not always result in a high retrieval cost.25

– The absolute difference between the retrieved AAC AOD and the median of AOD retrieved in the the 3×3 retrieval box

around it is smaller then 0.2. This removes spikes of high- or low- AOD which can result from isolated thin clouds, cloud

mask errors, or poor surface assumptions. In practice, these retrievals are often around the edges of cloud fields. The

physical basis behind this is that the AOD fields are expected to be spatially smooth on the scales of several retrievals.

Note that the OE-provided uncertainty estimates (Equation 2) for these retrievals are often (but not always) large (cf.30

Figure 4i). Sayer et al. (2016) implemented a test based instead on the estimated retrieval relative uncertainty, which had
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(a) MODIS Terra 13 Sep 2000 09:25
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(g) Above-cloud AOD, all points

5 10 15 20 25

5 10 15 20 25

-2
5

-2
0

-1
5

-1
0

-25
-20

-15
-10

(h) Above-cloud AOD, QA filtered
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Figure 4. AAC retrieval for a MODIS Terra granule during SAFARI-2000 from September 13, 2000. Panels show (a) a true-colour image,

(b) the overall QA flag, (c-f) results of individual QA tests, as described in the text, (g, h) the retrieved AOD before and after applying QA

tests, and (i) the estimated uncertainty on retrieved AOD at 550nm. The green box in (a) shows the region used for comparison with airborne

data by Sayer et al. (2016). Pixels without valid retrievals are shaded in grey.

similar results for high-AOD artefacts, but was less effective at identifying low-AOD outliers. This test might be less

appropriate in other regions of the world where spatial variability in the aerosol field is higher.

The granule in Figure 4 one of the test cases compared by Sayer et al. (2016) against airborne data in SAFARI-2000; in that

case, the airborne measurements gave an estimate of the above-cloud AOD at 550 nm of 0.49, with a spatiotemporal standard

deviation of 0.04, within the area outlined by a green box in Figure 4(a). The current version of the algorithm retrieves mean5
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(median) AOD across this box of 0.48 (0.51), in very good agreement, and close to the results of the demonstration algorithm

shown in Sayer et al. (2016). The small difference from those prior results for this example is expected as the only relevant

differences are the updates to the MODIS L1b data version (Collection 6 to 6.1) and aggregation/QA tests. Sayer et al. (2016)

noted that the good agreement (AOD within 0.02) for this case may be fortuitious as the estimated uncertainty on the retrieved

AOD (cf. Equation 2) is ±0.18, somewhat larger.5

3 Validation with airborne data during ORACLES

3.1 NASA Ames Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research

The NASA Ames Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument is an aircraft-

mountable hyperspectral sunphotometer and sky radiometer (Dunagan et al., 2013). It is a successor to the multichannel Ames

Airborne Tracking Sunphotometer (AATS) instruments (Redemann et al., 2003; Schmid et al., 2003), which were used by10

Sayer et al. (2016) in validation of the initial version of the Deep Blue AAC retrieval algorithm (and cf. Figure 4). 4STAR

combines the sun-tracking ability of AATS with a sky-scanning ability similar to that of ground-based AERONET sun/sky

photometers. Its full-width field-of-view (FOV) when measuring direct solar beam irradiance is 2.4◦ (LeBlanc et al., 2019),

with a radiometric deviation of less than 1 % in this span, compared to 3.7◦ for AATS (Segal-Rozenhaimer et al., 2013). The

smaller FOV reduces uncertainties due to scattered light in the direct-beam signal (Segal-Rozenhaimer et al., 2013; Smirnov15

et al., 2018). As operated during ORACLES, 4STAR has 1556 overlapping and continuous bands ranging from 350-1700 nm,

compared to 6 or 14 distinct non-overlapping spectral bands on the AATS instruments (Dunagan et al., 2013).

The instrument was mounted on the NASA P3 aircraft for both the 2016 (based out of Walvis Bay, Namibia) and 2017

(based out of Sao Tomé) ORACLES deployments. Flight tracks where scientific data were collected are shown in Figure 5.

More information about the 2016 deployment, as well as 4STAR-derived aerosol data, can be found in LeBlanc et al. (2019).20

Flights included spiral profiles through smoke layers above clouds (as well as ramps and level legs), to enable the airborne

instrumentation to measure atmospheric properties at different points within the smoke layers. The data set includes a flag

(described in LeBlanc et al., 2019) to indicate measurements when the aircraft was flying above the top of a cloud and below

a smoke layer. These flagged data points comprise a fairly small fraction of the total data set, but allow estimates of the above

AOD suitable for validation of the satellite retrievals.25

The 4STAR data product used here is the spectral AOD from direct-sun measurements. Exact measurement characteristics

change between deployments, but in general the data are provided at around two dozen wavelengths (outside of strong gas

absorption features) with a temporal resolution of 1 s. The uncertainty in spectral AOD is estimated on a point-by-point basis,

and is largely driven by uncertainties on radiometric calibration and trace gas absorption, but is typically of order 0.005-0.02

(decreasing with increasing wavelength), much smaller than the expected uncertainty on the satellite retrieval. The current30

data versions used here are R3 for 2016, and R1 for 2017. Note that 4STAR measurements can also provide AERONET-like

aerosol inversions (Pistone et al., 2019) and transmission-based cloud property retrievals (LeBlanc et al., 2015) which will be

considered in a separate study.
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(a) ORACLES 2016 P3 flight tracks
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(b) ORACLES 2016 ER2 flight tracks
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(c) ORACLES 2017 P3 flight tracks
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Figure 5. Flight tracks for the 2016 and 2017 ORACLES deployment, coloured by date. From top to bottom, panels indicate the 2016 P3,

2016 ER2, and 2017 P3 aircraft flight tracks.

3.2 NASA Langley High Spectral Resolution Lidar

The second airborne instrument used is the NASA Langley High Spectral Resolution Lidar version 2 (HSRL2; Hair et al., 2008;

Burton et al., 2018). HSRL2 provides vertical profiles of atmospheric backscatter, depolarisation, and extinction; an advance
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of the 2016 deployment was the addition of a 355 nm channel (Burton et al., 2018) alongside the 532 and 1064 nm channels.

Note that the 1064 nm channel lacks HSRL capability and is backscatter-only, so above-cloud AOD is only provided at 355

and 532 nm. An advantage of the HSRL technique is that it is able to determine both backscatter and extinction, removing the

need for a lidar ratio assumption, which can be a large source of uncertainty in backscatter lidar AOD retrievals such as from

CALIOP (Omar et al., 2009).5

During the 2016 ORACLES deployment (Burton et al., 2018), HSRL2 flew on the NASA ER2 high-altitude aircraft (Figure

5), also based out of Walvis Bay, Namibia. The ER2 typically flew at an altitude around 20 km, well above the clouds and

the bulk of the aerosols. As the ER2 was flying at high altitude, a larger proportion of the flight provides data suitable for

validating the AAC algorithm compared to 4STAR, for which only data collected immediately above a cloud top are relevant.

During the 2017 ORACLES deployment, the HSRL2 instrument flew on the P3 with 4STAR, at lower altitudes; this means10

that an unknown amount of aerosol above the plane will have been missed in the 2017 deployment. This should be borne in

mind when examining the 2017 matchup statistics, along with the fact that in 2017 HSRL2 and 4STAR coverage is mutually

exclusive. To decrease the contribution from this unobserved aerosol, 2017 HSRL2 data are only used here when the P3 was

flying above 5 km (flight altitudes were generally below 8 km; when not spiraling, a reasonable number of legs were between

5-6 km, and few were above 6 km). The current data versions used here are R7 for 2016, and R1 for 2017.15

Profiles are measured at 15 m vertical resolution and 10 s temporal resolution; the data contain a flag to identify profiles

containing AAC cases. The spectral AOD was determined as described in by Hair et al. (2008), from the difference of the

molecular channel signals at the top of the profile and at the top of the cloud. Assessment of the uncertainties of AOD deter-

mined from HSRL2 data are provided by Hair et al. (2008) and Burton et al. (2018). In brief, there is a random component

(which is quantified within the data and typically negligible, � 0.01) and a larger, locally-systematic component. This sys-20

tematic component is expected to be dominated by uncertainties in the molecular profile used in the retrieval, and is difficult

to quantify. As such, the uncertainty in HSRL AOD data are typically estimated by comparing against other simultaneous

observations. Rogers et al. (2009) evaluated 532 nm AOD from an older version of the HSRL instrument in Mexico City and

found a RMS difference of 0.008 against AATS data and 0.056 against AERONET; in the latter case, some of the disagreement

with AERONET was thought to result from small amounts of aerosol above the plane’s flight altitude, and one outlying point25

(of only 10 total) contributed disproportionately to the higher RMS difference. Sawamura et al. (2017) found a similar level of

agreement against AERONET from HSRL-2 at both 355 and 532 nm from two field campaigns over urban areas in California

and Texas.

3.3 Validation approach

Only retrievals passing the QA tests described in Section 2.3.6 are considered. As the airborne data have a higher spatial and30

temporal resolution than the satellite retrievals, the satellite data are validated by checking for and aggregating the 4STAR and

HSRL2 data inside each individual retrieval footprint. Although this leads to a large number of matchups, it is important to bear

in mind that the resulting matched data are not independent, due to the large autocorrelation in the underlying aerosol field,

and retrieval errors are similarly likely to be autocorrelated on these length scales. The airborne data are available only for a
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Table 3. Number of individual retrieval matchups (and number of contributing granules, in parentheses) for each satellite sensor and ORA-

CLES data set.

ORACLES Count

data set MODIS Terra MODIS Aqua VIIRS

4STAR, 2016 532 (20) 432 (15) 835 (17)

4STAR, 2017 190 (12) 285 (15) 561 (18)

HSRL2, 2016 1918 (13) 1896 (14) 4441 (14)

HSRL2, 2017 1066 (16) 156 (10) 484 (12)

limited spatial domain over a short time period within each year. This is a different picture from total column AOD validation

using ground-based AERONET sites, which are composed of individual dispersed sites as opposed to flight tracks. For this

reason, as well as statistics for all matchups individually, granule-average statistics (i.e. statistics calculated using averages

of all matchups from individual granules) are also presented. These should exhibit reduced autocorrelation compared to the

all-matchups data. Note that these are calculated averaging all matched retrievals and airborne data within individual granules,5

not simply averaging all retrievals within the granules.

The satellite overpasses and flight tracks were mostly not simultaneous, and a time difference threshold of ±3 hours is used

as a cutoff for a matchup to be valid. This is longer than the ±0.5-1 hours often used for comparison against AERONET

sites, and is adopted as the temporal variability of these large-scale smoke plumes is expected to be somewhat limited. Part

of the rationale for a shorter time threshold in AERONET validation analyses is the potential for an incoming cloud field to10

remove or modify the aerosol during the time between measurement and overpass; as the AAC retrieval is concerned with those

aerosols above (and less likely to be modified by) clouds, that rationale is less relevant here. Using a stricter time threshold

in this analysis essentially has the effect of removing individual flight legs from consideration; due to the limited number of

flights available (Figure 5), it is difficult to disentangle contributions from true temporal variability from those due to individual

flight characteristics (i.e. sampling differences) in the changes in comparative statistics, although the overall picture does not15

significantly change with a threshold of ±1 hours (not shown). Jethva et al. (2018) compared an OMI-based algorithm with

HSRL2 measurements from ORACLES 2016; they found (their Figure 4) that imposing a time difference threshold of ±1-

2 hours improved some comparison statistics, compared to no time difference threshold. That appears to be driven in part by

the removal of some high-AOD events when either time difference threshold was imposed. This suggests some aerosol motion

over the course of a day, but less over the course of several hours, so is not inconsistent with the results here. The total number20

of matchups (and individual granules containing matchups) is shown in Table 3.

The AOD is evaluated at the satellite wavelengths used (i.e. bands centred near 470/490, 550, 650/670, and 865 nm, de-

pendent on sensor), as well as 500 nm, as the latter is (along with 550 nm) a commonly-used reference wavelength in aerosol

analyses. For the HSRL2 data the available AOD at 355 and 532 nm are interpolated to 470/490 and 500 nm, and extrapolated
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to 550 nm, using the Ångström exponent (AE, denoted α) where

α=−
log

τλ1

τλ2

log λ1

λ2

(10)

over the wavelength range λ1−λ2 (here 355-532 nm). For 4STAR, up to 12 AOD measurements are available across the

relevant wavelength range. Therefore, following Eck et al. (1999) a least-squares fit of all available AODs to a quadratic

polynomial is performed and used to calculate the AOD at each wavelength of interest:5

log(τλ) = a0 + a1 log(λ) + a2 log(λ)2. (11)

Coefficients a0, a1, a2 are calculated on a point-by-point basis. This quadratic formulation is more robust to calibration

problems in individual channels, and accounts for the fact that in fine-mode dominant aerosol conditions the relationship

between log(τ) and log(λ) is not linear but curved, dependent on fine mode particle size (Eck et al., 1999; Schuster et al.,

2006). The longer wavelengths are not considered for the HSRL2 comparison to avoid the potentially larger extrapolation10

errors due to this spectral curvature; likewise, the availability of only two wavelengths means that Equation 11 cannot be

applied for HSRL2.

For 4STAR, the uncertainty on an individual matchup is taken as the median of the uncertainties on the spectral AOD used

for the fitting in Equation 11 (and is typically around ±0.01). For HSRL2, the uncertainty is taken as ±0.02 at 470/490 and

500 nm, and ±0.03 at 550 nm, to allow for a small extrapolation error. In both cases, the standard deviation of measurements15

within each satellite footprint is added to this in quadrature, to account for potential spatiotemporal heterogeneity. This latter

term is typically 0.01 or smaller, and the total uncertainty is likewise typically much smaller than the estimated uncertainty on

the satellite retrievals.

Due to the different flight locations (Figure 5) and potential for different systematic uncertainties in the airborne data between

deployments, results are reported separately for 2016 and 2017. The main metrics used here to evaluate the AAC retrievals,20

which are as often used in AOD validation exercises, including DB (e.g. Sayer et al., 2018b, 2019), are as follows:

1. The correlation coefficient (R), as a measure of how well the satellite data track the variability of the airborne data.

Spearman’s rank correlation coefficient is used rather than the more common Pearson’s linear correlation coefficient. The

reasons for this include the facts that the relationship between airborne and satellite AOD may not be linear, and also that

Spearman’s correlation is less sensitive to extreme outliers (either sampling-related or retrieval problems) which may be25

unrepresentative of the behaviour of the data set. While Pearson correlation has historically been the more frequently-

used in aerosol data analyses, other fields are increasingly appreciating the use of Spearman correlation for situations

where this is better supported by the nature of the data (e.g. the medical literature, such as Schober et al., 2018).

2. The median bias between the data sets, defined satellite-airborne, as a measure of the general offset. Again, medians are

more robust to outliers which can skew the means.30

3. The median relative bias between the data sets, defined (as above) relative to the airborne data.
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(b) Granule, 4STAR/MODIS Aqua 2016
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Figure 6. Scatter plots and summary statistics for the comparison between 550nm AOD from MODIS Aqua AAC retrievals and 4STAR

data, during ORACLES 2016. Statistics are as defined in the text. Panel (a) shows the comparison for all individual matchups; horizontal and

vertical error bars indicate the estimated uncertainties on the 4STAR and satellite retrievals, respectively. Panel (b) shows median 4STAR and

MODIS data from matchups obtained within each granule, and horizontal and vertical error bars the standard deviation of matched 4STAR

and satellite AOD within each granule, respectively. The 1:1 line is dotted grey.

4. The root mean square error (RMSE), which is a commonly-reported metric, although is dependent upon the typical level

of AOD as well as the presence of outliers.

5. The mean absolute error (MAE), similar to RMSE but less weighted by outliers.

6. The fraction (f ) of points matching within the total expected level of difference (ED). The ED is taken as the quadrature

sum of the expected retrieval uncertainty σret (square root of the relevant element of Sx in Equation 2) and aforemen-5

tioned airborne uncertainty/variability σair under the assumption that these two are independent, i.e. ED =
√
σ2
ret +σ2

air.

For satellite-retrieved and airborne AOD τret, τair respectively, the relevant inequality assessed is therefore the fraction

satisfying |τret− τair| ≤ ED. If these uncertainties are appropriate, then one standard deviation (∼68 %) of matchups

should be in agreement within this bound, and two standard deviations (∼95 %) within twice this bound, etc. Again,

however, the spatiotemporal autocorrelation in the observations and limited sample size mean that this is unlikely to be10

true for this particular set of data. Still, the metric provides a general guideline on how quantitatively similar the esti-

mated uncertainties are to the actual retrieval errors. This statistic is not presented for the granule-average comparison,

because it is not meaningful for that case.

3.4 Validation results

Figure 6 shows one example of instantaneous and granule-averaged results, for the case of MODIS Aqua and 4STAR data15

in 2016. Here, 15 granules contributed a total of 432 matchups. The bulk of the points in both cases cluster around the 1:1

line. For the instantaneous matchups, there are some outliers, which tend to be retrieved with a large estimated uncertainty; in

general, the estimated uncertainty on the satellite retrievals is, as expected, larger than that due to uncertainty and variability
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in the airborne data. A lot of the scatter is decreased when going to granule-averaged statistics, such that correlation increases

and MAE and RMSE decrease. The absolute bias does not change much. Interestingly, the variability on the granule-averaged

satellite data (vertical bars in the right panel) tends to be somewhat smaller than the uncertainty on the individual matchups

(vertical bars on the left panel). This is likely due to high autocorrelation in the retrieval uncertainties (i.e. an error source

on a given retrieval is likely to be very similar to the errors on retrievals adjacent to it), which is a result of the flight-track5

sampling of airborne data. This also indicates that, as with many other AOD retrieval algorithms, the bulk of the error is not

true random noise but rather locally systematic due to the context (i.e. geometry, atmospheric and surface conditions) of the

retrieval. Similar patterns (not shown) are observed for the other satellite sensors and airborne deployments.

In Figure 7, summary statistics equivalent to those presented in Figure 6, but for all wavelengths and satellite/airborne

comparisons assessed, are presented. Several statistics (e.g. correlation, f ) show limited spectral dependence. Others (e.g.10

RMSE, MAE, and in some cases the bias) shrink with increasing wavelength, which is expected due to the rapid decrease

of AOD of smoke with increasing wavelength. Results for the granule-averaged comparison are often similar to those from

the instantaneous comparison (sometimes slightly better, sometimes slightly worse); the same tendencies are seen between

satellite sensors and across wavelengths. This also points to the bulk of the errors in the retrieval being contextual rather

than truly random (aside from a few individual outlying pixels). The HSRL2 comparison shows smaller difference between15

instantaneous and granule-averaged comparison statistics than 4STAR, perhaps due to the generally larger number of matchups,

but smaller number of contributing granules, for HSRL2.

Interestingly, the different ORACLES comparison data sets reveal some different patterns. For example, the 2016 data (both

4STAR and HSRL2) indicate near-zero (MODIS) and negative (VIIRS) bias tendencies in the satellite data, while for the

2017 data the biases tend to be more positive. In this sense, the different deployments do not paint identical pictures about the20

retrieval error characteristics. Recalling the facts that in 2016 4STAR and HSRL2 were on separate aircraft but flying in similar

locations and at similar times, while in 2017 they were on the same aircraft and flying over a different region (Figure 5), this

suggests that data sets from single deployments may not be providing sufficient sampling of the aerosol/cloud system to fully

characterise satellite retrieval uncertainties. The differences might be partially coincidental due to the particular cases sampled

on the flights, or may reflect more persistent differences in the locations of the two deployments; it is difficult to disentangle25

these two possibilities with the available data. It is therefore cautioned that the validation results presented here may not have

sufficient sampling to be comprehensive, and further field campaigns in this region (and others) would be desireable to obtain

a fuller validation of AAC retrievals. Note that the 2018 ORACLES flight tracks followed a similar pattern to those in 2017;

the 2018 data are not publicly available at the time of writing and an initial release is expected later in 2019.

The similarity between MAE and RMSE lines in Figure 7 indicates that there are few extreme outliers, as RMSE is sensitive30

to outliers while MAE is more robust. This is encouraging and provides further evidence that the QA tests (Section 2.3.6)

are reasonably successful at removing cases where the forward model is inappropriate. The fraction f of matchups agreeing

within ED is similar to the theoretical value of 68 %, indicating that on average the estimated uncertainties provided by the

OE technique (Equation 2) and uncertainty characterisation of the airborne data are reasonable. The spectral stability of f (as
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(d) HSRL2, 2017
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(g) HSRL2, 2016
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(h) HSRL2, 2017
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(i) 4STAR, 2016
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(j) 4STAR, 2017
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(k) HSRL2, 2016
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(l) HSRL2, 2017
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(m) 4STAR, 2016
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(r) 4STAR, 2017
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(t) HSRL2, 2017
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(u) 4STAR, 2016
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(v) 4STAR, 2017
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(w) HSRL2, 2016
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(x) HSRL2, 2017
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Figure 7. Summary line plots of spectral AOD validation statistics. Columns show (left to right) comparisons for 4STAR 2016, 4STAR 2017,

HSRL2 2016, and HSRL2 2017. Rows show (top to bottom) rank correlation, median (satellite-airborne) bias, median relative bias, RMSE,

MAE, and fraction f agreeing within the ED. In all panels, solid lines denote statistics for all matchups, and dashed for granule-average

comparisons. Data for MODIS Terra, MODIS Aqua, and VIIRS are shown in red triangles, green diamonds, and blue squares respectively.

well as the other statistics) are further evidence that the uncertainty characterisation and retrieval assumptions (Table 2) are

reasonable.
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(b) MODIS Aqua
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(c) VIIRS
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Figure 8. Histograms of normalised retrieval error (i.e. actual error divided by expected difference ED) for AOD at 550nm. Panels show

(left-right) data for MODIS Terra, MODIS Aqua, and VIIRS matchups. In all cases matchups from 4STAR 2016, 4STAR 2017, HSRL2

2016, and HSRL2 2017 are shown in red, green, blue, and purple respectively. The black line shows the theoretical Gaussian distribution

with mean 0 and variance 1, and dotted/dashed lines indicate ±1 and ±3 standard deviations, respectively.
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(f) VIIRS
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Figure 9. Comparison between magnitudes of expected difference (ED) and actual absolute retrieval errors. The top row shows ED (i.e. 1σ

uncertainty) against 68th percentile (i.e. 1σ) retrieval error, binned as a function of ED. The bottom row shows 2×ED (i.e. 2σ uncertainty)

against 95th percentile (i.e. 2σ) retrieval error, for the same bins. Panels show (left-right) data for MODIS Terra, MODIS Aqua, and VIIRS

matchups. Colours are as in Figure 9. The 1:1 line is dotted grey.

As noted, theoretically the ED should indicate the one standard deviation (1σ , ∼68th percentile) expectation of disagree-

ment between satellite and airborne data. Collectively, the distribution of normalised retrieval error (τret− τair)/ED should

approximate a Gaussian distribution with mean 0 and variance 1. A normalised error of +1 means that the retrieved AOD was

1×ED higher than the airborne AOD for a particular matchup, for example. This distribution is assessed for the 550 nm data
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(c) VIIRS
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Figure 10. Quantile-quantile (QQ) plots comparing distributions of AODs from colocated satellite and airborne measurements, from 5th to

95th percentiles of the matched data. Panels show (left-right) data for MODIS Terra, MODIS Aqua, and VIIRS matchups. Colours are as in

Figure 9. The 1:1 line is dotted grey.

in Figure 8. The distributions appear reasonable, although tend to peak too strongly near a normalised error of 0, and (partic-

ularly for VIIRS) have more negative outliers than expected. Differences between the statistics for the different ORACLES

deployments are again also visible. Figure 9 examines this another way, comparing the actual and expected retrieval errors, as

a function of ED (in 10 equally-populated bins, in each case). Here, the top row compares actual vs. expected 1σ errors (i.e.

68th percentile of absolute retrieval error in each bin), and the bottom row the same for 2σ (i.e. 95th percentile) errors. For a5

perfectly-characterised retrieval system, these points should lie on the 1:1 line. They share a common tendency for underesti-

mating the retrieval error when the ED is low, and overestimating when it is high, with the crossover point being an ED around

0.15-0.2. This latter point (i.e. if a large ED is estimated, it tends to be too large) was also found in the retrieval simulations

performed in Sayer et al. (2016). This may be due to nonlinearity in the retrieval system in these conditions, in which case the

validity of the OE uncertainty estimate is expected to break down.10

The opposite case (i.e. if a very small ED is estimated, it tends to be too small) most commonly occurs when the satellite-

retrieved AAC AOD is near zero but the airborne data report an AOD around 0.1-0.15. This suggests that the error budget is

missing some component which can be important in fairly low-AOD conditions, perhaps related to calibration uncertainty, the

cloud model, or some correlation between forward model error at different wavelengths. From Figure 8, these large negative

outliers tend to occur more frequently in VIIRS than in MODIS. This is further supported by quantile-quantile (QQ) plots15

of the matched data, shown in Figure 10. The QQ plots reveal that for MODIS Terra/Aqua the distributions of satellite and

airborne AOD are fairly similar (although satellite AOD are often slightly higher). In contrast for VIIRS it is common for the

retrieval to report near-zero AOD a disproportionately high fraction of the time. The reasons for this are not yet known; it is

plausible that they are related to limitations of the current cloud mask used (Section 2.3.1). VIIRS also has a broader swath than

MODIS, although retrieval errors as a function of viewing and scattering angles were examined for all sensors and no patterns20

could be found with the available sampling (not shown). Since the sensitivity to AOD comes largely from the magnitude of

spectral darkening across the visible wavelength range, it is also possible that a small calibration of forward model bias is

responsible. Overall, these results indicate that the MODIS-derived AAC record is presently likely to be more reliable than the
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Assumed and measured AOD vs. AE

0.00 0.25 0.50 0.75 1.00 1.25
550 nm AOD

0.6

1.0

1.4

1.8

2.2

A
E

Assumed

MAN

4STAR (2016)

4STAR (2017)

Figure 11. AE (470-870nm) assumed in the retrieval as a function of the AOD at 550nm (black), together with airborne 4STAR data from

the 2016 (red) and 2017 (blue) ORACLES deployments, and the estimated smoke component (see text) of MAN cruises in the region (green).

For the 4STAR and MAN data, points and lines indicate bin medians and central 68 % of data, respectively.

VIIRS-derived AAC record. Note that in Figure 10 the lines belonging to data for the same year are more similar to each other

than the lines for the same instruments (i.e. 4STAR or HSRL2) for different years, further implying that apparent differences

in performance are likely related to the specific scenes observed each year.

Nevertheless, the bottom row of Figure 9 shows that the tails of the uncertainty distribution (2σ errors) tend to be quantita-

tively better estimated than the (1σ errors). This indicates that the current uncertainty estimates do have some quantitative value5

for identifying retrievals with larger errors. The combination of occassional large positive and negative outliers, and the fact

that the ED is somewhat linked to the retrieved AOD (low-AOD cases tend to have a low ED, high-AOD a higher ED) suggests

that for calculating daily level 3 aggregate data, medians may be a better option than either simple means or error-weighted

means. This is because the AOD fields tend to be fairly spatially coherent, while either a simple or weighted mean may bias

the aggregate.10

3.5 Evaluation of retrieval assumptions

3.5.1 Spectral dependence of AOD

The AOD-dependence of the size distribution in the aerosol optical model assumed in the retrieval (Section 2.2) results in

the wavelength-dependence of AOD being a function of aerosol loading. This dependence, illustrated as the AE over the

wavelength range 470-870 nm (cf. Equation 10), is shown in Figure 11. The decline from values near 2 in low-AOD conditions15

to ∼1.7 in high-AOD conditions is a result of the AOD-dependence of Equations 5 and 6.

These data are compared with two other sources; first is the AE calculated over the same wavelength range (from all available

spectral AODs) from the 2016 and 2017 4STAR deployments. These data are then divided into 25 evenly-populated bins as a

function of the AOD at 550 nm. The second is four Maritime Aerosol Network (MAN, Smirnov et al., 2009) cruises (Saint
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Helena 2016, and Research Vessel Meteor 2013, 2015, and 2016) within the region in recent years. These cruises included

measurements near the coast, in the open ocean, and under varying levels of smoke influence. MAN AOD data consist of

measurements with a hand-held Microtops Sun photometer, with a typical level of uncertainty around ±0.02 (Knobelspiesse

et al., 2004). As they measure total column AOD, they include the contribution from maritime aerosol as well as smoke layers.

Here, the maritime contribution is taken as the 20th percentile of all AODs measured in these cruises (0.168, 0.148, 0.112, and5

0.093 at 440, 500, 675, and 870 nm respectively), which is then subtracted from the total MAN AOD. The remaining AOD is

assumed to be smoke, from which the 550 nm AOD and AE are calculated and the same binning exercise carried out (using

only 5 bins due to the small data volume). Using the 20th percentile as a threshold is somewhat arbitrary, although the resulting

midvisible AOD is similar to other estimates, and reasonable changes to this threshold result in changes of order ±0.1 to

bin-median AE. Failing to remove a maritime component would give a misleading AOD-dependence, as low-AOD conditions10

would be dominated by the background (low-AE) sea spray aerosol while high-AOD conditions would be more dominated by

smoke (but still influenced by the maritime contribution).

All these data exclude points with AOD at 550 nm below 0.1, as AE calculation is highly uncertain when the AOD is low

(e.g. Wagner and Silva, 2008), leaving 34397, 14988, and 220 4STAR 2016, 2017, and MAN data points respectively. The

variability within these binned data arises from both noise in the AE calculation and real spatiotemporal variability. Note that15

some of the low-AOD 4STAR data from 2017 are thought to have sampled a small amount of dust, which would explain the

anomalously low AE in the lowest bins. HSRL2 data are not used here because its wavelength range (355-532 nm) would be

expected to result in AE values lower by ∼0.5 compared to the 440-870 nm spectral range (Eck et al., 1999; Schuster et al.,

2006), which would be less directly comparable.

Figure 11 shows that the optical model assumed in the retrieval lies on the upper end of the 4STAR and MAN observations.20

There is a closer match with MAN values, although these are more uncertain than 4STAR due to the subtraction of the estimated

maritime contribution. The offset from bin-median 4STAR AE values over much of the AOD range is ∼0.2. The practical

implications of an AE overestimate of 0.2 translate to an approximate 3 % overestimate and 10 % underestimate of AOD at the

most extreme wavelengths of 470 and 870 nm, respectively, somewhat smaller than the total estimate of retrieval uncertainty in

most cases. Therefore the spectral dependence of AOD in the aerosol optical model assumed in the retrieval seems reasonable.25

Using 4STAR data from the 2016 deployment, LeBlanc et al. (2019) observed a general tendency for increasing AE with

altitude for AAC cases (ranging from ∼1.5 at 0.5 km to ∼2.0 near 4 km). The data collected were most dense from around

1-2 km, over which the AE was fairly flat around 1.7; altitudes below 1 km or above 3 km, were comparatively poorly-sampled

and so possibly less representative. This structure is also a secondary contribution to the retrieval uncertainty (Table 2). The

uncertainty and variation within the 4STAR and MAN data are insufficient to determine whether the small decrease in AE30

with increasing AOD in the assumed optical model is reproduced by these direct-Sun measurements. The 2017 4STAR data do

show this decline, although as this draws from a small number of flights it may not be representative.

29



(a) Spectral SSA in August

400 500 600 700 800 900 1000
Wavelength, nm

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
S

A

Assumed
LASIC (surface)

Lubango
Mongu
Mongu Inn
SEGC Lope Gabon

Ascension Island
Gobabeb
Henties Bay
Skukuza
Windpoort

(b) Spectral SSA in September
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(c) Spectral SSA in October
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Figure 12. Relevant spectral SSA data collected in (a) August, (b) September, and (c) October. The grey shaded region indicates the range

of the assumed SSA for midvisible AOD between 0.1 and 1. Mean and standard deviation of AERONET inversions at sites which tend to

sample near-source and transported smoke are shown in red and blue triangles respectively. Monthly mean and standard deviation of surface

measurements during the LASIC field campaign, reported by Zuidema et al. (2018), are in black diamonds. Airborne in situ measurements

from SAFARI-2000 reported by Haywood et al. (2003) are shown for fresh and aged smoke in light and dark green boxes, respectively;

airborne remotely-sensed measurements from SAFARI-2000 reported by Bergstrom et al. (2003) are shown in purple.

30



3.5.2 Aerosol SSA

Similarly to the AE case, the SSA assumed in the AAC retrieval also varies with AOD due to the changing particle size

(Equations 5 and 6). This AOD-dependence is fairly small: a range of ∼0.02 at 470 nm and ∼0.04 at 870 nm. This is shown

in Figure 12, together with SSA estimated from a range of other sources within this region. These are split by month of year,

as previous work (e.g. Eck et al., 2013; Zuidema et al., 2018) has reported a gradual increase in SSA through the burning5

season. SSA variations are linked to differences in fuel types, ageing, as well as a transition between flaming and smoldering

combustion through the burning season resulting in part from meteorological patterns (Zheng et al., 2018).

The first are AERONET inversions from nine sites; four of these sites tend to sample near-source burning (and cf. Figure

2) while the other five tend to sample transported smoke. Further background information and locations for these sites can

be found at https://aeronet.gsfc.nasa.gov. These classifications are somewhat fuzzy; sites can sample smoke from a variety of10

ages, due to meteorological patterns which lead to recirculation of air masses over the continent (e.g. Swap et al., 1996; Tyson,

1997), and the aerosol loading (particularly in the south-eastern part of the region) can contain additional sulfate contributions

from power plants (Piketh et al., 1999; Eck et al., 2013). Still, the classification and set of sites provide an indication of the

regional variation of SSA encountered.

The AERONET data shown are monthly means and standard deviations of version 3 level 2.0 inversions (Giles et al., 2019);15

these are pre-filtered to remove poor-quality retrievals, as well as retrievals with an AOD at 440 nm<0.4, for which the SSA

is quantitatively less reliable. Data were further filtered to remove points with AE<1.2, to restrict to smoke-dominated cases,

although this had a negligible effect on the results. The uncertainty on the level 2.0 SSA is expected to be ±0.03 (Dubovik

et al., 2000). The bulk of this is due to calibration uncertainty, and is therefore systematic within a given (roughly year-long)

deployment (Dubovik et al., 2000; Eck et al., 2013); most of these sites are multi-year records, such that these uncertainties20

may partially cancel out. Comparisons with the previous version 2 AERONET data (not shown) reveal quantiatively similar

climatological results for this region.

Also shown are monthly mean and standard deviation of surface-based estimates made at Ascension Island from the LASIC

field campaign in 2016, reported by Zuidema et al. (2018). These estimated the SSA at 529 nm from nephelometer measure-

ments of aerosol scattering and particle soot absorption photometer (PSAP) measurements of absorption. Zuidema et al. (2018)25

cautioned that these near-surface measurements (sampling air masses from the boundary layer) may not always be representa-

tive of the total column, and noted that Leahy et al. (2007) found that airborne in situ observations from SAFARI-2000 tended

to report lower SSA than total-column estimates.

Next, SSA at 450, 550, and 700 nm for two SAFARI-2000 flights from Table 2 of Haywood et al. (2003) are shown. These

correspond to flights sampling fresh smoke (the "Otavi plume", flight a790, 13 September) and aged smoke at Ascension Island30

(flight a794, 19 September). These were computed from size distributions measured by a Passive Cavity Aerosol Spectrom-

eter Probe (PCASP) with an assumed refractive index, resulting in an estimated uncertainty of ±0.04. The Otavi case (but

not the Ascension Island flight) also included nephelometer/PSAP measurements which gave a very similar SSA; Haywood

et al. (2003) noted that refractive index assumptions used in the PCASP calculation were informed by the PSAP data. More
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recent work by Ogren (2010) revealed an error in the corrections applied in PSAP data processing which result in a typical

underestimate of reported absorption by ∼13 %; for the Haywood et al. (2003) cases, this translates to an overestimate of SSA

by ∼0.02, within the notional uncertainty but systematic. It is plausible that this influences the PCASP results as they were

informed by PSAP data. Newer PSAP analyses such as Zuidema et al. (2018) shown here apply corrections accounting for this

error.5

SAFARI-2000 results for flight a786 near Mongu reported by Bergstrom et al. (2003), calculated from Solar Spectral Flux

Radiometer (SSFR) data, are also shown. The SSFR technique uses measurements of flux above and below the smoke layer,

constrained by meteorological data and AATS AOD. The SSA uncertainty on individual wavelengths was ∼0.02 for this case;

the best-fit curve is plotted in the Figure. Haywood et al. (2003) also presented results for that flight, and the Bergstrom et al.

(2003) data lie in between the PCASP and nephelometer/PSAP results for that case (not shown); it is not clear whether data10

from the same parts of this flight were used for those cases, and the age of the smoke sampled is uncertain.

Consistent with previous studies (e.g. Reid et al., 2005; Eck et al., 2013, and references therein) there is an increase in SSA

from August to October (by ∼0.05), and data sampled near source regions tends to be more strongly absorbing than data from

aged air masses. The AERONET site at Windpoort is the most strongly absorbing of those placed into the predominantly-

transported sites, perhaps because it is closer to the source regions than the others. AERONET monthly mean results from15

Mongu and Mongu Inn (the latter being a replacement site for the former, in the same location) are offset by up to 0.04. The

range of interannual variability in SSA at Mongu (not shown) is typically ∼0.05, although some of that would be expected to

average out over the time period available (10 years for Mongu, 4 for Mongu Inn). It is therefore possible that the two sites have

slightly different error characteristics. The LASIC data are somewhat lower than the others, possibly due to the aforementioned

surface sampling.20

Within a given month, the AERONET and SAFARI-2000 results tend to span a range of∼0.06 in the blue spectral region and

a larger range of up to∼0.1 at red and nIR wavelengths, with variabilty decreasing through the burning season. Recent SSA ob-

servations from the ORACLES 2016 deployment using remote-sensing and in situ instrumentation, presented by Pistone et al.

(2019), were found to agree within the range bounded by the previous SAFARI-2000 values, though overall the ORACLES

SSAs tend towards the lower range (instrument medians between 0.85-0.88 at 500 nm). As with the results in Figure 12, the25

different techniques did show some variation, due to a combination of real variability and retrieval/measurement uncertainty;

SSA is a difficult quantity to measure. The AAC retrieval’s SSA assumption (which is centred near 0.875, 0.87, 0.86, and 0.85

at 470, 550, 650, and 870 nm respectively) is in the middle of this range, although the large variability in the reference data

suggests large spatiotemporal variability in aerosol optical properties. This implies the potential for spatial/temporal structure

in the AAC retrieval error which may explain some of the differences in bias between 2016 (mostly September) and 201730

(mostly August) flights in Section 3.4. However, Sayer et al. (2016) found that the AAC algorithm was less sensitive to errors

in SSA assumptions in cases of strongly-absorbing aerosols (such as here) than weakly-absorbing aerosols. This is because the

sensivitity (darkening) of TOA reflectance to changes in AOD is stronger for more strongly-absorbing aerosols.

A summary of these results is that SSA is variable in space and time in this region, but the retrieval assumptions are broadly

in-family, and likely a reasonable approximation for typical smoke conditions both near-source and downwind. Analysis of in35
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situ and remotely-sensed SSA data from CLARIFY is ongoing (K. Szpek, personal communication, 2018). When complete,

the airborne results from both campaigns can be used to inform possible updates to the optical model, such as considering a

seasonally- and/or longitudinally-dependent SSA. This must be balanced against the danger of over-tuning results to a limited

data set, which is why the original AERONET-based optical model (Sayer et al., 2014a, 2016) is retained for the present work.

3.5.3 Vertical structure5

As noted in Section 2.2, the algorithm assumes a cloud 0.3 km thick with a top altitude of 1.5 km above surface level, with

an overlying aerosol layer 0.5 km thick with a top height 1 km above the cloud top. Both cloud and aerosol are assumed to be

vertically homogeneous. Initial analyses of aerosol/cloud altitudes in this region were generally performed by CALIOP data;

Rajapakshe et al. (2017) provide a summary of some of these results. However, a combination of sensor design and algorithmic

limitations mean that CALIOP products have been shown to overestimate the bottom of optically-thick aerosol layers, leading10

both to an underestimate of the above-cloud AOD and an overestimate of the gap between cloud top and the overlying aerosol

layer bottom (Liu et al., 2015; Rajapakshe et al., 2017). This is due to attenuation of the laser signal through the layer meaning

that the returns from the bottom portion can be too weak for the layer detection algorithm to work correctly. Improvements in

the recent CALIOP version 4 data mean that this issue has been slightly ameliorated, although not fully bypassed (Liu et al.,

2018).15

Rajapakshe et al. (2017) also analysed aerosol/cloud vertical structure in this region using both CALIPSO and CATS data

during the 2015-2016 burning seasons (July-October). As the CATS lidar used a wavelength of 1064 nm, the aerosol signal

is generally somewhat weaker than at the 532 nm used by CALIOP, lessening the impact of the attenuation issue on layer

detection. Overall, they found CATS reported liquid cloud top heights around 1-1.5 km, typical separations between cloud

top and aerosol layer base height 0.25-0.5 km, and aerosol layer top heights around 3.5-4.5 km (for a geometric thickness of20

1.5-3.25 km). The ranges quoted here arise from longitudinal gradients: as the layer moved West from the coast of Africa

into the Atlantic, they found decreases in aerosol top height and increases in cloud top height. Thus, nearer the coast the

separation between aerosol and cloud was larger. Meridionally, Rajapakshe et al. (2017) found higher cloud tops and aerosol

layer bases nearer the Equator than toward the southern end of the study region, although the separation between the two layers

was relatively constant. One limitation was that to decrease solar noise only nighttime CATS data were used, but as these are25

large-scale features, and CALIPSO day/night differences were not large (aside from known detection sensitivity issues), it is

plausible that these results also hold for daytime measurements. Rajapakshe et al. (2017) did not examine cloud geometric

thickness, although the AAC retrieval algorithm presented here is insensitive to that for opaque clouds.

In light of this, the assumptions made in the AAC retrieval algorithm presented here seem reasonable, although refinements

might consider a longitudinal variation of vertical structure and expanding the geometric thickness of the aerosol layer. Sayer30

et al. (2016) found that the algorithm was less sensitive to this assumption than other error sources such as SSA assumptions.

Jethva et al. (2018) use a CALIPSO-based climatology of aerosol height data in their OMI data set (but not cloud height or

aerosol geometric thickness), which is helpful as retrievals using OMI’s UV wavelengths are more sensitive to vertical structure

assumptions than the visible/nIR bands used here.
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4 A 20-year record from SeaWiFS, MODIS, and VIIRS

4.1 Time series

This Section briefly examines spatiotemporal patterns in the 20-year record obtained by applying the AAC retrieval algorithm

presented here to the four satellite sensors. A broader study comparing results against other satellite AAC AOD/COD data

products is planned for the future. First, monthly time series of the retrievals and other relevant satellite data sets are shown in5

Figure 13. These are constructed by averaging daily data over the green box (25 ◦S-0 ◦N, 15 ◦W-15 ◦E) in Figure 2, which

corresponds to the core of the stratocumulus cloud deck and the main flight region for ORACLES deployments, and then

computing monthly averages from these.

Panel (a) shows time series of UVAI from two data records: the multisensor (MS) UVAI data set version 1.7 combines

TOMS, GOME, SCIAMACHY, and OMI observations, dividing each of the fairly coarse-resolution sensor pixels into several10

subpixels to produce a long-term (starting 1978) data set with consistent spatial resolution (Tilstra et al., 2012, 2013). Also

shown are the latest version 1.8.9.1 OMI UVAI data, described by Torres et al. (2018). This latest OMI data version updates the

UVAI calculation to decrease variations associated with changes in solar/sensor geometry and particle shape which influence

apparent seasonality. Panel (b) provides the fraction of days within each month where the box-average UVAI was above 0.75,

a subjective but reasonable threshold (e.g. Tilstra et al., 2013; Torres et al., 2018) for the presence of non-negligible levels15

of absorbing aerosols. Panels (c) and (d) present the AAC AOD from the algorithm presented here, and the total column (i.e.

from cloud-free scenes) AOD from the MODIS Dark Target (DT) Collection 6.1 over-water algorithm (Levy et al., 2013).

Panel (e) provides an estimate of the below-cloud AOD from MODIS, by subtracting the AAC data in panel (c) from the total

AOD in panel (d). Strong caution is required in this as the DT and AAC algorithms are independent and have different error

characteristics, although it provides a crude proxy for the relative partitioning of aerosol above and below cloud level. Finally,20

panel (f) shows fire counts from the cloud-corrected overpass-corrected MODIS current Collection 5 (Giglio et al., 2003, 2006)

data set (MOD14CM1/MYD14CM1). The fire counts represent total detections rather than an average, and the longitude range

is shifted to cover the source region 10-40 ◦E (as no fires occur over ocean). The fire data are also not presently available for

the full MODIS records.

In all of these time series (aside from the below-cloud AOD estimates in panel e), the annual cycle of fires and associated25

emissions, strongest from June-September, is evident. Interannual variability is comparatively limited, but generally consistent

between data sets. A smaller secondary peak from December-February is also seen, likely due to a combination of Sahelian

fires and dust transport (Pandithurai et al., 2001; Ben-Ami et al., 2009). MODIS Terra fire counts are around a factor of 5

lower than those observed by Aqua; this pattern was observed in multiple global source regions by Giglio et al. (2006), and

ascribed to diurnal variations in fire activity. Table 4 shows the correlation between each of the time series in Figure 13 and30

the four AAC AOD data sets. Correlation coefficients are high (0.78-0.94), and show small variability between the four AAC

AOD records generated here. Due to the small number of points in the time series the differences in correlation coefficients

between sensors are not statistically significant and it is not possible to state robustly which quantity is most strongly correlated

with the retrieved AAC AOD. These results indicate that these quantities may provide a useful proxy for variations in aerosols
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(c) Monthly mean AAC AOD at 550 nm
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(d) Monthly mean cloud-free total column AOD at 550 nm
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(e) Estimated below-cloud AOD at 550 nm
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(f) Monthly total fire counts
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Figure 13. Monthly time series of various satellite data sets over the green box (25 ◦S-0 ◦N, 15 ◦W-15 ◦E) in Figure 2. Panel (a) shows the

monthly mean UVAI from the multi-sensor (MS) and OMI data sets, and (b) the fraction of days in each data set where the box-averaged

UVAI is over 0.75. Panel (c) shows the mean AAC 550nm AOD using the algorithm presented in this work, applied to SeaWiFS, MODIS

Terra/Aqua, and VIIRS measurements. Panel (d) is a time series of monthly mean total column (cloud-free) over-water 550nm AOD from the

MODIS Terra/Aqua DT data sets. Panel (e) is the difference between total column and above-cloud AOD (i.e. d-c), estimated for MODIS

Terra and Aqua. Panel (f) shows monthly total corrected fire counts from MODIS Terra and Aqua (box shifted 25 ◦E from the others).

Throughout, MS data are shown in magenta, OMI in purple, SeaWiFS in teal, MODIS Terra in red, MODIS Aqua in green, and VIIRS in

blue. Months with fewer than three contributing days are excluded.
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Table 4. Correlation coefficients between monthly mean AAC 550nm AOD and other time series shown in Figure 13.

Pairing SeaWiFS MODIS Terra MODIS Aqua VIIRS

MS UVAI 0.84 0.91 0.93 0.91

OMI UVAI 0.92 0.92 0.93 0.89

Fraction MS UVAI >0.75 0.84 0.86 0.88 0.89

Fraction OMI UVAI >0.75 0.93 0.92 0.94 0.92

MODIS Terra total column AOD 0.90 0.88 0.91 0.89

MODIS Aqua total column AOD 0.91 0.90 0.91 0.91

MODIS Terra below-cloud AOD 0.13 0.069 0.14 0.23

MODIS Aqua below-cloud AOD 0.062 0.034 0.098 0.25

MODIS Terra fire counts 0.91 0.85 0.86 0.78

MODIS Aqua fire counts 0.90 0.88 0.88 0.84

Table 5. Comparative statistics for monthly mean AAC 550nm AOD between the four AAC data sets generated in this work. Offsets are

defined subtracting the second indicated sensor from the first.

Pairing Correlation Median offset RMS difference

SeaWiFS/MODIS Terra 0.95 0.077 0.097

SeaWiFS/MODIS Aqua 0.96 0.052 0.078

MODIS Terra/Aqua 0.99 -0.027 0.032

MODIS Terra/VIIRS 0.96 0.0051 0.029

MODIS Aqua/VIIRS 0.97 0.040 0.052

transported above clouds, if AAC retrievals are not available. However the strength of the relationships might not hold for other

regions where aerosol and cloud properties covary differently.

The exception is the estimated below-cloud AOD, which is only very weakly correlated with the above-cloud AOD. This

might imply that very little of the smoke is transported within the marine boundary layer, which is generally consistent with

the discussion in Section 3.5.3. However, as mentioned previously, due to large uncertainties caution should be used in inter-5

preting these data. The mean and standard deviation of below-cloud 550 nm AOD estimated from MODIS Terra and Aqua

are 0.15±0.05 and 0.13±0.04 respectively, which is only slightly larger than ship-based measurements of AOD in maritime

environments without significant continental influence (Smirnov et al., 2009, 2011).

4.2 Spatial patterns and offsets

Figure 13 also shows offsets between the AAC retrievals, with SeaWiFS the highest and VIIRS the lowest. This is consistent10

with the validation results in Section 3 (aside from the SeaWiFS mission which ended in 2010 so cannot be directly validated
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Figure 14. Histograms of AAC 550nm AOD retrieved over the green box (25 ◦S-0 ◦N, 15 ◦W-15 ◦E) in Figure 2, aggregated from level

2 retrievals over the full satellite records processed, during the ORACLES campaign season. Panels show data for August, September, and

October. Throughout, SeaWiFS data are shown in teal, MODIS Terra in red, MODIS Aqua in green, and VIIRS in blue.

with ORACLES data). Table 5 quantifies the consistency between these time series, revealing very high correlation coefficients

(0.95-0.99) despite these offsets. Pearson correlation coefficients are calculated for this instance, as the data sets are notionally

inferring the same quantity using a similar technique and should be subject to the same causes for outliers (e.g. extreme events

in a given month). Figure 14 shows histograms of the AOD retrieved by all four sensors from August to October. In all cases a

significant fraction of the data retrieve near-zero AOD, and have a secondary roughly lognormal distribution of nonzero AOD.5

All show the decline in AOD (shift to the left) from August to October; the SeaWiFS and VIIRS histograms are shifted to

the right and left respectively, compared to the others. Figure 15 shows that these offsets are found across the broader spatial

domain, with the four sensors reporting consistent spatial and temporal patterns of AOD. As well as the main smoke plume

in the ORACLES domain, a secondary river of smoke outflow into the southern Indian Ocean, is seen peaking in September.

This feature was also observed by Jethva et al. (2018) and Kar et al. (2018) using OMI and CALIOP data, respectively, and is10

consistent with known transport patterns (Swap et al., 2003). AOD magnitudes are more different over land, although due to

lower cloud cover the data volume is significantly lower and so sampling differences may dominate.

While pixel selection and differences in sensor resolution likely also contribute, the shifts in histogram shape may be plau-

sibly ascribed to uncertainties in the absolute calibration of the sensors. The aerosol signal is small compared to that of the

underlying cloud and a spectral bias in calibration or the retrieval forward model could lead to a systematic bias in the retrieved15

AOD. This is also an issue with clear-sky AOD retrieval algorithms, e.g. despite identical algorithms there are known system-

atic offsets in AOD between MODIS Terra and Aqua (Levy et al., 2013; Sayer et al., 2015b). Recent work by Chang et al.

(2017) used stable ground sites and identified relative offsets of up to around 2 % in the calibration of these two sensors.

As noted previously, SeaWiFS was calibrated vicariously against ground-based data as described by Franz et al. (2007). In

brief, this method assumes that the calibration at the 865 nm band is correct and then adjusts the gain of the other bands such20

that water-leaving radiance retrievals at this site are unbiased. While an effective method for the ocean colour applications

which were the main focus of SeaWiFS, this technique has two main disadvantages for others: first, the untested assumption

that the 865 nm band is unbiased, and second, that the process propagates errors in the ocean colour retrieval atmospheric
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Figure 15. Multiannual monthly mean maps of AAC 550nm AOD constructed from the data records processed at the present time. Columns

show (left-right) data for August, September, and October. Rows show (top-bottom) data for SeaWiFS (1997-2010), MODIS Terra (2000-

2017), MODIS Aqua (2002-2017), and VIIRS (2012-2017). Grid cells with fewer than five years contributing are shown in grey.
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correction (e.g. aerosol and trace gas scattering/absorption assumptions) into the derived vicarious gain. The latest coefficients

used here apply scaling factors of 0.982, 0.9948, and 0.9648 to the SeaWiFS 490, 550, and 670 nm bands respectively, i.e. tilting

reflectance downwards at shorter wavelengths compared to 865 nm, which is the direction which would increase the retrieved

AAC AOD. If either of the limitations described above are important, this could explain the rightward shift of the SeaWiFS

histograms and positive offset seen in the data. Recent work supports these possibilities. Kahn et al. (2016) found spectral5

biases in the SeaWiFS atmospheric correction, which is used in the vicarious calibration, and Voss and Flora (2017) illustrated

that simplifications in current water-leaving radiance processing in the reference data used for the vicarious calibration process

lead to small spectral biases.

The VIIRS data used here were cross-calibrated against MODIS Aqua as described in Sayer et al. (2017), consistent with

the main VIIRS Deep Blue data processing. This applied corrections of 0.992, 0.956, 0.941, and an average of 0.963 (with10

some small temporal dependence) to the 490, 550, 670, and 865 nm bands respectively. This scaling would be expected to

decrease the retrieved AAC AOD compared to the uncorrected case. The uncertainties on these corrections were estimated to

be ∼0.5-1 %, and similar results were found using analyses of cloudy scenes (K. Meyer, personal communication, 2018). It is

plausible that there is a residual spectral bias in the derived calibration which is leading to biased above-cloud AOD, although

Sayer et al. (2017) did find that applying this cross-calibration improved clear-sky AOD retrievals, but there was a residual15

spectral dependence to the AOD bias.

It is difficult to say from the available validation data which data set is closest to the truth. However it seems reasonable to

assume that adopting a consistent calibration method for the sensors - whether against a satellite or ground target reference

- may improve the consistency of the time series generated. Trace gas absorption corrections can manifest in a similar way

to calibration issues, as they are systematic adjustments to bands. Differences between spectroscopic data bases or correction20

parametrisations can also lead to offsets in retrievals (Patadia et al., 2018), so it is also important that these are updated as better

spectroscopic measurements or atmospheric reanalyses become available.

5 Conclusions

The ORACLES field campaign and others have provided a wealth of valuable information for the evaluation and refinement of

AAC retrieval algorithms for smoke in the south-eastern Atlantic Ocean. This study has detailed updates to an AAC retrieval25

algorithm and then evaluated it largely using data collected during the 2016 and 2017 ORACLES deployments. This builds

on the initial algorithm presented and evaluated with SAFARI-2000 field campaign data by Sayer et al. (2016), providing the

largest-scale validation possible to date, and can further be supplemented by future analyses of ORACLES and CLARIFY data

as these become available. One of the key drives behind the development of this algorithm was to extend coverage of Deep Blue

aerosol data products to include AAC cases and thereby fill in some systematic gaps in these global data sets. The algorithm30

was developed with this in mind, explaining the choice of spatial resolution as well as the spectral range of bands used (470-

870 nm). The validation and time series results reveal a reasonable degree of consistency in the resulting data sets, although

with some offsets which are likely due to small systematic calibration differences. Calibration assessment and correction (for
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both absolute calibration and on-orbit degradation) remain a challenge to creating consistent multi-sensor data sets (for AOD

and other quantities), and small AOD offsets can persist despite similarities in revealed seasonal and interannual variability.

This points to the need for continued traceable calibration against a common reference source, with quantified uncertainties,

for satellite measurements in the solar spectrum. Ideally this might be achieved on-orbit, as has been done using hyperspectral

data for the thermal infrared (e.g. Veglio et al., 2017), in order to enable consistent cross-calibration of multiple instruments5

against a high-quality reference. Consistency of calibration is expected to be the primary factor driving offsets between the

retrieved time series.

Overall, the validation and comparison exercise has revealed that the AAC algorithm presented here performs roughly within

expectations, based on sensitivity analyses (Sayer et al., 2016) and the uncertainty estimates provided via the Optimal Esti-

mation retrieval technique. Specific areas for potential refinement have been identified, chiefly sensor calibration and potential10

adjustments to assumed aerosol/cloud optical properties and structure. As one example, the optical model used in this region

could account for intraannual variations in SSA following Eck et al. (2013), or ancillary data sources could be used as a switch

between possible optical models as in Jethva et al. (2018). SeaWiFS would also benefit from a cloud mask of the same cal-

ibre as that available to MODIS and VIIRS. These refinements would be expected to improve the consistency between the

different sensors to which the algorithm has been applied, and reduce some sources of systematic uncertainty at certain times15

and locations. Moving forward to a global application would require the development of equivalent appropriate assumptions

globally, which can be done by leveraging climatologies of vertical structure from lidar (spaceborne or ground-based), and

representative aerosol optical properties from AERONET and potentially global model-based climatologies (e.g. Kinne et al.,

2013). Similar spectral bands are also present on the new generation of geostationary sensors launched in recent years, pro-

viding rapid revisit of some important AAC systems (Hsu et al., 2003; Tsay et al., 2013; Lin et al., 2014; Jethva et al., 2018).20

It would be advantageous to apply Deep Blue and this AAC algorithm to those sensors, improving knowledge of the diurnal

cycle of AACs, which is not fully sampled by the instruments on Sun-synchronous platforms used here. In the meantime, the

AAC data set generated in this work is available for interested researchers.

Unfortunately, the available validation data for these algorithms remains highly sparse. The results here suggest that the

available ORACLES flights, while a significant important milestone and far ahead of the characterisation of other AAC systems,25

may not yet represent sufficient sampling to provide a robust regional validation. Validation and assessment of derived product

uncertainties is inherently a statistical exercise, both due to the nature of an uncertainty estimate, as well as the difficulty

in simultaneously characterising each factor affecting the TOA satellite signal to a degree sufficient to confidently ascribe

the reason(s) for errors on individual retrievals. The available validation from field campaigns in other regions is much more

limited. Aircraft observations are a powerful tool to provide data-rich, thorough characterisation of sampled air masses. Such30

campaigns could be supplemented by instrumentation carried upon unmanned aerial vehicles (UAVs), a technology which has

advanced greatly in recent years (for a recent review see Villa et al., 2016). Frequent launches of instrumented UAVs, combined

with geostationary satellites, could provide an important temporal sampling component to further refine understanding of the

processes influencing the evolution of these systems. It is critical, both for answering science questions about the role of AACs
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in the Earth system, and for a robust quantitative validation of spaceborne AAC data sets, that such observations continue to

be made.
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