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Abstract. This paper presents a methodology for ice water content (IWC) retrieval from a dual-polarization side-looking X-band 

airborne radar. Measured IWC from aircraft in-situ probes is weighted by a function of the radar differential reflectivity (𝑍𝑑𝑟) to 

reduce the effects of ice crystal shape and orientation on the variation of IWC - specific differential phase (𝐾𝑑𝑝 ) joint 

distribution. A theoretical study indicates that the proposed method, which does not require a knowledge of the particle size 10 

distribution (PSD) and number density of ice crystals, is suitable for high ice water content (HIWC) regions in tropical 

convective clouds. Using datasets collected during the High Altitude Ice Crystal – High Ice Water Content (HAIC-HIWC) 

international field campaign in Cayenne, French Guiana (2015), it is shown that the proposed method improves the estimation 

bias by 35 % and increases the correlation by 4 % on average,  compared to the method using specific differential phase (𝐾𝑑𝑝) 

alone. 15 

1 Introduction 

Ice water content (IWC) and its spatial distribution inside clouds are known for the significant effects they exert on the Earth’s 

energy budget and hydrological cycle (e.g. Stocker et al., 2013). Aside from its significant effect on the atmospheric processes, 

high ice water content (𝐼𝑊𝐶 > 1 𝑔𝑚−3), which is resultant from high concentration of small ice crystals in tropical mesoscale 

convective systems has been linked to aircraft incidents and accidents (Lawson et al., 1998, Mason et al., 2006; Grzych and 20 

Mason, 2010; Strapp et al., 2018). Since early 1990’s, over 150 engine roll-back and power-loss events have been attributed to 

the ingestion of ice particles produced in convective clouds (Grzych and Mason, 2010).  Many studies have been undertaken to 

understand the details of the meteorological processes responsible for producing areas of HIWC. Equally important, methods 

using multi-platform observations from ground, airborne and space supplemented by weather models are being developed for 

improving detection and avoidance of high IWC regions that would be potentially hazardous for aviation (Strapp et al., 2018)  25 

Conventional methods of deducing IWC from radar measurements assume a statistical relationship between the radar reflectivity 

factor (Z) and IWC. Such relationships are usually obtained based on IWC and Z calculated from in-situ measurements of 

particle size distributions (PSDs) and a size-to-mass parameterization (𝑚(𝐷)) (e.g. Heymsfield et al., 1977, Hogan et al., 2006). 

In recent studies (Protat et al., 2016), IWC was measured directly by bulk microphysical probes and Z was measured from either 

an airborne or ground based radar. However, all of these studies show large uncertainties in the IWC-Z relationship despite the 30 

introduction of additional constraints such as air temperature (T) or the inclusion of refined 𝑚(𝐷) in the IWC calculations 

(Fontaine et al., 2014, Protat et al., 2016).  

Lu et al. (2015) conducted an extensive simulation on both millimeter- and centimeter- wavelength radar and concluded that the 

IWC-Z relationship is very sensitive to ice crystal PSDs (from one to two orders of magnitude in variability) and as such, is not 

recommended for IWC retrievals. Another approach employs polarimetric observations. The non-spherical geometry of ice 35 

crystals provides information on the types and habits of ice crystals (Matrosov et al., 1996, Wolde and Vali, 2001). It has been 
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shown that the radar specific differential phase (𝐾𝑑𝑝) is less dependent on PSD, hence, is potentially useful for IWC retrieval 

(Vivekanandan et al., 1994; and Lu et al., 2015). Aydin and Tang (1997) suggested the possibility of combining 𝐾𝑑𝑝  and 

differential reflectivity ratio (𝑍𝑑𝑟) for IWC estimation for clouds composed of pristine ice crystals. However, even for the 

polarimetric approach, knowledge about ice crystal mass density (𝜌) and axis ratio is still needed to obtain accurate estimates of 

IWC. Simulation results (Lu et al., 2015) show that if only the general type of ice crystals is known, errors in IWC retrieval 5 

based on 𝐾𝑑𝑝 are within 30 % of their true values. Unfortunately, the aforementioned parameters (𝜌 and particle axis ratio) are, in 

general, unknown and additional assumptions are often invoked. Ryzhkov et al. (1998), for instance, took into consideration ice 

crystal shapes, size-density parameterization of scatterers to reduce the uncertainty in IWC estimates. Modelling work (Ryzhkov 

et al., 1998) shows that for average-sized pristine and moderately aggregated ice crystals, the ratio between the reflectivity 

difference 𝑍𝐷𝑃 = 𝑍𝐻 − 𝑍𝑉 and 𝐾𝑑𝑝 is practically insensitive to the shape and density of the ice particles and is a good estimator 10 

of their mass. 

In this paper we present a new method for assessment of IWC based on the 𝐾𝑑𝑝 and 𝑍𝑑𝑟 measurements from a side-looking X-

band airborne radar in tropical mesoscale convective systems (MCS). The IWC will be weighted with a function of 𝑍𝑑𝑟 to 

minimize the dependency of the IWC-𝐾𝑑𝑝 relationship on the particle shape and orientation, hence improve the IWC estimation 

errors without knowledge of the PSD or density of the ice particles. The proposed method is examined using datasets collected 15 

during the High Altitude Ice Crystal – High Ice Water Content (HAIC-HIWC) international field campaign in Cayenne, French 

Guiana in May, 2015. The campaign was carried out to enhance the knowledge of microphysical properties of high altitude ice 

crystal and mechanisms of their formation in deep tropical convective systems in order to address aviation safety issues related to 

engine icing (Strapp et al., 2018). 

2 Background 20 

2.1 Polarimetric parameters characterizing ice crystals 

In conventional single-polarization Doppler radar, measured radar reflectivity, and radial velocity are used to assess cloud and 

precipitation spatial variability, precipitation rate and characteristic hydrometeor types.  In dual-polarization radar systems, 

measurements are made at more than one polarization state (Bringi and Chandrasekar, 2001). Such systems can be configured in 

several ways depending on the measurement goals and the choice of orthogonal polarization states. In this study, the results and 25 

discussions will be limited to the consideration of linear horizontal and vertical (H/V) polarization basis. The intrinsic 

backscattering properties of the hydrometeors to the two polarization states enable the characterization of microphysical 

properties such as size, shape and spatial orientation of the cloud/precipitation particles in the radar resolution volume. Hence, 

using polarization, it is generally possible to achieve more accurate classification of hydrometeor types and estimate 

hydrometeor amounts such as rain fall rate. Polarimetric backscattering properties of hydrometeors depend on many factors such 30 

as radar wavelength, radar elevation angle, particle size, shape, orientation, etc. In this section, we summarize how the 

differential reflectivity (𝑍𝑑𝑟, dB) and the specific differential phase (𝐾𝑑𝑝, °𝑘𝑚
−1 ) are measured by a polarimetric Doppler radar 

in the Rayleigh scattering regime and at low radar elevation angles. 

In general, the differential reflectivity of an ensemble of 𝑛 particles of size D and axis ratio r is given by (1) (Eq. (7.4) in Bringi 

and Chandrasekar, 2001), 35 

𝑍𝑑𝑟 = 10 log10 [
|𝑆ℎℎ(𝑟,𝐷)|

2

|𝑆𝑣𝑣(𝑟,𝐷)|
2
]           (1) 

where, 𝑆ℎℎ and 𝑆𝑣𝑣  are the diagonal elements of the back scattering matrices in the forward scatter alignment (FSA) convention. 
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The specific differential phase is defined as (Eq. (7.6) in Bringi and Chandrasekar, 2001), 

𝐾𝑑𝑝 =
2𝜋𝑛

𝑘
𝑅𝑒[𝑓ℎℎ(𝑟,𝐷) − 𝑓𝑣𝑣(𝑟,𝐷)]         (2) 

Where 𝑛 is the number concentration in 𝑙−1,  𝑘 is wavenumber in 𝑚−1, 𝑅𝑒[ ] stands for the real part of a complex number and 

𝑓ℎℎ , 𝑓𝑣𝑣 are the forward scattering amplitudes in 𝑚 at horizontal and vertical polarization, respectively. Equation (2) shows that 

𝑍𝑑𝑟 does not change with increasing number of ice particles while  𝐾𝑑𝑝 is proportional to n. Consequently, for a large number of 5 

small particles with the axis ratio close unity (𝑟 ≈ 1), 𝑍𝑑𝑟 → 0 𝑑𝐵 and the second term in Eq. (2) becomes small but 𝐾𝑑𝑝 still can 

be large 

In a simple form of the calculations of 𝑍𝑑𝑟 and 𝐾𝑑𝑝 of ice crystals, it is customary to approximate columns as homogeneous 

prolate spheroids and plates as homogeneous oblate spheroids. In the case of side incidence, the elevation angle is assumed to be 

close to zero and there is no (or very small) canting in the vertical plane. In the absence of wind shear and turbulence, and 10 

assuming a perfectly aligned spheroid model, 𝑍𝑑𝑟 and 𝐾𝑑𝑝 can be expressed as functions of ice particle size, axis ratio and the 

relative permittivity of the particle (𝜺 ). For example, for oblate spheroid ice particles with a particle size distribution, 

𝑁(𝐷) (Eq. (7.5) − (7.8) in Bringi and Chandrasekar, 2001), 

|𝑆ℎℎ(𝑟, 𝐷)| ≈
𝑘2

4𝜋

𝑉(𝐷)|𝜀−1|

[1+
1

2
(1−𝜆𝑜)|𝜀−1|]

          (3) 

|𝑆𝑣𝑣(𝑟,𝐷)| ≈
𝑘2

4𝜋

𝑉(𝐷)|𝜀−1|

[1+𝜆𝑜|𝜀−1|]
           (4) 15 

𝑍ℎℎ,𝑣𝑣 =
𝜆4

𝜋5𝐾𝑝
2 ∫4𝜋|𝑆ℎℎ,𝑣𝑣|

2
𝑁(𝐷)𝑑𝐷         (5) 

𝐾𝑑𝑝 =
𝑘

2
∫ [

|𝜀−1|

[1+
1

2
(1−𝜆𝑜)|𝜀−1|]

−
|𝜀−1|

[1+𝜆𝑜|𝜀−1|]
]

⏟                  
𝛼

𝑉(𝐷)𝑁(𝐷)𝑑𝐷       (6) 

where, 𝐾𝑝 is dielectric factor of water at 0𝑜C (𝐾𝑝
2 = 0.93)   and 𝑉(𝐷) is the particle volume, 𝜆𝑜 is the depolarizing factor, which 

is only a function of the axis ratio 𝑟 = 𝑏/𝑎 (for oblate particles, a is the semi-major axis length and b is the semi-minor axis 

length (𝑎 > 𝑏)). The depolarizing factor is defined as: 20 

𝜆𝑜 = 𝜆(𝑜𝑏𝑙𝑎𝑡𝑒) =  
1+𝑓2

𝑓2
(1 −

1

𝑓
tan−1 𝑓);   𝑓2 =

1

𝑟2
− 1      (7) 

 A similar equation for 𝐾𝑑𝑝 can also be derived for prolate spheroid ice particles with symmetry axis parallel to the horizontal 

plane (Hogan et al., 2006).  

On other hand, the IWC can be defined in terms of the size distribution, 

𝐼𝑊𝐶 = ∫𝜌(𝐷)𝑉(𝐷)𝑁(𝐷)𝑑𝐷           (8) 25 

where, 𝜌(𝐷) is the mass density of ice crystals with size D. 

2.2 Polarimetric methods for IWC retrieval 

An inspection of Eqs. (3) and (4) suggests that for small ice crystal particles, the radar cross section (𝜎ℎℎ,𝑣𝑣 = 4𝜋|𝑆ℎℎ,𝑣𝑣|
2
) is 

roughly proportional to the square of the ice particle mass (𝜌𝑖
2(𝐷)𝑉(𝐷)2), a conclusion also confirmed by results from simulated 

data (Lu et al., 2015). In addition, according to Lu et al. (2015), for particles with sizes comparable or larger than the radar 30 

wavelength, there is no clear relationship between the radar cross section and ice particle mass due to the Mie resonance effects. 

In either case, 𝜎ℎℎ,𝑣𝑣  is not directly proportional to the particle mass. Hence, the 𝑍 − 𝐼𝑊𝐶 relationship depends strongly on the 

particle size distribution and the radar frequency. Consequently, using Z only to estimate IWC without knowledge of the PSD 

can lead to errors as large as one order of magnitude. On the other hand, Eq. (6) indicates that if the terms in square brackets (𝜶), 
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are proportional to the ice density (𝜌(𝐷)), then the 𝐾𝑑𝑝 − 𝐼𝑊𝐶 relationship is independent of PSD. The proportionality constant 

depends on several factors such as the ice crystal type, orientation and the measurement elevation angle. It is shown that the 

variability of this proportionality constant significantly increases at large elevation angles (Lu et al., 2015). Furthermore, when 

the exact ice crystal type is known, averaged relative error in the estimated IWC using 𝐾𝑑𝑝 can be as small as 10 %, regardless of 

whether PSD is known or not. If the ice crystal types are unknown but can be generally categorized, the errors can be higher, but 5 

mostly less than 30 %. These numbers were averaged from elevations in the interval [0 ° – 70 °]. If IWC is estimated using 𝐾𝑑𝑝 

at small elevation angles (less than 10°) such as from a side looking antenna, we would expect better results. 

For a given radar volume, if the orientation of the ice crystal changes, 𝐾𝑑𝑝 value changes (Eq. (7)) while the IWC of the radar 

volume is not. Consequently, in the case of spatial variability of ice crystal shapes and orientations, the IWC estimation based 

solely on 𝐾𝑑𝑝 may be biased. To mitigate this problem, the measured IWC need to be modified to include the information of the 10 

ice particles’ orientation.  One way to do this is to weight the measured IWC by a function of ice crystal shapes and orientations 

before applying a linear regression model to the 𝐾𝑑𝑝 − 𝐼𝑊𝐶 relationship. In a simple approach, the weighting function can be in 

a form of 𝑍𝐷𝑅
𝑎  (𝑍𝐷𝑅 is the linear version of 𝑍𝑑𝑟 and a is a constant coefficient) as suggested in Aydin and Tang (1997) (derived 

from their approximation 𝐼𝑊𝐶 ≈ 𝐾𝑑𝑝
𝑎 𝑍𝐷𝑅

𝑏  where a and b are constant coefficients). Proceeding more rigorously, Ryzhkov et al. 

(1998 and 2018) demonstrated that both 𝐾𝑑𝑝 and difference reflectivity 𝑍𝐷𝑃 (𝑍𝐷𝑃 = 𝑍𝐻 − 𝑍𝑉) are dependent on the particles’ 15 

aspect ratios and orientation, whereas their ratio is very robust with respect to those factors. Indeed, simulation and modelling 

work considering 12 different crystal habits, Ryzhkov et al. (2018) showed that the ratio 𝑍𝐷𝑃/𝐾𝑑𝑝  in combination with 

reflectivity can be used to estimate IWC. In detail, for exponential size distribution and with assumption of 𝜌(𝐷) = 𝛼𝐷−𝛽, 𝛽 ≈

1, (1 − 𝑍𝐷𝑅
−1)𝐼𝑊𝐶 is proportional to 𝐾𝑑𝑝. Also, according to Ryzhkov et al. (2018), this approximation is almost insensitive to 

the ice habit, aspect ratio, and orientation of the ice particles, but is affected by the degree of riming. Hence, it works better for 20 

clouds with low degree of riming. This condition might not be true for all the types of ice clouds, but might be suitable for HIWC 

regions, which are often composed of high concentration of small ice particles (Leroy et al., 2016).  

At 𝑍𝐷𝑅 ≈ 1 (or 𝑍𝑑𝑟 ≈ 0 𝑑𝐵), the weighting function (1 − 𝑍𝐷𝑅
−1) is close to zero; and hence, it can introduce large errors in the 

estimates. Therefore, there should be a certain threshold for 𝑍𝑑𝑟 to determine how the weighting function would be calculated. In 

detail, if 𝑍𝑑𝑟 is less than a threshold, the weighting function (1 − 𝑍𝐷𝑅
−1) is replaced by (1 − 𝑍𝐷𝑅−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

−1 ). In this paper, we use 25 

𝑍𝐷𝑅−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1.12 (see section 6 for more detailed derivation of this threshold value). This threshold is very close to a 1.15 

threshold proposed by Ryzhkov et al. (1998) for “cold” storms for temperature below −5 𝑜𝐶. 

In summary, there are two polarimetric methods for IWC retrieval, which will be investigated and compared in this paper. They 

are expressed as, 

𝐼𝑊𝐶 = 𝑎1𝐾𝑑𝑝 + 𝑏1            (9) 30 

(1 − 𝑍𝐷𝑅
−1)𝐼𝑊𝐶 = 𝑎2𝐾𝑑𝑝 + 𝑏2           (10) 

where, model parameters (𝑎𝑖 , 𝑏𝑖) will be estimated from measured data. A flowchart of IWC retrieval using 𝐾𝑑𝑝 and 𝑍𝐷𝑅 is 

shown in Fig. 1. 
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Figure 1: Flowchart of IWC retrieval using ( 𝑲𝒅𝒑, 𝒁𝑫𝑹) and in situ data. In this paper, 𝒁𝑫𝑹−𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 = 𝟏. 𝟏𝟐. 

3 Airborne measurements 

During the Cayenne HAIC-HIWC project, the NRC Convair-580 conducted fourteen research flights in both continental and 

oceanic mesoscale convective systems with high IWC. All the flights were conducted during daytime only due to flight 5 

restrictions. Analysis of all the IR satellite imageries show that the Convair flights were done close the peak intensities of the 

targeted MSC systems, which had a typical lifetime of 7.5 hours and 4.5 hours for oceanic and continental MCS, respectively 

(Strapp, 2019 – personal communication). So the fact that the flights were conducted only during the daytime didn’t miss 

sampling of the storms during their peak intensities.  For this campaign, the Convair aircraft was instrumented by the NRC and 

Environment and Climate Change Canada with an array of in-situ cloud microphysics probes, atmospheric sensors and the NRC 10 

Airborne W- and X-band (NAWX) Doppler dual-polarization radars (Wolde and Pazmany, 2005).  The unique quasi-collocated 

in-situ and radar data collected during the HAIC-HIWC mission provided a means for developing techniques for detection and 

estimation of high IWC that could be adopted in operational airborne weather radars. 

3.1 Airborne radar data 

In this study, dual-polarization radar data from the NRC airborne X-band radar (NAX) (Fig. 2) side looking antenna are used. 15 

Some important radar parameters are given in Table 1. More detailed information on the radar system can be found in Wolde and 

Pazmany (2005). In the Cayenne project, the radar complex I and Q samples are processed to powers and complex pulse pair 

products according to the radar parameter specifications table and the products are recorded in binary format. Due to the size of 

the aircraft radar radome, the NAX dual-polarization parabolic side antenna is relatively small (26 inch), hence, exhibits some 
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limitations in terms of sidelobe performance. The antenna OMT/feedhorn combination is relatively large compared to the 

parabolic dish. The large feed structure creates some significant sidelobes at ±90 ° planes. As a result, when the sidelobes 

intercept targets with strong returns below the aircraft, such as the earth surface or a storm melting layer, significant returns from 

the sidelobes will contaminate signals coming via the antenna’s main lobe. In most situations, the effect is more prominent at a 

range equal to or greater than the distance where the antenna sidelobes hit the ground. At regions where signals are contaminated 5 

by ground clutter via the sidelobes, the data are intermittent and exhibits large biases. Unfortunately, with the pulse pair data 

from the Cayenne campaign, methods to separate clutter from the precipitation signals are limited. To overcome this issue, a 

method is developed to detect regions with strong clutter contamination based on signal correlations between the nadir and zenith 

returns. If the correlation coefficient exceeds a pre-defined threshold, the corresponding side data in those regions are discarded. 

If the width of the discarded data region is relatively small (less than 300 m in radar range) it will be filled through interpolation. 10 

In addition, due to the limitation of the radar hardware, the measurements of dual-polarization parameters are not useable below 

a range of 1000 m from the aircraft, but reflectivity can be measured accurately from 450 m. Hence, in this work, radar profiles 

were extracted at a horizontal distance of 1000 m from the aircraft.  This is not an ideal condition, when the in-situ data and the 

radar data are not spatially coincident. However, in most scenarios the advantage of having fine radar sampling volumes with 

high order of accuracy in time synchronization between in-situ probes overcomes the location offset. At large distances from 15 

cloud boundaries and convective cores, the microphysics properties of glaciated clouds can be considered spatially quasi-uniform 

at scales of the order of few hundred meters. This is specifically relevant to the measurements in MCSs during the HAIC-HIWC 

project. Moreover, there was no attenuation correction applied to reflectivity and 𝑍𝑑𝑟 because in ice precipitation regions and at 

close range, attenuation at X-band is negligible. 

For the Cayenne project, the in-situ microphysical data are processed at 1 Hz which is lower than that of the radar data. Hence, 20 

the radar data were decimated to match with temporal resolution of the in-situ data. At the Convair-580 average ground speed of 

100 𝑚𝑠−1, this results in a 100 m radar sampling volume. 

 

 

Figure 2: The NRC Convair-580 and the dual-polarization side-looking X-band radar. 25 

 

Table 1: X-band radar parameters for the Cayenne campaign. 

Parameter Value 
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RF output frequency 9.41 GHz ± 30 MHz 

Side antenna beamwidth 3.5° 

Pulse width/range resolution 500 ns / 75 m 

Dwell time 0.136 s 

Sampling resolution 75 m 

3.2 In-situ data 

For the project, the NRC Convair-580 was equipped with state-of-the-art in-situ sensors for measurements of aircraft and 

atmospheric state parameters and cloud microphysics.  There were multiple sensors to measure bulk liquid water content (LWC) 

and total water content (TWC), hydrometeor size distribution ranging from small cloud drops to large precipitation particles.  

Detailed list of the Convair in-situ sensors used during the Cayenne HIWC-HIWC project are provided in Wolde et. al. (2016). 5 

Here we will briefly describe the in-situ microphysical sensors used in correlating the airborne radar measurements with regions 

of HIWC. TWC was measured by an Isokinetic probe (IKP2) that was specifically designed to measure very high TWC (Davison 

et al., 2016). Alternatively, IWC was estimated from the measured PSDs with the D-M parameterization was tuned using IKP2 

measurements. In the Cayenne Convair datasets, IWCs calculated from PSDs and measured by IKP2 agreed quite well and the 

difference between them in the HIWC regions on average did not exceed 15 %. Because the IKP2 data were not available in all 10 

flights, estimated IWC from PSDs (𝐼𝑊𝐶𝑃𝑆𝐷)  has been used in this work. Additionally, mean mass diameter (MMD) was also 

used to characterize the microphysical properties of the high IWC regions and interpret X-band radar measurements. MMD was 

calculated from composite particle size distributions measured by SPEC 2D-S and DMT PIP 2D imaging probes. 

As shown in Korolev et al. (2018) in the MCSs studied during the Cayenne HAIC-HIWC project, the fraction of mixed phase 

clouds at -15 ºC<T<-5 ºC did not exceed 4.6 %, and that in most mixed phase cloud regions LWC<<IWC. Hence, we didn’t filter 15 

out the very small fraction of liquid observed in our analysis, i.e., we assumed TWC = IWC. This finding significantly simplifies 

the processing and interpretation of cloud microphysical measurements. 

4 𝑲𝒅𝒑 estimation algorithm for X-band airborne weather radar 

The radar specific differential phase (𝐾𝑑𝑝 ) is defined as the slope of the range profile of the differential propagation phase shift 

Φ𝑑𝑝 between horizontal and vertical polarization states (Bringi and Chandrasekar, 2001). The measured differential phase shift 20 

between the two signals at the H and V polarizations, Ψ𝑑𝑝, contains both Φ𝑑𝑝 and differential backscatter phase shift 𝛿𝑑𝑝. If  𝛿𝑑𝑝 

is relatively constant or negligible, the profile of Ψ𝑑𝑝 can be used to estimate 𝐾𝑑𝑝. The estimated phase  Ψ𝑑𝑝 usually exhibits 

discontinuities due to phase wrapping, statistical fluctuations in estimation and the gate-to-gate variation of 𝛿𝑑𝑝. Because the 

statistical fluctuations in the estimates of Ψ𝑑𝑝 will be magnified during the differentiation, resulting in a large variance of the 𝐾𝑑𝑝 

estimates, the following considerations need to be addressed in the 𝐾𝑑𝑝 estimation algorithm. 25 

 Phase unfolding:  phase wrapping occurs when the total  Φ𝑑𝑝 accumulation exceeds the unambiguous ranges. This 

depends on the system differential phase Φ𝑑𝑝(0) and the cumulative phase due to the medium. The NAX radar operates 

in the simultaneous transmission mode (VHS) and the unambiguous range is 360 °. The system differential phase 

Φ𝑑𝑝(0) of NAX is about 64 °. For the Cayenne dataset, no observations have been made when the phase was folded. 

 𝛿𝑑𝑝 “bump”: it seems that 𝛿𝑑𝑝 was negligible in the HIWC environment in the Cayenne campaign. We did not observe 30 

the presence of significant changes in 𝛿𝑑𝑝 over a short range. 
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 Range filtering: in this work, the range scale was set at 500m, thus, the fluctuations at scales smaller than 500 m will be 

suppressed. 

Once the phase data are quality controlled, filtered and decimated to match the temporal resolution of the in-situ data, a heuristic 

algorithm similar to one reported in Rotemberg (1999) is applied to the data to extract Ψ𝑑𝑝 smooth trend and then 𝐾𝑑𝑝  is 

computed from it. This approach does not require an assumption of Φ𝑑𝑝 being a monotonically increasing function as it is in 5 

some other existing 𝐾𝑑𝑝 retrieval algorithms (Wang and Chandrasekar, 2009); therefore, it would also work well with negative 

𝐾𝑑𝑝 which possibly exhibits in ice clouds. Our preliminary analysis shows that the algorithm can provide estimates with standard 

deviation no greater than 1 𝑜𝑘𝑚−1. The NRC 𝐾𝑑𝑝 estimation algorithm is summarized in the flowchart below. 

 

Figure 3: The NRC 𝑲𝒅𝒑 estimation algorithm for X-band radar flowchart. 10 

5 Results 

In this section, results illustrating the performance of the proposed polarimetric algorithms are presented. Besides the 

polarimetric method, we also include results from the conventional 𝐼𝑊𝐶 − 𝑍 relations for comparison. Because the histogram of 

static temperature (not shown) indicated a bimodal distribution with two centres at around -5 ºC and -10 ºC, two 𝐼𝑊𝐶 − 𝑍 

relations at 𝑇 = −5 𝑜𝐶  (𝐼𝑊𝐶 = 0.257𝑍0.391) and at 𝑇 = −10𝑜𝐶  (𝐼𝑊𝐶 =  0.253𝑍0.596) were obtained by fitting power-law 15 

curves to scatter plots of all the data points at those two temperature levels (Wolde et al., 2016). 

5.1 Case study I: May 26 flight 

In this case, a 20-minute segment of the Convair flight inside an Oceanic MCS on May 26, 2105 is selected for analysis. The 

MCS was sampled north-northwest of Cayenne French Guiana during early morning hours. Figure 4a shows IR satellite imagery 

obtained during the flight where the aircraft’s flight track is shown in different colors, which represent the aircraft’s location at 20 

different time segments. The reflectivity field from the NAX side antenna is shown in Fig. 4b. The selected period begins at a 

point when the aircraft started to sample at the proximity of the convective core of the storm with the lowest cloud top brightness 

temperature (white segment in the IR image). The brightness temperature was increasing toward the end of the segment 

(magenta segment). The aircraft flew between 6.9 km to 7.2 km altitude and the static air temperature (𝑇𝑠) varied from -12.8°C to 
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-8.2°C. In addition to the radar data, 𝐼𝑊𝐶𝑃𝑆𝐷 and MMD time series from particle probes are shown in Fig. 5. The IWC estimates 

from radar data have been decimated to match with the temporal resolution of the in-situ data. 

The aircraft sampled two regions: a convective region before 11:23 UTC and a stratiform region after 11:25 UTC (Fig. 4b), with 

IWC in both regions was mostly higher than 1.5 𝑔𝑚−3 (Fig. 5a). It is worth noticing that the reflectivity measurements along the 

flight path were fairly constant at ~20 𝑑𝐵𝑍 and the MMD values were relatively small at HIWC regions (𝐼𝑊𝐶 > 1.5 𝑔𝑚−3) 5 

(Fig 5a). From Fig. 5, it follows: (1) 𝐾𝑑𝑝, in general, is highly correlated with IWC; (2) 𝐾𝑑𝑝 increases at the regions dominated 

by small ice crystals (between 11:08 to 11:16 UTC and 11:24 to 11:27 UTC); (3) regions with larger MMD exhibits deceasing 

𝜌ℎ𝑣 and increasing 𝑍𝑑𝑟. In Fig. 6, 𝑍𝑑𝑟, 𝜌ℎ𝑣 and IWC are expressed as functions of 𝐾𝑑𝑝. In this case, there is a break point at 

𝐾𝑑𝑝 ≈ 1.5
 𝑜/𝑘𝑚 (and 𝑍𝐷𝑅~1.12) where 𝑍𝑑𝑟 started increasing and 𝜌ℎ𝑣 deceased with respect to 𝐾𝑑𝑝. At 𝐾𝑑𝑝 < 1

 𝑜/𝑘𝑚, 𝑍𝑑𝑟 was 

mainly flat and IWC linearly increased with respect to 𝐾𝑑𝑝 (Fig. 6b). This suggests the pristine ice crystals’ axis ratio might be 10 

fairly constant but the particle number density increased resulting in an enhancement in both 𝐾𝑑𝑝 and IWC (shown by a linear 

IWC-𝐾𝑑𝑝 relationship). From 𝐾𝑑𝑝 > 1 
𝑜/𝑘𝑚, 𝑍𝑑𝑟 increment with respect to 𝐾𝑑𝑝  was greater, but the IWC increase does not 

follow the same degree as in the previous segment. If a linear IWC-𝐾𝑑𝑝 relationship derived from the first segment (𝐾𝑑𝑝 <

1 𝑜/𝑘𝑚) is applied to the second portion, IWC will be overestimated.  It is not easy to identify the exact reasons of this 

observations.  Many factors could contribute to this circumstance such as changes in ice crystals’ size, shape, orientation (e.g. 15 

particle with higher axis ratio that are aligned in the horizontal plane) or particle’s density.  In this work we used 𝐾𝑑𝑝 and 𝑍𝑑𝑟 to 

mitigate this dependency and improve estimation of IWC. In Fig. 6b, and 6c, measured 𝐼𝑊𝐶 and (1 − 𝑍𝐷𝑅
−1)𝐼𝑊𝐶 are shown in 

solid black lines and their linear fitting curves (red lines) are superimposed. The 𝑅2 goodness of fit parameter indicates that a 

linear regression fits (1 − 𝑍𝐷𝑅
−1)𝐼𝑊𝐶  better in comparison to IWC. 

 20 
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Figure 4: Top panel shows IR GOES-13 image with the overlaid segments of the Convair580 flight track on May 26, 2015. Different 

time segments of the flight track are shown by different colors. Bottom panel shows X-band side reflectivity from a period of [11:07 - 

11:30] UTC corresponding to white, yellow and purple segments in the top panel. A break line at around 7.1 km is the location of 
contaminating ground clutter via the side antenna’s sidelobe (section 3.1) which was filtered out. 5 
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Figure 5: Time series of (a) IWCPSD, MMD, (b) 𝑲𝒅𝒑, 𝒁𝒅𝒓 , (c) 𝝆𝒉𝒗 and 𝒁𝑯 for May 26 Convair-580 flight.  
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Figure 6: 𝒁𝒅𝒓 and 𝝆𝒉𝒗 (a), 𝑰𝑾𝑪𝑷𝑺𝑫 (b) and (𝟏 − 𝒁𝑫𝑹
−𝟏)𝑰𝑾𝑪 (c) as functions of 𝑲𝒅𝒑. In panel (b) and (c), mean values and frequency 

distributions are computed from data points in each 𝑲𝒅𝒑  bin of 𝟎.𝟏 𝒐𝒌𝒎−𝟏  and 𝟎. 𝟎𝟓 𝒐𝒌𝒎−𝟏  respectively. Regression parameters 

(𝒂𝟏, 𝒃𝟏) for the 𝑲𝒅𝒑-only method and (𝒂𝟐, 𝒃𝟐) for the (𝑲𝒅𝒑, 𝒁𝑫𝑹) method are estimated from the mean values using a simple linear 

fitting algorithm.  5 

To gauge the performance of the polarimetric methods, results from the conventional 𝐼𝑊𝐶 − 𝑍 estimator are also included in 

Fig. 7a. This figure show the measured IWC along the Convair’s flight path is depicted  in black, IWC-Z result is shown in green 

and IWC estimates using polarimetric methods are shown in blue and red for 𝐾𝑑𝑝-only and (𝐾𝑑𝑝, 𝑍𝐷𝑅) algorithms, respectively. 

One can observe that the two polarimetric methods agree well with measured IWC while the IWC estimates from just using radar 

reflectivity exhibit biases as large as one order of magnitude. The large errors in the 𝐼𝑊𝐶 − 𝑍 estimator are due to the presence 10 
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of mixtures of large aggregates and small ice crystal regions as indicated in the PIP images (not shown) in clouds.  Large 

aggregates have a dominant contribution into the radar reflectivity, which explains the positive biases of the 𝐼𝑊𝐶 − 𝑍 estimates. 

On the other hand, 𝐾𝑑𝑝 is not biased toward large aggregates. The magnitude of 𝐾𝑑𝑝 in aggregates with MMD > 2 mm is usually 

smaller than 0.4 °𝑘𝑚−1 and in small ice particles (MMD in the range 0.3 – 1 mm) 𝐾𝑑𝑝is between 0.6 °𝑘𝑚−1 to 1 °𝑘𝑚−1  (Fig. 

8a).  It follows that estimators utilizing  𝐾𝑑𝑝 information would overcome the large aggregates effects in radar volumes. It is 5 

worth noting that the two algorithms capture well the IWC variation at the end of the segment. If the in-situ measurements are 

considered as the ground truth, the estimation biases are computed and shown in Fig. 7b. On average, biases are 0.082 𝑔𝑚−3 and 

0.018 𝑔𝑚−3, and the root mean squared differences (hereinafter referred to as the rms differences) are 0.49 𝑔𝑚−3 and 0.48 

𝑔𝑚−3  for the 𝐾𝑑𝑝  alone and (𝐾𝑑𝑝, 𝑍𝐷𝑅) methods, respectively. The correlation coefficients between 𝐼𝑊𝐶𝑃𝑆𝐷  and estimated 

IWCs are 0.66 and 0.70 for the two methods. In this case study, the inclusion of 𝑍𝑑𝑟 improves the accuracy of the IWC estimates. 10 
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Figure 7: Top panel shows IWCPSD (black line), estimated IWC using reflectivity (dash green line), 𝑲𝒅𝒑 alone (blue line) and (𝑲𝒅𝒑, 

𝒁𝑫𝑹) combination (red line) for the May 26 case. Bottom panel shows estimation biases for the three estimators. Average biases for 

IWC(Z), IWC(𝑲𝒅𝒑) and IWC(𝑲𝒅𝒑, 𝒁𝑫𝑹) are 0.60 𝒈𝒎−𝟑, 0.082 𝒈𝒎−𝟑 and 0.018 𝒈𝒎−𝟑 and rms differences are 0.98 𝒈𝒎−𝟑, 0.49 𝒈𝒎−𝟑 

and 0.48 𝒈𝒎−𝟑  for the three algorithms, correspondingly. 

 5 

Figure 8: 𝑲𝒅𝒑  (a) and 𝒁𝒅𝒓 (b) as functions of median mass diameter (MMD). Over 17000 data points from seven selected flights 

(section 6) during the Cayenne campaign are used. 

5.2 Case study II: May 23 flight 

For this case, a segment of the Convair flight on May 23, 2015 inside an MCS north of Surinam coast and overland French 

Guiana (Fig. 9a) is selected. The flight segment consists of a HIWC region of very high concentration of small ice particles and a 10 

region of mixture of moderately large aggregates and pristine ice crystals. This affords an excellent example to gauge the 

performance of the algorithms. In Fig. 9a, the selected segment is displayed in purple. The radar reflectivity field from the side 

antenna is shown in Fig. 9b. In this segment, the aircraft’s altitude was between 6.74 km and 6.78 km and 𝑇𝑠 ranged from -11° C 

to -8° C. 
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Figure 9: Similar to Fig. 4 but for the May 23 case. 

In addition to the radar data, 𝐼𝑊𝐶𝑃𝑆𝐷 and MMD time series from particle imaging probes are shown in Fig. 10.  The aircraft 

sampled two small cores where IWC was higher than 1 𝑔𝑚−3 (~18:30 UTC, and ~18:34 UTC).  At these high IWC cores, the 

clouds were dominated by small ice particles (Fig. 11a) and MMD was in the 400 µm range. In contrast, for the flight segment 5 

between 18:36 UTC and 18:44 UTC, when the temperature was higher, the aircraft sampled a mixture of large aggregates with 

sizes exceeding 6 mm, and small ice particles (Fig. 11b), where the IWC was less than 0.5 𝑔𝑚−3. 
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Figure 10: IWCPSD and MMD time series for the May 23 case. 

 

Figure 11: Samples of 2D imagery from the SPEC 2DS (a) and DMT PIP (b) probes at two time stamps as in Fig. 10. The width of the 
2DS image strip is 1.28 mm and that of the PIP is 6.4 mm. The aircraft’s altitude was 6.75 km at A and 6.74 km at B. 5 

The IWC estimates from the methods are depicted in Fig. 12a. In the regions around the two HIWC peaks, results from the three 

estimators agree quite well with 𝐼𝑊𝐶𝑃𝑆𝐷. There are small biases in the outcomes of the two polarimetric algorithms that can be 

attributed to the errors of fitting linear regression models to the data and/or the difference in the sampling locations of the radar 

and the in-situ data (section 3.1). In the region after 18:38 UTC, the 𝐼𝑊𝐶 − 𝑍 results show very large errors due to the presence 
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of aggregates in the clouds. The large aggregates dominate the measurements of radar reflectivity resulting in positive biases of 

the 𝐼𝑊𝐶 − 𝑍 estimates (Fig. 12b). The errors for this case are as large as 300 % in most estimates. In contrast, both the 

polarimetric methods provide much better results compared to the conventional IWC-Z method. They capture well the variation 

of IWC at smaller scales (around 18:33:58 UTC) and larger scales (around 18:41:54 UTC). This again confirms that these 

algorithms are robust to the variation of ice crystal type, shape and distribution. The rms differences and correlation coefficients 5 

for 𝐾𝑑𝑝-only and (𝐾𝑑𝑝, 𝑍𝐷𝑅 ) methods are (0.84 𝑔𝑚−3, 0.41) and (0.79 𝑔𝑚−3, 0.55), respectively. The combination of 𝐾𝑑𝑝 and 

𝑍𝐷𝑅 provides better results which can be seen at the edges of the second IWC peak (indicated by ellipses) in Fig. 12a. At those 

regions, MMD (Fig. 10) and 𝑍𝑑𝑟 (not shown) values are large. This may be an indication of ice crystals with high axis ratio 

aligned in the horizontal plane. When this happens, the algorithm based on 𝐾𝑑𝑝 alone will over-estimate IWC. On the other hand, 

the product (1 − 𝑍𝐷𝑅
−1)𝐼𝑊𝐶 already includes the particles’ shape and orientation effects, thus, estimates based on it should yield 10 

better results. When large particles dominated the volume (after 18:36:14 UTC) 𝑍𝑑𝑟 become small (Fig. 8b) then the (𝐾𝑑𝑝, 𝑍𝐷𝑅) 

estimator provides no advantage over the 𝐾𝑑𝑝-only estimator. 
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Figure 12: Similar to Fig. 7 but for the May 23 case. Average biases for IWC(Z), IWC(𝑲𝒅𝒑) and IWC(𝑲𝒅𝒑, 𝒁𝑫𝑹) are 1 𝒈𝒎−𝟑, -0.189 

𝒈𝒎−𝟑 and -0.222 𝒈𝒎−𝟑 and rms differences are 1.34 𝒈𝒎−𝟑, 0.84 𝒈𝒎−𝟑 and 0.79 𝒈𝒎−𝟑  for the algorithms, respectively. 

6 Experimental evaluation 

In the previous section, two case studies were analysed in detail. In both cases, results from the polarimetric methods show a 5 

much better agreement with in-situ measurements compared to the IWC estimates from the radar reflectivity factor, especially 

when larger particles dominate the radar volume. In addition, applying a function of 𝑍𝐷𝑅 to IWC before fitting a linear regression 

model to the data improves the estimation accuracy and correlation. In this section, more data from different flights collected 

during the mission were analysed and summarized. Out of total 14 campaign flights, there were seven flights with good data 

quality (radar and in-situ) and with applicable number of high IWC data points and data from those flights were used this 10 

analysis.  
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𝑍𝐷𝑅 threshold (section 2.2) is determined from all selected data (17699 points in total). In order to find an optimal 𝑍𝐷𝑅 threshold 

from the available data, average bias and rms of IWC estimates are expressed as a function of 𝑍𝐷𝑅 threshold (Fig. 13). 𝑍𝐷𝑅 

threshold was changed within [1.01, 1.2] with 0.1 increment and bias and rms were computed for each value of 𝑍𝐷𝑅 threshold. In 

Fig. 13, average bias and rms of IWC estimates from the 𝐾𝑑𝑝-only algorithm, which are independent of 𝑍𝐷𝑅 threshold, are also 

displayed (blue lines). It follows that the average biases for the two methods are very small (within ±0.08 𝑔𝑚−3) and the 5 

(𝐾𝑑𝑝, 𝑍𝐷𝑅) method provides unbiased estimates at 𝑍𝐷𝑅 threshold of 1.06. However, rms of the (𝐾𝑑𝑝, 𝑍𝐷𝑅) method is quite large 

at small 𝑍𝐷𝑅 threshold and reduces with increasing 𝑍𝐷𝑅 threshold. It gets saturated at 0.498 𝑔𝑚−3 which is slightly below rms of 

the 𝐾𝑑𝑝-only algorithm. Considering all the factors, we selected an optimal 𝑍𝐷𝑅 threshold of 1.12 where rms of the two methods 

are equal but the average bias is smaller with the (𝐾𝑑𝑝, 𝑍𝐷𝑅) method. 

In Fig. 14, 𝐼𝑊𝐶 and (1 − 𝑍𝐷𝑅
−1)𝐼𝑊𝐶  are expressed as functions of 𝐾𝑑𝑝  for selected flights. Linear fits to all the data from 10 

selected flights are also shown. The respective y-axes are scaled to the maximum value of 𝐼𝑊𝐶  and (1 − 𝑍𝐷𝑅
−1)𝐼𝑊𝐶  for 

comparison. For most cases, the linear relationships are well approximated up to 𝐾𝑑𝑝 = 2 
𝑜𝑘𝑚−1. At larger 𝐾𝑑𝑝, IWC saturates 

at 2.5 𝑔𝑚−3 and the IWC-𝐾𝑑𝑝 relationship departs from the linear trend. Due to the limited amount of data of large measured 

𝐾𝑑𝑝 and IWC, identifying the major reasons for this saturation is not attempted. In these scenarios, applying a more sophisticated 

method (such as a parametric model) will likely reduce errors at high 𝐾𝑑𝑝 but this is beyond the scope of this paper. Here, a 15 

simple linear regression model (based on the approximation in Eq. (13)) is used and errors are computed from all data points. 

It is also worth noting that the deviation of the (1 − 𝑍𝐷𝑅
−1)𝐼𝑊𝐶 − 𝐾𝑑𝑝 curves from the linear fit is smaller compared to that of the 

original 𝐼𝑊𝐶 −  𝐾𝑑𝑝 curves. This spread in IWC-𝐾𝑑𝑝 relationship can be attributed to the properties of ice crystals and the 

medium’s state. In other words, when the dependency of  𝐼𝑊𝐶 − 𝐾𝑑𝑝 relationship on ice crystal shape and orientation was 

removed (or partially removed), the spread in IWC-𝐾𝑑𝑝 relationship around the linear fit should be smaller. This is a very 20 

important outcome which helps to reduce estimation errors when a single estimator is used for all the cases. Results for IWC 

estimates are shown in Table 2 for the two polarimetric methods only. In each row, statistical error analysis is shown for each 

flight with the optimal fitting model derived from data of that flight. Information about MCS of selected flights is also provided. 

The last row displays results computed from all selected data of 17699 points. In all cases, improvement in IWC estimation when 

𝑍𝑑𝑟  information is utilized in the algorithm is clear. For all data, the bias changes from -0.07 𝑔𝑚−3  to -0.045 𝑔𝑚−3  and 25 

correlation coefficient increases from 0.69 to 0.72. The standard deviations of the fitting coefficients (a1, b1) for the 𝐾𝑑𝑝-only 

method and for (a2, b2) for the (𝐾𝑑𝑝, 𝑍𝐷𝑅) method are (0.12, 0.33) and (0.032, 0.033), respectively. The uncertainty of the 

retrieval depends on the uncertainty in the fitting parameters as well as the values of 𝐾𝑑𝑝  and 𝑍𝐷𝑅  and their measurement 

accuracy.  Typical values of 𝐾𝑑𝑝 and 𝑍𝐷𝑅 for HIWC regions (MMD between 0.3 mm to 1 mm) are about 1 °𝑘𝑚−1 and 1.12 (Fig. 

8). At those typical values, standard deviation of IWC estimates using  (𝐾𝑑𝑝, 𝑍𝐷𝑅) algorithm is 0.6 𝑔𝑚−3. 30 

Figure 15 shows time series of 𝐼𝑊𝐶𝑃𝑆𝐷  from the seven flights and estimated IWC from the two algorithms. As mentioned 

before, for each algorithm, a single set of fitting parameters is used for the combined data. Evidently, the method utilizing 𝑍𝑑𝑟 

yields better results in term of estimation bias and correlation (Table 2). In Fig. 16, estimation bias and std are expressed as a 

function of IWC. It can be seen that inclusion of 𝑍𝑑𝑟 improves estimation bias at all IWC points. On average, an improvement of 

35 % in average bias was achieved. As observed in Fig. 16, larger biases happen at IWC greater than 2 𝑔𝑚−3. It is attributed to 35 

strong departures from the linear model in the joint IWC-𝐾𝑑𝑝 distribution. The inclusion of 𝑍𝑑𝑟 has been proved to be able to 

mitigate these large errors but not completely fix the problems. To improve the radar-derived IWC estimates further, more 

additional data processing (such as hydrometeorology classification) and/or more sophisticated regression models are needed. 
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Figure 13: Average bias and rms as a function of 𝒁𝑫𝑹 threshold for all data from the seven selected flights. 

 

Figure 14: 𝑰𝑾𝑪𝑷𝑺𝑫 (a) and (𝟏 − 𝒁𝑫𝑹
−𝟏 )𝑰𝑾𝑪 (b) as functions of 𝑲𝒅𝒑 for the seven selected flights. Linear fits (dash lines) are also plotted 

using coefficients computed from all data point (Table 2). 5 
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Table 2: Polarimetric methods performance for selected flights during the Cayenne 2015 campaign. The MCS types and scales 

from Strapp et al. (2018) are also listed. 

 𝐾𝑑𝑝 only 𝐾𝑑𝑝 and 𝑍𝑑𝑟 MCS type/size in 

nautical mile Flight (a1, b1) bias 

(𝑔𝑚−3) 

rms 

(𝑔𝑚−3) 

corr. 

coeff 

(a2, b2) bias 

(𝑔𝑚−3) 

rms 

(𝑔𝑚−3) 

corr. 

coeff 

May 

15am 

(1.11, 0.20) -0.007 0.45 0.49 (0.14, 0.01) 0.009 0.42 0.60 Offshore / 60 

May 

16am 

(0.90, 0.14) -0.117 0.46 0.85 (0.15, 0.008) -0.013 0.47 0.84 Offshore / 70 

May 

16pm 

(0.94, 0) -0.051 0.34 0.80 (0.11, 0) -0.019 0.30 0.82 Oceanic adverted 

overland / 60 

May 

20am 

(0.75, 0.9) 0.012 0.58 0.56 (0.10, 0.08) 0.005 0.61 0.56 Coastal 

May 

23pm 

(1.07, 0.41) -0.189 0.84 0.41 (0.19, 0.04) -0.222 0.79 0.55 Offshore, and 

overland / 100 

May 

26am 

(0.94, 0.7) 0.082 0.49 0.66 (0.12, 0.07) 0.018 0.48 0.70 Offshore MCS 

May 

26pm 

(0.88, 0.18) -0.046 0.37 0.72 (0.11, 0.02) -0.048 0.34 0.78 Offshore MCS 

All*  -0.070 0.53 0.69  -0.045 0.52 0.72  

* for all data points, optimal fitting parameters (0.88, 0.45) was used for 𝑲𝒅𝒑-only algorithm and (0.13, 0.04) was used 

for (𝑲𝒅𝒑, 𝒁𝒅𝒓) algorithm. 
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Figure 15: (a) Combined IWC time series data from the selected flights: measured IWC (black line), estimated IWC using 𝑲𝒅𝒑 alone 

(blue line) and estimated IWC using 𝑲𝒅𝒑 and 𝒁𝑫𝑹 (red line). (b) Estimation errors for the two estimators. For all study cases, the 

aircraft flew between [5.6, 7.5] km and most of the data points were within a temperature range of (−𝟏𝟎 °𝑪± 𝟐.𝟓 °𝑪). 

 5 
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Figure 16: Bias and rms difference as a function of IWC derived from the seven selected flights. Mean values and std are computed 

from data points in each 𝑰𝑾𝑪 bin of 𝟎. 𝟐 𝒈𝒎−𝟑. 

7 Conclusion 

Accurate detection and estimation of HIWC in tropical mesoscale convective systems are critical for reducing hazards caused by 

the ingestion of ice particles into the engines of commercial aircraft. The objective of this paper is to find a method to improve 5 

IWC retrieval from a side-looking X-band dual-polarization airborne radar. It is shown that the use of the specific differential 

phase (𝐾𝑑𝑝) and differential reflectivity ratio (𝑍𝑑𝑟) significantly reduces errors in IWC retrieval over the conventional IWC-Z 

method. In general, IWC-𝐾𝑑𝑝 relationship can be approximated by a linear model and IWC retrieval using 𝐾𝑑𝑝 captures the IWC 

variation very well, regardless of the information of PSD. One major drawback of the 𝐾𝑑𝑝 algorithm is that it provides large 

estimation biases when the ice particle’s aspect ratio and/or orientation is changing. To mitigate this effect, 𝑍𝑑𝑟 is used to reduce 10 

the dependency of IWC on the variation of ice particles’ shapes and orientation. We proposed a method, in which, IWCs are 

weighted by a function of 𝑍𝑑𝑟  before applying a linear model to the IWC-𝐾𝑑𝑝  joint distribution. This approach uses an 

assumption of low degree of riming within the radar volume. This is suitable for HIWC regions which are often composed of 

very high density of small ice particles. 𝑍𝑑𝑟 at regions of mixtures of small pristine ice crystals and larger particles such as 

aggregates is generally low and will not be used in the weighting function. Results from selected Convair-580 flights from the 15 

Cayenne campaign show that the proposed method is able to improve estimation biases by 35 % and correlation by 4 %, on 

average. In our analysis, a single set of fitting parameters is applied for all the data points. The results can be improved further by 

including advanced data processing techniques such as ice crystal type classification and/or using a more sophisticated regression 

model for the modified IWC-𝐾𝑑𝑝  joint distribution. 

Most of HIWC data points used in this are measured at a narrow window of the temperature range (−10 °𝐶 ± 2.5 °𝐶). More data 20 

is needed to study the temperature variability of the proposed method. 
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