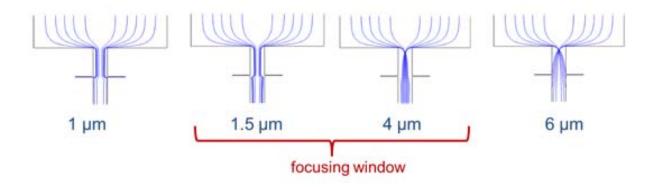
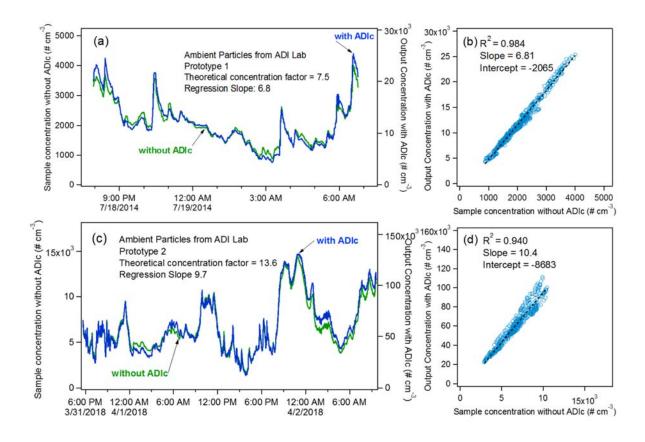
Laboratory and field evaluation of the Aerosol Dynamics Inc. concentrator (ADIc) for aerosol mass spectrometry

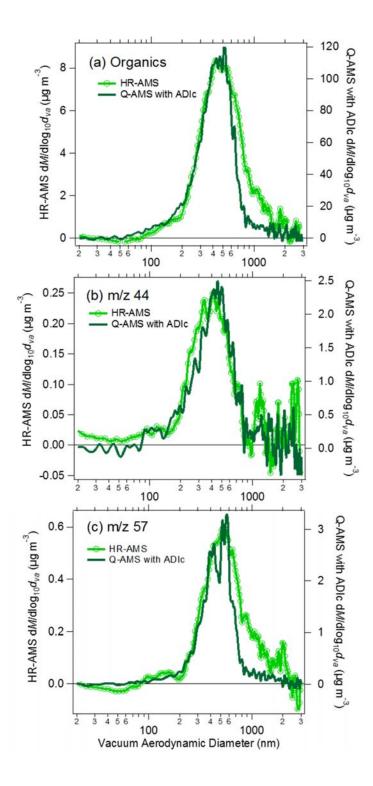
Sanna Saarikoski<sup>1</sup>, Leah R. Williams<sup>2</sup>, Steven R. Spielman<sup>3</sup>, Gregory S. Lewis<sup>3</sup>, Arantzazu Eiguren-Fernandez<sup>3</sup>, Minna Aurela<sup>1</sup>, Susanne V. Hering<sup>3</sup>, Kimmo Teinilä<sup>1</sup>, Philip Croteau<sup>2</sup>, John T. Jayne<sup>2</sup>, Thorsten Hohaus<sup>2,+</sup>, Douglas R. Worsnop<sup>2</sup>, Hilkka Timonen<sup>1</sup>


<sup>&</sup>lt;sup>1</sup> Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland

<sup>&</sup>lt;sup>2</sup> Center for Aerosol and Cloud Chemistry, Aerodyne Research, Inc., Billerica, MA, USA


<sup>&</sup>lt;sup>3</sup> Aerosol Dynamics Inc., Berkeley, CA, USA

<sup>&</sup>lt;sup>+</sup> Now at Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany


## Supplemental Information



**Figure S1.** Calculated particle trajectories for different particle sizes entering the focusing nozzle of the ADIc. Scale is expanded radially for better visualization.



**Figure S2.** Particle number concentrations in the ADIc sample and output flows while sampling laboratory air shown as time series (a, c) and as correlation plots (b, d). Prototype 1 was operating at low flow (a–b) and prototype 2 at high flow (c–d).



**Figure S3.** Size distributions for organics (a), m/z 44 (b) and m/z 57 (c) from the HR-AMS in bypass (without the ADIc) and the Q-AMS behind the ADIc demonstrating different size cutoffs in the aerodynamic lenses >700 nm in the two instruments.