
 
Response to Review report for “OMI Total Column Water Vapour Version 4: Validation 
and Applications”  
by Huiqun Wang, Amir Hossein Souri, Gonzalo Gonzalez Abad, Xiong Liu, and Kelly Chance  
General comments  
 
In this manuscript, the version 4 TCWV retrieval from OMI is validated against ground-based 
GPS TCWV retrievals over land and SSMIS satellite microwave retrievals over land. Differences 
of the version 4 retrieval with previous versions have been described, although a detailed analysis 
of the improvement with respect to the previous version is still lacking. I will point out some 
specific examples where such an additional comparison might be included in the manuscript. 
Also the interpretation of some of the findings for the OMI TCWV differences with TCWV from 
GPS or SSMIS is lacking, see again below in my specific comments. Thereafter, 3 well-chosen 
examples show the importance of having a global TCWV dataset, here from OMI. These are nice 
demonstrations of the TCWV product, but the authors might argue more what the added value of 
in particular OMI TCWV (and version 4) is for those applications, compared to other satellite 
retrievals or reanalyzes.  
 
      Thank you very much for the thorough and constructive review. We have improved the 
manuscript following your suggestions. The example applications are intended to test and show 
that there is value in the OMI TCWV dataset, and therefore, the data can contribute to the overall 
understanding of water vapor. Comparisons with other satellite datasets or reanalyzes for the 
added value of OMI TCWV are left for future work.  
 
      Please find our detailed response below. 
 
Specific comments  
 Page 1, line 10: I would write out “OMI” already in the abstract, as well as WRF (on line 28).  
We have now written them out. 
 Page 2-3, lines 58 –60: to me, it is strange to already mention a result of the analysis in the 
introduction of the manuscript. I would drop this sentence.  
The sentence has been deleted. 
 Page 3, lines 72-73: here again, you already mention a result of this study in the introduction. 
Reformulate please.  
The sentence has been deleted.  
 Page 3, line 80: data filtering criteria are recommended  
“is” has been changed to “are”. 
 Page 4, lines 96-100: rather strange formulation. I would start the sentence with “In the non-
linear least square fitting, we consider…” And also, please reformulate “In addition to water 
vapour” to a more specific formulation as e.g. “the use of spectroscopic water vapour dataset”.  
The sentence has been rephrased following the suggestion. 
 Page 4, lines 100-108: to a reader that is not entirely in the satellite data retrieval field, it might 
seem ought that you start the discussion here with what version 4 is not using (common mode) in 



the fitting. Perhaps describe first how the fitting is done with version 4 and then describe the 
disadvantages of the common mode.  
The elements considered in the Version 4.0 nonlinear least square fitting are explained in the 
previous sentence. The intention of this sentence is to point out the difference with previous 
versions. For readers who are unfamiliar with common mode, we have added the reference 
González Abad et al. (2015). 
 Page 4, lines 109-110: as it turned out that the choice of the water vapour reference spectrum 
really matters for the comparison between the version 3 and 4 TCWV retrievals (later in the 
manuscript), you might comment on why you use an “older” water vapour reference spectrum in 
version 4 than in version 3.  
We have added a couple of sentences to explain the rationale. It is primarily driven by the 
validation results. In addition, through personal communication with the HITRAN group at the 
Smithsonian Astrophysical Observatory, we have recently learned that HITRAN 2016 has some 
issues with water vapor in the blue wavelength range and that spectroscopic improvements are 
being made for the next HITRAN release.    
 Page 6, lines 134-139: is the compromise for the wavelength interval as retrieval window for 
version 4, chosen for a particular orbit number and geographical area, also tested/valid for other 
orbits and other areas? Please comment.  
We have changed “we use OMI Orbit number 10426 … as an example to …” to “we randomly 
selected OMI orbit number 10426 to…”. We tested the result with Orbit 10423 (which cut across 
the Pacific near the dateline). The patterns exhibited by the variables are similar, though the 
values for SCD and SCD uncertainties are slightly higher, as Orbit 10423 is over the ocean.  
 Page 6, lines 140-145 and Fig 2.: I really do not understand what is represented in Fig 2. Is this 
the overall median SCD of the entire dataset or also for the same orbit and geographical area as in 
Fig. 1? Please specify.  
Following the other reviewer’s suggestion, we have combined the original Figure 1 and Figure 2 
into one figure. In the figure caption, we have added “for OMI Orbit number 10426”.  
 Page 8, lines 184-185: from which dataset do you obtain the “mean elevation within the 
corresponding 0.25°×0.25° grid square”?  
The dataset was downloaded from www.temis.nl/data/topo/dem2grid.html in December 2015. 
The ultimate data source is USGS. A comment about this has been added. 
 Page 9, lines 203-204: “because the fitting includes many other interference molecules whose 
reference spectra may also contain errors within the retrieval window”  are version 3 and 
version 4 not using the same reference spectra for those molecules? So the errors in those 
reference spectra should then give the same effect in both version 3 and 4, no? 
This sentence has been deleted. Version 3 does not include the Vibrational Raman Scattering of 
air, but Version 4 does. We have recently found, through personal communication with the 
HITRAN group, that the HITRAN 2016 water vapor spectrum in the blue wavelength range is 
adversely affected by a line broadening issue. It is therefore not surprising that HITRAN 2008 
can lead to lower bias than HITRAN 2016. 
 Page9, lines 211-212: “This indicates a positive bias of OMI against GPS for small TCWV and 
a negative bias for large TCWV”  
The sentence has been changed following the advice. 



 Page 11, lines 235-236: what might be the reason for the rapid increase of r from f=0.05 to 
f=0.15? The other parameters are changing more smoothly between the different f ranges (as well 
as the r for the other f ranges).  
Firstly, the error in cloud top pressure decreases with cloud fraction (Veefkind et al., 2016). As a 
result, f = 0.05 corresponds to the largest uncertainty in cloud top pressure and the error will 
propagate to OMI TCWV through AMF, leading to smaller correlation coefficient. Secondly, this 
is related to the effective dynamical range of TCWV. There is a larger fraction of data pairs with 
TCWV > 40 mm for f = 0.15 than for f = 0.05. A larger dynamical range generally favors a larger 
correlation coefficient. The explanation has been added. 
 Page 13, lines 267-268: “suggesting that OMI cloudy TCWV is larger than OMI clear TCWV 
in general”. Come up with an explanation here.  
We have added a sentence to explain. Basically, other things being equal, cloud formation 
indicates water vapor saturation and therefore higher TCWV than that under clear-sky 
condition. 
 Page 13, lines 273-274: “In most cases, higher cloud fraction thresholds correspond to larger σ 
values.” Give an explanation here.  
This is consistent with the larger dynamical range (due to a larger fraction of data with high 
TCWV) for larger cloud fraction thresholds. The relative scatter, however, shows little 
dependence on cloud fraction threshold. A comment about this has been added. 
 In Section 3.2, you do not compare the version 3 OMI –SSMI TCWV retrievals with the 
version 4 OMI – SSMI TCWV retrievals. As you did it for GPS (over land), we lack the 
information of the version 4 behaviour w.r.t. version 3 over the oceans.  
We have added the information. Essentially, Version 3 OMI TCWV has significantly larger bias 
than Version 4. 
 Page 16, lines 348-351: this part belongs to the section describing the sensitivity of the OMI-
GPS TCWV differences, and not here.  
We mis-typed OMI-SSMIS as OMI-GPS. The error has been corrected. Thanks for catching it. 
 In contrast, I would add a paragraph at the end of section 3 in which you mention the overall 
conclusions of the OMI TCWV validation with both GPS and SSMIS (e.g. best agreement in the 
10-20/30 mm range, worse for smaller & higher TCWV ranges + reasons) and some conclusions 
on the improvement of version 4 over version 3.  
The overall conclusions from the comparisons are summarized in the “Summary and Conclusion” 
section. 
 Page 17, Fig 7a: indicate the July 2010 and July 2015 epochs on the time series of the ENSO 
index.  
We have drawn dashed vertical lines to indicate the epochs in the plot. 
 Page 17, lines 368-373: mentioning Level 3 and Level 2 for creating the different climatologies 
is confusing to me. Basically, you first construct the long-term (2005-2015) July TCWV monthly 
mean map (climatology). Then you create the July 2010 monthly mean map, and the July 2015 
monthly mean map and you calculate the differences of those monthly means with the long-term 
July climatology, right? Shouldn’t you use exactly the same dataset (Level 2 or Level 3) for those 
monthly mean maps?  



The procedure described above is indeed what we used for the figure. Averaging the monthly 
Level 3 July data is an alternative way of composing the July climatology. It does not make any 
noticeable difference for the purpose of this figure.   
 Page 17, lines 374-377: personally, I would prefer not to use the verbs “increases” and 
“deceases” when comparing a monthly mean of a specific month with the long-term monthly 
mean (=anomalies), but rather reserve those verbs in describing trends in time series. I would 
rather use “is elevated/higher w.r.t. “  
We have changed to “higher/lower”. 
 Page 18, line 381: if you give a possible reason for the differences in details, then you should 
also specify what those “differences in details” are.  
We have deleted this part, as it is not essential for this paper. Readers who are interested in the 
details can compare with Shi et al. (2018). 
 Page 20, line 412: write out NARR.  
It has been written out. 
 Page 20, line 418-419: Describing Figure 9, you write that “TCWV is generally lower in the run 
without evapotranspiration”. This is true, except in the lower boundaries of the box. Where does 
it come from?  
The higher TCWV in the No ET run near the southern boundary reflects the non-linear water 
vapor transport from the Gulf region. Note, turning off evapotranspiration not only affects the 
water vapor flux from the surface, but also influences other meteorological variables, such as 
temperature and winds. Thus, there is a difference in the water vapor flux across the domain 
boundary. A comment has been added in the paper.  
 Page 21, lines 439-448: You use a very detailed description of the AR event of 6-7 Nov 2006, 
based on datasets that are not used/shown here. Could you not describe the event shorter – 
process-wise – and refer to the frequently cited Neiman et al. 2008 paper for more details?  
We have shortened the description and combined the original Section 4.3.1 and 4.3.2 into one 
subsection. 
 Page 22, lines 465-466: “is consistent with the dark stripe in the upper tropospheric water vapor 
image obtained by GOES-11” show similarities to the formation processes, not to datasets or 
observations not shown here.  
We have deleted this part and pointed out that the feature is associated with the same extra-
tropical cyclone as the AR is.  
 Page 24, Figure 11: please add in the figure caption that the grey color coding means no data 
available.  
We have added in the figure caption “Gray color indicates area with no SSM/I data”. 
 Page 25, line 523-524: specify the “error” in the simulated AR structure (i.e. too strong 
southern filament of TCWV).  
We have specified the error according to the suggestion. 
 



Response to Interactive comment on “OMI Total Column Water Vapor 
Version 4 Validation and Applications”  
by Huiqun Wang et al. 
Anonymous Referee #2 
In their paper, Wang et al. present an update of a total column water vapor (TCWV) retrieval in 
the visible spectral range using OMI spectra. They briefly document the changes made for the 
update and demonstrate the improvements within a validation study including measurements 
from microwave satellite and ground-based GPS. In addition, they show how the updated data 
might be used for studies on ENSO, Corn Sweat events, and atmospheric rivers. Overall, the 
paper is nicely written and easy to read. However I have major concerns regarding the validation 
study, the drawn conclusions of this study and the case studies of possible applications. I will list 
my concerns below. 
 
Thanks for the thorough and constructive review. We have revised the paper accordingly. Please 
find our response to each point below. 
 
Major concerns 
• Since this paper presents an update of an exising data set/retrieval, it is evident to clearly 
demonstrate that the update distinctively improves the algorithm compared to the previous 
versions. This is not done in this work. Hence I suggest that the authors also include comparisons 
between the reference data sets and the previous retrieval version. 
 
We have added information for the comparisons between Version 3.0 OMI data and reference 
TCWV datasets. Essentially, Version 3.0 OMI data have significantly larger bias than Version 
4.0. 
 
• I am not fully convinced by the conclusions for the intercomparison between OMI data and 
GPS data. The linear fit has a slope of 0.82 even for clear-sky observations (radiance cloud 
fraction < 0.05) and for larger cloud fraction those fit results are actually missing. Additionally, I 
think that it is a simplification to focus on bias and standard deviation only for interpreting the 
data. Thus I suggest to include also the mean absolute error (MAE) in the validation study and to 
perform linear fits for the different cloud fraction thresholds. Furthermore, only some selected 
scatter plots of the intercomparison between OMI TCWV data and reference data sets are shown 
in this paper. I suggest that for each cloud fraction threshold the corresponding scatter plots and 
linear fits are displayed, which may be provided in an Appendix or Supplement to the paper. 
 
Following the suggestion, we have added OMI versus GPS scatter plots for different cloud 
fraction thresholds. The correlation coefficient and regression line are actually better for cloud 
fraction f ≥ 0.15 than for f = 0.05. The best regression line has a slope close to one. The linear 
regression is worse for f = 0.05 because of (a) larger error in cloud top pressure in OMCLDO2 
product for smaller cloud fraction (b) smaller effective dynamical range of TCWV for smaller 
cloud fraction threshold. Information for the mean absolute error has been added. The MAE is 
smaller than the standard deviation for the comparisons. 
 
• Although Section 4 shows very interesting insights in the application of the new data set, it 
does not really fit the scope of AMT and should be skipped. Nevertheless, I think it might be 



interesting to see what the impact of other satellite data (AIRS, SSM/I, TES, etc.) will be on the 
respective case studies and how much better the OMI performs within this comparison. But this 
will be probably beyond the scope of this paper. 
 
The example applications are intended to show that there is value in the OMI TCWV dataset. In 
a sense, the applications also serve as an “indirect” validation of the dataset, as a useful dataset is 
expected to contain well-known signals. As different satellites have different overpass time, 
resolution and limitation, we believe that each satellite product contributes to the overall 
understanding of water vapor in its unique way. Comparisons with other satellite datasets for the 
added value of OMI TCWV are indeed beyond the scope of this paper.  
  
General comments 
1. How strong are the cross-correlations between the considered absorption crosssections (more 
precisely between H2O, liquid water, glyoxal)? Considering the retrieval fit window, since the 
6n+d H2O line is partially included within this window, do you account for correction factors 
reported in Lampel et al. (2015)? 
 
The linear correlation coefficient between H2O and glyoxal is 0.009, and that between H2O and 
liquid water is -0.20. The water vapor reference spectrum used in Version 4.0 is based on the 
original HITRAN 2008 which does not consider the correction in Lampel et al. (2015). A 
comment about this has been added. The water vapor spectrum in the blue wavelength range is 
being improved by the HITRAN group. We expect that the next HITRAN release will be better.  
 
2. How large is the dependency on the MERRA-2 water vapor profiles and doesn‘t this mean 
that your retrieval is not fully independent from external data sets? 
 
We compared the TCWV computed using the MERRA-2 profiles with those computed using the 
ERA-Interim profiles for July 2006. The result shows that the standard deviation of the 
difference can be significant (~ 3mm). The information has been added to the text. To mitigate 
the dependence of TCWV on external datasets, scattering weights are provided in the Level 2 
OMI product. Users can convolve the scattering weights with the profiles of their choice to 
calculate AMF and adjust TCWV. 
 
3. It would be very interesting to the reader to see which update step contributes most to the 
improvement (new fit window, new cloud product, new MERRA-2 data?). 
 
Between Version 3.0 and 4.0, the reference water vapor spectrum leads to the largest difference. 
This is mentioned when we discuss supplementary Figure 1.  
 
4. Do you use the radiative or the geometric cloud fraction? The cloud fraction criterion of 0.05 
seems very restrictive to me. What fraction of OMI data is filtered by this criterion? 
 
We used the cloud fraction reported in the OMCLDO2 product (Veefkind et al., 2016). We have 
clarified this in the revised paper. In Veefkind et al. (2016), this effective cloud fraction is 
calculated using the reflectance at the top-of-atmosphere, for the clear part and for the cloudy 
part, and can be considered as a radiative cloud fraction. 



On a typical day (July 1, 2016), among the OMI data that pass the MDQFL and TCWV range 
test, f<0.05 accounts for about 35% of the data. The information has been added. 
 
5. Linear regression for land data: Why is the slope so bad? Please discuss in more detail the 
uncertainties of the SCD and the AMF. 
 
This is related to the relatively large bias for TCWV < 10 mm. The slope improves if these data 
pairs are excluded from the linear regression. A comment about this has been added. 
Moreover, the slope is also due to the smaller dynamical range of TCWV for cloud fraction < 
0.05. For larger cloud fraction thresholds, there is a larger fraction of data pairs with higher 
TCWV values, and the regression slopes improve. The best regression line has a slope close to 
one (for cloud fraction < 0.25 or 0.35). A figure has been added to show this. 
 
Typical uncertainties of SCD can be found in Figure 1 and supplementary Figure 1. For the 
uncertainty related to gas profiles for AMF, please see our reply to (2). For the uncertainty 
related to scattering weights for AMF, we have conducted error propagation analysis for a 
typical orbit, results show that most AMF error is <3%, though it can be up to 15% for cloudy 
pixels over land. The information has been added in Section 2. 
 
6. El Nino study: Since you only consider clear-sky observations, your averaged data are biased. 
How strong is thus the influence/impact of clouds? 
 
For the El Niño study, we used cloud fraction < 0.15 and cloud top pressure > 750 hPa to filter 
OMI data (in addition to other usual criteria). This choice is based on the validation results 
presented previously. Using stricter criteria for clouds will result in lots more missing data in the 
map, using less restrictive criteria for clouds will incur larger data bias which will be hard to 
disentangle from the signal. Thus, the influence of clouds on the pattern is not discussed in this 
paper.   
 
7. Corn Sweat study: Do you observe the increase of TCWV also in the GPS data? 
 
Yes. Several GPS stations over the area observed an increase of TCWV during the event, though 
coincident OMI data at the particular stations are not found. Supplementary figure has been 
added. 
 
8. AR study: I do not see the benefit of the description of the AR in Section 4.3.2, especially 
when this AR is already analysed in detail by Neimann et al. (2008). So the authors might think 
about skipping this section. 
 
We have shortened the description of this event and merged the original Section 4.3.1 and 4.3.2 
into one subsection. 
 
Specific comments 
• line 10: please introduce the complete name for OMI (Ozone Monitoring Instrument) 
  We have added the complete name. 
• line 12: „various updates“ _ more specific (e.g. updated cloud product, etc.) 



  We have changed “various updates” to “reference spectra and gas profiles”. 
• line 16: geometric/radiative cloud fraction? 
  It is the effective cloud fraction reported in the OMCLDO2 product (Veefkind et al., 2016). It is 
based on radiances and therefore can be considered as a radiative cloud fraction. A sentence 
about this has been added to clarify. 
• line 22: I think you meant 20-30 instead of 10-30 mm 
  A change has been made to summarize the result more accurately. 
• line 27: atmospheric river 
  It has been changed following the suggestion. 
• line 37: in situ 
  It has been changed following the suggestion. 
• line 38: „ground“ instead of surface 
  It has been changed following the suggestion. 
• line 41: the reference is Schröder et al. (2018) 

It has been corrected. 
• line 43: I would rather say clear-sky and cloudy-sky 
  It has been changed following the suggestion. 
• line 58: It is very unusual to mention results already in the introduction 
  The sentence has been deleted. 
• line 69: reference spectra for water vapor from the latest HITRAN database . . . 
  It has been changed following the suggestion. 
• line 74: please insert a line break 
  A line break has been inserted. 
• line 86: Aura 
  It has been changed following the suggestion. 
• line 88: 1:30 PM local time (this is actually the equator crossing-time) 
  It has been changed to “1:30 PM equator crossing time”. 
• line 95: The specifics of Version 4 are discussed . . . 
  It has been changed following the suggestion. 
• line 106: show 
  It has been changed following the suggestion. 
• line 125: „smaller toward the the lower right corner of the domain“ please rephrase this 
  The sentence has been rephrased to be more specific about what the lower right corner of the 
domain means. 
• line 131: „5x10^23 molecules/cm²“ where is this value coming from? 
The threshold corresponds to a SCD of about 149.45 mm. It is meant to filter out large outliers. For 
reference, the largest TCWV of the GPS and SSMIS datasets (Section 3) is about 75 mm. At low 
latitudes where TCWV is high, more than 90% of the AMFs are between 0.5 and 2.0. We have 
added the information to the text. 

• line 134: Shouldn‘t the residual be small as well as not contain any structures, i.e. it should be 
noisy? 
  We have changed “reduce the residual” to “reduce the residual’s amplitude and structure”. 
• line 159: influence the AMF 
  It has been changed following the suggestion. 
• line 168 to 172: it would be very helpful to have a map showing the distribution of the GPS 
stations. 
   We have added (Wang et al., 2016) as a reference for the distribution of the stations on a map. 



• line 176: what are unphysical values? Please describe in more detail. 
  We have changed it to “negative or extremely large (TCWV > 75 mm) values”. 
• line 180: the time window seems quite large, since water vapor can vary a lot during day. I 
think it would be better reduce the time range to plus/minus 1.5 hours. 
  We have changed the time window to 1200 LT - 1500 LT. 
• line 185: which elevation database are you using? 
  The 0.25°×0.25° topography was downloaded from 
www.temis.nl/data/topo/dem2grid.html. 
• line 186: „we consider the OMI and GPS data that are less than 75 mm.“ why not higher values 
(e.g. 100 mm)? 
   The largest TCWV of the GPS data used is about 75 mm. A comment about this has been 
added. 
• line 195 and 196: the references have to be switched 
  The references have been switched. Thanks for catching that. 
• line 209: please provide R² of the linear fit 
  It has been provided. 
• line 279: Isn‘t this also an instrumental issue (poor signal to noise ratio of OMI?) 
  We have rephrased in term of “low signal-to-noise ratio when TCWV < 10 mm in the OMI 
retrieval”. 
• line 290: cycles 
  It has been deleted. 
• line 291: which special cases? 
 This part of the sentence has been deleted. Users who are interested in the details can refer to 
Diedrich et al. (2016). 
• line 293 to 295: now you are using different requirements for the fit (e.g. higher TCWV 
threshold). 
  We have changed the data filtering criteria so that they are consistent with the ones used before. 
The corresponding figures and discussions have also been updated as needed. 
• line 373: Figure 7cd _ Figure 7c) and 7d) 
  We have made the change. 
• line 376 and 377: decrease 
  Following the other reviewer’s suggestion, we have changed increase/decrease to higher/lower. 
• line 492: what is the weight of the OMI observations for your assimilated data? Can you 
provide a map for that?  
  The weight varies for each simulation window depending on the data quality and data density. 
A single map cannot describe the process, therefore, it is not provided in the paper.  
• line 556: „we recommend to consider only OMI data ...“ 
The change has been made. 
• Table 3: Please indicate the fraction of used data points to available data points in percent. Also 
split up the regression column into slope and intercept and coefficient of determination (R²). 
We have made the changes. 
• Figure 1: please remove panel d) and replace it with Figure 2 
  We have made the change. 
• Figure 3: Please include a comparison for Version 3 and the linear fits in the scatter plots. Also 
colorbar in the bottom panel has no labels. 



  We have fixed the color bar. We have included the comparisons for Version 3 OMI in the text. 
Given the focus and length of this paper, we feel that it is not essential to include scatter plots for 
Version 3. 
• Figure 10: Please zoom into the region of interest. 
  We have made the change. 
• Figure 12: Why does the model simulate rainfall in the northwest of Oregon even for the case 
with assimilated OMI data? 
Admittedly, even with data assimilation, the model is still not perfect. Errors in both the model 
and the data, as well as the amount and distribution of the data, contribute to the error in the 
assimilation result. For the example in Figure 12, we are glad to see that the model does a better 
job within the red box when OMI data are used. A detailed investigation of the assimilation error 
is beyond the scope of this paper. A comment about this has been added. 
 
References 
• Lampel, J., et al. "On the relative absorption strengths of water vapour in the blue 
wavelength range." Atmospheric Measurement Techniques 8.10 (2015): 4329- 
4346. 
• Neiman, Paul J., et al. "Meteorological characteristics and overland precipitation 
impacts of atmospheric rivers affecting the West Coast of North America based 
on eight years of SSM/I satellite observations." Journal of Hydrometeorology 9.1 
(2008): 22-47. 
• Schröder, Marc, et al. "The GEWEX Water Vapor Assessment archive of water 
vapour products from satellite observations and reanalyses." Earth System 
Science Data 10.2 (2018): 1093-1117. 
 
Thanks for providing the references. We have added them in the paper. 
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Abstract  8 

      Total Column Water Vapor (TCWV) is important for the weather and climate. TCWV is 9 

derived from the Ozone Monitoring Instrument (OMI) visible spectra using the Version 4.0 10 

retrieval algorithm developed at the Smithsonian Astrophysical Observatory. The algorithm uses 11 

a retrieval window between 432.0 and 466.5 nm and includes various updates to reference 12 

spectra and water vapor profiles. The retrieval window optimization results from the trade-offs 13 

among competing factors.  14 

      The OMI product is characterized by comparing against commonly used reference datasets – 15 

Global Positioning System (GPS) network data over land and Special Sensor Microwave Imager 16 

/ Sounder (SSMIS) data over the oceans. We examine how cloud fraction and cloud top pressure 17 

affect the comparisons. The results lead us to recommend filtering OMI data with cloud fraction 18 

less than f = 0.05 - 0.25 and cloud top pressure > 750 mb (or stricter), in addition to the data 19 

quality flag, fitting RMS and TCWV range check. Over land, for f = 0.05, the overall mean of 20 

(OMI-GPS) is 0.32 mm with a standard deviation (σ) of 5.2 mm, the smallest bias occurs when 21 

TCWV = 10 – 20 mm, and the best regression line corresponds to f = 0.25; Over the oceans, for f 22 

= 0.05, the overall mean of (OMI-SSMIS) is 0.4 mm (1.1 mm) with σ = 6.5 mm (6.8 mm) for 23 

January (July), the smallest bias occurs when TCWV = 20 – 30 mm, and best regression line 24 

corresponds to f = 0.15. For both land and the oceans, the difference between OMI and the 25 

reference datasets is relatively large when TCWV is less than 10 mm. The bias for Version 4.0 26 

OMI TCWV is much smaller than that for Version 3.0.  27 

      As test applications of the Version 4.0 OMI TCWV over a range of spatial and temporal 28 

scales, we find prominent signals of the patterns associated with El Niño and La Niña, the high 29 



 

2 
 

humidity associated with a corn sweat event and the strong moisture band of an atmospheric 30 

river (AR). A data assimilation experiment demonstrates that the OMI data can help improve the 31 

Weather Research and Forecasting model (WRF)’s skill at simulating the structure and intensity 32 

of the AR and the precipitation at the AR landfall.   33 

1 Introduction 34 

      Water vapor is of profound importance for weather and climate. Through condensation, it 35 

forms clouds that modify albedo, affect radiation and interact with particulate matter. In addition, 36 

latent heat released from water vapor condensation can influence atmospheric energy budget and 37 

circulation. Water vapor is the most abundant greenhouse gas, accounting for ~50% of the 38 

greenhouse effect (Schmidt et al., 2010). Thus, monitoring the spatial and temporal distributions 39 

of water vapor is crucial for understanding water-vapor related processes. 40 

      Water vapor has been measured using a variety of in situ and remote sensing techniques from 41 

the ground, air and space. Satellite data provide global perspective and are indispensable for 42 

constraining reanalysis products (Dee et al., 2011; Gelaro et al., 2017). The current satellite 43 

water vapor datasets are evaluated through the Global Energy and Water cycle Exchanges 44 

(GEWEX) Water Vapor Assessment program (Schröder et al., 2019). These datasets are derived 45 

from visible, near infrared (NIR), Infrared (IR), microwave and Global Positioning System 46 

(GPS) measurements. Each dataset has its own characteristics and contributes to the 47 

understanding of water vapor in its own way. For example, microwave data are useful for both 48 

clear-sky and cloudy-sky conditions, but are best suited for non-precipitating ice-free oceans due 49 

to the complications associated with land surface emissivity; NIR data are best suited for the 50 

land, as the surface albedo is low over the oceans; IR data are available over all surface types, 51 

but are strongly influenced by clouds and less sensitive to the planetary boundary layer; visible 52 

data are sensitive to the boundary layer over both land and the oceans, but are complicated by 53 

uncertainties in clouds and aerosols (Wagner et al., 2013). 54 

      Total Column Water Vapor (TCWV, also called Integrated Water Vapor - IWV, or 55 

Precipitable Water Vapor - PWV) can be retrieved from the 7ν water vapor vibrational polyad 56 

band (around 442 nm) despite the weak absorption (Wagner et al., 2013). This made it possible 57 

to derive TCWV from instruments measuring in the blue wavelength range. Since water vapor is 58 

a weak absorber here, saturation of spectral lines is not of concern (Noël et al., 1999). Moreover, 59 
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the similarity between the land and ocean surface albedo in the blue wavelength range suggests a 60 

roughly uniform sensitivity of the measurement over the globe (Wagner et al., 2013). However, 61 

weaker absorption tends to result in larger relative uncertainties, especially for low TCWV 62 

amount. As an example, for the Version 4 retrieval investigated in this paper, when TCWV is 63 

greater than 10 mm, the medium fitting uncertainty is 10 – 15%, but for TCWV less than 10 mm, 64 

it rises to 40 – 50%. 65 

      Using the visible spectra measured by the Ozone Monitoring Instrument (OMI), Wang et al. 66 

(2014) retrieved Version 1.0 TCWV from 430 – 480 nm and publically released the data on the 67 

Aura Validation Data Center (AVDC, https://avdc.gsfc.nasa.gov). Wang et al. (2016) found that 68 

the Version 1.0 data generally agree with ground-based GPS data over land, but are significantly 69 

lower than the microwave observations over the oceans. They found that using a narrower 70 

retrieval window (427.7 – 465 nm) in Version 2.1 could improve the data over the oceans 71 

without adversely affecting the results over land much. However, the Version 2.1 data were only 72 

generated for a few test months and not released to the public. An interim Version 3.0 OMI 73 

TCWV product is available at AVDC. Compared with Version 2.1, Version 3.0 uses the 74 

reference spectrum for water vapor from the latest HITRAN database (Gordon et al., 2016) and 75 

that for liquid water from Mason et al. (2016), as well as the newest cloud product (Veefkind et 76 

al., 2016). The Version 3.0 retrieval window (427.0 – 467.0 nm) is adjusted from that for 77 

Version 2 within 2 nm on each end based on fitting uncertainty for a randomly selected test orbit. 78 

However, as discussed later, we find that the Version 3 data show much larger bias than the 79 

latest Version 4.  80 

      This paper focuses on Version 4.0 OMI TCWV which has replaced Version 3.0 on AVDC. 81 

We present the Version 4.0 retrieval algorithm which incorporates a more vigorous systematic 82 

optimization for the retrieval window and miscellaneous updates. We characterize the 83 

performance of the Version 4.0 dataset by comparing with well-established references, such as 84 

the GPS network data and the Special Sensor Microwave Imager / Sounder (SSMIS) 85 

observations. We also assess the performance of Version 4.0 against that of Version 3.0. To 86 

provide practical guide to users of the new data, we investigate the influence of cloud fraction 87 

and cloud top pressure on the comparisons. Based on the results, data filtering criteria are 88 

recommended. As an additional check on the Version 4.0 product, we show test applications of 89 

the data to a range of spatial and temporal scales, including El Niño / La Niña, a corn sweat 90 
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event and an atmospheric river (AR) event. For the first time, a data assimilation experiment for 91 

the AR event demonstrates that the OMI TCWV data can provide useful constraint for weather 92 

prediction. 93 

2 Retrieval Algorithm 94 

      OMI on board the Aura spacecraft is a UV/Visible imaging spectrometer (Levelt et al., 95 

2006). It has been making daily global observations at a nominal 13×24 km nadir resolution 96 

from a 1:30 PM equator crossing time  polar orbit since October 2004. The UV-Visible channel 97 

of OMI covers 350-500 nm at a spectral resolution of about 0.5 nm. 98 

      TCWV is derived from the OMI visible spectrum using a commonly used two-step approach. 99 

First, the Slant Column Density (SCD, molecules/cm2) is retrieved from a spectral fitting 100 

algorithm. Then, the Vertical Column Density (VCD, molecules/cm2) is calculated from the ratio 101 

of SCD and Air Mass Factor (AMF) (Palmer et al., 2001). VCD can be converted to TCWV 102 

using 1023 molecules/cm2 = 29.89 mm. The details of the two-step procedure can be found in 103 

González Abad et al. (2015). The specifics of Version 4.0 are discussed below. 104 

      The Version 4.0 spectral fitting parameters are summarized in Table 1. In the nonlinear least 105 

square fitting, we consider wavelength shift, under-sampling, closure polynomials (3rd order 106 

multiplicative and additive), reference spectroscopic spectra of water vapor, interfering 107 

molecules (O3, NO2, O4, liquid water, C2H2O2 and IO) and Raman scattering (the Ring effect, 108 

vibrational Raman scattering of air and the water Ring effect). In comparison with previous 109 

versions, Version 4.0 no longer fits common mode (i.e. the mean of the fitting residual, González 110 

Abad et al., 2015). It turns out that the common mode for land is different than that for ocean 111 

(Wang et al., 2014). Previous retrievals derive a common mode for each orbit swath using the 112 

pixels in the low latitudes which often includes both land and ocean scenes. Thus, the derived 113 

common mode depends on the proportion of land versus ocean pixels of the spacecraft orbit and 114 

is not universally suitable for all the pixels of the swath. Statistics for Orbit 10423 show that 115 

although the mean of SCD differs little between the retrievals with and without common mode in 116 

the fitting (0.1 mm), the standard deviation of SCD between them can be significant (1.7 mm). 117 

Most of the settings in Table 1 are shared between Version 3.0 and 4.0, except that Version 3.0 118 

uses HITRAN 2016 (Gordon et al., 2016) as the water vapor reference spectrum, includes 119 

common mode in the fitting, but does not consider vibrational Raman scattering of air (Lampel et 120 
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al., 2015a). We revert to the HITRAN 2008 water vapor spectrum (Rothman et al., 2009) in 121 

Version 4.0 because validation results show that it leads to better agreements with the GPS and 122 

SSMIS TCWV data (Section 3). We did not apply the correction of Lampel et al. (2015b) to the 123 

HITRAN 2008 water vapor spectrum. It is recently found that HITRAN 2016 is adversely 124 

affected by an issue with line broadening for water vapor in the blue wavelength range and 125 

improvements are being made for the next HITRAN release (the HITRAN group, personal 126 

communication). 127 

Table 1. Parameters used in Version 4.0 spectral fitting for OMI total column water vapor. 128 

Wavelength shift Solar reference spectrum Dobber et al. (2008) 
Target  H2O 288K, Rothman et al. (2009) 
Interference 
molecules 

O3 228K, Brion et al. (1993) 
NO2 220K, Vandaele et al. (1998) 
O4 293K, Thalman and Volkamer (2013) 
Liquid water Mason et al. (2016) 
C2H2O2 296K, Volkamer et al. (2005) 
IO 298K,  Spietz et al. (2005) 

Raman scattering Ring effect Chance and Spurr (1997) 
Water Ring  Chance and Spurr (1997) 
Air Vibrational Raman   Lampel et al. (2015a) 

Other Additive polynomial 3rd order 
Multiplicative polynomial 3rd order 
Under-sampling Chance et al. (2005) 

 129 

      To optimize the retrieval window, we randomly selected OMI Orbit number 10426 (on July 130 

1, 2006) to examine the effect of varying the starting and ending wavelengths around the 7ν 131 

water vapor absorption band. The orbit swath contains 60×1644 ground pixels and covers parts 132 

of Australia, the Pacific, China and other areas. We systematically adjust the starting wavelength 133 

within 426.0-435.0 nm and the ending wavelength within 460.0-468.5 nm, both at 0.5 nm steps.  134 
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 135 

Figure 1. Sensitivity of the retrieval to the start and end wavelengths (nm) of the retrieval 136 

window for OMI Orbit number 10426. (a) Median of fitting RMS×104; (b) median of water 137 

vapor SCD fitting uncertainty in mm; (c) valid fraction for retrievals; (d) median SCD in mm. 138 

      In previous versions, the fitting window is selected based on the fitting uncertainty (Wang et 139 

al., 2014, 2016). For Version 4.0, we consider the following four factors. (1) Figure 1a shows 140 

that the median of the fitting Root Mean Squared error (RMS) is smaller toward the lower right 141 

corner of the domain (i.e., longer start wavelength and shorter end wavelength); (2) Figure 1b 142 

shows that the medium fitting uncertainty of water vapor SCD decreases toward the upper left 143 

corner; (3) Figure 1c shows that the fraction of valid retrievals for the orbit generally increases 144 

toward the upper part of the domain. Valid retrievals here refer to those that pass the main data 145 

quality check (MDQFL = 0) and have positive SCDs. The main data quality check ensures that 146 

the fitting has converged, the SCD is < 5×1023 molecules/cm2 (149.45 mm) and within 2σ of the 147 

fitting uncertainty. The SCD threshold here is meant to filter out large outliers. For reference, the 148 

largest TCWV of the GPS and SSMIS datasets used in Section 3 is about 75 mm. At low 149 

latitudes where TCWV is large, more than 90% of the OMI AMFs are between 0.5 and 2.0; (4) 150 

The length of the retrieval window increases with the difference between the end and start 151 
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wavelengths. The general patterns exhibited by Orbit number 10426 in Figure 1 also hold for 152 

Orbit number 10423 which cuts across the Pacific near the dateline.  153 

      Ideally, we would like to have small fitting RMS to reduce the residual’s amplitude and 154 

structure, a small fitting uncertainty to reduce error, a large fraction of valid data to increase data 155 

volume and a long retrieval window to include more information into the fitting. However, these 156 

criteria cannot be met simultaneously. As a compromise, we select the wavelength interval 157 

between 432.0 nm and 466.5 nm as the retrieval window for Version 4.0. For Orbit number 158 

10426, this leads to a median fitting RMS of 8.1×10-4, a median SCD uncertainty of 5.4 mm, a 159 

valid fraction of 0.75 and a window length of 34.5 nm (Figure 1). Figure 1d shows that the 160 

median SCD for Orbit number 10426 varies between 34.6 mm and 37.6 mm. This 3 mm 161 

difference corresponds to an 8% variation and exhibits a complex pattern within the domain. The 162 

Version 4.0 retrieval window leads to a median SCD of 35.5 mm for Orbit number 10426 which 163 

is near the beginning of the middle third of the SCD range. The ratio between the median SCD 164 

uncertainty and the median SCD (i.e., the relative SCD uncertainty) is about 0.15. Note that this 165 

value is for the whole orbit which includes a wide range of SCDs. As shown in Supplementary 166 

Figure 1, the relative SCD uncertainty is >1.2 for SCD = 0 – 10 mm, drops to about 0.4 for SCD 167 

= 10 – 20 mm, and to about 0.1 for SCD > 40 mm. 168 

      The AMF is calculated by convolving scattering weights with the shape of water vapor 169 

vertical profile (González Abad et al., 2015). The scattering weight is interpolated from the same 170 

look-up table as that used in Wang et al. (2016). The scene specific information used in the AMF 171 

calculation is listed in Table 2. By propagating typical errors for surface albedo (15%), cloud 172 

fraction (10%) and cloud top pressure (15%), we find that the AMF error for a typical orbit 173 

(number 10426) is mostly < 3%, though for cloudy pixels over land, the AMF error can be up to 174 

15%. Version 4.0 uses the 0.5°×0.667° monthly mean MERRA-2 water vapor profile (Gelaro et 175 

al., 2017) for the month and year corresponding to the retrieval, while previous versions used the 176 

monthly mean of 2007 for all years. To evaluate the error associated with gas profiles, we 177 

compare the TCWV calculated using the daily MERRA-2 profile against that calculated using 178 

the monthly MERRA-2 profile for July 2006 (for TCWV within the 0 – 75 mm range). Results 179 

show that TCWV(daily) – TCWV(monthly) has a mean (median) of 0.3 mm (0 mm) with a 180 

standard deviation of 5.0 mm. When comparing the TCWV calculated using the daily MERRA-2 181 

profile against that calculated using the daily ERA-Interim profile for July 2006, we find that 182 
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TCWV(MERRA-2) – TCWV(ERA-Interim) has a mean (median) of -0.1 mm (0 mm) with a 183 

standard deviation of 2.8 mm. Thus, gas profiles can introduce substantial scatter to the retrieved 184 

TCWV. AMF is highly sensitive to clouds (Wang et al., 2014; Vasilkov et al., 2017). Version 4.0 185 

uses the cloud information from Veefkind et al. (2016). The primary difference with the Acarreta 186 

et al. (2004) cloud product used in Version 1.0 and 2.1 is in the cloud top pressure for cloud 187 

fraction f < 0.3. In addition to the factors in Table 2, aerosol and surface bi-directional 188 

reflectance distribution function (BRDF) influence the AMF (Lorente et al., 2017; Vasilkov et 189 

al., 2017), but have not been considered in the retrieval yet.    190 

Table 2. Parameters used in AMF calculation 191 

Solar Zenith Angle OMI L1B data 
View Zenith Angle 
Relative Azimuth Angle 
Surface Albedo OMLER (Lambert equivalent reflectance) Kleipool, et al. 

(2008) 
Cloud fraction OMCLDO2 (derived from O2-O2) Veefkind et al. (2016) 
Cloud top pressure 
Surface pressure MERRA-2 monthly data (0.5°×0.667°), Gelaro et al. (2017) 
Water vapor profile 

        192 

3 Validation 193 

      To validate the Version 4.0 OMI TCWV data, we compare them against two commonly used 194 

reference datasets – a GPS network dataset for land and a microwave dataset for the oceans. 195 

3.1 OMI and GPS over land 196 

      To assess the Version 4.0 OMI TCWV over land, we compare against the GPS network data 197 

downloaded from NCAR (rda.ucar.edu/datasets/ds721.1). The GPS data are composed of 2-198 

hourly TCWV at International GNSS Service (IGS), SuomiNet and GEONET stations, and have 199 

an estimated error of < 1.5 mm (Wang et al., 2007; Ning et al., 2016). The subset of IGS-200 

SuomiNet data for the whole year of 2006 is used in this paper. The geographical distribution of 201 

the stations can be found in Wang et al. (2016). Most of the stations are concentrated in North 202 

America and Europe, fewer are scattered on other continents. 203 

      OMI TCWV data are filtered using the following criteria. The stripes in Level 2 swaths due 204 

to systematic instrument error are removed using the SCD scaling procedure described in Wang 205 
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et al. (2016). The pixels affected by OMI’s row anomaly are filtered out 206 

(projects.knmi.nl/omi/research/product/rowanomaly-background.php), as well as unphysical 207 

negative or extremely large (i.e., TCWV > 75 mm) values. For the clear-sky comparison in 208 

Figure 3, we require cloud fraction < 5% and cloud top pressure > 750 mb, in addition to 209 

MDQFL = 0 and fitting RMS < 0.001. The cloud fraction and cloud top pressure are from the 210 

OMCLDO2 cloud product (Veefkind et al., 2016) and are included in the Level 2 OMI product 211 

for ease of data filtering. On a typical day of (July 1, 2006), among the OMI data that pass the 212 

MDQFL and TCWV range test, cloud fraction < 0.05 accounts for 35% of the data, cloud top 213 

pressure > 750 mb accounts for 53% of the data and RMS < 0.001 accounts for 72% of the data. 214 

      To co-locate GPS and OMI data, we select the GPS data observed between 1200 LT and 215 

1500LT. This 3-hour local time range covers the OMI overpass time. We average the qualified 216 

OMI data within 0.25° longitude × 0.25° latitude of the GPS stations for each day. To minimize 217 

the influence of local topography (e.g., mountain peaks, river valleys), if a station’s elevation is 218 

more than 250 m different than the mean elevation within the corresponding 0.25°×0.25° grid 219 

square, then it is excluded from the analysis. The 0.25°×0.25° topography was downloaded from 220 

www.temis.nl/data/topo/dem2grid.html. The comparison between OMI and GPS is made for 221 

TCWV within the range of 0 – 75 mm as the largest TCWV for the GPS data is about 75 mm. 222 

The co-locating procedure leads to about 11,000 co-located data points for the entire year of 223 

2006.  224 

      Figure 2 shows the comparison between the resulting co-located GPS and Version 4 OMI 225 

TCWV. The top panel shows the histogram of OMI-GPS (in 0.5 mm bins). The bin from -0.5 to 226 

0.0 mm corresponds to the peak of the distribution. The overall mean (median) of OMI-GPS is 227 

0.32 mm (0.35 mm), with a standard deviation of 5.2 mm. The mean (median) absolute error is 228 

3.9 mm (3.0 mm). 229 

      The bottom panel of Figure 2 shows the joint distribution of the co-located GPS and Version 230 

4.0 OMI data. The count for each 0.5 mm bin is normalized by the maximum of all bins. About 231 

34% of the data have TCWV < 10 mm, 72% have TCWV < 20 mm and 90% have TCWV < 30 232 

mm. There is a general linear correlation between GPS and OMI data, with a correlation 233 

coefficient of r = 0.87 (R2 = 0.76). The linear regression line (OMI = 2.22 + 0.88 * GPS, where 234 

OMI and GPS TCWV are in mm) has a significant positive intercept and a slope that is less than 235 
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one. This indicates a positive bias of OMI against GPS for small TCWV and a negative bias for 236 

large TCWV. Indeed, as indicated at the top of the panel, the mean of OMI-GPS for each 10 mm 237 

GPS TCWV bin decreases from 1.7 mm for TCWV = 0 – 10 mm to -2.3 mm for TCWV = 40 – 238 

50 mm, though the fraction of data for TCWV > 40 mm is < 3%. The corresponding standard 239 

deviation (σ) increases from 3.5 mm to 7.9 mm. The minimum bias of 0.2 mm occurs for TCWV 240 

in the 10 – 20 mm bin. The large positive bias of the 0 – 10 mm bin (as compared with the 241 

TCWV of the bin) has significant adverse effect on the regression line. For TCWV > 10 mm, the 242 

regression line (OMI = 1.51 + 0.91 × GPS) is better. 243 

      In comparison, although Version 3.0 OMI is similarly correlated with GPS (correlation 244 

coefficient r = 0.86), it has a much larger positive bias of 2.8 mm (with a standard deviation of 245 

5.5 mm). The large bias is attributed to the much larger SCD of Version 3.0 (Supplementary 246 

Figure 2b), as the AMFs of both versions roughly follow the 1:1 line (Supplementary Figure 2a). 247 

Sensitivity tests show that the larger Version 3.0 SCD is primary due to the water vapor 248 

reference spectrum. If the water vapor reference spectrum in Version 4.0 is replaced with that of 249 

Version 3.0 (Test 1), then the median SCD increases by about 4.5 mm for Orbit 10423 250 

(Supplementary Figure 2c). Modifying the retrieval window for Version 3.0 cannot sufficiently 251 

reduce the retrieved SCD, therefore cannot make significantly better agreement with the 252 

reference TCWV data. As Version 4.0 shows better performance, this paper focuses on 253 

characterizing Version 4.0 to provide useful information to potential users. In subsequent 254 

discussions, OMI data refer to Version 4.0 unless specified otherwise. 255 

 256 
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 257 

Figure 2. Comparison between co-located GPS and OMI TCWV (mm) for all days in 2006. The 258 

data filtering criteria include cloud fraction < 5%, cloud top pressure > 750 mb, and others 259 

discussed in the text. (Top) Relative frequency of occurrence for OMI-GPS (mm). (Bottom) 260 

Normalized joint distribution of GPS versus OMI TCWV (mm). The three lines of text from top 261 

to bottom indicate the percentage of data points (1st), the mean of OMI-GPS in mm (2nd), and 262 

the standard deviation of OMI-GPS in mm (3rd) for each 10 mm GPS TCWV, respectively. The 263 

1:1 is plotted for reference. 264 

 265 
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      OMI TCWV retrieval is highly sensitive to clouds (Wang et al., 2014).  In Figure 3, we 266 

examine the effect of OMI cloud fraction threshold (f) on the comparison while keeping other 267 

data filtering criteria the same as those for Figure 2 (i.e., cloud fraction < f, cloud top pressure < 268 

750 mb, MDQFL = 0, fitting RMS < 0.001 and 0 < TCWV<75 mm). From f = 0.05 to f = 0.55, 269 

the number of co-located data pairs (N) more than triples, the mean of OMI-GPS increases from 270 

0.32 mm to 1.66 mm, the standard deviation of OMI-GPS increases from 5.2 mm to 6.1 mm. The 271 

linear correlation coefficient (r) increases from r = 0.87 at f = 0.05 to r ~ 0.90 at f = 0.15, then 272 

levels off for larger cloud fraction thresholds. It should be noted that the error in cloud top 273 

pressure decreases with cloud fraction in the OMCLDO2 product (Veefkind et al., 2016). As a 274 

result, f = 0.05 corresponds to the largest uncertainty in cloud top pressure, and the error will 275 

propagate into OMI TCWV through AMF, leading to smaller correlation coefficient than those 276 

for larger f values.     277 

      In addition, as shown by the GPS versus OMI joint distributions for different cloud fraction 278 

thresholds in Figure 4, the f ≥ 0.15 cases have larger effective dynamical ranges which tend to 279 

favor better correlations. For example, there is a larger fraction of data pairs with TCWV > 30 280 

mm for f = 0.15 than for f = 0.05. The regression line for f = 0.15 (OMI = 1.26 + 0.96 * GPS) 281 

shows an apparent improvement over that for f = 0.05 (OMI = 2.22 + 0.88*GPS). The best 282 

regression line is arguably that for f = 0.25 (OMI = 1.16 + 0.99*GPS) or f = 0.35 (OMI = 1.19 + 283 

1.00*GPS), though the mean bias and scatter are larger than those for f < 0.25 (Figure 4).   284 

      In brief, f = 0.05 leads to the lowest overall bias and scatter of the co-located data; f = 0.15 285 

doubles the number of co-located data pairs and leads to the largest improvement in the 286 

correlation coefficient; f = 0.25 (or 0.35) leads to the best linear regression line; the bias and 287 

standard deviation increase with cloud fraction threshold. Hence, cloud fraction thresholds in the 288 

range of f = 0.05 – 0.25 seems reasonable for filtering OMI TCWV, depending on applications.  289 
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 290 

Figure 3. Dependence of various parameters on the cloud fraction threshold (f) used for filtering 291 

OMI data. Other filtering criteria remain the same as those for Figure 2. The parameters are (a) 292 

number of co-located OMI and GPS data pairs; (b) linear correlation coefficient between OMI 293 

and GPS TCWV; (c) mean of OMI-GPS in mm; (d) standard deviation of OMI-GPS in mm. 294 

Results are derived from the co-located Version 4.0 OMI and GPS data for the whole year of 295 

2006. 296 
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 297 

Figure 4. Normalized joint distributions of GPS versus Version 4.0 OMI TCWV for different 298 

cloud fraction thresholds. Results are derived from the co-located data pairs for 2006. The OMI 299 

data filtering criteria are the same as those for Figure 3. In each panel, the 1:1 line is plotted in 300 

black, the linear regression line is plotted in gray and indicated by the formula in the lower right 301 

corner. 302 

      To further characterize the effect of cloud fraction threshold on the comparison between GPS 303 

and OMI, in Figure 5, we examine the mean and standard deviation (σ) of OMI-GPS for each 10 304 

mm GPS TCWV bin. The results are derived from the same sets of co-located GPS and OMI 305 
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data as those used in Figure 3 and Figure 4. The filled symbols are for the cases where the 306 

number of GPS and OMI data pairs within the corresponding TCWV bin is > 1% of the total 307 

number of data pairs, and the open symbols are for < 1%. As the filled symbols represent better 308 

statistics, we will focus on them below.  309 

 310 

Figure 5. Parameters for each 10 mm TCWV bin. Curves with different colors are for different 311 

cloud fraction thresholds (f) as indicated in Panel (b). The OMI filtering criteria remain the same 312 

as those for Figure 3 and 4. Symbols are filled if the fraction of data pairs within the TCWV 313 

interval is > 1% of all the available data pairs, and are open otherwise. The parameters are (a) 314 

mean of OMI-GPS in mm, (b) relative bias defined as (OMI-GPS)/GPS, (c) standard deviation 315 

(σ) of OMI-GPS in mm, and (d) relative scatter defined as σ/GPS. Results are for all days in 316 

2006. Dashed lines are meant to facilitate visualization. 317 

 318 

      Figure 5(a) shows that the means of OMI-GPS vary between ±4 mm following “V”-shaped 319 

curves whose minima occur in the TCWV = 20 – 30 mm bin except for f = 0.05. The curves shift 320 

upward with increasing cloud fraction thresholds, suggesting that OMI cloudy-sky TCWV is 321 

generally larger than OMI clear-sky TCWV. Other things being equal, cloud formation indicates 322 
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water vapor saturation and therefore a larger amount of TCWV than that under clear-sky 323 

condition. The smallest absolute bias for 10 < TCWV < 20 mm occurs at f = 0.05, that for 20 < 324 

TCWV < 30 mm occurs at f = 0.25, and that for 30 < TCWV < 40 mm occurs at f = 0.15. The f = 325 

0.15 and f = 0.25 curves show the best overall performance according to Figure 5(a) as they are 326 

within 1 mm of zero for 10<TCWV<40 mm, while other curves come within 1 mm of zero in 327 

narrower TCWV ranges. Figure 5(b) shows the relative bias which is defined as the mean of 328 

(OMI-GPS)/GPS. The relative biases decrease sharply from ~40% to ~5% as GPS TCWV 329 

increases from the TCWV = 0 – 10 mm bin to the TCWV = 10 – 20 mm bin, and generally stay 330 

less than ~5 – 10 % for larger TCWV values. Figure 5(c) shows that σ increases from ~3.5 mm 331 

for TCWV = 0 - 10 mm to ~9.5 mm for TCWV = 40 - 50 mm (the percentage of data with 332 

TCWV > 50 mm is very small). In most cases, larger cloud fraction thresholds correspond to 333 

larger σ values. This is consistent with the larger dynamical range (due to a larger fraction of 334 

data with high TCWV) for larger cloud fraction threshold (Figure 4). In fact, the relative scatter, 335 

defined as the mean of σ/TCWV, shows little difference among the f values (Figure 5d). The 336 

relative scatter decreases with TCWV, with the sharpest decrease from ~0.7 to ~0.3 between 337 

TCWV = 0 – 10 mm and TCWV = 10 – 20 mm (Figure 5d).  338 

      In short, Version 4.0 OMI agrees with GPS within 1 mm for 10<TCWV<40 mm when f = 339 

0.15 and f = 0.25 are used; when f = 0.05 is used, the bias and scatter are the smallest for 340 

10<TCWV<20 mm; but, for TCWV < 10 mm, OMI TCWV is too high and has large relative 341 

scatter. The latter is expected from the low signal-to-noise ratio when TCWV < 10 mm in the 342 

OMI retrieval.  343 

3.2 OMI and SSMIS over ocean 344 

      To evaluate Version 4.0 OMI TCWV over the oceans, we compare against the microwave 345 

TCWV data from SSMIS on board the Defense Meteorological Satellite Program (DMSP)’s F16 346 

satellite. The SSMIS data are derived by Remote Sensing Systems (RSS) using their Version 7 347 

algorithm (www.remss.com) and have a retrieval accuracy of better than 1 mm (Wentz, 1997; 348 

Mears et al., 2015). For clear-sky comparison, we use the daily 0.25°×0.25° SSMIS data for 349 

January and July 2006 and filter out the pixels affected by rain and cloud liquid water. Diedrich 350 

et al. (2016) found that the diurnal cycle in TCWV is generally within 1% to 5% of the daily 351 

mean, with a minimum between 0600 LT and 1000 LT and a maximum between 1600 LT and 352 
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2000 LT, though larger diurnal cycle exist for special cases. To reduce the influence of diurnal 353 

cycle, we average the SSMIS data for the ascending and descending orbits of F16 (~2000 LT and 354 

0800 LT in 2006). 355 

      We generate daily 0.25°×0.25° Level 3 OMI TCWV from the de-striped Level 2 OMI 356 

swaths, with the requirement that MDQFL = 0, fitting RMS < 0.001, 0<TCWV<75 mm, cloud 357 

fraction < 0.05, and cloud top pressure > 750 mb. There are typically 15 Level 2 swaths per day. 358 

The gridding program uses a tessellation method that weighs the contribution of a Level 2 data 359 

point by its area within the Level 3 grid square and its spectrum fitting uncertainty (Wang et al., 360 

2014, 2016). The filtered daily Level 3 SSMIS and OMI data are compared for each month. We 361 

find 548,223 and 847,678 co-located data pairs for January and July 2006, respectively.       362 

 363 

Figure 6. Comparisons between Version 4.0 OMI and SSMIS over the oceans for (top) January 364 

2006 and (bottom) July 2006. Panels in the left column show the relative occurrence frequency 365 

of OMI-SSMIS (mm). Panels in the right column show the normalized joint distribution of 366 

SSMIS versus OMI TCWV (mm).  367 

 368 
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      The left column of Figure 6 shows the distribution of OMI-SSMIS for January and July 369 

2006. For July, the mean of OMI-SSMIS is 1.1 mm with a standard deviation of 6.8 mm, the 370 

mean absolute error |OMI-SSMIS| is 5.2 mm; for January, the mean error, standard deviation and 371 

mean absolute error are 0.4 mm, 6.5 mm and 5.0 mm, respectively. This suggests a slightly better 372 

agreement for January than for July. In comparison with the (OMI-GPS) over land (Section 3.1), 373 

OMI-SSMIS over the oceans has somewhat larger bias and standard deviation. However, as 374 

TCWV over the oceans are generally larger than that over land (compare Figure 6 with Figure 375 

2), the relative bias and scatter are actually similar.   376 

      The right column of Figure 6 shows the normalized joint distribution of SSMIS versus OMI 377 

for January and July 2006. The correlation coefficients are r = 0.84 and 0.82 for January and 378 

July, respectively. For January, OMI-SSMIS remains within 0.6 mm of zero for TCWV in the 10 379 

– 40 mm range, but is 1.5 mm for TCWV in the 0 – 10 mm range (only a small fraction of data 380 

pairs have TCWV > 40 mm); for July, OMI-GPS is 0.8 mm for the TCWV = 20 – 30 mm bin, 381 

and varies between 0.8 and 1.4 mm for TCWV in the 10 – 50 mm range (only a small fraction of 382 

data pairs have TCWV < 10 mm or > 50 mm). For TCWV bins that have > 5% of the data pairs, 383 

the standard deviation of OMI-SSMIS vary between 4.1 and 8.1 mm. Overall, Version 4.0 OMI 384 

data compare reasonably well with SSMIS data for TCWV in the 10 – 40 mm range, with the 385 

smallest bias occurring in the TCWV = 20 – 30 mm bin.  386 

      The agreement between Version 4.0 OMI with SSMIS is better than that between Version 3.0 387 

OMI and SSMIS. For July 2007, using the same data filtering criteria as before, we find that 388 

Version 3.0 OMI – SSMIS has a mean of 3.2 mm with a standard deviation of 7.8 mm. The bias 389 

is  much larger than that for Version 4.0 OMI – SSMIS. Again, this is because of the much larger 390 

SCD of Version 3.0 OMI TCWV due to the water vapor reference spectrum (Supplementary 391 

Figure 1). 392 

      Table 3 shows the effect of cloud fraction threshold (f) on the comparison between SSMIS 393 

and Version 4.0 OMI TCWV. The comparisons are performed using daily filtered Level 3 data 394 

for July 2006. For SSMIS, we filter out pixels affected by rain. This is less restrictive than that 395 

used for Figure 6 as pixels with cloud liquid water are kept here. For OMI, we require MDQFL = 396 

0, RMS < 0.001, 0 < TCWV < 75 mm, cloud top pressure > 750 mb and cloud fraction < f. 397 

Results show that OMI is higher than SSMIS by 0.02 – 3.07 mm for f = 0.05 – 0.45. The 398 
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difference between the f = 0.05 case of Table 3 and the f = 0.05 case of Figure 6 is due to the 399 

relaxed SSMIS filtering criteria. The closest agreement in terms of the mean and standard 400 

deviation of OMI-SSMIS occurs when f = 0.05. The number of SSMIS and OMI data pairs more 401 

than doubles between f = 0.05 and f = 0.15. The linear correlation coefficient varies between  402 

0.82 and 0.85 within the range of f values considered. The best linear regression line (OMI = 403 

0.70 + 1.02 * SSMIS) occurs when f = 0.15. Therefore, for OMI over the oceans, we recommend 404 

using cloud fraction threshold f = 0.05 – 0.15, in combination with the other usual data filtering 405 

criteria, though users are advised to make their own decisions based on their tolerance and 406 

applications. 407 

Table 3. Effect of cloud fraction threshold on the comparison between SSMIS and Version 4.0 408 

OMI TCWV for July 2006. f: OMI cloud fraction threshold; N: number of qualifying data pairs; 409 

P: Percentage of qualifying data pairs with respect to the total number of qualifying SSMIS data 410 

points; Mean: mean of OMI-SSMIS in mm; σ: standard deviation of OMI-SSMIS in mm; MAE: 411 

Mean absolute error |OMI-SSMIS| in mm; r: correlation coefficient between SSMIS and OMI; 412 

R2: coefficient of determination for linear regression OMI = b + k * SSMIS, where OMI and 413 

SSMIS are in mm; b: Intercept of linear regression; k: slope of linear regression. 414 

f N P (%) Mean σ MAE r R2 b k 
0.05 1,048,879 7.4 0.02 7.11 5.39 0.82 0.67 1.43 0.95 
0.15 2,837,032 20.0 1.38 7.82 5.84 0.84 0.71 0.70 1.02 
0.25 3,932,468 27.8 2.20 8.09 6.09 0.84 0.71 1.11 1.04 
0.35 4,819,185 34.0 2.73 8.22 6.24 0.85 0.72 1.45 1.05 
0.45 5,537,003 39.1 3.07 8.26 6.32 0.85 0.72 1.62 1.06 

   415 

      Lowering the value for cloud top pressure threshold also leads to larger bias and scatter. For 416 

example, when cloud fraction threshold f = 0.05 and cloud top pressure > 500 mb are used, the 417 

mean and standard deviation of OMI-SSMIS become 0.80 mm and 7.9 mm, both are larger than 418 

those for f = 0.05 in Table 3, though the linear regression line improves to OMI = 0.63 + 1.01 * 419 

RSS due to an increase in the dynamical range of TCWV. It should be noted that the OMCLDO2 420 

cloud product shows good agreement with ground-based observations for clouds at altitudes 421 

lower than 2.5 km where single cloud layers dominate, but shows significant bias and large 422 

scatter for clouds at altitudes higher than 2.5 km where multi-layer clouds dominate (Veefkind et 423 
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al., 2016). Thus, OMI TCWV data corresponding to low cloud top pressure (high altitude) 424 

should be used with caution. Relaxing the filtering criteria for both cloud fraction and cloud top 425 

pressure will lead to larger bias and scatter, therefore, it is not recommended. As an example, for 426 

cloud fraction < 0.15 and cloud top pressure > 300 mb, the mean (standard deviation) of OMI-427 

SSMIS becomes 2.8 mm (9.0 mm) for July 2006.        428 

4 Application 429 

4.1 El Niño / La Niña 430 

      In Figure 7, we examine the signals associated with El Niño and La Niña in Version 4.0 OMI 431 

TCWV. Panel (a) shows the Multivariate ENSO Index (MEI) from NOAA (Wolter and Timlin, 432 

1998) (https://www.esrl.noaa.gov/psd/enso/mei/). Positive (negative) values correspond to El 433 

Niño (La Niña) conditions. We examine the anomalies in TCWV for July 2010 (MEI = -1.103, 434 

La Niña) and July 2015 (MEI = 1.981, El Niño) in the bottom row. Although these events are 435 

strong within the OMI record (from 2005 to the present), they are mild in comparison with the 436 

extrema. Between 1950 and 2018, the maximum MEI is 3.008 (in March 1983) and the 437 

minimum MEI is -2.247 (in June 1955).   438 

 439 
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 440 

Figure 7. Top row: (a) Multivariate ENSO Index. Dashed vertical lines indicate July 2010 and 441 

July 2015; (b) TCWV (mm) climatology for July derived from Version 4.0 OMI data. Bottom 442 

row: TCWV anomaly (mm) with respect to the climatology for (c) July 2010 and (d) July 2015.  443 

 444 

      To examine the changes in OMI TCWV under different conditions, we first generate the 445 

monthly Level 3 (0.5°×0.5°) OMI TCWV using the Level 2 data for July 2005 and July 2015 446 

using the method described in Section 3.2 (with a cloud fraction threshold of f = 0.15 and a cloud 447 

top pressure threshold of 750 mb). Then, using the same data filtering criteria, we derive the 448 

climatology for July using all the Level 2 July data between 2005 and 2015 (Figure 7b). Finally, 449 

we plot the deviations from the climatology (mm) for July 2010 and July 2015 in Figure 7(c) and 450 

7(d), respectively. 451 

     The TCWV anomalies exhibit large-scale patterns. The pattern for July 2015 largely opposes 452 

that for July 2010. Particularly, in July 2015 under El Niño conditions, TCWV are higher in the 453 

equatorial central and eastern Pacific and lower in the Indonesia region; while in July 2010 under 454 

La Niña conditions, TCWV are lower in the tropical eastern Pacific and equatorial western 455 
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Pacific and higher in Indonesia and the Indian Ocean. The overall patterns largely conform to the 456 

results derived from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data 457 

(HOAPS) data (Shi et al., 2018). The HOAPS climatology is derived from a longer time series 458 

(1998-2014), which may be among the reasons for the differences in details between the results.  459 

4.2 Corn Sweat 460 

      “Corn sweat” refers to a hot and humid condition associated with heat waves which results in 461 

large evapotranspiration rate in the Midwestern United States where cropland is often the 462 

dominant land usage type. Besides evaporation, transpiration by plants, such as corn, draws 463 

water from the soil to the atmosphere, enhancing the humidity and increasing the heat index. A 464 

corn sweat event from July 18 to July 24 in 2016 made news in the US. This event is examined 465 

in Figure 8 using the Version 4.0 OMI TCWV.  466 

      Figure 8 (a) and 8(b) show the Level 3 (0.25°×0.25°) OMI TCWV for July 18 - July 24 467 

 (7-day) and June 1 – August 31 (JJA) in 2016, respectively. The 7-day period corresponds to the 468 

corn sweat event. The 0.25°×0.25° Level 3 data are derived using the same filtering criteria as 469 

those used for Figure 7. Figure 8(c) indicates the anomaly associated with the corn sweat event 470 

relative to the JJA mean. High TCWV is observed for the 7-day period from the Gulf coast to the 471 

Midwestern US. Besides the Gulf region, the largest TCWV enhancements (of up to 18+ mm) 472 

occur in parts of Iowa (IA), Missouri (MO), Illinois (IL) and Indiana (IN). Elevated TCWV is 473 

also observed by several GPS stations in the general area during the same time period, though 474 

coincident OMI data are not found at the stations (Supplementary Figure 3). At a few stations, 475 

high TCWV persisted a couple more days after July 24 which is most likely related to a change 476 

in the weather. As shown by the surface pressure observations at the GPS stations, the Midwest 477 

is under the control of a high-pressure system during the corn sweat period and a low-pressure 478 

system afterwards (Supplementary Figure 4).  479 

 480 
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 481 

Figure 8. Level 3 (0.25°×0.25°) OMI TCWV (mm) generated using the Level 2 data during (a) 482 

July 18 - July 24, 2016 and (b) June 1 - August 31, 2016. (c) The difference of (a) - (b) in mm. 483 

The abbreviations for the states most affected by the event are indicated in the map. 484 

 485 

      To assess the significance of evapotranspiration for the Midwestern US during the corn sweat 486 

event, we carried out a sensitivity study using the Weather Research and Forecasting (WRF) 487 

model v3.9.1 (Skamarock et al., 2008). The model was run on a 36-km parent domain and a 12-488 

km nested domain, covering the relevant areas of the US. The physics parameterizations 489 
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included the WRF Single-Moment (WSM) 6-Class Microphysics (Hong and Lim, 2006), the 490 

Kain-Fritsch (KF) subgrid cumulus parameterization (Kain, 2004), the Yonsei University (YSU) 491 

planetary boundary layer scheme (Hong et al., 2006), the Noah Land-Surface Model (Ek et al., 492 

2003; Chen and Dudhia, 2001), and the Rapid Radiative Transfer Model (RRTM). Horizontal 493 

turbulent diffusion was based on the standard Smagorinsky first-order closure. The initial and 494 

lateral boundary conditions were from the 3-hourly NCEP North American Regional Reanalysis 495 

(NARR) at 32-km resolution. To reduce the uncertainty associated with lateral boundary 496 

condition for the nested domain, we nudged the model in the parent domain toward the 497 

reanalysis, but left the nested domain running freely.  498 

      To diagnose the contribution of evapotranspiration, the model was run from July 19th to July 499 

22nd of 2016 with and without evapotranspiration (calculated in the Noah Land-Surface model). 500 

The results for July 21st are shown in Figure 9. TCWV is generally lower in the interior of the 501 

domain for the run without evapotranspiration (No ET). The higher TCWV in the No ET run 502 

near the southern boundary reflects non-linear water vapor transport from the Gulf region. 503 

Turning off evapotranspiration not only directly affects the water vapor flux from the surface but 504 

also indirectly influences other meteorological variables, such as winds. Thus, there is a 505 

difference in the water vapor flux across the domain boundary. The difference between the 506 

default and No ET runs in Figure 9 suggests that evapotranspiration contributes about 15 – 25% 507 

of the TCWV in the Midwestern US during the corn sweat event. A detailed study incorporating 508 

TCWV data with the WRF model will be carried out in future work.   509 

 510 
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Figure 9. WRF simulations of TCWV (mm) for Midwestern US on 07/21/2016 for the run (a) 511 

with and (b) without evapotranspiration. 512 

 513 

4.3 Atmospheric River (AR) 514 

4.3.1 An Intense AR in OMI data 515 

      ARs are narrow elongated bands with high TCWV in the atmosphere. With flow rates similar 516 

to those of large rivers, ARs are highly important in the global hydrological cycle (Zhu and 517 

Newell, 1998). Land-falling ARs can lead to heavy orographic precipitation that affects areas 518 

such as the west coast of North America and Europe (Gimeno et al., 2014; Neiman et al., 2008b).  519 

      The extreme AR of November 6th – 7th, 2006 brought devastating flood to the Pacific 520 

Northwest – the region in western North America bounded by the Pacific to the west and the 521 

Cascade mountain range to the east. This AR is described in detail in Neiman et al., 2008a. The 522 

signature of this AR is captured in the Version 4.0 OMI TCWV data. The left column of Figure 523 

10 shows the Level 3 OMI TCWV and its anomaly on November 6th, 2006. The Level 3 data are 524 

generated following the same procedure as that used for Figure 8. Although many pixels are 525 

missing because of the cloud filtering (cloud top pressure > 750 mb, cloud fraction < 0.15) and 526 

other criteria, the leading edge of the AR is noticeable as an elongated band of high TCWV (15+ 527 

mm above the climatology) extending from Hawaii to Northern California (indicated by arrows 528 

in Figure 7(b) and 7(c)). The position of the AR in OMI TCWV agrees well with that in Special 529 

Sensor Microwave/Imager (SSM/I) microwave observation (Neiman et al., 2008a).  530 

      The right column of Figure 10 shows the Level 3 OMI ozone mixing ratio interpolated to 200 531 

mb and its anomaly. The OMI ozone data are retrieved using the SAO ozone profile algorithm 532 

(Liu et al., 2010; Huang et al., 2017, 2018). The climatology is derived by averaging all monthly 533 

Level 3 data for November from 2004 to 2017. The global distribution of ozone at 200 mb shows 534 

low mixing ratio in the low latitudes and high mixing ratio in the high latitudes, opposite to the 535 

global distribution of TCWV. The anomaly shows a curvilinear band of high ozone that is 536 

parallel to the AR in the left column, but is located further to the west. This feature indicates 537 

intrusion of ozone rich stratospheric air along the polar front, and is associated with the same 538 

extra-tropical cyclone as the AR is.  539 
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 540 

Figure 10. The Level 3 (top row) climatology, (middle row) data on November 6th, 2016 and 541 

(bottom row) anomaly on November 6th, 2016 with respect to the climatology for (left column) 542 

Version 4.0 OMI TCWV (mm, 0.5°×0.5°) and (right column) OMI ozone mixing ratio (ppb, 543 

1°×1°) interpolated to 200 mb. 544 

 545 

4.3.2 OMI Data Assimilation for the AR 546 

      To evaluate the potential of OMI water vapor data to improve numerical weather forecasts, 547 

we conducted a data assimilation experiment from November 2nd to November 8th of 2016 using 548 

WRF v3.9.1 and Version 4.0 OMI TCWV. The model was configured with a 27-km (290×270 549 
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surface grid points with 51 vertical levels), a 9-km (586×586×51 points) and a 3-km 550 

(541×526×51) nested domains in a Lambert projection over the relevant portion of the Pacific 551 

and North America (Figure 11 top left). The domains are designed for the November 6 AR event 552 

and its associated precipitation at landfall. The model has the same physics parameterizations as 553 

those used in Section 4.2 except that a more sophisticated double-moment microphysics scheme 554 

is used in the 3-km nest for quantifying precipitation. The initial and boundary conditions for the 555 

27-km domain were from the 1°×1° NCEP FNL reanalysis. One-way nesting is used for the 556 

inner domains. To evaluate the model’s skill at simulating the AR and the contribution of OMI 557 

TCWV to the quality of the simulation, we did not nudge the run towards the reanalysis, nor 558 

assimilate the observed sea surface temperature within the computational domains. 559 

      The OMI TCWV is assimilated into the model using analytical optimal estimation (Rodgers, 560 

2000). This method minimizes the cost function 𝐽ሺ𝒙ሻ ൌ ሺ𝐲 െ 𝐻𝒙ሻ்𝐄ିଵሺ𝐲 െ 𝐻𝒙ሻ 561 

ሺ𝒙 െ 𝒙ሻ்𝐁ିଵሺ𝒙 െ 𝒙ሻ, where x is the true TCWV, xb is the a priori TCWV (from the model), y 562 

is the observed TCWV, H represents the model Jacobian, B and E are the error covariance 563 

matrices of the a priori and observation. B is estimated using the 12-hour and 24-hour forecasts 564 

using the National Meteorological Center method (Parrish and Derber, 1992). E is based on the 565 

fitting uncertainties of OMI data.  566 

      The a posteriori analysis (𝒙ෝ) can be obtained from 𝒙ෝ ൌ 𝒙  𝐊ሺ𝐲 െ 𝐻𝐱ሻ, where 𝐊 ൌ567 

𝐁𝐻்ሺ𝐻𝐁𝐻் 𝑊ିଵ𝐄ሻିଵ is the Kalman gain, 𝑊 ൌ ሺோమିమሻ

ሺோమାమሻ
 is the Cressman function to weigh the 568 

observations based on their Euclidian distance r to the model grids, and R is the influence radius 569 

of the observations. We simply assume R to be 1o, 0.5o and 0.25o for the 27-km, 9-km and 3-km 570 

domain to get a quick look at the results in this paper and leave a more vigorous quantification of 571 

R to future work.  The a posteriori TCWV is solved hourly when OMI data are available and is 572 

used to initialize the next simulation window.  573 

      During the assimilation, we adjust the OMI data using the AMF calculated with the modeled 574 

water vapor profile (𝑂𝑀𝐼௦௧௧
ௗ௨௦௧ௗ ൌ ைெூೞೌൈெிೞೌ

ெி
) and the scattering weights provided 575 

with the Level 2 OMI data. This can reduce the observational error associated with using the 576 

monthly mean water vapor profile in the operational OMI product. The standard deviation of the 577 

difference between AMFsatellite and AMFmodel is about 20%.  578 
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 579 

Figure 11. Top left: WRF model domain configuration for the November 2016 AR event. Top 580 

right: TCWV observed by SSM/I on November 6th, 2016. Bottom row: TCWV simulated by 581 

WRF on November 6th, 2016 (left) without and (right) with OMI data assimilation. Gray color 582 

indicates area with no SSM/I data. 583 

 584 

      Figure 11 shows the zoomed-in views of the AR on November 6th, 2016. The TCWV 585 

independently observed by SSM/I is shown in the upper right panel. The lower left and lower 586 

right panels show the model results without and with OMI TCWV assimilation. The model 587 

without assimilation shows an AR that is split into two parallel filaments making landfall at 588 

separate locations on the west coast of North America, where the TCWV is too high compared to 589 

the SSM/I observation, especially for the southern filament. As discussed later, this has a 590 

significant impact on precipitation (Figure 12). After assimilating OMI TCWV, the modeled 591 
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TCWV agrees much better with the SSM/I observation. The spurious southern filament 592 

disappeared, the overall shape and magnitude of the AR are significantly improved.  593 

      The location and intensity of precipitation over land are crucial for local flood control and 594 

water management, and are closely related to the shape and strength of AR at landfall. The 24-595 

hour accumulated precipitation on November 6 in the 3-km domain is examined in Figure 12. 596 

The model output is coarsened to 0.25°×0.25° to match the resolution of the Tropical Rainfall 597 

Measuring Mission (TRMM) observation product. The model without OMI data assimilation 598 

produces spurious rainfall over the Oregon - California border (box A) as a result of the 599 

erroneously strong southern filament of the simulated AR (Figure 11, lower left panel). This 600 

artifact was removed after OMI data assimilation, showing better agreement with the 601 

corresponding TRMM rainfall observation. The difference in rainfall between the assimilation 602 

and observation in the Oregon / Washington area is probably related to both the model error and 603 

the data error, as well as the data density and distribution. A detailed error attribution for 604 

precipitation is beyond the scope of this paper.   605 

 606 

Figure 12. The simulated rainfall accumulated from 0000 UTC to 2300 UTC (in mm) on 607 

November 6, 2006 for the model (left) without and (middle) with OMI TCWV assimilation. The 608 

rightmost panel show the accumulated rainfall observed by TRMM for the same time period. 609 

Note that the 3-km model result is coarsened to match the resolution of the TRMM product. 610 

Box A highlights the erroneously simulated precipitation in the run without OMI data 611 

assimilation. 612 

 613 

5 Summary and Conclusion 614 
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The Version 4.0 retrieval algorithm for OMI Total Column Water Vapor (TCWV) is presented 615 

in this paper. The algorithm follows the usual two-step approach where Slant Column Density 616 

(SCD) is derived from spectral fitting and Vertical Column Density (VCD) is obtained through 617 

the ratio of SCD and Air Mass Factor (AMF). In Version 4.0, the spectral fitting no longer 618 

considers common mode. The retrieval window (432.0 - 466.5 nm) results from a systematic 619 

optimization that reflects trade-offs among several factors, including small fitting RMS, small 620 

fitting uncertainty, large fraction of successful retrieval and long retrieval window length. The 621 

AMF calculation uses the latest OMI O2-O2 cloud product (Veefkind et al., 2016) and monthly 622 

variable vertical profiles from the MERRA-2 reanalysis (Gelaro et al., 2017).  623 

      The Version 4.0 OMI TCWV product is compared against the GPS network data over land 624 

and the SSMIS microwave observations over the oceans for 2006. Version 4.0 OMI TCWV has 625 

much smaller bias than Version 3.0 and has replaced previous versions on the Aura Validation 626 

Data Center website. Version 4.0 OMI TCWV is characterized under different cloud conditions. 627 

Under “clear-sky” condition (cloud fraction < 5% and cloud top pressure > 750 mb), the overall 628 

mean of OMI-GPS over land is 0.32 mm with a standard deviation of 5.2 mm, and the smallest 629 

bias occurs when TCWV is between 10 mm and 20 mm; the overall mean of OMI-SSMIS over 630 

the oceans is 0.4 – 1.1 mm with a standard deviation of 6.5 - 6.8 mm, and the smallest bias 631 

occurs for TCWV between 20 mm and 30 mm. The correlation coefficient between OMI TCWV 632 

and the reference datasets realizes the largest gain when the cloud fraction threshold is increased 633 

from 5% to 15%. The regression line appears the best when f = 0.25 is used over land and when f 634 

= 0.15 is used over the oceans. But, larger cloud fraction leads to larger bias and scatter. Thus, 635 

for most applications, we recommend to consider only OMI data with cloud fraction < 5% to 636 

25% and cloud top pressure > 750 mb, in addition to main data quality flag = 0, no row anomaly, 637 

fitting RMS < 0.001 and 0<TCWV<75 mm. Relaxing the cloud top pressure threshold has a 638 

similar effect as relaxing the cloud fraction threshold. TCWV corresponding to low cloud top 639 

pressure (high altitude) should be used with caution due to the degraded accuracy for these 640 

clouds in the OMCLDO2 product.  641 

      As example applications of the Version 4.0 OMI TCWV data across a variety of temporal 642 

and spatial scales, this paper examines the climate pattern associated with El Niño / La Niña, the 643 

enhanced humidity during a week-long corn sweat event in the Midwest US, and the linear band 644 

of high TCWV associated with an intense atmospheric river which made landfall on the west 645 
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coast of North America. Strong signals are found in OMI TCWV for all three examples. A data 646 

assimilation experiment shows that the OMI TCWV data can help improve WRF’s skill of 647 

simulating the shape and intensity of the AR, as well as the accumulated rainfall near the coast. 648 

      Further improvement of the product can proceed from both spectral fitting and AMF 649 

calculation, such as, water vapor reference spectrum, instrument slit-function and solar irradiance 650 

for spectral fitting, aerosol correction and surface bi-directional reflectance for AMF calculation. 651 
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Supplementary Figure 1. Black curve shows the median relative SCD uncertainty for each 10 
mm SCD bin (left axis). Blue curve shows the fraction of data points that fall within each 10 mm 
SCD bin (right axis). Results are derived from OMI orbit number 10426. 



 

Supplementary Figure 2. (a) Version 4.0 versus Version 3.0 AMF comparison; (b) Version 4.0 
versus Version 3.0 SCD comparison; (c) Version 4.0 versus Test 1 SCD comparison. Test 1 has 
the same setting as Version 4.0 except that water vapor reference spectrum is from HITRAN 
2016. All results are for OMI orbit number 10423. 

  



 

Supplementary Figure 3. Time series of TCWV (mm) observed by each GPS station indicated in 
the top panel for July 2016. The horizontal dashed lines indicate the mean TCWV for July. The 
two dotted vertical lines bracket the corn sweat time period discussed in the paper. 



 

Supplementary Figure 4. Time series of surface pressure (hPa) observed by each GPS station 
indicated in the top panel for July 2016. The horizontal dashed lines indicate the mean surface 
pressure for July. The two dotted vertical lines bracket the corn sweat time period discussed in 
the paper. 
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