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Abstract. All-sky assimilation of infrared (IR) radiances has not yet become operational at any weather forecasting centre but it

promises to bring new observations in sensitive areas and it avoids the need for cloud detection. A new all-sky IR configuration

gives results comparable to (and in some areas better than) clear-sky assimilation of the same data, meaning that operational

implementation is now feasible. The impact of 7 upper-tropospheric water vapour (WV) sounding channels from the Infrared

Atmospheric Sounding Interferometer (IASI) is evaluated in both all-sky and clear-sky approaches. All-sky radiative transfer5

simulations (and the forecast model’s cloud fields) are now sufficiently accurate that systematic errors are comparable to

those of clear-sky assimilation outside of a few difficult areas such as deep-convection. All-sky assimilation brings 65% more

data than clear-sky assimilation globally, with the biggest increases in midlatitude storm tracks and tropical convective areas.

However all-sky gives slightly less weight to any one observation than in the clear-sky approach. In the midlatitudes, all-sky

and clear-sky assimilation have similarly beneficial impact on mid- and upper-tropospheric dynamical forecast fields. Here10

the addition of data in cloudy areas is offset by the slightly lower weight given to the observations. But in the tropics, all-

sky assimilation is significantly more beneficial than clear-sky assimilation, with improved dynamical short-range forecasts

throughout the troposphere and stratosphere.

1 Introduction

Infrared (IR) radiances from geostationary and polar-orbiting satellites are widely assimilated at operational weather forecast-15

ing centres, mostly for their sensitivity to temperature and water vapour. Cloud-affected scenes are mostly discarded with a

loss of up to 80% of available observations in a typical mid-tropospheric channel. In midlatitudes, the loss is largest where

forecasts are most sensitive to initial conditions, in frontal areas (McNally, 2002). Many forecasting centres also use infrared

observations above a diagnosed cloud top (e.g Pavelin et al., 2008; McNally, 2009; Pangaud et al., 2009; Lavanant et al., 2011).

Some of these approaches assimilate channels with significant visibility of the cloud top, but only if the cloud is overcast. But20

since overcast scenes are rare there is little data gained – for example Pangaud et al. added just 3.5% extra scenes globally.

The method of Pavelin et al. (2008) assimilates scenes with fractional cloud but in practice only from channels with less than

10% visibility of the cloud top, also restricting the amount of data that can be gained. Further, because these approaches hold
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the cloud information constant in the assimilation system, it is not possible to use cloud directly to improve the model initial

conditions.

Greater progress has been made in using microwave radiances affected by clouds and precipitation. Most weather forecasting

centres are now developing some form of all-sky microwave radiance assimilation (Geer et al., 2018, and references therein). At

the European Centre for Medium-range Weather Forecasts (ECMWF) all-sky microwave radiances sensitive to water vapour,5

cloud and precipitation already contribute around 20% of observational impact on short-range forecast skill, assessed using

adjoint-based measures of forecast sensitivity (Geer et al., 2017b). This impact is as large as that from microwave temperature

sounding observations, showing that observations with primarily humidity sensitivity can be used just as effectively by modern

data assimilation systems as can more direct observations of the dynamical state, something which was not obvious a few years

ago (Bengtsson and Hodges, 2005). In the same system, infrared radiances sensitive to water vapour contribute only around10

5% of observational impact, compared to 11% for IR channels sensitive to temperature, ozone and the surface. Although many

factors play a role, this suggests that IR water vapour observations are under-utilised compared to their equivalents in the

microwave. All-sky radiance assimilation techniques could help address this by adding observations in frontal areas and by

making direct use of cloud information.

Before considering the assimilation of IR radiances in all-sky conditions it is necessary to have a forecast model and obser-15

vation operator that can simulate cloudy observations with systematic errors that are substantially smaller than the (random)

observation errors. Early illustrations of the capability of weather forecasting models to simulate infrared window channels in

all-sky conditions were given by Chevallier et al. (2001) and Chevallier and Kelly (2002). However, their simulated brightness

temperatures showed cloud features with broader spatial scales than the observations and in some areas large systematic errors.

To explain these it was hypothesised that the forecast model was lacking ice water content in high clouds and also generating20

excessive tropical deep convection over the ocean. Increases in the horizontal resolution of forecast models mean that clouds

can now be simulated on scales that are closer to those of the observations. More generally, the ‘model to satellite’ approach for

validating forecast models against all-sky IR (and other) observations is now well-established and demonstrates a reasonable

capability in current models (e.g Otkin et al., 2009; Matsui et al., 2014; Greenwald et al., 2016; Otkin et al., 2017). However,

whether the quality of forward-modelled cloudy IR radiances is good enough for operational data assimilation remains to be25

demonstrated. For example Okamoto (2017) found insufficiently low brightness temperatures that could come from a lack of

high cloud in the forecast model, or insufficient scattering from high ice clouds in the observation operator. However in the

current ECMWF model cloud biases are small outside of a few difficult situations such as maritime stratocumulus regions and

shallow-convection in cold air outbreaks, at least as revealed by all-sky microwave observations (Kazumori et al., 2016).

For the observation operator, a large number of radiative transfer codes have the capability to simulate cloudy infrared radi-30

ances (e.g Aumann et al., 2018) but for use in data assimilation they require a combination of sufficient accuracy, computational

efficiency, and also a tangent-linear and adjoint model capability (at least for variational data assimilation). Hence this work

uses the cloud-capable RTTOV model (Radiative Transfer for TOVS, Saunders et al., 2018) with the Chou et al. (1999) scaling

approximation. Here, the absorption is scaled to account for scattering into the beam from a diffuse black body radiation field

at the local temperature, decoupling the radiative transfer solution between levels. This is much faster than a full scattering35
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solver such as a discrete ordinates approach and gives good accuracy in the IR in the absence of solar sources (Matricardi,

2005).

It has been more difficult to find an adequate model for cloud overlap in RTTOV. Cloud overlap is important to get right

because multiple cloud layers are often visible within a single IR field of view (e.g. McMillin and Dean, 1982). Hence the

treatment of cloud as a single layer or even a double layer is insufficient (e.g. Prates et al., 2014). For accuracy RTTOV5

allows multiply overlapped cloud layers, represented using a maximum random overlap assumption along with up to around

100 independent radiative transfer columns (Matricardi, 2005). This is computationally demanding, particularly in terms of

memory. Okamoto et al. (2014) had to thin observations by an additional factor of 10 to be able to afford the RTTOV cloudy

IR radiative transfer within the ECMWF forecasting system. Because of this a simplified two-column cloud overlap scheme

was developed to allow testing with a full complement of observations, but this generated errors of around 5 - 10 K in tropical10

convection, as will be shown later. The current work takes advantage of increased computational resources to go back to the

multiple independent column approach, putting aside for the moment the need to develop a cloud overlap scheme that combines

speed and accuracy.

A final area that has been difficult to get right has been the ice cloud optical properties. Differences in microphysical

representations of ice clouds can lead to differences of order 5 – 10 K in simulated cloudy IR brightness temperatures (e.g.15

Faijan et al., 2012; Yi et al., 2016). However the most recent RTTOV offers ice cloud optical properties that give good results

in closure studies between radar and lidar retrievals and IR observations (Vidot et al., 2015). With these settings in RTTOV

the combination of the ECMWF forecast model and RTTOV version 12.2 is now able to simulate all-sky radiances with great

fidelity and only small remaining systematic errors, as will be shown later. This is a good starting point for assimilation of

all-sky radiances.20

The next consideration is the choice of channels and instruments to be assimilated. For nowcasting and local area modelling,

the aim is to directly initialise clouds and so the infrared window channels are of interest, often taking advantage of the frequent

sampling from geostationary platforms (e.g. Vukicevic et al., 2006; Okamoto, 2013; Stengel et al., 2013; Martinet et al., 2013,

2014a; Kurzrock et al., 2018). One barrier to using these channels is the ‘zero gradient’ problem that makes it difficult for

data assimilation systems to assimilate cloud information in the absence of cloud in the background (e.g. Vukicevic et al.,25

2004; Errico et al., 2007; Seaman et al., 2010). However this can be mitigated in assimilation systems that can relinearise (e.g.

through an ‘outer loop’, Bauer et al., 2010) or by various techniques that can provide a gradient even at zero (e.g. Lopez,

2011). Another barrier to assimilating window channels is that radiative transfer modelling of the surface emission is difficult,

particularly in dry regions (e.g. Trigo and Viterbo, 2003).

Temperature sounding channels might seem more promising, since weighting functions can be selected that do not see the30

surface and that help identify the vertical location of the cloud. However, these channels are still affected by the zero-gradient

problem. Further, they are already used for their temperature sensitivity in clear skies, with very high accuracy requirements

(order 0.1 K). The assimilation of all-sky microwave temperature sounding channels has been tried, but has proved difficult for

reasons that also apply to the IR (Geer et al., 2012, 2018): first, the possibility of aliasing of cloud errors into the temperature

field, which could destroy the main temperature analysis; second, the use of temperature channels in clear-skies is often very35
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highly developed, so that a new all-sky framework may lack of the technical features that contribute to the success of the clear-

sky approach. However, operational use of microwave temperature sounders has been achieved in non-precipitating conditions

(Zhu et al., 2016; Migliorini and Candy, 2019).

The IR water vapour sounding channels around the 6.5µm water vapour band generally do not see the surface and they have

more linear sensitivity to a combination of water vapour and cloud. Hence they are most suitable for the initial development5

of all-sky IR assimilation (Chevallier et al., 2004; Okamoto, 2017). Microwave water vapour sounding radiances have similar

properties (although they are much less sensitive to cirrus) and this has allowed the development of operational all-sky mi-

crowave assimilation with substantial impact on forecasts (Geer et al., 2014, 2017b). A main benefit of water vapour sounding

radiances is that even when the data assimilation system cannot generate a gradient with respect to cloud (the zero-gradient

problem) these channels retain a sensitivity to relative humidity that acts in the same direction. So a data assimilation system10

can still adjust relative humidity to try to fit the observations and this will likely influence the cloud in the right direction too.

For these reasons, the infrared water vapour channels have become the main target in the development of all-sky IR assimila-

tion (e.g Otkin, 2012; Jones et al., 2013; Cintineo et al., 2016; Zhang et al., 2016; Harnisch et al., 2016; Honda et al., 2018;

Okamoto et al., 2019).

The current work concentrates on the water vapour sounding channels of Infrared Atmospheric Sounding Interferometer15

(IASI) because observations from two polar orbiting satellites (Metop-A and Metop-B) together provide the largest impact of

any infrared water vapour (WV) data in the ECMWF system (Geer et al., 2017b). For hyperspectral IR sounders a consideration

is the subset of channels selected for assimilation. The current work stays with the channels selected for clear-sky assimilation

(Collard and McNally, 2009) in order to cleanly compare all-sky and clear-sky assimilation of the same data. However there

is scope to extend the channel selection to gain even more information on cloud properties (Martinet et al., 2014b) and to add20

more information content from water vapour sounding channels (Migliorini, 2015) which are currently sparsely utilised.

Bauer et al. (2011) and Geer et al. (2018) have reviewed the data assimilation approaches being used by operational fore-

casting centres for assimilating cloud- and precipitation-sensitive observations. To benefit from cloud information, a minimum

requirement is to be able to update the data assimilation control vector to be able to better fit a cloudy observation. In four-

dimensional variational data assimilation (4D-Var) this link is made by the tangent-linear (TL) and adjoint of the forecast25

model, including moist processes (e.g Tompkins and Janisková, 2004; Lopez and Moreau, 2005) and the TL and adjoint of the

observation operator. Other potential links are a dedicated cloud control variable, a cloud incrementing operator (Migliorini

et al., 2018) and the use of ensemble covariances (Zhu et al., 2016; Lien et al., 2016). In a 4D-Var assimilation system using the

TL and adjoint approach, Bauer et al. (2010) and Geer et al. (2014) documented through single-observation experiments how

a ‘generalised tracing’ effect allows the update of dynamical initial conditions to better fit observed cloud and precipitation30

in all-sky microwave water vapour sounding observations. An improved dynamical analysis then leads to improved forecasts.

Cloud is not part of the control vector in this approach but because it is completely determined by the forecast model trajectory

it is still part of the wider analysis. This relies on the cloud and precipitation being largely driven by the dynamics (which

appears true, certainly after the first hour or two, in the ECMWF model, Geer et al., 2017a). An advantage of the ECMWF

framework is the use of an outer loop update with the incremental version of 4D-Var (Courtier et al., 1994) which allows35
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nonlinear observations, such as those related to cloud and precipitation, to be assimilated (Bauer et al., 2010; Bonavita et al.,

2018).

Despite the great interest in this area, all-sky IR radiances are still not assimilated at any operational centre. A pre-condition

for operational implementation is that forecast scores must be improved (or at least not degraded) compared to an already very

good starting point based on the current full global observing system. All-sky assimilation is applied to satellite radiances that5

are already used in clear-sky conditions within a very highly developed framework. This is a more testing scenario than found

in most previous investigations of all-sky IR assimilation, which have been done in the context of reduced observing systems

or observing system simulation frameworks, often only for case studies, and often focusing on the analysis fits rather than

the quality of subsequent forecasts. Forecast quality can be degraded by fitting cloud observations too closely, so operational

all-sky assimilation tries to retain useful information on slightly broader scales while filtering out the information which would10

just perturb forecasts to no useful benefit (e.g. Geer and Bauer, 2011). The aim of the current work is to document the first

configuration of the ECMWF system that produces comparable forecast quality to clear-sky assimilation of the same radiances,

and hence could be considered for operational implementation. These small initial improvements could then be built-on, as

with the development of all-sky microwave assimilation, which took many years to become a dominant part of the observing

system (e.g. Geer et al., 2017b).15

At ECMWF, early developments towards all-sky IR assimilation started with simulating cloudy radiances (Chevallier et al.,

2001; Chevallier and Kelly, 2002) and a long-term vision (Chevallier et al., 2002) of a 4D-Var direct radiance assimilation

using linearised moist physics to link a dynamical control vector with cloud variables at observation locations. Chevallier et al.

(2004) investigated the combination of TL and adjoint models for moist physics and radiative transfer and Matricardi (2005)

developed a first version of what became the RTTOV cloudy IR observation operator. Following the operational implementation20

of direct all-sky microwave radiance assimilation (Bauer et al., 2010) attempts at applying similar techniques in the IR were

not successful, although Okamoto et al. (2014) devised an observation error model and demonstrated the quality of all-sky

background departures by comparison to IASI observations. Later, two water-vapour sounding channels from High-resolution

Infra-Red Sounder (HIRS) were assimilated in all-sky conditions with improvements to short-range forecasts in a high-quality

forecasting system (reported in Geer et al., 2018) but it was not tested whether clear-sky assimilation of the same data could25

perform just as well. Attention focused again on applying the all-sky framework to the IASI water vapour channels (Migliorini

et al., 2014). In the meantime, the clear-sky assimilation of IASI has been substantially improved, for example by imager-

assisted cloud detection (Eresmaa, 2014) and the use of interchannel observation error covariance matrices (Bormann et al.,

2016). Compounded by the addition of a huge amount of all-sky microwave water vapour radiances over the last few years

(Geer et al., 2017b) it has become ever harder to demonstrate improvements when going to all-sky IR water vapour assimilation.30

To catch up with this moving target, key recent steps have been the availability of an interchannel error covariance matrix that

can scale as a function of cloud amount, representing the changing error covariance structures in clear and cloudy skies (Geer,

2019), the improved quality of RTTOV, particularly the ice-cloud representation (Vidot et al., 2015), and the availability of

computer resources to run the multiple independent column radiative transfer.
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The rest of the paper has the following structure. Section 2 describes how IASI observations are assimilated in clear-sky

and all-sky approaches, with attention to the observation operator, observation error and data screening aspects. Section 3

establishes the model’s ability to generate cloud fields and to simulate radiances that are consistent with those observed.

Section 4 evaluates the results from data assimilation experiments by contrasting clear-sky and all-sky assimilation. Section 5

concludes.5

2 Methods

2.1 General framework

ECMWF makes analyses of the current state of the atmosphere to initialise a high-resolution (HRES) 10-day forecast at

Tco1279 (around 8 – 9 km) horizontal resolution and 137 vertical levels (L137), as well as an ensemble of lower-resolution

forecasts to provide the uncertainty of the HRES forecast. There are also forecast products aimed at extended and seasonal10

ranges. The HRES forecast is initialised from an ‘early-delivery’ 6-hour window incremental 4D-Var data assimilation that

itself is initialised from the main or ‘long-window’ 12-hour window 4D-Var data assimilation, both at high resolution (i.e

Tco1279/L137). There is also an ensemble of lower-resolution data assimilations (EDA) to provide flow-dependent background

errors for the main 4D-Var. The atmospheric analysis is complemented by separate ocean, sea-ice, wave and land analyses.

Further documentation can be found at www.ecmwf.int.15

Observations are assimilated from surface-based atmospheric platforms including aircraft and radiosonde, true surface ob-

servations (such as from meteorological stations and buoys) and from satellites. Satellite data include scatterometers for ocean

surface winds, radio-occultation bending angles, and atmospheric motion vectors but the majority of data by volume and

forecast impact are radiances from microwave and infrared satellites. As of February 2018, all-sky microwave radiances sen-

sitive to water vapour, cloud and precipitation were assimilated from 10 satellites, including microwave imagers and humidity20

sounders. Two similar sensors that have not yet been converted to all-sky assimilation were also assimilated. Microwave tem-

perature sounding radiances were assimilated in clear skies from 7 satellites (all but one using the Advanced Microwave

Sounding Unit-A, AMSU-A). Infrared radiances were assimilated in clear-skies and above low or overcast cloud, from polar

orbiting and geostationary satellites. Radiances sensitive to temperature and ozone, and window channels were assimilated

from 4 hyperspectral sounders in polar orbits: IASI on Metop-A and Metop-B, Cross-track Infrared Sounder (CrIS) on Suomi-25

NPP and Advanced InfraRed Sounder (AIRS) on Aqua. Infrared water vapour sounding radiances were assimilated from the

four hyperspectral sounders and additionally from 5 geostationary satellites. See e.g. Geer et al. (2017b) for further details on

satellite radiance usage.

The experiments used in this work are run at reduced horizontal resolution (TCo399, about 25 km) and with the 10 day

forecast initialised directly from a 12 h long-window analysis. The EDA is not re-run so the background errors do not change30

between experiments. This is the standard framework used for testing at ECMWF. Experience shows that results from the

lower-resolution testing tend to be replicated at higher-resolution, even in the case of all-sky developments, suggesting that

the changing scales of cloud represented by the model (at least between 25 km and 9 km grid resolutions) do not have a great
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Table 1. Details of the 7 IASI mid- and upper-tropospheric water vapour channels assimilated at ECMWF.

Channel

number

Wavenumber

[cm−1]

Peak of weighting function

[hPa]

2889 1367.00 684

2958 1384.25 662

2993 1393.00 538

3002 1395.25 405

3049 1407.00 604

3105 1421.00 468

3110 1422.25 520

effect on the use of all-sky observations. In these experiments, cycle 45r1 is used, the operational version since June 2018. Two

periods of testing have been run, from 1st June to 31st August 2017 and from 1st December 2017 to 28th February 2018.

2.2 Clear-sky IASI assimilation

ECMWF assimilates 191 of the 8461 channels available from IASI, currently from two polar orbiting satellites, Metop-A and

Metop-B. The channel selection is described by Collard and McNally (2009) but with a more recent addition of ozone sensi-5

tive channels (Han and McNally, 2010; Dragani and McNally, 2013). All IASI channels have a spectral width of 0.25 cm−1.

Information on the atmospheric temperature profile and the surface is provided by 165 channels at wavenumbers between ap-

proximately 649 cm−1 and 875 cm−1. The more recently added ozone sensitivity comes from 16 channels between 1014 cm−1

and 1062 cm−1. There are 7 mid and upper-tropospheric water vapour channels between 1367 cm−1 and 1422 cm−1 that are the

target of all-sky assimilation in the current work. Finally, there are 3 lower tropospheric moisture channels between 1990 cm−110

and 2015 cm−1 for which all-sky assimilation will not be tested, due to their relatively high surface sensitivity. Table 1 gives

the details of the 7 mid- and upper-tropospheric water vapour channels investigated in this work, together with a global mean

peak of the weighting function. Geer (2019) examines the weighting functions of these channels in more detail.

IASI observations are subject to a series of thinning and quality control steps. Many of these will be examined in more detail

later in the context of all-sky assimilation, so only brief details are given here. IASI measures a 2 by 2 matrix of observations,15

but a pre-thinning stage keeps only one, prioritising the warmest scene as an initial way to screen for clouds. Within the main

assimilation system, cloud is detected and removed using a combination of the McNally and Watts (2003) approach and imager

cloud detection (Eresmaa, 2014). When cloud is detected, the aim is to discard only those channels with cloud sensitivity,

keeping those that sound higher levels in the atmosphere. A small number of scenes detected as being completely overcast

are however retained to be assimilated using a diagnosed cloud top as a lower boundary (McNally, 2009). However, this is20

only applied to channels below 875 cm−1 so the WV channels are not involved. As a by-product of the McNally and Watts
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(2003) cloud detection, channels that may be sensitive to the surface over land are excluded. This is done by removing any

channel that has more than a 1% sensitivity to a hypothetical overcast cloud placed at roughly 500 m above the model surface.

Aerosol-affected scenes are also detected and removed. A background departure check removes any observation which differs

from the model background by more than 2.5 times the expected value (the square root of the sum of estimated background

error and observation error variances in observation space). The remaining set of observations is thinned in roughly 100 km5

boxes with priority given to observations with the smallest window channel background departures, as an additional way to

exclude potentially cloudy scenes. All remaining channels are assimilated over ocean and land, but avoiding areas affected by

sea-ice for channels over 875 cm−1, which includes the WV channels. Outer scan positions are discarded generally.

A globally constant observation error covariance matrix is used which includes correlations between all the different channels

of one observation (Bormann et al., 2016). Variational bias correction (VarBC) is applied, in common with most other satellite10

observation types (Auligné et al., 2007) with a globally constant predictor, four airmass predictors based on layer thicknesses

across four different ranges, and a third order polynomial in the instrument scan position. The surface skin temperature is

treated as a sink variable in observation space, allowing the window channels to update the potentially erroneous first-guess

skin temperature. Hyperspectral infrared observations are also assimilated from AIRS and CrIS using similar configurations to

IASI.15

2.3 All-sky IASI assimilation

2.3.1 Observation operator

Version 12.2 of RTTOV is used in this study (Saunders et al., 2018) with the cloudy IR modelling originally developed by

Matricardi (2005) which uses the Chou et al. (1999) scaling of the absorption to account for scattering into the beam.

The inputs to RTTOV are the model’s vertical profiles of pressure, temperature, specific humidity, ozone, hydrometeor20

variables to be described shortly, and surface parameters including the skin temperature. The ECMWF model moist physics

represents four hydrometeor types: cloud water, cloud ice, large-scale rain and large-scale snow. Convective rain and snow can

also be diagnosed from the convection scheme, as done for all-sky microwave assimilation (Bauer et al., 2010). However for

all-sky infrared simulations, no precipitation is given to RTTOV on the assumption that precipitation is always deeply shrouded

within cloud and hence unimportant to the radiative transfer. The cloud is not assumed to cover the whole model grid box but25

rather is partitioned according to a cloud fraction that is also a vertical profile. However, the cloud water and cloud ice mixing

ratios are stored as grid-box averages, so they must be divided by the layer cloud fraction to get the in-cloud mixing ratio,

the required input variable for the RTTOV IR cloudy simulations. The cloud fraction is also passed into RTTOV for the cloud

overlap scheme.

In RTTOV, cloud water optical properties are fixed and come from the so-called ‘OPAC’ clouds defined by Matricardi (2005)30

with maritime and continental cloud types selected according to the land sea mask, and for each of these, a stratus or cumulus

type selected based on the local Convective Available Potential Energy (CAPE), as described by Okamoto et al. (2014). The

effect of water cloud microphysical details on infrared radiances is small (see e.g. Matricardi, 2005; Geer et al., 2017a), and
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particularly for mid- and upper-tropospheric water vapour sounding channels, the sensitivity to these microphysical choices is

expected to be small.

Cloud ice optical properties are pre-tabulated as a function of temperature and ice water content (Vidot et al., 2015). These

are based on the ensemble model of six ice particle habits defined by Baran and Labonnote (2007) and single-particle optical

properties computed taking into account the non-spherical nature of these particles (Baran et al., 2011). To compute bulk5

optical properties, the particle size distribution of Field et al. (2007) is used, but it is adjusted to follow the mass-dimensional

relationship of Cotton et al. (2013). Vidot et al. (2015) chose this ice cloud optical model based on closure studies between

lidar and radar ice cloud retrievals and observed brightness temperatures.

The cloud overlap scheme has been documented by Matricardi (2005) where it is known as the ‘streams’ method, but here

we describe it as ‘multiple independent column’ radiative transfer which helps avoid confusion with the streams used in some10

scattering radiative transfer solvers. This scheme distributes clouds in the vertical according to maximum random overlap

and then finds a set of independent columns that can exactly represent this distribution, with each column containing only

homogeneous cloud (i.e. on any one layer, the cloud fraction is either zero or 1). More typical multiple independent column

approaches use a fixed set of columns covering equal fractions of the grid box. The RTTOV scheme instead uses exactly

the number of columns required to represent all permutations of cloud layers, with each column representing the appropriate15

fraction of the grid box. The required number of columns varies from one scene to the next, and typically increases with the

number of vertical levels in the input data, so that a complicated cloud profile from the ECMWF model (on 137 levels) can

require up to around 100 columns. This results in high memory usage and hence made it hard to accommodate in earlier testing

at ECMWF (Okamoto et al., 2014).

To allow testing to progress, a cheap ‘Cfrac max simple streams’ (CMSS) approach was added to RTTOV that has not20

previously been documented, but has been tested as part of the intercomparison of Aumann et al. (2018). This scheme represents

the grid box (or equivalently, satellite field of view) as just two independent columns, one clear and one cloudy, as done for

the all-sky microwave (Geer et al., 2009). The area occupied by the cloudy column is given by an effective cloud fraction that,

for the IR CMSS scheme, is computed as the maximum cloud fraction in the atmosphere above 750 hPa. This scheme was

intended as a stopgap for use with high-peaking channels and assumes that in this case that cloud overlap and multiple cloud25

layers are unimportant.

Both the multiple column and CMSS scheme are tested later, indicating that CMSS has large errors even for upper-

tropospheric channels. Hence the multiple column approach has been used throughout the rest of this work. This is possible due

to increasing supercomputing resources and in particular to the increased availability of memory for the observation operator

that is a side-effect of the move to increased resolution for the forecast model. In terms of supercomputer usage at ECMWF,30

the multiple independent column radiative transfer is approximately 34 times more expensive than standard RTTOV clear-sky

radiative transfer. This could be affordable in the HRES operational configuration, where the observation operator is a small

fraction of the total cost. However, the relative cost of observation processing becomes larger as the forecast model resolution

decreases, so this could push up the cost of lower resolution systems like the EDA and the low-resolution experiments used for

development. For example at the testing resolution used here (TCo399) the all-sky experiments are 20% more costly than the35
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clear-sky experiments. It should be possible to make the all-sky radiative transfer less costly in future, for example by using a

smaller number of carefully chosen streams (O’Dell et al., 2007).

2.3.2 Observation errors

The observation error model has proved a critical part of getting all-sky IR assimilation to work at ECMWF and due to the

complexity of the work it has been described separately (Geer, 2019). For a clean separation, the error correlations are set to5

zero between the 7 WV channels and the other IASI channels that remain in the clear-sky assimilation path. Hence the 7 WV

channels are treated as an independent block in the full IASI error covariance matrix. The effect of zeroing the correlations

between the 7 WV channels and others has been tested in the clear-sky framework but is not significant (not shown).

The new error model combines the inflation of error variances as a function of a symmetric cloud proxy variable (Geer

and Bauer, 2011; Okamoto et al., 2014) with a model for error correlations that also varies as a function of cloud amount.10

The latter is needed because error correlations are typically much stronger in cloudy skies (Bormann et al., 2011; Okamoto

et al., 2019) and further, the existing clear-sky implementation of IASI assimilation uses a correlated observation error model

with great benefit to forecast quality (Bormann et al., 2016). Situation-dependent variability of error standard deviations and

correlations is achieved by applying symmetric error scaling to the leading eigenvalue of an otherwise fixed observation error

covariance matrix that was fitted to all-sky IASI background departures. For clear-sky observations this gives covariances15

similar to those already used for clear-sky assimilation. For example in both approaches the error correlations for clear-sky

observations approach zero between the top and bottom sounding of the 7 channels. In these clear scenes, the all-sky model

gives error standard deviations between 1.5 K and 1.9 K, depending on channel, compared to 1.1 to 1.6 K in the operational

clear-sky model (Geer, 2019, see Fig. 17). In fully cloudy situations the observation error standard deviations reach 10 K to

22 K depending on channel, and correlations between the top- and bottom-peaking channel are around 0.98. It was found that20

use of the raw error covariance matrix had undesirable side-effects, with enhancement of gravity wave activity in the analysis

and amplification of subtle interchannel biases. These issues were mitigated by inflating the trailing eigenvalues of the error

covariance matrix.

In the implementation chosen here, an eigenvalue floor of 1.0 is used, so that eigenvalues smaller than 1.0 are increased to

1.0. Geer (2019) also tested a floor at 0.37. Measured by the fit to humidity observations this was marginally better, but fits25

to some other observations, such as atmospheric motion vectors and radiosonde temperatures slightly favoured the inflation to

1.0 over 0.37. Forecast scores were not significantly different between the two choices. An inflation of 1.0 was chosen for this

work as it represents a slightly more cautious use of all-sky observations. This level of eigenvalue inflation has contributed to

the increase in error standard deviations (in brightness temperatures) compared to the clear-sky assimilation.

To perform the symmetric error inflation in cloudy scenes, a number of cloud proxy variables have already been proposed.30

That of Harnisch et al. (2016) was considered, but it uses a fixed reference temperature to represent clear-sky brightness

temperatures. This does not work for global data assimilation as the typical clear-sky brightness temperature varies by many

tens of Kelvin. Adaptive Observation Error Inflation (AEOI, Minamide and Zhang, 2017) was also considered, but it generated

a non-Gaussian probability density function (PDF) of background departures. The PDF went well above Gaussian around

10



+/-1 and significantly below the Gaussian both outside this range, and at 0 (not shown). It was concluded that the AEOI, as

tested here, gave excessive weight to small background departures and insufficient weight to larger ones. Hence the Okamoto

et al. (2014) cloud proxy was chosen, which uses the average of the modelled and observed cloud effect, where cloud effect

is computed as the difference between the all-sky and simulated clear-sky brightness temperatures. However there are some

minor adaptations here. First, we use the cloud effect in channel 2889 (the lowest peaking channel) to determine observation5

errors for the whole block of 7 WV channels, Second, Okamoto et al. used the absolute value of the cloud effect, but here

we allow both positive and negative values, noting that the differences are minor. It was also important to activate Variational

Quality Control (VarQC) which has previously proved beneficial for all-sky microwave assimilation (Geer and Bauer, 2011).

Similar settings were used here, i.e. a prior probability of gross error of 0.5. The way to implement VarQC alongside correlated

observation errors is not obvious and was solved by applying VarQC to the eigen-transformed departures. More details of10

the implementation of VarQC and the correlated error model are given by Geer (2019). Together with the slightly larger error

standard deviations even for clear scenes, the use of VarQC means that any one all-sky observation will not have as high weight

in the analysis as that same observation assimilated in the clear-sky framework. This is explored in Sec. 4.3.

2.3.3 Data selection

Many investigators have suggested removing cloudy scenes that may be difficult to assimilate. For example Martinet et al.15

(2013) and Okamoto et al. (2014) removed inhomogeneous scenes based on high-resolution cloud masks from colocated

imagers. There are disadvantages to selecting observations in this way. First, much data is lost, with Martinet et al. finding ho-

mogeneous scenes were only 14% of a dataset that had already been selected for overcast cloud. Second, data selection can bias

the sample of background departures available for assimilation. Okamoto et al. showed that selection creates a non-Gaussian,

lopsided PDF of departures. Another approach is to keep only the clear-clear and cloudy-cloudy sample, excluding situations20

where the model and observed cloud states disagree (e.g. Polkinghorne and Vukicevic, 2011). However a main purpose of the

‘symmetric’ observation error model is to treat mismatches between the observed and modelled cloud as representation error,

boosting observation error in these situations, but still allowing them to contribute to an improved analysis. In the current work

we follow the strategy successfully adopted for all-sky microwave assimilation, so that all scenes are made available for data

assimilation no matter the state of cloud in observations or model (Bauer et al., 2010).25

However, there is one impediment to achieving perfectly symmetrical all-sky PDF of background departures. The IASI

observations are currently thinned to prioritise cloud-free scenes in a ‘hole hunting’ strategy. This thinning cannot easily be

turned off as it is an essential part of the usage of the temperature, ozone and window channels of IASI in clear-skies. The

all-sky channels need to come from the same observations as the clear-sky channels so they can use the dynamically estimated

(sink variable) skin temperature that is controlled by the window channels. The first stage, pre-thinning, applies to the 2 by 230

sets of IASI fields of view (FOVs). The warmest of the these first three FOVs is selected, always discarding the fourth FOV due

to quality issues. ‘Warmest’ is judged using an average brightness temperature across 100 window channels. The second stage,

box thinning, selects one observation per thinning box of roughly 100 km, taking the observation with the smallest clear-sky

background departure in IASI channel 2239 (a window channel at 1204.5 cm−1). This removes an average of 75% of data that
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Figure 1. PDFs of bias-corrected background departures from 1 – 20 June 2017 in channel 2889 (the lowest peaking of the WV sounding

weighting functions). The solid line is the sample prior to box thinning and the dashed line after. Thinning removes 75% of remaining data,

but the PDFs have been normalised in order to compare their shapes.

is remaining after all prior thinning and quality checks. Figure 1 shows the effect on the PDF of the background departures.

Thinning selects a sample that is on average warmer than before, and it reduces the cold tail (cloudy observations, clear model)

while boosting the warm tail (clear observations, cloudy model). After thinning there is still a substantial cold tail, only slightly

smaller than the warm tail, and hence there remains a mostly symmetric PDF for all-sky water vapour assimilation. Indeed the

PDF prior to thinning was slightly lopsided in the other direction, so neither is perfectly symmetrical. To explain the relatively5

small effect of box thinning, it is possible that high ice clouds generally have broad spatial scales so that cloudy observations

are still often the only ones available within any 100 km box.

Figure 2 gives a broader summary of the screening used for all-sky IASI assimilation. The same screening applies to all 7

WV channels so they can always be treated as a block for the purposes of the observation error model. Although in practice

an observation can trigger more than one screening failure (for example, surface sensitivity and aerosol contamination) in10

this figure they have been treated as if screening were a progressive process. Hence observations failing blacklisting, surface

sensitivity or background departure check (in that order) are not included in the later tests, and the total fraction of observations

in the 6 panels adds up to 100%. The pre-thinning stage is not represented in the figure.

Blacklisting (Fig. 2a) eliminates all data over sea-ice and outside scan positions (1–10 and 108–119) which accounts for the

minimum level of blacklisting losses of around 17%. There is also blacklisting for the last 15 minutes of data in the assimilation15

window, which explains the greater rejection of observations falling near the dateline and prime meridian. This is because the

TL and adjoint moist physics operators are not run on the last model timestep in the data assimilation, so all-sky assimilation

cannot be done.

Scenes in which the surface is visible are excluded (Fig. 2b), based on the clear-sky surface-to-space transmittance from

RTTOV. If this is greater than 0.1 in the lowest peaking channel (2889) then all the WV channels are discarded. This eliminates20

high areas (the Andes, the Himalaya, all of Antarctica) and locations and times where the atmosphere is particularly dry, such

as along the ice edge in the Southern Ocean, over Australia and occasionally in northern Siberia. This transmittance-based
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Figure 2. Percentage of IASI all-sky observations failing quality and thinning checks (a – e) and percentage used actively in data assimilation

(f), from 1 – 20 June 2017. The total in every lat-lon binning box adds up to 100%.
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Table 2. Global percentage of observations remaining for assimilation in the IASI WV channels during 1 – 20 June 2017.

Channel Clear-sky [%] All-sky [%]

2889 4.41 10.01

2958 4.73 10.01

2993 6.21 10.01

3002 7.97 10.01

3049 5.45 10.01

3105 7.12 10.01

3110 6.47 10.01

criterion differs from the method used in the clear-sky assimilation which is based on a re-purposed cloud detection approach,

and produces slightly different results – see later.

The background check that is applied in clear-sky assimilation is turned off and replaced by a check on the size of the

background eigendeparture across the 7 WV channels. In the absence of background error (or in practice, assuming that

background error is relatively small compared to representation error) these background eigendepartures should be distributed5

according to a Gaussian with zero mean and standard deviation of 1 (Geer, 2019). Hence if any of the eigendepartures is

outside the range ±3, all the channels are discarded. Figure 2c shows the eigendeparture QC is active in predominantly cloudy

areas such as the inter-tropical convergence zone (ITCZ) and storm tracks. This suggests that large eigendepartures are mostly

associated with cloudy scenes where the observation error model does not generate large enough observation errors.

Aerosol detection (Fig. 2d) remains the same as done for clear-sky channels. The remaining data is presented to the 100 km10

box thinning that prioritises warm window channel brightness temperatures and is most active in areas that have not already

suffered substantial data loss, such as in the subtropics over ocean (Fig. 2e). Around 15% of the starting sample are retained

for all-sky assimilation (Fig. 2f, see also Fig. 3c for a version with a more appropriate colour scale.)

Figure 3a and b examine the number of observations available for clear-sky assimilation in the lowest and highest peaking

of the WV channels, 2889 and 3002 respectively. All-sky assimilation (panel c) is able to provide a uniform coverage over15

most of the globe between 60◦N and 60◦S, whereas outside of the subtropical subsidence regions, clear-sky assimilation loses

many observations to cloud. All-sky assimilation brings more observations throughout the midlatitude storm-tracks, which

better targets the most sensitive areas for growing forecast errors (McNally, 2002). The major losses for all-sky are in regions

affected by aerosols (tropical Africa and parts of the middle east and Asia) and at high latitudes where the surface becomes

visible. Due to the transmittance-based surface screening, no all-sky data are assimilated over Antarctica or the higher parts20

of Greenland, where some observations are allowed in the clear-sky approach. There is no fundamental reason for this other

than the choice of different surface screening approaches; in any future comparisons it would be better to use the same surface

screening in both clear-sky and all-sky experiments.
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Figure 3. Percentage of actively assimilated IASI observations in clear-skies in (a) channel 2889 and (b) channel 3002 and (c) in all channels

for all-sky assimilation, from 1 – 20 June 2017.
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Figure 4. Percentage of actively assimilated IASI observations in clear-sky in channel 2889 (dashed) and 3002 (dot-dash) and in all-sky

assimilation (solid) which is the same for all channels, from 1 – 20 June 2017.

Figure 4 quantifies data usage on a zonal basis, further summarising the main patterns already seen in Fig. 3. For the

highest-peaking channel, 3002, clear-sky assimilation retains 8% of data and all-sky assimilation is able to boost this to 13% in

the storm-tracks at 50◦S. In the ITCZ, data usage goes from 6% to 11% with all-sky assimilation, showing the biggest relative

impact is in the tropics. Globally (Tab. 2) all-sky assimilation brings 2.3 times more observations than the clear-sky approach in

the lower-peaking channel 2889 but only 1.3 times in the highest peaking channel 3002. This shows that clear-sky assimilation5

still provides a reasonable coverage of observations in the storm tracks. On average across all seven channels, all-sky brings

1.65 times more data. This is a consequence of starting with mid- and upper-tropospheric channels in which cloud is relatively

less prevalent; all-sky could bring bigger increases to the lower-peaking channels in future.

3 Quality of simulated all-sky brightness temperatures

Figure 5 a and b compare simulated and observed channel 2889 brightness temperatures over the N. Atlantic area for a single10

analysis cycle. The figure is composed of observations from both Metop-A and Metop-B, hence the off-vertical striping in

some areas, most prominently in the lower half of the plot, where there are gaps between the swaths of one satellite that are

filled with data from the other. Because the in-fill data have a different zenith angle (and also because of the different validity

times) they have slightly different brightness temperatures. This figure uses all available data after pre-thinning, and does not

impose any data selection other than (in panel d) the clear-sky cloud detection.15

The coldest brightness temperatures in Fig. 5a and b (200 K and below in the tropics, and down to around 230 K in midlati-

tudes) tend to indicate high cloud. Taking a synoptic to mesoscale viewpoint, cloud patterns are generally well represented in

the background when compared to the real observations. This is true even in the ITCZ, where low observed brightness tem-

peratures (TBs) of around 200 K indicate convection embedded in the broader high-humidity ITCZ region which has TBs of
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Clear−sky FG after cloud screening
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Figure 5. Observations and simulated brightness temperatures, in Kelvin, from IASI channel 2889 on Metop-A and Metop-B between 21:00

UTC on 31-May-2017 and 09:00 UTC on 1-Jun-2017. VarBC bias correction is applied to the simulated brightness temperatures in panels

(b) and (d). The cloud effect in panel (c) is computed as the simulated clear-sky minus all-sky brightness temperature.
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around 260 K. Around 5 - 10◦N between South America and Africa there is a string of around 5 areas of low TB that suggest

organised convection (Fig. 5a). The model (Fig. 5b) creates a string of similar features but with TBs closer to 230 K, and with

no agreement at the finest scales, but reasonable agreement on the broader location of the convection. The simulated brightness

temperatures in these five systems are generally warmer than observed, but this is not a general feature of the model. For exam-

ple, on this plot the convective systems over S. America and the Eastern Pacific are modelled with brightness temperatures that5

are as low as observed. Further, when departures are averaged over longer timescales in the Atlantic ITCZ, biases are small and

in the opposite direction (simulations colder than observed). In contrast to the good quality of the synoptic and mesoscale cloud

layout, the finest scales reveal many errors and misplacements, which will ultimately be modelled as representation error in the

observation error model. Finally, in the vicinity of convection, the observations appear to have finer scales than the simulations,

though a comparison at the full horizontal resolution of the ECMWF system (9 km rather than 25 km) would be expected to10

have a better match of scales but possibly greater mislocation error.

Figure 5c shows the simulated cloud effect, i.e. the difference between simulated all-sky TB and a simulated TB ignoring the

presence of hydrometeors. In midlatitudes, in this channel, clouds decrease brightness temperatures by up to around 20 K in

the major frontal systems, but by as little as 5 K in other areas that may correspond to thinner cirrus, or simply areas that are so

moist that the clear-sky TB would already be so cold that adding an opaque cloud would not change the brightness temperatures15

by much. In contrast in the tropics, convection can decrease brightness temperatures by at least 50 K. The simulated cloud effect

helps confirm that most of the coldest brightness temperatures on panels a and b (e.g. TB < 250 K) are affected by cloud. These

areas also match well with those that would be discarded by cloud screening in the clear-sky approach (panel d). However,

cloud screening also seems to identify some areas as cloud-affected that appear to be clear based on panels a-c: for example in

the mid Atlantic (around 45N, 40W) and in an area around the Azores. Comparing panels b and d shows how much additional20

information all-sky assimilation should be able to bring.

Figure 6 repeats the comparison but for the highest-peaking of the assimilated water vapour channels, channel 3002. The

effect of cloud on midlatitude brightness temperatures is much smaller at around 5 K (panel c) and airmasses with low bright-

ness temperatures around 230 K (panels a and b) can be produced equally from a moist airmass and clear skies or with a

combination of moisture and cloud. Hence cloud has a more subtle effect on the radiances. The reduced importance of clouds25

is also recognised by the clear-sky cloud detection (panel d) which removes a much smaller sample of data in areas that are

more consistent with the patterns of cloud in the simulated cloud effect (panel c). As seen in Sec. 2.3.3, even without all-sky

assimilation, a good proportion of available data can be assimilated.

Figure 7 shows the mean all-sky background departures over a 20 day period at the beginning of June 2017 from the passive

monitoring experiments. Rather than apply the full all-sky screening, here all available IASI observations have been included,30

removing only those affected by orography over 2500m, and by removing the whole of Antarctica. Negative biases around

the Antarctic continent, particularly in the Weddel Sea, are likely due the problems of modelling surface emission from sea-

ice, helping justify the exclusion of sea-ice areas during the data assimilation. Panel a shows the results from channel 906 at

871.25 cm−1 that is not assimilated in the current work. This is a low-peaking channel with relatively large biases due to it

seeing into the boundary layer, and due to the higher contrast between brightness temperatures in clear skies and cold, high,35
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Figure 6. As Fig. 5 but for channel 3002.
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Figure 7. Mean all-sky background departures from Metop-A (using operational bias correction) sampled over 1 – 20 June 2017 in 3 IASI

channels. Cross-hatching indicates excluded areas.
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cloud tops. However the lowest peaking assimilated all-sky channel (2889, panel b) and highest peaking (3002, panel c) show

much smaller biases, with very few areas showing more than 2 – 4 K biases. The bias patterns are in many areas just less

extreme versions of those in the low-peaking channel.

Some of the main all-sky IR biases are consistent with those previously seen in the all-sky microwave. For example a lack

of cloud over the marine stratocumulus regions (e.g. in areas off the coasts of Chile and Angola) would lead to the modelled5

brightness temperatures being too warm, and could explain the negative biases in these areas. Such a pattern would be consistent

with the results of Kazumori et al. (2016) based on all-sky microwave imager radiances. There also appears to be a lack of

cloud, mostly likely deep convective cloud, (whether due to extent or frequency is not clear) over continental regions such as

the midwest United States, India, Brazil, Argentina and central Africa. Based on all-sky microwave comparisons, Geer and

Baordo (2014) have already hypothesised a lack of convection over land areas and Chambon and Geer (2017) have illustrated a10

too-early onset and lack of overnight convection in central Africa. In the inter-tropical convergence zone between 180◦W and

0◦W there appears to be slightly too much convection which might be consistent with the need of Geer and Baordo (2014) to

use quite low-scattering cloud optical properties for all-sky microwave over the ocean. However other biases, such as the small

negative biases in the South Pacific Convergence Zone (SPCZ) and the positive biases in southern storm tracks (here mainly

in the lowest peaking channel) remain to be explained. A full examination of these results would require a separate study,15

but could provide valuable information on model cloud biases. Further, the possibility of constraining cloud and precipitation

properties simultaneously from infrared and microwave supports the strategy of assimilating (or at least monitoring) as many

cloud-sensitive radiances as possible to help understand model biases (Geer et al., 2017a).

As far as all-sky assimilation goes, biases reach 2 – 4 K only in predominantly cloud-affected areas. In these areas the

observation error model will assign error standard deviations of up to 10 K to 20 K, meaning that the biases will not have much20

weight in the analysis and will be unlikely to have a large effect. In the case of all-sky microwave assimilation, observations

with cloud-related biases that are a much larger proportion of the observation error can still often be assimilated with benefit

to forecasts (Lonitz and Geer, 2017). Hence for the current work on all-sky IR there should be no need to apply a cloud-related

bias correction like that of Otkin et al. (2018) or to exclude observations with excessively large biases, such as done in cold-

air outbreak regions in the all-sky microwave (Lonitz and Geer, 2015). However, the biases in the low-peaking channel 90625

might be too large in some areas for successful data assimilation, helping confirm the selection of higher-peaking water-vapour

sounding channels for initial exploitation within all-sky IR.

In these WV channels the all-sky biases are not so much larger than the biases present in the clear-sky assimilation of

the same data, shown in Fig. 8. It has been necessary to reduce the range of the colour scale compared to the all-sky figure,

but outside of the particular areas of all-sky bias discussed above, such as the ITCZ and convection over land, biases are30

comparable. However in the clear-sky data in channel 3002, the ITCZ and subtropical land areas actually show a systematic

positive bias of around 1 K, where undetected cloud would produce a negative bias. This suggests that cloud detection is

highly effective, but that (due to selecting the warmest observations and by selecting clear-sky scenes) it creates a sample of

observations that is biased slightly warm compared to the background. One of the advantages of all-sky assimilation is to avoid

creating artificial sampling biases between model and observations (Bauer et al., 2010).35
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Figure 8. Mean clear-sky background departures in channels 2889 and 3002 (using operational bias correction) sampled over 1 – 20 June

2017. The sample is composed only of actively assimilated observations from Metop-A.

A final illustration of the quality of the all-sky radiative transfer is given by the brightness temperature histogram comparison

on Fig. 9. Because of the spatial and temporal mismatches between observations and simulations on small scales, this helps

check if the simulations represent the same ‘climate’ of brightness temperatures. Down to around 230 K the agreement is

almost exact, but the simulations then underpredict the occurrence of brightness temperatures between 200 K and 230 K. This

is likely caused by the underprediction of convection over land areas revealed in the negative biases in Fig. 7 but could also5

come from scale mismatch. The simulations generate many more brightness temperatures below 200 K than are present in the

observations. The same problem is seen in Fig. 5, where observations are completely missing in the cores of intense convection

systems, for example over NE Brazil. This is a problem of the observation pre-processing, which currently rejects the whole

observation whenever negative radiances are generated in any channel of the instrument. The shortwave channels of IASI

(above around 1900 cm−1) often record negative radiances at the low brightness temperatures associated with the most intense10

deep convection. In future, this check will be relaxed, but it only affects a very small number of observations so it should not

much affect the present results. Going back to the bigger picture, comparing Fig. 9 panels a and b shows that similar patterns
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Figure 9. Histograms of brightness temperatures from observation (thick) and bias-corrected background simulation (thin) for lowest (a) and

highest (b) peaking WV channels. Based on all available observations from 1 – 20 June 2017 excluding only high orography (>2500m) and

Antarctica.

of agreement are present in the lowest and highest peaking WV channels (and, not shown, the intermediate channels too).

Agreement is not perfect but good enough for attempting all-sky assimilation.

After the work of Okamoto et al. (2014), attempts at all-sky assimilation at ECMWF have used the CMSS cloud overlap

rather than multiple independent columns. Figure 10 shows the background departures using the CMSS cloud overlap. In the

highest peaking channel, where cloud has least effect on the brightness temperatures, biases are 5 – 10 K in tropical convective5

areas. In lower peaking channels, biases are larger still. In earlier testing, biases did not appear so big because they were

compensated by a reduced radiative effect of ice clouds coming from earlier choices of ice microphysical assumptions (e.g.

those from Matricardi, 2005). This comparison to multiple independent columns (Fig. 7) shows that the CMSS approximation

is highly inaccurate and illustrates the importance of correctly representing the cloud fraction and cloud overlap in all-sky

infrared radiative transfer.10
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Figure 10. Mean all-sky background departures, as Fig. 7 but using the CMSS cloud overlap. To retain the same colour bar as the other

figure, many biases have been allowed to go off scale.
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Table 3. Summary of experiments.

Name Details

No WV7 Full observing system minus the 7 IASI WV channels, but keeping other IASI channels

assimilated in clear-skies.

Clear-sky As No WV7 but adding the 7 IASI WV channels in a clear-sky configuration

All-sky As No WV7 but adding the 7 IASI WV channels in an all-sky configuration

4 Results of data assimilation

4.1 In the full observing system

All-sky and clear-sky assimilation have been tested with a set of three experiments (Tab. 3) based on the system configurations

described earlier. The 7 WV channels from Metop-A and Metop-B IASI are activated in either clear-sky or all-sky and these

experiments are compared to a ‘No WV7’ control that contains all other observations except the 7 WV channels. To be clear,5

this means that all other IASI channels currently assimilated in the clear-sky approach (see Sec. 2.2) remain active. Further,

data usage in the ‘clear-sky’ experiment is the same as in the operational system. Experiments have been run for a total of 6

months over two separate periods, June - August 2017 and December 2017 – February 2018, which are combined in the results

shown here.

Figure 11 shows the change in vector wind RMSE resulting from the assimilation of the 7 IASI WV channels, with verifi-10

cation carried out against each experiment’s own analysis. Assimilating the WV channels has generally less than a 1% impact

on these scores in either direction, and rarely are the differences significantly different from neutral. A similar picture is seen

in other variables, such as geopotential height, temperature and relative humidity (not shown). There are no statistically sig-

nificant differences between clear-sky and all-sky assimilation, but all-sky assimilation has a statistically significant impact on

SH day 5 winds where clear-sky does not. To interpret this, either of the all-sky or clear-sky configurations could have created15

a significant improvement in forecast quality, but by chance it was the all-sky configuration here. This illustrates the effect of

chaotic variability in forecast scores that makes it hard to verify such small changes (Geer, 2016).

The changes in forecast scores, relative to the No WV7 experiment, are resolved by latitude and by pressure level in Figs. 12

and 13. Again all-sky assimilation appears to provide slightly more benefit than clear-sky through the forecast range to day 5

(T+120) especially in the SH, but without that difference being statistically significant (not shown). At mid range (T+72 and20

T+120) there are areas of significant improvement in wind forecasts in the SH coming from all-sky assimilation (temperature

and geopotential height have similar impact, not shown). However in the day 5 NH scores, clear-sky assimilation is slightly

better than all-sky assimilation, though neither clear-sky nor all-sky is significantly different from the control. At short range

(T+12) the clear-sky assimilation has slightly larger RMS errors than the control. Since the verification reference is the experi-

25



VW: SH −90° to −20°, 200hPa

0 1 2 3 4 5 6 7 8 9 10
−0.02

−0.01

0.00

0.01

0.02

N
or

m
al

is
ed

 d
iff

er
en

ce

VW: Tropics −20° to 20°, 200hPa

0 1 2 3 4 5 6 7 8 9 10
−0.02

−0.01

0.00

0.01

0.02
VW: NH 20° to 90°, 200hPa

0 1 2 3 4 5 6 7 8 9 10
−0.02

−0.01

0.00

0.01

0.02

VW: SH −90° to −20°, 500hPa

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.02

−0.01

0.00

0.01

0.02

N
or

m
al

is
ed

 d
iff

er
en

ce

VW: Tropics −20° to 20°, 500hPa

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.02

−0.01

0.00

0.01

0.02

all−sky − no wv7

clear−sky − no wv7

VW: NH 20° to 90°, 500hPa

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.02

−0.01

0.00

0.01

0.02

Figure 11. Change in vector wind RMSE due to assimilation of the 7 IASI WV channels using either the clear-sky approach (red) or all-sky

approach (black). Change in RMSE is relative to an experiment in which the 7 IASI WV channels are not assimilated, normalised by the

RMSE of the no-observation experiment. Error bars indicate 95% confidence range with S̆idák correction for 8 independent tests following

Geer (2016).

ment’s own analysis, this is not an independent measure of forecast quality, and equally it can be interpreted as a change in the

size of the data assimilation increments. Compared to the control these have become slightly larger with clear-sky assimilation.

The 12 h forecast can also be verified using the background error standard deviation against other observations. By this mea-

sure, both all-sky assimilation and clear-sky assimilation give significant improvements in fits related to moisture, wind and

temperature. Figure 14 shows the normalised changes in background fit for a selection of observation types that offer humid-5

ity information. Short-range humidity fits are improved by around 0.6% against Advanced Technology Microwave Sounder

(ATMS, channels 18 – 22, Fig. 14a) and by 1% – 1.5% against CrIS humidity channels (the ten or so channels with the highest

wavenumber, Fig. 14b). However, the results with all-sky are slightly worse than with clear-sky assimilation. A similar picture

is seen in fits to geostationary WV radiances and AIRS (not shown) and GPSRO fits in the troposphere (this is the zone where

GPSRO is sensitive to humidity, Fig. 14c). Against all-sky microwave channels, all-sky and clear-sky assimilation have benefi-10
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Figure 12. Normalised change in vector wind RMSE due to assimilation of the 7 IASI WV channels using the all-sky approach, relative to

the No WV7 experiment. Cross-hatching indicates 95% statistical significance with a S̆idák correction assuming there are 20 independent

hypothesis tests being made in one latitude-pressure diagram. Normalisation is by the errors in the No WV7 experiment.
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Figure 13. Normalised change in vector wind RMSE due to assimilation of the 7 IASI WV channels using the clear-sky approach, as for

Fig. 12.

cial effects without any overall advantage to one technique or the other. SSMIS chs. 11 and 14 are not fit so well in the all-sky

experiment, but in other channels the all-sky and clear-sky impacts are similar (Fig. 14d). Further, other all-sky instruments

show a small advantage for the all-sky assimilation (not shown). Likely there is a small deterioration in short-range humidity

forecasts in the all-sky experiments compared to the clear-sky, but the deterioration appears to be larger in the clear-sky areas.

In Fig. 14b, fits to CrIS channels around 1050 cm−1 are degraded by both clear-sky and all-sky, but with clear-sky causing5

a bigger degradation. These channels are sensitive to ozone absorption, suggesting that the ozone analysis is being affected by

assimilation of the water vapour sounding channels. Without exploring this degradation in detail, if all-sky assimilation has a

smaller effect than clear-sky, most likely it comes from a reduced weight being given to the observations.

Figure 15 includes observations that have sensitivity to wind, temperature and pressure. Both clear-sky and all-sky assim-

ilation improve fits to these observations with broadly similar impact. For example, there are beneficial impacts on surface10
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Figure 14. Global standard deviation of bias-corrected background departures computed between the 12 h forecast and a selection of assim-

ilated observations with mostly humidity and temperature sensitivity: (a) Temperature and humidity sounder ATMS; (b) Hyperspectral IR

sounder CrIS; (c) Radio-occultation; (d) All-sky microwave imager and sounder SSMIS. The 95% confidence interval is represented either

by error bars or dotted lines. Results are computed over the combined 6 month experimental period.
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Figure 15. As Fig. 14 but for another selection of observing systems with pressure, wind and temperature sensitivity: (a) surface observations;

(b) microwave temperature sounder AMSU-A; (c) Temperature radiosondes; (d) In-situ wind measurements from sondes, profilers and

aircraft
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Figure 16. As Fig. 14 but for AMSU-A in the tropics.

pressure, measured against land stations (’SYNOP’) and drifting and moored buoys (’DRIBU’ and ’MOORED-BUOYS’,

panel a), and on tropospheric temperature, as measured by AMSU-A with its temperature-sounding channels (panel b) and

more directly by radiosondes (panel c). Winds are improved in both troposphere and stratosphere, with the impact clearest in

the stratosphere against in-situ wind observations (panel d). Figure 14 panels a and c also give information on the temperature

forecast – for example in ATMS channels 6 – 9, which are mid-tropopause to tropopause-level temperature-sounding channels,5

and in the stratospheric fits to GPSRO. ATMS channel 9 is not improved so much with all-sky as it is with clear-sky. However,

the equivalent AMSU-A channel 8 shows no such effect, suggesting it is not a major issue. Again the broadest picture is of

equivalence between the impact of all-sky and clear-sky assimilation of the 7 WV channels.

Adding the 7 WV sounding channels, whether in clear-sky or all-sky, has a relatively minor effect on the utilisation of

the other IASI channels that remain active in the clear-sky approach (not shown – see additional figures in the interactive10

discussion). Background fits to lower-tropospheric temperature channels are slightly improved in either case, and the number

of observations used remains within around +/-0.5% of the control, except for reductions of 2% - 3% with all-sky assimilation

that affect just a few channels. Since these changes are minor, and arise from detailed interactions between quality control,

thinning and screening that are hard to untangle, they have not been investigated further.

The background fits have also been computed in latitude bands. In the extratropics the picture is similar to what was seen15

in the global results, but in the tropics all-sky assimilation is significantly better than clear-sky assimilation. The temperature

forecast is improved as shown by a clear and significant improvement in AMSU-A channels 9 – 10 (Fig. 16) and ATMS

channel 8 (not shown) compared to the clear-sky experiment. The differences between all-sky and clear-sky experiments in

tropical own-analysis scores at T+12 in the tropics (i.e. between Fig. 12 and 13) may be linked, and may also have come from

this genuine advantage of the all-sky assimilation.20
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Based on the observational verification of the 12 h forecast, and the reduced RMS increments revealed in the 12 h own-

analysis forecast verification, it seems that the overall size of increments and constraint of the short-range forecast have in

general become slightly weaker with all-sky particularly in the humidity field. However the constraint on the large-scale mass

field (T, pressure, wind) is similar to clear-sky, and very slightly better in the tropics.

4.2 In the absence of other observations5

Because it has been difficult to identify statistically significant differences between the clear-sky and all-sky assimilation, an

alternative approach has been used to evaluate them. In this section a framework is used in which all atmospheric observations

apart from the 7 IASI water vapour channels are discarded. In a cycling data assimilation system, this would result in forecasts

that would rapidly deteriorate in quality and any comparisons would be of questionable value. Observations that can benefit a

low-quality system may yet degrade a high-quality one. The solution (e.g. Geer et al., 2014) is to do data assimilation without10

cycling, taking the background from a high-quality parent experiment: this is a framework known as reinitialisation. For the

current work, the parent experiments are the ‘all-sky’ and ‘clear-sky’ experiments from the last section which assimilate IASI

water vapour assimilation along with the rest of the global observing system. It was important to use a consistent parent, for

example full clear-sky assimilation was the parent for reinitialised clear-sky, so that appropriate VarBC bias corrections could

be used in each case. For the verification reference, we used the full cycling experiment from which the 7 all-sky WV channels15

have been excluded, ‘No WV7’. This is the fairest choice as using either of the parents assigns spuriously better scores to the

assimilation approach used in the chosen parent: for example verifying against the full clear-sky system suggests that clear-

sky assimilation is significantly better than all-sky assimilation (not shown). To quantify the benefit of assimilating the 7 WV

channels, they are compared to a third reinitialised experiment in which no atmospheric observations are assimilated at all.

This is a necessary normalisation step as, even if all other atmospheric observations have been discarded, the forecasts can be20

improved by the surface analysis components (snow, waves, sea surface temperature) which have not been switched off in any

of the reinitialisation experiments. These experiments have only been run for 2 months (June – July 2017) but this is sufficient

to get much clearer statistical significance than with the cycling data assimilation.

The impact of the 7 water vapour channels on their own is shown in Figs. 17 and 18, with the difference between them

in Fig. 19. In both frameworks the WV channels reduce predominantly mid- and upper-tropospheric wind errors as would25

be expected from the 4D-Var tracer effect (Peubey and McNally, 2009; Geer et al., 2014), and there is also clear impact on

low-level winds in midlatitudes. On a hemispheric basis, these improvements average out to around 5% (not shown). All-sky

is significantly better than clear-sky in the tropics and subtropics, confirming results from the previous section. Here, clear-sky

assimilation has some impact in the upper-troposphere, but the extent of impact from the all-sky assimilation is much broader

in the vertical, reaching from near the surface up to 70 hPa. The benefit of all-sky assimilation for tropical winds is retained at30

least as far as forecast day 2 (T+48), whereas it is lost in clear-sky assimilation after day 1. In the midlatitudes, the clear-sky

assimilation has a slight advantage in the NH and all-sky in the SH, but neither has a clear statistically significant advantage

over the other. These results confirm the picture seen in the cycling data assimilation experiments that beyond the early forecast

range, all-sky and clear-sky produce similar improvements in forecast scores in the midlatitudes.
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Figure 17. Change in vector wind RMSE due to assimilation of the 7 IASI WV channels using the clear-sky approach. Change in RMSE

is relative to an experiment in which no observations are assimilated, normalised by the RMSE of the no-observation experiment. Cross-

hatching indicates 95% statistical significance assuming that there are 20 independent hypothesis tests being made in one latitude-pressure

diagram.
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Figure 18. Change in vector wind RMSE due to assimilation of the 7 IASI WV channels using the all-sky approach. Other details as Fig. 17.
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Figure 19. Difference in vector wind RMSE between using the all-sky and clear-sky approach to assimilate 7 IASI WV channels. Other

details as Fig. 17.
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Figure 20. Total of the IASI WV channel contribution to the background observational cost function for Metop-A from 1 – 20 June 2017,

accumulated in 5 degree latitude bins: clear-sky (dot-dash), all-sky before VarQC (thin solid) and after applying VarQC (thick solid, this is a

hypothetical calculation since VarQC is not applied until later in the minimisation).

One unexpected result is seen south of 60◦ where clear-sky assimilation has beneficial impact that is not obtained from

all-sky assimilation. This means the results of all-sky assimilation are significantly worse in these areas compared to clear-sky

(Fig. 19). This appears to be coming from the additional data assimilated in the clear-sky framework over Antarctica (Fig. 4).

This is not a true difference between clear-sky and all-sky assimilation as it results only from the different decisions made in

the screening of surface-sensitive channels over land. Also, no such effect is seen in the full observing system experiments,5

where likely many other observation types contribute in this area.

4.3 Weight of observations

Figure 4 has shown that all-sky brings many more observations than clear-sky assimilation. Hence the question arises why

its impact on forecasts is in some aspects smaller than clear-sky, particularly in the early forecast range in the midlatitudes.

Section 2.3.2 has explained how in clear scenes, observation error standard deviations are a little larger than those used in the10

clear-sky observation error matrix. This is only a few percent in four upper peaking channels, but by 20%, 50% and 70% for the

increasingly deep-sounding channels. However the use of VarQC also reduces the weight given to observations in the all-sky

framework. With the settings used here, the maximum possible VarQC weight is 0.8 and most observations will receive smaller

weights than this.
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Figure 20 assesses the weight given to observations in the analysis by looking at the estimated contribution of the 7 water

IASI channels to the observational cost function at the start of the minimisation, i.e. at background (see Geer, 2019, and

references therein for details). This is not the complete picture, as the observations’ impact also depends on the relative size of

the background errors, but if background errors were constant and homogenous, variations in the observational cost function

would indicate changes in the relative weight of the observations. Computing the cost function for clear-sky assimilation of the5

7 water vapour channels is difficult as the observation errors are correlated with most other IASI channels, so there is no easy

way to separate their contributions. But accepting the cross-correlations are not too important, they can be set to zero when

making an offline estimate of the WV channel contribution, as shown here. In the all-sky experiments where VarQC is applied

we assess its effect by including it in offline calculations of the background cost function. This is not strictly correct since

VarQC is only activated later in the minimisation, but it is otherwise hard to find a common basis to compare the experiments.10

The figure also shows the all-sky cost function at background without the application of VarQC. The estimated cost function

contributions are accumulated for plotting in latitude bins over the same 20 day period as examined earlier.

Figure 20 shows the clear-sky observational cost function contribution varies strongly as a function of latitude. Since the

clear-sky observation error covariance matrix is constant, it is the data selection (both of location and channel usage) that

controls this pattern. Hence the clear-sky contribution follows the observational coverage shown in Fig. 4, with a dip in the15

tropics and increasingly less contribution towards the higher latitudes. We first examine the all-sky cost function contribution

before VarQC, which allows the data selection and observation error choices to be directly compared to clear-sky assimilation.

The global contribution of all-sky is comparable with the clear-sky but the geographical pattern is reversed, with relatively

bigger contributions in the tropics and in the storm-track latitudes around 50 ◦ N and S. All-sky is putting greater weight on

cloudy areas, and this is very obvious in latitude-longitude version of these figures (not shown). Since all-sky brings around20

65% more observations globally, then the weight given to any one observation must have been reduced. This is of course

expected from the construction of the all-sky error covariance matrix. From this point, applying VarQC (using the background

departure) nearly halves the cost function for all-sky. However, since VarQC is adaptive and its effect changes as the analysis

progresses, most observations will eventually end up with greater weight than we have estimated by applying VarQC to the

background departures. Hence the true contribution of all-sky assimilation to the cost function is difficult to assess but it must25

still be globally lower than from clear-sky assimilation.

If all-sky assimilation gives forecast impacts similar to clear-sky but with substantially less total weight in the cost function,

this deserves examination. Bormann et al. (2016) showed that any change in the weight of the clear-sky IASI data, either up or

down, would reduce the quality of the short-range forecast. In all-sky assimilation the impact of the clear-sky observations has

likely been reduced and new data in cloudy conditions has likely made up the difference. Forecast errors are more sensitive to30

the initial conditions in cloudy areas (McNally, 2002) and background errors are typically larger (e.g. Bonavita et al., 2012) so

the cloudy observations could have more impact on forecasts despite their smaller weight in the cost function. A similar effect

is seen for all-sky microwave imager observations, where the adjoint-based forecast impact per observation is much larger

in the cloudy sample than in the clear sample (Geer et al., 2017b). Confirmation of this effect for IASI would require either
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adjoint-based forecast sensitivity calculations or experiments that assimilate the clear and cloudy parts of the all-sky sample

separately. However this will have to be left for further work.

5 Conclusion

The aim of this work was to show that all-sky IR assimilation can be at least as beneficial as clear-sky assimilation of the same

data in a high quality operational forecasting system. Previous work has shown benefit from all-sky IR assimilation in short5

test cases and in research systems, but it has been difficult to get beneficial impacts in the ECMWF system where the clear-sky

use of the data is already so well developed (such as with the use of interchannel error correlations) and in which all-sky

microwave observations with similar sensitivities to water vapour and cloud are already heavily exploited. Compared to earlier

work (e.g. Okamoto et al., 2014) a number of developments have allowed all-sky assimilation to be successful. The quality of

model-simulated all-sky brightness temperatures is much better now, with improved cloud ice optical properties (Vidot et al.,10

2015) and the ability, thanks to increased supercomputing resources, to use the full multiple independent column cloud overlap

(Matricardi, 2005). It is now possible to simulate all-sky IR brightness temperatures with great realism, particularly for the

water vapour sounding channels where systematic errors between model and observations are rarely more than a few Kelvin

and mostly close to zero. The fidelity of the forecast model is also very important, since with a different forecast model but

the same radiative transfer Okamoto (2017) saw systematic errors of around 10 K in cloudy areas. Another main development,15

needed to keep up with advances in clear-sky IR assimilation, has been to develop an observation error covariance model with

situation-dependence, in order to represent how interchannel error correlations get stronger and error variances get larger, in

cloudy areas (Geer, 2019).

Both clear-sky and all-sky assimilation of the IASI mid- and upper-tropospheric water vapour sounding channels are bene-

ficial to mid- and upper-tropospheric winds, temperature and humidity, as well as to surface pressure and geopotential height.20

The impact on dynamical fields likely comes through the 4D-Var humidity and hydrometeor tracing mechanism that has

been demonstrated with geostationary IR sounders and all-sky microwave humidity channels (Peubey and McNally, 2009;

Geer et al., 2014). All-sky IR assimilation is no better than clear-sky assimilation in the midlatitudes, but there is a small

improvement over clear-sky assimilation in the tropics. This is a starting point from which all-sky IR assimilation could be

made operational and developed progressively in the same way that all-sky microwave observations have taken many years to25

become an important part of the observing system (Geer et al., 2017b).

To examine the detailed results in the tropics, the short-range forecast from all-sky assimilation is significantly closer to

AMSU-A temperature-sounding radiances than is the clear-sky approach, particularly at tropopause level. In the absence of

other observations, reinitialisation experiments show improved forecasts out to at least day 3 in the tropics through the full depth

of troposphere and stratosphere, with the biggest impacts also found at tropopause level. The benefit of all-sky assimilation30

likely comes from the doubling of available IASI WV observations in these areas, particularly in the vicinity of the ITCZ.

There are biases in the background departures in the tropics, locally reaching 2 – 4 K in the lowest-peaking channel (2889) but

at most 1 – 2 K in the upper peaking channel (3002). These biases likely come from the forecast model producing excessive
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deep-convective cloud over ocean and insufficient deep-convective cloud over land. However, observation error variances and

correlations are inflated as high as 10 K to 20 K in these areas, so the biases are not too important. Arguably more important are

the sampling biases revealed in clear-sky assimilation of channel 3002 in the tropics. Here there are positive biases reaching

1 K in many parts of the ITCZ for a channel that is assimilated with roughly 1.5 K observation error. These positive biases are

consistent with an approach that rejects cloudy observations and naturally creates a sample of data that is not representative.5

One of the big advantages of all-sky assimilation (Bauer et al., 2010) is that it presents the data assimilation with an unbiased

sample of data even at the cost of becoming more sensitive to systematic errors in modelled cloud amounts, or in the cloudy

radiative transfer.

In the midlatitudes, the question is how all-sky IR assimilation can bring substantially more data, particularly in frontal

areas, but produce results that are no better than clear-sky assimilation. However, the weight given to any single observation in10

the all-sky framework is smaller than in clear-sky. The all-sky observation error covariance model gives larger error standard

deviations than used in the clear-sky assimilation, even for observations considered completely clear. This is in part because

the trailing eigenvalues of the covariance matrix are inflated to avoid problems of bias amplification and excessive gravity

wave generation in the stratosphere. The activation of VarQC further downweights the data. With additional work it might

be possible to boost the weight of the observations by adjusting the details of observation error and VarQC. However the15

all-sky error model is already the result of much exploratory testing and tuning (Geer, 2019). It could be helpful to put more

weight on clear-sky observations but this is not guaranteed to succeed. For example although there is a 100 km thinning box,

in practice the clear-sky assimilation has much longer thinning scales in areas where data is rejected due to clouds. Hence

the assimilation of more data through all-sky assimilation may challenge the assumption of spatially uncorrelated observation

errors, and thus require decreased observational weights overall. Also, a downside of all-sky assimilation is that including cloud20

in the observation operator increases modelling uncertainty even for observations that would have been treated as clear in the

clear-sky system (Geer et al., 2012). Nevertheless, the error model would be one of the main targets for future improvement.

Even if it is hard to get more direct benefit from all-sky IR assimilation in the midlatitudes, there are additional reasons

to move towards all-sky IR assimilation. First, the cirrus information content is currently unique because all-sky microwave

sees mainly the larger precipitation-sized ice particles. This sensitivity could be exploited for model verification. Second, all-25

sky assimilation removes the need for the cloud-detection that is currently a time consuming and difficult aspect of using IR

observations. This might be a particular benefit for the assimilation of non-hyperspectral IR radiances such as those com-

ing from geostationary sensors. Without the possibility of using the McNally and Watts (2003) approach, cloud detection is

more difficult and may be less accurate for these sensors. Also, all-sky assimilation provides a more representative sample

of observations to the assimilation system. Finally, lower-peaking IR channels (whether sensitive to temperature or humidity,30

or window channels) lose increasingly more data to cloud-detection, which could give all-sky assimilation greater potential

benefit forecasts through increased observational coverage.

To proceed to operational implementation, all-sky IR assimilation now needs to be merged with some even more recent

progress in the clear-sky framework. As shown by Migliorini (2015) there is more information that can be extracted from the

humidity sounding channels of hyperspectral imagers. Adding more WV sounding channels in the clear-sky framework has35
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subsequently shown substantial benefits (Kirsti Salonen, pers. comm.) Second, principal component, reconstructed radiance or

transformed retrieval assimilation can exploit the full spectrum (Matricardi and McNally, 2014; Prates et al., 2016) and is also

close to being operationally viable with very substantial impact (Marco Matricardi, pers. comm.). Hence it will be necessary

to re-implement the all-sky framework in one of these two new approaches, with more work required if the reconstructed

radiance framework is chosen. It will be necessary to implement and verify cloudy radiative transfer in the principle component5

RTTOV (PC-RTTOV). Further, given the strong correlations between all channels in the observation error covariance matrix

for reconstructed radiances, it will be a challenge to develop a situation-dependent all-sky error covariance model. It may be

difficult to limit all-sky assimilation to just the humidity sounding channels.

A second problem is the continuing high cost of the multiple independent columns radiative transfer in RTTOV. This work

has confirmed the need for such an accurate representation of cloud overlap for IR radiative transfer by comparison to the large10

errors resulting from more approximate techniques. For example using the CMSS effective cloud fraction gives systematic

errors of at least 5 K to 10 K in regions where multiple independent column radiative transfer is almost unbiased with respect to

real observations. This costs around 34 times more than clear-sky radiative transfer in the ECMWF system, which is affordable

for operational high-resolution assimilation where observations are a minor part of the total cost of data assimilation. However

it would increase the cost of assimilation done at lower model resolution such as the operational EDA, as well as research work.15

Hence there remains a need for a faster but equally accurate overlap scheme. In principle it may not be necessary to use in-

dependent column radiative transfer with the Chou-scaling approximation. The cloud overlap and level-to-space transmittance

could be computed independently for each level using an appropriate overlap formulation. Alternatively it may be possible to

use fewer, but carefully chosen, independent columns, following O’Dell et al. (2007).

Code and data availability. The RTTOV observation operator is copyrighted by EUMETSAT but is available free of charge to registered20

users via https://www.nwpsaf.eu/site/software/rttov/. The ECMWF data assimilation system is copyrighted by ECMWF and access to these

systems (and the data provided by them) is possible through agreement with its member state national hydrometeorological organisations.

The data are forecast fields and observation feedbacks from the experiments that may eventually be deleted due to their very large file sizes.

Experiment IDs in the ECMWF MARS archiving system (for authorised users) are h0db and h18n for the all-sky experiment, h09a and h180

for the clear-sky and h0bn and h181 for ’No WV7’. Reinitialised experiments are respectively h1qv, h21i and h1qw for all-sky, clear-sky and25

no observations.
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