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Abstract. Water vapor is an important substituent of atmosphere, but its spatial and temporal distribution is difficult to 

detect. Global Positioning System (GPS) water vapor tomography, which can sense three-dimensional water vapor 

distribution, has been developed as a research area in the field of GPS meteorology. In this paper, a new water vapor 

tomography method based on a genetic algorithm (GA) is proposed to overcome the ill-conditioned problem. The proposed 

approach does not need to perform matrix inversion, and it does not rely on excessive constraints, a priori information and 15 

external data. Experiments in Hong Kong under rainy and rainless conditions using this approach show that a serious ill-

conditioned problem in the tomographic matrix by grayscale and condition numbers. Numerical results show that the 

average root mean square error (RMS) and mean absolute error (MAE) for internal and external accuracy are 1.52/0.94 mm 

and 10.07/8.44 mm, respectively, with the GAMIT-estimated slant water vapor (SWV) as a reference. Comparative results 

of water vapor density (WVD) derived from radiosonde data reveal that the tomographic results based on GA with a total 20 

RMS/MAE of 1.43/1.19 mm are in good agreement with that of radiosonde measurements. In comparison to the traditional 

Least squares method, the GA can achieve a reliable tomographic result with high accuracy without the restrictions 

mentioned-above. Furthermore, the tomographic results in a rainless scenario are better than those of a rainy scenario, and 

the reasons are discussed in detail in this paper. 

1 Introduction 25 

Water vapor is a major component of the atmosphere and its distribution and dynamics are the main driving force of weather 

and climate change. A good understanding of water vapor is crucially important for meteorological applications and research 

such as severe weather forecasting and warnings (Liu et al., 2005). Nevertheless, the variation of water vapor is affected by 

many factors including, temperature, topography and seasons with characteristics of changing fast with time and heavily in 

vertical and horizontal directions, which makes it difficult to monitor with high temporal and spatial resolutions (Rocken et 30 

al., 1993). 
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Thanks to the development of GPS station networks providing atmospheric information under all weather conditions, GPS is 

considered as a powerful technique to retrieve water vapor. Since Bevis et al. (1992) first envisioned the potential of 

tomography applying in GPS meteorology, water vapor tomography has become a promising method to improve the 

restitution of the spatio-temporal variations of this parameter (Braun et al., 1999; Nilsson et al., 2004; Song et al., 2006; 

Perler et al., 2011; Rohm, 2012; Dong and Jin, 2018).  5 

In GPS water vapor tomography, the research area should be covered by ground GPS receivers and discretized into a number 

of cubic closed voxels by latitude, longitude and altitude, each of which has a fixed amount of water vapor at a particular 

time (Guo et al., 2016). The observations are GPS-derived slant water vapor, the precipitable water in the direction of the 

signal ray-path, which travels through the troposphere from its top (Zhao and Yao, 2017). After obtaining the precise 

measurement of the signal ray distance in each voxel by raytracing its path from receiver to satellite, we can achieve the 10 

basic equation for water vapor tomography, which can be expressed in linear form (Flores et al., 2000; Yang et al., 2018): 
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where the superscript q is the satellite signal index, 
qSWV  denotes the qth slant water vapor achieved by GPS tropospheric 

estimation, n  is the total number of tomographic voxels discretized. q

id  denotes the distance of qth signal ray inside voxel i 

which can be obtained by the satellite and station coordinates, and ix  is the water vapor density of voxel i. Using all suitable 15 

SWV observations, we can form the tomographic observation equation: 

 1 1,m m n ny A x  =    (2) 

where y  is a column vector of SWV, m  is the total number of SWV measurements in tomography, A  denotes the 

intercept matrix containing the distance of the signal ray in each of the voxels, n  is the number of voxels in the study area, 

and x  denotes the vector of the unknown water vapor density. 20 

Since a GPS signal ray can only pass through a small part of the voxels in the study area, the elements of matrix A  are 

likely to be equal to zero, making it a large sparse matrix. In addition, the effective signal rays will concentrate around the 

zenith due to the unfavourable geometry of the GPS stations and the special structures of the satellites. These all make Eq. (2) 

ill-conditioned, and it is difficult to obtain the unknowns by performing the inversion of Eq. (2), in the form of 
1x A y−=  . 

To circumvent the ill-conditioned problem, many methods are explored in the literature. Flores et al. (2000) added 25 

constraints on the vertical and horizontal variability of tomography with additional top constraints to the model. Most 

constraints are based on experiences and difficult to match to the actual water vapor distribution, resulting in the deviation of 

tomographic results. Moreover, singular value decomposition (SVD) is required to perform matrix inversion. Bender et al. 

(2011) utilized an iterative algorithm called algebraic reconstruction technique (ART) to solve the observation equation. 

Several reconstruction algorithms of the ART family were also implemented, e.g. the multiplicative algebraic reconstruction 30 
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techniques (MART) and the simultaneous iterations reconstruction technique (SIRT) (Stolle et al., 2006; Liu et al., 2010). 

The ART techniques are iterative algorithms that proceed observation by observation. Only two vectors y , x  and a data 

structure containing the slant subpaths in each voxel are required to solve the observation equations. The algorithms consist 

of two loops. The inner loop processes SWV by SWV and applies an adequate correction to each voxel. SWVs that execute 

the next iteration start in the outer loop (Bender et al., 2011). Perform the matrix inversion I not necessary, thus avoiding the 5 

ill-conditioned problem. However, only the results of the voxels that travelled through via signal rays are updated, and the 

tomographic results heavily depend on the exact initial field, the data quality and relaxation parameter (Wang et al., 2014). 

Nilsson and Gradinarsky (2004) adapted a Kalman filter approach to estimate tomographic results without adding constraints 

and performing inversion. This approach assumes that the water vapor density in each voxel meets the Gauss-Markov 

random walk pattern for a certain period of time, and establishes the corresponding state equation of Kalman Filter. The used 10 

observation vector is based on the mathematical model to perform the optimal estimation of the state vector, which is a 

process of continuous prediction and correction. In this method, initializing the filter with an informed estimation of the 

water vapor field and providing the initial covariance of state equation are based on external data. Other approaches that 

enrich the information of the observation equation were exploited in recent years, including the Constellation Observing 

System for Meteorology, Ionosphere, and Climate (COSMIC) occultation data by Xia et al. (2013), Interferometric Synthetic 15 

Aperture Radar (InSAR) by Benevides et al. (2015), water vapor radiometer (WVR) and numerical weather prediction by 

Chen and Liu (2016). 

In the above-mentioned tomographic methods, excessive constraints with the matrix inversion, an exact priori information or 

external data are commonly used to overcome the ill-conditioned problem. The mandatory usage of excessive constraints in 

tomographic experiments with poor voxel structure will induce limitations, while reliance on an exact priori information will 20 

make the tomographic solutions too similar to the priori data and decrease the role of the tomography technique. External 

data cannot be used in all tomographic experiments. Therefore, this paper proposes a new tomography method based on a 

genetic algorithm (Section 2). The tomography experiments and results of the analysis are presented in Section 3. Section 4 

summarizes the conclusions. 

2 Methodology 25 

2.1 Troposphere estimation 

In water vapor tomography, the observation is slant water vapor which can be converted from slant wet delay (SWD) by the 

following formula (Adavi and Mashhadi, 2015): 
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where   denotes conversion factor. 1

1 77.604k K hPa−=  , 1

2 70.4k K hPa−=  , 5 2 1

3 3.775 10k K hPa−=   . w  

is the liquid water density (unit: g/m3),
3 1 18314R Pa m K kmol− −=     represents the universal gas constant, 

118.02wm kg kmol−=   and 128.96dm kg kmol−=   indicate the molar mass of water and the dry atmosphere, 

respectively. mT  denotes the weighted mean temperature which is the ratio of two vertical integrals though the atmosphere 

(Davis et al., 1985). In practice, an empirical formula is used to achieve approximate mT  by surface temperature sT  in K 5 

( 85.63 0.668m sT T= + ) (Liu et al., 2001; Astudillo et al., 2018). SWD can be obtained as follows (Zhang et al., 2017): 

 ( ) ( ) ( ) ( ) ( )( )cot cos sin ,w w

NS WESWD f ele ZWD f ele ele G azi G azi R=  +    +  +   (4) 

where ele  and azi  are the satellite elevation and azimuth, respectively. f  denotes the wet mapping function, w

NSG  and 

w

WEG  refer to the wet delay gradient parameters in the north-south and east-west direction, respectively. R is the unmodelled 

atmospheric slant delay, which is included in the zero-differences residuals. ZWD represents zenith wet delay, which is the 10 

wet component of zenith total delay (ZTD) affected by water vapor along the satellite signal ray. It can be separated from 

ZTD by subtracting the zenith hydrostatic delay (ZHD). The ZTD is the primary parameter retrieve with GPS and spatially 

averaged parameter. If pressure measurements are available, the ZHD is calculated by the Saastamoinen model as follows 

(Saastamoinen, 1972): 

 
( )

0.002277
,

1 0.00266 cos 2 0.00028

sP
ZHD

H


=

−  − 
  (5) 15 

where sP  refers to the surface pressure,   and H  represent the latitude and the geodetic height of the station, respectively. 

2.2 Water vapor tomography based on Least squares method 

After obtaining the observation equation (Eq. (2)), three types of constraints are usually added: 

 0=H ,x   (6) 

 0 ,V x=    (7) 20 

 0 T x=    (8) 

Equations (6)-(8) are the vertical, horizontal and top constraints, respectively. The horizontal constraint equation assumes 

that the distribution of water vapor density is relatively stable in the horizontal direction within a small region. Thus, the 

water vapor density within a certain voxel can be represented by the weighted average of its neighbouring voxels in the same 

layers. The vertical constraint equation is a relationship established for the voxels between two adjacent layers based on the 25 

analysis of meteorological data for many years. The top constraint is obtained by setting the water vapor density of the top 
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boundary to a small constant. Based on the principle of Least square, the tomographic results can be achieved by the 

following formula: 

 ( ) ( )
-1

T T T T Tx A A H H V V T T A y= + + +    (9) 

To obtain the inverse matrix in Eq. (9), the singular value decomposition is required. More details on this technique can be 

found in e.g. Flores et al. (2000). 5 

2.3 Water vapor tomography based on the genetic algorithm 

For water vapor tomography based on the genetic algorithm, the first procedure is to construct the tomographic equation. 

The idea of function optimization is then used to solve Eq. (2) (Guo and Hu, 2009; Olinsky et al., 2004), which is similar to 

the principle of Least squares minTV PV =  (Flores et al., 2000).  Eq. (2) can be converted into the form as follows: 

 ( ) ( )min ,(x) ,
T

y Ax P y Ax x Rf −= −  +   (10) 10 

where the terms are the same as in Eq. (2). In this equation, the values of x  that minimize function ( )f x  are the result of 

tomography. To achieve the best values of x , the traditional method adopts a derivative method which needs matrix 

inversion in the follow-up. Genetic algorithm, which was first introduced by Holland (1992), provides an adaptive search 

method to achieve the tomographic results. It is designed to simulate the evolutionary processes in the nature, in which the 

principle of survival of the fittest is applied to produce better and better approximates to the function. Eq. (10) is regarded as 15 

the fitness function that is used to measure the performance of the searched values of x  by computing the fitness value 

(Goldberg, 1989; Venkatesan et al., 2004). Through searching generation after generation, the water vapor result that best 

fits the function can be found. The specific steps of water vapor tomography based on genetic algorithm are as follows: 

1) Construct the fitness function which is converted from the tomographic equation. 

2) Generate some groups representing approximates of x (water vapor density) stochastically, which form the initial 20 

population. 

3) Select groups from the last generation of the population as parents according to a lower to higher order of the groups of 

x corresponding to their fitness values. 

4) Produce offspring groups from parents by crossover and mutation to make up a new set of approximated solution (new 

generation). 25 

5) Compute the fitness values of the new generation, go back to step 3) and produce the next generation of the population.  

6) The search terminates when a group of approximates meets the requirements of the fitness value. Generally, we set the 

stopping criteria for generation or calculation time. 

The parameters of genetic algorithm are listed in Table 1 (Wang et al., 2010). Roulette is a function used for selection in step 

3), referring to the concept of a roulette wheel in which the area of each segment is proportional to its expected value and 30 
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one of the sections is selected with a random number whose probability equals its area. For the crossover function, 

Intermediate in Table 1 is intended to create offspring groups by a random weighted average of the parents. The mutation 

process forces the individuals in the population to undergo small random changes that enable the genetic algorithm to search 

a wider space. Adaptive feasibility is chosen for the mutation function, which means that the adaptive direction is generated 

randomly with respect to the last successful or unsuccessful generation (Dwivedi and Dikshit, 2013). Based on these steps, 5 

the optimal solution of Eq. (10) is derived, that is, the value of x  that gives ( )f x  the minimum value, and also the value 

of water vapor density in the tomographic equations. To more clearly show the process of water vapor tomography based on 

genetic algorithm, the flowchart is shown in Fig.1. 

Table 1. Parameters of the genetic algorithm 

Parameter Strategy 

Population Size 200 

Crossover Fraction 0.8 

Reproduction of Elite Count 10 

Selection Function Roulette 

Crossover Function Intermediate 

Mutation Function Adaptive Feasibility 

Generations of Stopping Criteria 100*Number of Variables 

 10 
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Fig.1 Flowchart of the water vapor tomography based on the genetic algorithm 
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3 Experiment and Analysis 

3.1 Experiment Description 

 

Fig. 2 Geographic distribution of GPS, radiosonde stations and the horizontal structure of the voxels used in water vapor 

tomography. Map data ©2018 Google. 5 

In order to conduct the tomographic experiment based on genetic algorithm, Hong Kong was selected as the research region. 

The boundary and resolution in west-east and south–north direction were 113.87°-114.35°, 0.06° and 22.19°-22.54°, 0.05°, 

respectively. For the altitude direction, 0-8.0 km and 800 m were chosen. A total of 8 7 10   voxels in the tomography 

grid was obtained. As shown in Figure 2, thirteen GPS stations of the Hong Kong Satellite Positioning Reference Station 

Network (green triangle) were selected in the tomography modelling to provide SWV measurements. Another GPS station 10 

(KYC1, red spot) and radiosonde station (45005, blue spot) were used to check the result of tomography. Each GPS station 

recorded temperature, pressure and relative humidity by an automatic meteorological device, by which the hydrostatic parts 

of the troposphere delay can be accurately achieved. All the stations are under 400 m and located in the first layer of the 

tomographic grids.   

The GPS tropospheric parameters (zenith tropospheric delay and gradient parameters) were estimated by the GAMIT 10.61 15 

software based on a double-differenced model. In order to reduce the strong correlation of tropospheric parameters caused by 

the short baseline between GPS receivers in the tomographic area, three International GNSS Service (IGS) stations (GJFS, 

LHAZ and SHAO) were incorporated into the solution model. In the processing, the sampling rate of observations was 30s, a 

cut-off elevation angle of 10° was selected, and the IGS precise ephemeris was adopted. The LC_AUTCLN and BASELINE 

modes were selected as the processing strategies, representing that the GPS observation was the ionosphere-free linear 20 

combination and the orbital parameters were fixed, respectively. The tropospheric parameters, including troposphere delay 
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gradients and ZTD at 4-h and 2-h intervals, are estimated and interpolated to 30s sampling rate in the GAMIT software. Note 

that the outputs of the GAMIT are double-differenced residuals and troposphere delay gradients. To obtain the R in Eq. (4), 

double-differenced residuals should be converted to zero-differences residuals and multipath effects should be considered by 

the method proposed by Alber et al. (2000). To achieve the wet delay gradients, Bar-Sever et al. (1998) considered the 

average of troposphere gradients within 12 hours as the dry delay gradients and subtracted it from the troposphere delay 5 

gradients. Then all the necessary parameters are available for Eq. (4) to build SWD, and SWV was obtained by Eq. (3). 

To verify the proposed method, two periods of GPS observation data, with a sampling rate of 30s, were used in the 

tomography experiment. One from 13 to 19 August, 2017 (DOY of 225 to 231, 2017), during which a spell of fine weather 

prevailed in Hong Kong with a ridge of high-pressure extending westwards from the Pacific to cover south-eastern China on 

16-18 August. In this period of time, the daily rainfall is 0 mm. Moreover, the relative humidity and SWV produced in the 10 

selected stations on average are 75% and 79.1 mm, respectively. This period is defined as rainless days. Hence, fine weather 

occurs without any rainfall. In addition, the relative humidity and SWV are small. The other period is from 12 to 18 June, 

2017 (DOY of 163 to 169, 2017), which covers the rainy days. During the selected rainy period, the weather of Hong Kong 

was first affected by the approach and the passage of a severe tropical storm, named Merbok, with more than 150 mm of 

rainfall recorded on 13-14 June. Thereafter, from 15 and 16 June, the influence of an enhanced southwest monsoon and the 15 

development of a lingering through of low pressure made the weather remaining unstable and rainy till 21 June. In this 

period of time, the maximum daily rainfall is up to 203.7 mm, and the average daily rainfall is 66.8 mm. The average relative 

humidity and SWV produced in the selected stations are 89% and 112.9 mm, respectively. This period represents as rainy 

days, indicating that continuous rainfall occurs, and the relative humidity and SWV are high. The period covered is 0.5h for 

each tomographic solution. The radiosonde data, collected twice daily at 00:00 and 12:00 UTC in these two periods, were 20 

treated as reference data.  

According to the flowchart presented in Fig. 1, the above GPS observation data were processed to construct the tomographic 

equation and further convert it into the fitness function for the optimization algorithm. Population size is chosen based on the 

total number of unknown parameters (water vapor density). The value of 200 is the default option of the algorithm when the 

number of unknows exceeds a certain amount. The reproduction of elite count is chosen to be 10 to specify the number of 25 

individuals that are guaranteed to survive to the next generation because it is based on population size (0.05 * population 

size). The crossover fraction is set to the default value of 0.8 to specify the fraction of the next generation that crossover 

produces. In this study, generation is chosen as the stopping criteria and 100*Number of Variables is the default. Other 

parameters, including roulette, intermediate and adaptive feasibility, are selected because they are the most commonly used 

settings for genetic algorithms. Other selection functions as well as crossover and mutation functions can be adopted in the 30 

genetic algorithm. In addition, population size, crossover fraction, elite count and stopping criteria can also be set to other 

values which may slightly affect solution time and results. The specific impact can be explored in depth in future research. 
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3.2 Analysis of matrix ill-condition 

In a tomographic solution, the structure of the coefficient matrix in the observation equation depends on which voxels are 

crossed by SWV and the number of signal rays penetrating each voxel. Fig. 3 illustrates this in the form of a grayscale graph 

for two different days: 13 August, 2017 at UTC 00:00, a rainless day (a), and 13 June, 2017 at UTC 12:00, a rainy day (b). In 

the upper panel of each graph, the deepening of the grayscale refers to an increase in the number of signal rays crossing 5 

through the voxel. The closer the layer to the ground, the more voxels are not crossed by any signal rays. Although there are 

few voxels with no signal rays passing through in the upper layers, many of the voxels have a lighter grayscale which means 

that the voxels are crossed by fewer signal rays.  

Note that when the signal ray passes vertically through the tomographic region, the ray crossed a minimum number of voxels, 

that is, ten in the tomographic area. Therefore, the minimum probability that a voxel will be crossed by a ray is 1.79% 10 

(10/560, 560 is the total number of the voxels in this tomographic experiment). Thus 1.79% of the total SWV is taken as a 

criteria to further illustrate the structure of the coefficient matrix.  If the number is greater than the threshold, the voxel is 

considered to be crossed by sufficient rays, otherwise the voxel is defined as an insufficient one. For the two examples 

shown, the number of total SWV and the criteria are 4930/4569 and 88/81, respectively. The lower panel of each graph 

displays the distribution of sufficient (black rectangle) and insufficient (white rectangle) ones. Obviously, many voxels are 15 

not crossed by enough satellite rays, both for the upper layers or the lower layers. 

 
(a) 
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(b) 

Fig. 3 Grayscale graph of number of signal rays passing through each voxel and distribution of voxel with sufficient signal 

rays (a and b stand for a rainless and a rainy day, respectively) 

To better analyze the ill-conditioned nature of the observation equation in tomography modelling, the number of zero 5 

elements in matrix A is counted. We found that the proportion of zero element is over 97% in all tomographic solutions. In 

addition, the concept of matrix condition number is introduced to measure the degree of dispersion of the eigenvalues of the 

coefficient matrix (Edelman, 1989). The larger the value of the condition number, the more ill-conditioned the matrix is. The 

results show that the condition number in every tomographic solution is INF which means a serious ill-conditioned problem. 

3.3 Internal Accuracy Testing 10 

To evaluate the performance of water vapor tomography based on genetic algorithm, slant water vapor of GPS stations for 

the data of 13 to 19 August and 12 to 18 June, 2017 were computed using the tomographic results based on the water vapor 

tomographic observation equation established in Eq. (1). In this process, the parameters on the right side of Eq. (1) (the 

distance of the signal ray in each of the voxels and the water vapor density calculated by the tomographic modelling) are 

taken as known quantities. Moreover, the SWV on the left is the parameter to be determined, i.e. the tomography-computed 15 

SWV. The differences against the GAMIT-estimated SWV (as a reference) were also identified.  

For internal accuracy testing, 13 GPS stations used in the tomographic modelling were adopted. The change of tomography 

computed VS GAMIT-estimated slant water vapor residuals with elevation angle is shown in Fig. 4, where the blue and red 

dots represent the rainy and rainless days, respectively. The maximum residuals for rainy and rainless scenarios are 10.74 

and -9.84 mm, respectively. The root mean square error (RMS) and mean absolute error (MAE) for rainy and rainless days 20 

are 1.56/0.98 and 1.48/0.89mm, respectively. Fig. 4 shows that most of the residuals are concentrated between -2.0 and 2.0 

mm which indicates good internal accuracy. 
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Fig. 4 Scatter diagram of the SWV residuals in different weather conditions for internal accuracy testing 

To normalize SWV residuals for their evaluation in a single unit, we mapped the tomography-computed SWVs back to the 

zenith direction using the ( )1 sin e  formula and computed their differences with the GAMIT-estimated PWV (Michal et al., 

2017). Fig. 5 shows the statistical results of the residuals in the zenith direction. In the figure, the colours indicate the 5 

weather conditions (blue for rainy days and red for rainless days), and the 13 stations were arranged in the order in which 

they were added to the tomographic model. The maximum and minimum RMS in the two period are 0.79 and 1.81 mm, 

respectively, whereas the maximum and the minimum values for MAE are 0.43 and 1.54 mm, respectively. The RMS and 

MAE of rainless days are better than those of rainy day in each station. The medians of RMS and MAE are displayed for 13 

stations to highlight differences among the stations. A particular outlier is the HKMW station, with RMS and MAE values 10 

1.81/1.53 and 1.81/1.53 and 1.60/1.23 mm in rainy and rainless days, respectively. The reason for the divergent behaviour 

may be that two stations (HKPC and HKMW) exist in the same voxel which may result in the station (HKPC) data first 

introduced into the tomographic model affecting the subsequent station (HKMW) data. This hypothesis will be further 

investigated in future research. However, plots with RMS and MAE are consistent within 2.0 mm among all the stations (1.5 

mm except for HKMW).  15 
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Fig. 5 Comparison of SWV residuals in zenith direction, circles for RMS and diamonds for MAE, blue for rainy days and 

red for rainless days. 

3.4 External Accuracy Testing 

For external accuracy testing, the data from KYC1 station which was not included in the tomographic modelling were used. 5 

Figure 6 shows the histogram for MAE (upper) and RMS (lower) of SWV residuals (differences between the tomography-

computed SWV and GAMIT-estimated SWV), in which the blues and reds represent rainy and rainless days, respectively. 

The dashed bars are the averages for those different weather conditions. From this figure, it can be noted that all MAE and 

RMS are below 15mm, with average values lower for rainless days than for rainy days, respectively 8.75/7.33 and 

11.38/9.54mm for RMS/MAE. Therefore, a good external accuracy is achieved by tomographic solutions considering the 10 

low RMS and MAE of rainy and rainless days. 
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Fig. 6 Histogram for MAE (upper) and RMS (lower) of SWV residuals (differences between the tomography-computed 

SWV and GAMIT-estimated SWV) for the KYC1 station, which has not been used in the tomographic modelling (blue for 

rainy days, red for rainless days) 

 5 

Fig. 7 Comparison of SWV residuals (differences between the tomography-computed SWV and GAMIT-estimated SWV) 

for the KYC1 station in each elevation bin, upper for RMS/MAE, lower for normalised RMS/MAE.  

To further asses external accuracy, slant water vapor outputs were grouped into individual elevation bins of 5°, i.e. all SWVs 

with an elevation angle between 10° and 15° were evaluated as a single unit. The RMS and MAE of each elevation bin were 

calculated. To examine the dependence of relative errors in SWVs at different elevations, normalized RMS and MAE were 10 

computed. For this computation, residuals of SWV were divided by the GAMIT-estimated SWV and multiplied by 100 to 

obtain the percentages. Fig. 7 shows the variation of RMS, MAE, normalized RMS and normalized MAE as the elevation 
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angle changes in different weather conditions. For the upper figures, the RMS and MAE reduction of SWV residuals are 

clearly visible as the increasing elevation angle, which is consistent with the trend shown in Fig. 4. The colours in the figure 

indicate that better RMS and MAE results can be achieved on a rainless day than on a rainy day in each elevation bin. In 

terms of normalized RMS and MAE, we note that they remain almost constant over all elevation angles, indicating a 

consistent relative performance of computing SWV in each type of weather condition. It is noted that the normalized RMS 5 

and MAE of rainless days are close to those of rainy days which may be due to the large SWV during rainy days that 

introduced a large denominator in the normalized calculation. Therefore, the good performance on relative error in SWVs at 

different elevations with a low normalized RMS/MAE (<0.125 for normalized RMS and <0.106 for normalized MAE) points 

to good external accuracy.   

In the above analysis, RMS and MAE were used for the external accuracy testing of the tomographic results based on the 10 

GA. Box plots are used to explore the statistical characteristics of SWV residuals and to detect the outliers in the 

tomographic errors. Five characteristic values are shown in the box plots. Q1 and Q3 located at the bottom and top of the box 

represent the first and third quartiles; the second quartile (Q2) is located inside the box; the ends of the whiskers refer to the 

upper and lower bounds, which are located at Q1-1.5(IQR) and Q3+1.5(IQR), respectively. IQR is the interquartile range, 

defined as the difference between Q3 and Q1, reflects the discreteness of a set of data. In Fig. 8 the length of box and the 15 

range of bound in rainless days (in red) are smaller than those in rainy days (in blue), indicating better residual distribution in 

rainless days than in rainy days. The right plots (in green) denote the result of combination of rainless and rainy days, 

representing the overall distribution of SWV residuals of tomography based on genetic algorithm. In our experiments, 50 % 

of the residuals are concentrated between -7.08 and 4.47 mm, and only 3.24% of the residuals are outliers when combining 

the data of rainy and rainless days.  20 

 



15 

 

Fig. 8 Box plots of the SWV residuals (differences between the tomography-computed SWV and the GAMIT-estimated 

SWV) for the KYC1 station 

3.5 Comparison with Radiosonde Data 

  

Fig 9 (a-n) represent water vapor density comparisons between radiosonde and tomography based on the genetic algorithm 5 

at UTC 0:00 and 12:00 from 12 to 18 June, 2017 (rainy days) 
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The water vapor density profile derived from the radiosonde data can be used as a reference value, which is well suited to 

evaluate the accuracy of the tomographic results based on genetic algorithm. As the radiosondes are launched daily at 00:00 

and 12:00 UTC, the tomographic results of 12 to 18 June (rainy days) and 13 to 19 August, 2017 (rainless days) at these 

times were compared. Figure 9 shows the water vapor density comparisons between radiosonde data and tomographic results 

for different altitudes at individual dates (rainy period). It is clear from the profiles that the WVD decreases with increasing 5 

height. The WVD profiles reconstructed by the GA tomographic solutions conform with those derived from the radiosonde 

data, especially in the upper troposphere in absolute terms. With respect to the relative error, the values of the voxels upper 

than 5km and lower than 5km are 31% and 15%, respectively. The reason for this phenomenon is that the value of water 

vapor in the upper layers is relatively low. Even a small difference between the radiosonde and tomographic result can also 

lead to a large relative error, whereas the water vapor content resides for more than 90% below 5km near the Earth’s surface. 10 

In certain cases, a relatively good consistency can also be seen in the lower atmosphere. This may be because a GPS station 

(HKSC) for tomography modelling is located at the voxel where the radiosonde station is situated, resulting in the low 

atmosphere with sufficient signal rays passing through.  

Table 2 RMS and MAE of the water vapor density comparison between radiosonde and tomography based on the genetic 

algorithm for different weather conditions (g/m3) 15 

Weather 

condition 
Date 

RMS MAE 

UTC 0:00 UTC 12:00 UTC 0:00 UTC 12:00 

Rainy 

days 

12 June 1.54 1.68 1.27 1.43 

13 June 1.20 1.57 1.81 1.39 

14 June 1.37 1.79 0.85 1.56 

15 June 1.63 1.38 1.41 1.27 

16 June 1.77 1.48 1.56 1.31 

17 June 1.49 1.33 1.55 1.18 

18 June 1.52 1.38 1.34 1.22 

Average 1.51 1.29 

Rainless 

days 

13 August 1.44 1.35 1.14 0.93 

14 August 1.46 1.25 1.18 1.05 

15 August 1.54 1.27 1.26 0.83 

16 August 1.29 1.14 1.03 0.89 

17 August 1.38 1.39 1.09 1.24 

18 August 1.46 1.26 1.19 1.06 

19 August 1.23 1.40 1.03 1.19 

Average 1.35 1.08 
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Total 1.43 1.19 

To further illustrate the comparison with the radiosonde data, Table 2 listed RMS and MAE of the WVD. In the table, the 

WVD in the voxels above the radiosonde station computed by tomography and those derived from radiosonde are counted to 

calculate their RMS and MAE in each solution. Thus, the average RMS/MAE of rainless days are 1.35/1.08 g/m3, which is 

smaller than 1.51/1.29 g/m3 in rainy days. This finding is consistent with the comparison of SWV above. We compare those 

values with the results obtained from other Hong Kong tomographic experiments. For example, Xia et al. (2013) obtained an 5 

RMS of 1.01 g/m3 by adding the COSMIC profiles as external data based on two-step reconstructions. Using the least 

squares method with horizontal and vertical constraints, Yao et al. (2016) obtained an RMS of 1.23 g/m3 by maximally using 

GPS observations and an RMS of 1.60 g/m3 without the operation. Zhao et al. (2017) achieved an RMS of 1.19 g/m3 and 

1.61 g/m3 considering the signal rays crossing from the side of the research area and an RMS of 1.79 g/m3 without this 

consideration. Yao et al. (2017) achieved an RMS from 1.48-1.80 g/m3 using different voxel division approaches. Using the 10 

ART with empirical value 0.24 as relaxation parameter, Ding et al. (2017) obtained an RMS of 1.23 g/m3 and 1.45 g/m3 by 

utilizing the new parametric methods based on inverse distance weighted (IDW) interpolation and the traditional methods. 

Note that the RMS calculated in the above experiments are based on the radiosonde data. Therefore, the total RMS of 1.43 

g/m3 for the two time periods in this paper can be considered in a good agreement with the radiosonde data regardless of the 

weather conditions. Moreover, many different settings are applied in tomographic experiments by different groups, such as 15 

the selection of tomographic boundary, differences of experimental period and weather condition, division rule of horizontal 

and vertical voxel, addition of other observations. 
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Fig. 10 Linear regression of the water vapor density from radiosonde and tomography based on the genetic algorithm. (a), (b) 

and (c) represent rainy days, rainless days and their combination, respectively. 

To explore the overall accuracy of water vapor density reconstructed by the GA tomography, the linear regression analysis 

and box plot were adopted for different weather conditions. Figure 10 shows the linear regression of the water vapor density 5 

for rainy days (a), rainless days (b) and their combination (c), in which the scatter points of three graphs are close to the 1:1 

lines. In comparison with the coefficients of regression equations, the results from rainless days are slightly better than those 

of rainy days. When combining the data of two periods, the starting point of the regression equation is 0.5631 and the slope 

is 0.9468, water vapor density can be achieved with high accuracy by tomography based on the GA. The corresponding box 

plots are shown in Fig. 11. It can be noted that the WVD residuals are concentrated in the range of -2 to 2 mm, and the 10 

rainless scenario is better than the rainy scenario. The Q1/Q3 are -1.28/1.08, -1.20/0.65 and -1.24/0.87 mm for rainy days, 

rainless days and their combination, respectively. The upper and lower boundaries are located near 4 and -4mm. No outlier is 

present in this box plots probably due to few WVD residuals. 
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Fig. 11 Box plots of the WVD residuals, which are computed between GA tomographic approach and radiosondes. 

3.6 Comparison with tomographic results of the Least Squares method  

The Least squares method is most commonly used in water vapor tomography, and numerous experiments prove that water 

vapor density with high accuracy can be obtained with this method (Flores, et al., 2000; Zhang et al., 2017; Zhao et at., 5 

2017). To verify the accuracy of the genetic algorithm, we compared the tomographic results between the genetic algorithm 

and the least squares method in this section. The specific process and introductions of the least squares method can be found 

in detail in e.g. Flores et al. (2000), Guo et al. (2016) and Yang et al. (2018). Figure 12 shows the three-dimensional 

distribution of water vapor density derived from tomography based on the GA and the least squares method. The water vapor 

computed by the European Centre for Medium-Range Weather Forecasts (ECMWF) data, which provides various 10 

meteorological parameters at different pressure levels with a spatial resolution of 0.125°*0.125°, is displayed in the figure as 

a reference. Here both the GA and the least squares method give a reasonable tomographic result. In certain voxels, the GA 

achieves the closer results to the ECMWF data, whereas for other voxels, the least squares method performs better. Both 

methods (the GA and the least squares) generally have a good consistency with ECMWF data regardless of the weather 

conditions, and can accurately describe the spatial distribution of water vapor. Additionally, a larger variation of water vapor 15 

with altitude occurs in a rainy scenario than in a rainless scenario, especially in the upper atmosphere, which is well captured 

by the GA and the least squares method. Numerical results including RMS and MAE during the whole experimental period 

are listed in Table 3 to show the comparison of the GA and the least squares method, in which the water vapor density 

derived from ECMWF data is regarded as the true value. It indicates that the result of the GA is a little better than that of 

least squares method.  20 
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Fig. 12 The three-dimensional distribution of water vapor density derived from ECMWF data, the GA method and the Least 

squares method (upper for rainless scenario and lower for rainy scenario)  

Table 3 Statistical results of the GA and the Least squares method comparison, ECMWF data as a reference (g/m3) 

 
GA method  Least squares method 

RMS MAE RMS MAE 

Rainy scenario 1.84 1.42 1.94 1.47 

Rainless scenario 1.71 1.39 1.79 1.37 

average 1.78 1.41 1.87 1.42 

To further analyze the tomographic results of the GA and the least squares method, regression and boxplot are conducted and 5 

displayed in Figure 13, which covers all solutions, each of them containing 560 voxel results. In the left panel, a good linear 

regression relationship is shown by the distribution of scatter points and the straight line of regression. Specifically, the 

starting points of the regression equation and the slop are 0.5198 and 0.9401, respectively. The right panel shows the 
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distribution of differences between the two types of tomographic results. The Q1 and Q3 are -0.84 and 0.60 g/m3, which 

means that more than 50% of the differences between the two methods are within 1 g/m3. The upper and lower bounds are 

2.75 and -2.98 g/m3, respectively, and outliers only account for 3.11%. Consequently, the tomographic results based on the 

GA are in agreement with those of the least squares method for this experiment. A reliable tomographic result can be 

achieved by the GA without being restricted by constraint equations and matrix inversion like the traditional least squares 5 

method. 

 

Fig. 13 Regression (left) and boxplot (right) for tomographic results (WVD) of the GA and the Least squares method 

Moreover, a detailed comparison between GA and Least squares method is conducted using the voxels above the radiosonde 

station. Fig. 14 shows the changes of water vapor density derived from GA and Least squares method with altitudes in 10 

different days (rainless days), in which the radiosonde data and ECMWF data are considered as reference data. All the 

profiles derived from the two methods decrease with increasing height and show good consistency with the reference data. 

The statistical values are computed and listed in Table 4 to illustrate the comparison of GA and Least squares method. The 

RMS and MAE indicate that both the GA and Least squares method can achieve good tomographic results compared with 

the reference values (radiosonde and ECMWF data) whether in the rainy or rainless scenario. The GA which has an average 15 

RMS/MAE of 1.43/1.19 and 1.30/1.05 g/m3 compared with radiosonde and ECMWF data, respectively performs slightly 

better than the Least squares method, of which the average RMS/MAE are 1.49/1.23 and 1.36/1.12 g/m3.  
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Fig. 14 Water vapor density comparisons between GA and Least squares method in the selected voxels at UTC 0:00 and 

12:00 from 13 to 19 August ,2017 (rainless days), radiosonde and ECMWF data are used as reference. 

Table 4 Statistical results of the GA and the Least squares method using radiosonde and ECMWF data as reference in the 

selected voxels (g/m3) 5 

Data comparison 
Rainy Days Rainless Days Average 

RMS MAE RMS MAE RMS MAE 

Radiosonde vs GA 1.51 1.29 1.35 1.08 1.43 1.19 

Radiosonde vs Least 

squares method 
1.58 1.34 1.40 1.16 1.49 1.25 
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ECMWF vs GA 1.35 1.12 1.25 0.97 1.30 1.05 

ECMWF vs Least 

squares method 
1.43 1.20 1.29 1.03 1.36 1.12 

3.7 Analysis of results in different weather conditions  

 

Fig. 15 Changes of water vapor density with altitude in different weather conditions, data from radiosonde (blue for rainy 

days from 12 to 18 June, 2017 and red for rainless days from 13 to 19 August, 2017) 

In our experiments, the comparison under various weather conditions illustrate that tomographic result of rainless scenarios 5 

was better than of rainy scenarios, which is also concluded in other studies (Yao et al., 2016, Zhao et al., 2017 and Ding et 

al., 2017). This result is because the spatial structure of atmospheric water vapor is relatively stable in rainless weather, 

whereas its spatial distribution changes faster in rainy weather. Thus, certain limitations are imposed on tomography to 

obtain accurate water vapor during unstable weather conditions. Additionally, all the water vapor densities along the 

radiosonde path were collected during the experiments. Their changes with altitude are shown in Fig. 15, in which the rainy 10 

and rainless weather are represented by blue and red dots. The situation of 8-12 km is magnified to show the water vapor 

information outside the tomographic region. In the figure, the larger value of WVD can be observed above 8 km in rainy 

days compared with that of rainless days. For the rainless situation, the value of WVD within 8-12 km is small and near to 

zero. By contrast, the value is basically not close to zero in the rainy situation, especially in the range of 8-10 km, which is 
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substantially greater than 0.5 g/m3. Referring to the selection of the tomographic heights in other articles, considering the 

long-term statistics of water vapor in Hong Kong, and taking into account the drawbacks of the excessive number of 

tomographic voxels, we selected 8 km as the top boundary of the research area in this paper, which ignores the water vapor 

information above 8 km in our tomographic model. Obviously, it has limited influence on the accuracy of the tomographic 

result in rainless weather condition. For the rainy weather condition, the effect could be slightly large, which is one reason 5 

why the tomographic results of rainy days were worse than those of rainless days in our experiments. 

4 Conclusions 

In this paper, a new tomography approach based on the genetic algorithm was proposed to reconstruct a three-dimensional 

water vapor field in Hong Kong under rainy and rainless weather conditions. The inversion problem was transformed into an 

optimization problem that no longer depends on excessive constraints, a priori information and external data. Thus, many 10 

problems do not need to be considered, including the difficulty of inverting the sparse matrix, the limitation and irrationality 

of constraints, the weakening of tomographic technique by prior information, and the restriction of obtaining external data. 

Based on the fitness function established by the tomographic equation, the water vapor tomographic solution could be 

achieved by the genetic algorithm through the process of selection, crossover and mutation.  

Our new approach is validated by tomographic experiments using GPS data collected over Hong Kong from 12 to 18 June 15 

(rainy days) and 13 to 19 August, 2017 (rainless days). The problem of matrix ill-condition was discussed and analysis by 

the grayscale graph and condition number. In a comparison of the SWV residuals, internal and external accuracy testing are 

used for the GA tomography. The internal accuracy testing refers to compute the differences between the tomography-

computed SWV and GAMIT-estimated SWV for the 13 GPS stations used in the tomographic modelling, whereas the 

external accuracy testing denotes the differences for the KYC1 station which is not included in the tomographic modelling. 20 

The RMS/MEA of SWV residuals are 1.52/0.94 and 10.07/8.44 mm for the internal and external accuracy testing, 

respectively. Thus, good tomographic result is achieved. In addition, the water vapor density of the proposed method agreed 

with that of radiosonde. The RMS and MEA are 1.43 g/m3 and 1.19 g/m3, whereas the starting point and the slope of the 

regression equation are 0.5631 and 0.9468, respectively. ECMWF data are utilized to display the three-dimensional 

distribution of tomographic results. Least squares method is selected as the representative of traditional tomographic method 25 

to compare with the GA. A good consistency is demonstrated in terms of RMS, MAE, linear regression and boxplot. Thus, a 

reliable tomographic result can be achieved by the GA without being restricted by constraint equations and matrix inversion 

like the traditional least squares method. Moreover, the comparison under various weather conditions illustrated that 

tomographic result of rainless scenario was better than that of rainy scenario, and the reasons were discussed. In the future 

study, the tomography approach based on the genetic algorithm, which is not dependent on constraints, a priori data and 30 

external data, could provide potential interest for the establishment of real-time or near-real-time water vapor tomographic 

system. 
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