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Abstract. Water vapor is an important part in the atmosphere, but its spatial and temporal distribution is difficult to detect. 

Global Positioning System (GPS) water vapor tomography, which can sense three-dimensional water vapor distribution, has 

been developed as a research point in the fields of GPS meteorology. In this paper, a new water vapor tomography method 

based on a genetic algorithm (GA) is proposed to overcome the ill-conditioned problem. By using the proposed approach, it 

is not necessary to perform the matrix inversion process, and the water vapor tomography is no longer dependent on 15 

excessive constraints, a priori information and external data, which give rise to many limitations and difficulties. 

Experiments in Hong Kong under rainy and rainless conditions show a serious ill-conditioned problem in the tomographic 

matrix by grayscale and condition numbers. Numerical results indicate that the proposed method achieves high levels of 

agreement and internal/external accuracy with the GAMIT-estimated slant water vapor (SWV) as a reference. Comparative 

results of water vapor density (WVD) derived from radiosonde data reveal that the tomographic results based on the GA are 20 

in good agreement with that of radiosonde measurements. In comparison to the traditional Least squares method, a reliable 

tomographic result with high accuracy can be achieved by the GA without the restrictions mentioned-above. Furthermore, 

the tomographic results in a rainless scenario are better than those of a rainy scenario, and the reasons are discussed in detail. 

1 Introduction 

Water vapor is a major component of the atmosphere and its distribution and dynamics are the main driving force of weather 25 

and climate change. A good understanding of water vapor is crucially important for meteorological applications and research 

such as severe weather forecasting and warnings (Liu et al., 2005). Nevertheless, the variation of water vapor is affected by 

many factors including, temperature, topography and seasons with characteristics of changing fast with time and heavily in 

vertical and horizontal directions, which makes it difficult to monitor with high temporal and spatial resolutions (Rocken et 

al., 1993). 30 
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Due to the development of GPS station networks that provide rich data sources containing atmospheric information, it has 

been considered as a powerful technique to retrieve water vapor. Since Bevis et al. (1992) first envisioned the potential of 

tomography applying in GPS meteorology, water vapor tomography has become a promising method to improve the 

restitution of the spatio-temporal variations of this parameter (Braun et al., 1999; Nilsson et al., 2004; Song et al., 2006; 

Perler et al., 2011; Rohm, 2012; Dong and Jin, 2018).  5 

In GPS water vapor tomography, the research area should be covered by ground GPS receivers and discretized into a number 

of cubic closed voxels by latitude, longitude and altitude, each of which has a fixed amount of water vapor at a particular 

time (Guo et al., 2016). The observations are GPS-derived slant water vapor, the precipitable water in the direction of the 

signal ray-path, which travels through the troposphere from its top (Zhao and Yao, 2017). After obtaining the precise 

measurement of the signal ray distance in each voxel by raytracing its path from receiver to satellite, we can achieve the 10 

basic equation for water vapor tomography, which can be expressed in linear form (Flores et al., 2000; Yang et al., 2018): 
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where the superscript q is the satellite signal index, 
qSWV  denotes the qth slant water vapor achieved by GPS tropospheric 

estimation, n  is the total number of tomographic voxels discretized. q

id  denotes the distance of qth signal ray inside voxel i 

which can be obtained by the satellite and station coordinates, and ix  is the water vapor density of voxel i. Using all suitable 15 

SWV observations, we can form the tomographic observation equation: 

 1 1,m m n ny A x  =    (2) 

where y  is a column vector of SWV, m  is the total number of SWV measurements in tomography, A  denotes the 

intercept matrix containing the distance of the signal ray in each of the voxels, n  is the number of voxels in the study area, 

and x  denotes the vector of the unknown water vapor density. 20 

Since a GPS signal ray can only pass through a small part of the voxels in the study area, the elements of matrix A  are 

likely to be equal to zero, making it a large sparse matrix. In addition, the effective signal rays will concentrate around the 

zenith due to the unfavourable geometry of the GPS stations and the special structures of the satellites. These all make Eq. (2) 

ill-conditioned, and it is difficult to obtain the unknowns by performing the inversion of Eq. (2), in the form of 
1x A y−=  . 

To circumvent the ill-conditioned problem, many methods are explored within the literature. Flores et al. (2000) added 25 

constraints on the vertical, horizontal variability of tomography with additional top constraints to the model. Most constraints 

are based on experiences and difficult to match to the actual water vapor distribution, resulting in the deviation of the 

tomographic results. Moreover, the singular value decomposition (SVD) is required to perform the matrix inversion. Bender 

et al. (2011) utilized an algebraic reconstruction technique (ART), which is an iterative algorithm to solve the observation 

equation. Several reconstruction algorithms of the ART family have also been implemented, (e.g. the multiplicative 30 
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algebraic reconstruction techniques (MART) and the simultaneous iterations reconstruction technique (SIRT)). The ART 

techniques are iterative algorithms that proceed observation by observation. Only two vector y , x  and a data structure 

containing the slant subpaths in each voxel are required to solve the observation equations. The algorithms consist of two 

loops. The inner loop processes SWV by SWV and applies an adequate correction to each voxel. After all SWVs have been 

executed the next iteration is started in the outer loop (Bender et al., 2011). It is not necessary to perform the matrix 5 

inversion and therefore avoids the ill-conditioned problem. But it only updates the results of the voxels travelled through by 

signal rays and the tomographic results heavily depend on the exact initial field, the data quality and relaxation parameter 

(Wang et al., 2014). Nilsson and Gradinarsky (2004) adapted a Kalman filter approach to estimate tomographic results 

without adding constraints and performing the inversion. It assumes that the water vapor density in each voxel meet the 

Gauss-Markov random walk pattern for a certain period of time, and establishes the corresponding state equation of Kalman 10 

Filter. The observation vector is utilized based on the mathematical model to perform the optimal estimation of the state 

vector, which is a process of continuous prediction and correction. In this method, initializing the filter with an informed 

estimation of the water vapor field and providing the initial covariance of state equation are based on external data. Some 

other approaches that enrich the information of the observation equation have been exploited in recent years, such as 

Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) occultation data by Xia et al. (2013), 15 

Interferometric Synthetic Aperture Radar (InSAR) by Benevides et al. (2015), water vapor radiometer (WVR) and numerical 

weather prediction by Chen and Liu (2016). 

In the above-mentioned tomographic methods, excessive constraints with the matrix inversion, an exact priori information or 

external data are usually used to overcome the ill-conditioned problem. The mandatory usage of excessive constraints will 

induce limitations in the water vapor tomography, while reliance on an exact priori information will make the tomographic 20 

solutions too similar to the priori data and decrease the role of the tomography technique. For external data, it is not possible 

to use it in all tomographic experiments. Therefore, this paper proposes a new tomography method based on a genetic 

algorithm (Section 2). The tomography experiments and results of the analysis are presented in Section 3. Section 4 

summarizes the conclusions. 

2 Methodology 25 

2.1 Troposphere estimation 

In water vapor tomography, the observation is slant water vapor which can be converted from slant wet delay (SWD) by the 

following formula (Adavi and Mashhadi, 2015): 
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where   denotes conversion factor. 1

1 77.604k K hPa−=  , 1

2 70.4k K hPa−=  , 5 2 1

3 3.775 10k K hPa−=   . w  

is the liquid water density (unit: g/m3);
3 1 18314R Pa m K kmol− −=     represents the universal gas constant; 

118.02wm kg kmol−=   and 128.96dm kg kmol−=   indicate the molar mass of water and the dry atmosphere, 

respectively; mT  denotes the weighted mean temperature which is the ratio of two vertical integrals though the atmosphere 

(Davis et al., 1985). In practice, an empirical formula is used to achieve approximate mT  by surface temperature sT  in K 5 

( 85.63 0.668m sT T= + ) (Liu et al., 2001; Astudillo et al., 2018). And SWD can be obtained as follows (Zhang et al., 

2017): 

 ( ) ( ) ( ) ( ) ( )( )cot cos sin ,w w

NS WESWD f ele ZWD f ele ele G azi G azi R=  +    +  +   (4) 

where ele  and azi  are the satellite elevation and azimuth, respectively. f  denotes the wet mapping function, w

NSG  and 

w

WEG  refer to the wet delay gradient parameters in the north-south and east-west direction, respectively. R is the unmodelled 10 

atmospheric slant delay, which is included in the zero-differences residuals. ZWD represents zenith wet delay, which is the 

wet component of zenith total delay (ZTD) affected by water vapor along the satellite signal ray. It can be separated from 

ZTD by subtracting the zenith hydrostatic delay (ZHD). And ZTD is an average parameter in spatial aspects and can be 

achieved by GPS observations. As pressure measurements are available at each station, ZHD is calculated by the 

Saastamoinen model as follows (Saastamoinen, 1972): 15 

 
( )

0.002277
,

1 0.00266 cos 2 0.00028

sP
ZHD

H


=

−  − 
  (5) 

where sP  refers to the surface pressure;   and H  represent the latitude and the geodetic height of the station, respectively. 

2.2 Water vapor tomography based on Least squares method 

After obtaining the observation equation (Eq. (2)), three types of constraints are usually added: 

 0=H ,x   (6) 20 

 0 ,V x=    (7) 

 0 T x=    (8) 

Equations (6)-(8) are the vertical, horizontal and top constraints, respectively. For the horizontal constraint equation, it 

assumes that the distribution of water vapor density is relatively stable in the horizontal direction within a small region. Thus, 

the water vapor density within a certain voxel can be represented by the weighted average of its neighbours in the same 25 

layers. For the vertical constraint equation, it is a relationship established for the voxels between two adjacent layers basing 

on the analysis of meteorological data for many years. The top constraint is to set the water vapor density of the top 
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boundary to a small constant. Based on the principle of Least square, the tomographic results can be achieved by the 

following formula: 

 ( ) ( )
-1

T T T T Tx A A H H V V T T A y= + + +    (9) 

To obtain the inverse matrix in Eq. (9), the singular value decomposition is required and its detailed instruction can be seen 

in the relevant literature (Flores et al. 2000). 5 

2.3 Water vapor tomography based on the genetic algorithm 

For water vapor tomography based on the genetic algorithm, the first procedure is to construct the tomographic equation. 

The idea of function optimization is then used to solve the equations (Guo and Hu, 2009; Olinsky et al., 2004), which is 

similar to the principle of Least squares minTV PV =  (Flores et al., 2000).  Eq. (2) can be converted into the form as 

follows: 10 

 ( ) ( )min ,(x) ,
T

y Ax P y Ax x Rf −= −  +   (10) 

where the terms are the same as in Eq. (2). In this equation, the values of x  that minimize function ( )f x  are the result of 

tomography. To achieve the best values of x , the traditional method adopts a derivative method which needs matrix 

inversion in the follow-up. Genetic algorithm, which was first introduced by Holland (1992), provides an adaptive search 

method to achieve the tomographic results. It is designed to simulate the evolutionary processes in the nature, in which the 15 

principle of survival of the fittest is applied to produce better and better approximates to the function. Eq. (6) is regarded as 

the fitness function that is used to measure the performance of the searched values of x  by computing the fitness value 

(Goldberg, 1989; Venkatesan et al., 2004). Through searching generation after generation, the water vapor result that best fit 

the function can be found. The specific steps of water vapor tomography based on genetic algorithm are as follows: 

1) Construct the fitness function which is converted from the tomographic equation. 20 

2) Generate some groups representing approximates of x (water vapor density) stochastically, which form the initial 

population. 

3) Select groups from the last generation of the population as parents according to a lower to higher order of the groups of 

x corresponding to their fitness values. 

4) Produce offspring groups from parents by crossover and mutation to make up a new set of approximated solution (new 25 

generation). 

5) Compute the fitness values of the new generation, go back to step 3) and produce the next generation of the population.  

6) The search terminates when a group of approximates meets the requirements of the fitness value. Generally, we set the 

stopping criteria for generation or calculation time. 



6 

 

The parameters of genetic algorithm are listed in Table 1 (Wang et al., 2010). Roulette is a function used for selection in step 

3), referring to the concept of a roulette wheel in which the area of each segment is proportional to its expected value and 

one of the sections is selected with a random number whose probability equals its area. For the crossover function, 

Intermediate in Table 1 is intended to create offspring groups by a random weighted average of the parents. The mutation 

process forces the individuals in the population to undergo small random changes that enable the genetic algorithm to search 5 

a wider space. Adaptive feasibility is chosen for the mutation function, which means that the adaptive direction is generated 

randomly with respect to the last successful or unsuccessful generation (Dwivedi and Dikshit, 2013). Based on these steps, 

derives the optimal solution of Eq. (6), that is, the value of x  that gives ( )f x  the minimum value, and also the value of 

water vapor density in the tomographic equations. To more clearly show the process of water vapor tomography based on 

genetic algorithm, the flowchart is shown in Fig.1. 10 

Table 1. Parameters of the genetic algorithm 

Parameter Strategy 

Population Size 200 

Crossover Fraction 0.8 

Reproduction of Elite Count 10 

Selection Function Roulette 

Crossover Function Intermediate 

Mutation Function Adaptive Feasibility 

Generations of Stopping Criteria 100*Number of Variables 
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Fig.1 Flowchart of the water vapor tomography based on the genetic algorithm 
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3 Experiment and Analysis 

3.1 Experiment Description 

 

Fig. 2 Geographic distribution of GPS, radiosonde stations and the horizontal structure of the voxels used in water vapor 

tomography. 5 

In order to conduct the tomographic experiment based on genetic algorithm, Hong Kong was selected as the research region. 

The boundary and resolution in west-east and south–north direction were 113.87°-114.35°, 0.06° and 22.19°-22.54°, 0.05°, 

respectively. For the altitude direction, 0-8.0 km and 800 m were chosen. A total of 8 7 10   voxels in the tomography 

grid was obtained. As shown in Figure 2, thirteen GPS stations of the Hong Kong Satellite Positioning Reference Station 

Network (green triangle) were selected in the tomography modeling to provide SWV measurements. Another GPS station 10 

(KYC1, red spot) and radiosonde station (45005, blue spot) were used to check the result of tomography. Each GPS station 

recorded temperature, pressure and relative humidity by an automatic meteorological device, by which the hydrostatic parts 

of the troposphere delay can be accurately achieved. All the stations are under 400 m and located in the first layer of the 

tomographic grids.   

The GPS tropospheric parameters (zenith tropospheric delay and gradient parameters) were estimated by the GAMIT 10.61 15 

software based on a double-differenced model. In order to reduce the strong correlation of tropospheric parameters caused by 

the short baseline between GPS receivers in the tomographic area, three International GNSS Service (IGS) stations (GJFS, 

LHAZ and SHAO) were incorporated into the solution model. In the processing, the sampling rate of observations was 30s, a 

cut-off elevation angle of 10° was selected, and the IGS precise ephemeris was adopted. The LC_AUTCLN and BASELINE 

modes were selected as the processing strategies, representing that the GPS observation was the ionosphere-free linear 20 

combination and the orbital parameters were fixed, respectively. The tropospheric parameters, including troposphere delay 
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gradients and ZTD at 4-h and 2-h intervals, are estimated and interpolated to 30s sampling rate in the GAMIT software. Note 

that the outputs of the GAMIT are double-differenced residuals and troposphere delay gradients. To obtain the R in Eq. (4), 

double-differenced residuals should be converted to zero-differences residuals and multipath effects should be considered by 

the method proposed by Alber et al. (2000). To achieve the wet delay gradients, Bar-Sever et al. (1998) considered the 

average of troposphere gradients within 12 hours as the dry delay gradients and subtracted it from the troposphere delay 5 

gradients. Then all the necessary parameters were ready for Eq. (4) to build SWD, and SWV was obtained by Eq. (3). 

To verify the proposed method, two periods of GPS observation data, with a sampling rate of 30s, were used in the 

tomography experiment. One from 13 August, 2017 to 19 August, 2017 (DOY of 225 to 231, 2017) during rainless weather. 

In this period of time, the daily rainfall is 0 mm, the relative humidity is 75% in average and the average SWV produced in 

the selected stations is 79.1 mm. The other period is from 12 June, 2017 to 18 June, 2017 (DOY of 163 to 169, 2017) when 10 

Hong Kong suffered heavy rain. The maximum daily rainfall is up to 203.7 mm and the daily rainfall is 66.8 mm in average. 

For the relative humidity and the SWV produced in the selected stations, the average values are 89% and 112.9 mm, 

respectively. The period covered is 0.5h for each tomographic solution. The radiosonde data, collected twice daily at 00:00 

and 12:00 UTC in these two periods, were treated as the reference data.  

According to the flowchart represented in Fig. 1, the above GPS observation data were processed to construct the 15 

tomographic equation and further convert it into the fitness function for the optimization algorithm. The population size is 

chosen based on the total number of unknown parameters (water vapor density). The value of 200 is the default option of the 

algorithm when the number of unknows exceeds a certain amount. The elite count is chosen to be 10 to specifies the number 

of individuals that are guaranteed to survive to the next generation, since it is based on the population size (0.05 * population 

size). The other parameters are selected as Table 1, which are the default settings of the algorithm for the common use. 20 

3.2 Analysis of matrix ill-condition 

In a tomographic solution, the structure of the coefficient matrix in the observation equation depends on which voxels are 

crossed by SWV and the number of signal rays penetrating each voxel. Fig. 3 shows it in the form of a grayscale graph. (a) 

and (b) stand for UTC 00:00 of DOY 225 (a rainless day) and UTC 12:00 of DOY 164 (a rainy day), respectively. In the 

upper panel of each graph, the deepening of the grayscale refers to an increase in the number of signal rays crossing through 25 

the voxel. The closer the layer to the ground, the more voxels are not crossed by any signal rays. Although there are few 

voxels with no signal rays passing through in the upper layers, many of the voxels have a lighter grayscale which means that 

the voxels are crossed by fewer signal rays.  

Note that when the signal ray passes vertically through the tomographic region, the ray crossed a minimum number of voxels, 

that is, ten in the tomographic area. Therefore, the minimum probability that a voxel will be crossed by a ray is 1.79% 30 

(10/560, 560 is the total number of the voxels in this tomographic experiment). Thus 1.79% of the total SWV is taken as a 

criteria to further illustrate the structure of the coefficient matrix.  If the number is greater than the threshold, the voxel is 

considered to be crossed by sufficient rays, otherwise the voxel is defined as an insufficient one. For the situation of (a) and 
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(b) (UTC 00:00 of DOY 225 and UTC 12:00 of DOY 164), the number of total SWV and the criteria are 4930/4569 and 

88/81, respectively. The lower panel of each graph displays the distribution of sufficient (black rectangle) and insufficient 

(white rectangle) ones. Obviously, many voxels are not crossed by enough satellite rays, both for the upper layers or the 

lower layers. 

 5 
(a) 

 
(b) 

Fig. 3 Grayscale graph of number of signal rays passing through each voxel and distribution of voxel with sufficient signal 

rays (a and b stand for a rainless and a rainy day, respectively) 10 

To better analyze the ill-conditioned nature of the observation equation in tomography modeling, the number of zero 

elements in matrix A is counted. We found that the proportion of zero element is over 97% in all tomographic solutions. In 

addition, the concept of matrix condition number is introduced to measure the degree of dispersion of the eigenvalues of the 
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coefficient matrix (Edelman, 1989). The larger the value of the condition number, the more ill-conditioned the matrix is. The 

results show that the condition number in every tomographic solution is INF which means a serious ill-conditioned problem. 

3.3 Internal/external Accuracy Testing 

To evaluate the performance of water vapor tomography based on genetic algorithm, slant water vapor of GPS stations for 

the data of DOY 163 to 169 and DOY 225 to 231, 2017 were computed using the tomographic results based on the water 5 

vapor tomographic observation equation established in Eq. (1). In this process, the parameters on the right side of Eq. (1) 

(the distance of the signal ray in each of the voxels and the water vapor density calculated by the tomographic modelling) are 

taken as known quantities, and the SWV on the left is the parameter to be determined, called i.e. the tomography-computed 

SWV. Then the differences against the GAMIT-estimated SWV (as a reference) were also identified.  

For internal accuracy testing, 13 GPS stations used in the tomographic modeling were adopted. The change of tomography 10 

computed VS GAMIT-estimated slant water vapor residuals with elevation angle is shown in Fig. 4, where the blue and red 

dots represent the rainy and rainless days, respectively. The maximum residuals for rainy and rainless scenarios are 10.74 

and -9.84 mm, respectively. The root mean square error (RMS) and mean absolute error (MAE) for rainy and rainless days 

are 1.56/0.98 and 1.48/0.89mm, respectively. Fig. 4 shows that most of the residuals are concentrated between -2.0 and 2.0 

mm, which indicates a good internal accuracy. 15 

 

Fig. 4 Scatter diagram of the SWV residuals in different weather conditions for internal accuracy testing 
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In order to normalize SWV residuals for their evaluation in a single unit, we mapped the tomography-computed SWVs back 

to the zenith direction using the ( )1 sin e  formula and computed their differences with the GAMIT-estimated PWV (Michal 

et al., 2017). Fig. 5 shows the statistical results of the residuals in the zenith direction. In the figure, the colours indicate the 

weather conditions (blue for rainy days and red for rainless days), and the 13 stations were arranged in the order in which 

they were added to the tomographic model. There were observed mainly as RMS ranging from 0.79 to 1.81 mm, while MAE 5 

from 0.43 to 1.54 mm. The RMS and MAE of rainless days are better than those of rainy day in each station. Medians of 

RMS and MAE are displayed for 13 stations in order to highlight differences among the stations. It is particularly visible for 

HKMW station where RMS and MAE values over all other stations differ by 1.81/1.53 and 1.60/1.23 for RMS/MAE in 

rainy and rainless days, respectively. The reason for the divergent behaviour may be that there are two stations (HKPC and 

HKMW) in the same voxel. This may result in the station (HKPC) data first introduced into the tomographic model affecting 10 

the subsequent station (HKMW) data. This specific impact should be discussed in future research. However, plots with RMS 

and MAE show agreements within 2.0 mm among all the stations (1.5 mm except for HKMW). The residuals statistic in the 

zenith direction shows a good internal accuracy. 

 

Fig. 5 Comparison of SWV residuals in zenith direction, circle for RMS and diamond for MAE, blue for rainy days and red 15 

for rainless days. 

For external accuracy testing, the data from KYC1 station, which was not included in the tomographic modeling, were used. 

Figure 6 shows the histogram for MAE (upper) and RMS (lower) of SWV residuals, in which the blue ones represent rainy 

days, reds denote rainless days, and the dashed bars are the averages for different weather conditions. It shows that all the 

columns in the histogram are below 15 mm, and the reds are generally smaller than the blues, whether in the situation of 20 

MEA or RMS. The results of rainless days (8.75/7.33 mm for average RMS/MAE) are better than those of rainy days 
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(11.38/9.54 mm for average RMS/MAE). It is therefore concluded that a good external accuracy is achieved by tomographic 

solutions considering the low RMS and MAE of rainy and rainless days. 

 

Fig. 6 Histogram for MAE (upper) and RMS (lower) of SWV residuals in the external accuracy testing (blue for rainy days, 

red for rainless days) 5 

 

Fig. 7 Comparison of SWV residuals for each elevation bins, upper for RMS/MAE, lower for normalised RMS/MAE.  

To further asses the external accuracy, slant water vapor were grouped into individual elevation bins of 5°, i.e. for example 

all SWV with an elevation angle between 10° and 15° were evaluated as a single unit. The RMS and MAE of each elevation 

bin were calculated. In order to examine the dependence of relative errors in SWVs at different elevations, normalized RMS 10 

and normalized MAE were computed. For this computation, residuals of SWV were divided by the GAMIT-estimated SWV. 

Fig. 7 shows the variation of RMS, MAE, normalized RMS and normalized MAE as the elevation angle changes in different 
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weather conditions. For the upper figures, the RMS and MAE reduction of SWV residuals are clearly visible as the 

increasing elevation angle, which is consistent with the trend shown in Fig. 4. Colours in the figure indicate that better RMS 

and MAE results can be achieved on a rainless day than on a rainy day in each elevation bin. In terms of normalized RMS 

and MAE, they remain almost constant over all elevation angles, indicating a consistent relative performance of computing 

SWV among all the weather conditions. It is noted that the normalized RMS and MAE of rainless days are close to those of 5 

rainy days.  This may be due to the large SWV during rainy days which introduced a larger denominator in the normalized 

calculation. Therefore, the good performance on relative error in SWVs at different elevations with a low normalized 

RMS/MAE (<0.125 for normalized RMS and <0.106 for normalized MAE) demonstrates a good external accuracy.   

In the above analysis, RMS and MAE were used for the external accuracy testing of the tomographic results based on the 

GA. To explore the statistical characteristics of SWV residuals, and to detect the outliers in the tomographic errors, the box 10 

plots are used. Five characteristic values are shown in the box plots: Q1 and Q3 located at the bottom and top of the box 

represent the first and third quartiles; the second quartile (Q2) is located inside the box; the ends of the whiskers refer to the 

upper and lower bounds, which are located at Q1-1.5(IQR) and Q3+1.5(IQR), respectively. IQR, that is, the interquartile 

range, indicating the difference between Q3 and Q1, reflect the discreteness of a set of data. In Fig. 8 the length of box and 

the range of bound in rainless days (in red) are smaller than those in rainy days (in blue), which illustrates a better residual 15 

distribution in rainless days. The right plots (in green) denotes the result of combination of rainless and rainy days, 

representing the overall distribution of SWV residuals of tomography based on genetic algorithm. In our experiments, 50 

percent of the residuals are concentrated between -7.08 and 4.47 mm, and only 3.24% of the residuals are outliers when 

combining the data of rainy and rainless days.  

 20 

Fig. 8 Box plots of the SWV residuals 
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3.4 Comparison with Radiosonde Data 

 

Fig 9 (a-n) represent water vapor density comparisons between radiosonde and tomography based on the genetic algorithm 

at UTC 0:00 and 12:00 from DOY 163 to 169, 2017 (rainy days) 

The water vapor density profile derived from the radiosonde data can be used as a reference value, which is well suited to 5 

evaluate the accuracy of the tomographic results based on genetic algorithm. Since the radiosonde launches at UTC 00:00 

and 12:00 daily, the tomographic results of DOY 163 to 169 (rainy days) and 225 to 231, 2017 (rainless days) at these time 

points were compared. Figure 9 shows the water vapor density comparisons between radiosonde data and tomographic 
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results for different altitudes at individual dates (rainy period). It is clear that all profiles (red lines) and the scatter of 

radiosonde data (blue dots) decrease with increasing height. The WVD profiles reconstructed by the GA tomographic 

solutions are in conformity with those derived from the radiosonde data, especially in the upper troposphere from the 

perspective of absolute error. With respect to the relative error, the values of the voxels upper than 5km and lower than 5km 

are 31% and 15%, respectively. The reason for this phenomenon is that the value of water vapor in the upper layers is 5 

relatively low, even a small difference between the radiosonde and tomographic result can also lead to a large relative error, 

while water vapor content accounts for more than 90% below 5km near the Earth’s surface. In some cases, a relatively good 

consistency can also be seen in the lower atmosphere. This may be because there is a GPS station (HKSC) for tomography 

modeling located in the voxel where the radiosonde station is situated, resulting in the lower atmosphere with a sufficient 

signal rays passing through.  10 

Table 2 Statistical results of the water vapor density comparison between radiosonde and tomography based on the genetic 

algorithm for different weather conditions (g/m3) 

Weather 

condition 
DOY 

RMS MAE 

UTC 0:00 UTC 12:00 UTC 0:00 UTC 12:00 

Rainy 

days 

163 1.54 1.68 1.27 1.43 

164 1.20 1.57 1.81 1.39 

165 1.37 1.79 0.85 1.56 

166 1.63 1.38 1.41 1.27 

167 1.77 1.48 1.56 1.31 

168 1.49 1.33 1.55 1.18 

169 1.52 1.38 1.34 1.22 

Average 1.51 1.29 

Rainless 

days 

225 1.44 1.35 1.14 0.93 

226 1.46 1.25 1.18 1.05 

227 1.54 1.27 1.26 0.83 

228 1.29 1.14 1.03 0.89 

229 1.38 1.39 1.09 1.24 

230 1.46 1.26 1.19 1.06 

231 1.23 1.40 1.03 1.19 

Average 1.35 1.08 

Total 1.43 1.19 

To further illustrate the comparison with the radiosonde data, Table 2 listed the statistical results of WVD (RMS and MAE). 

In the table, the WVD in the voxels above the radiosonde station computed by tomography and those derived from 
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radiosonde are counted to calculate their RMS and MAE in each solution. This shows that the average RMS/MAE of rainless 

days are 1.35/1.08 g/m3, which is smaller than 1.51/1.29 g/m3 in rainy days. It is consistent with the comparison of SWV 

above. Taking into account the WVD comparison results of Hong Kong tomographic experiments conducted by other 

researchers, for example, Xia et al. (2013) obtained a RMS of 1.01 g/m3 by adding the COSMIC profiles, Yao et al. (2016) 

obtained a RMS of 1.23 g/m3 by maximally using GPS observations and a RMS of 1.60 g/m3 without the operation, Zhao et 5 

al. (2017) achieved a RMS of 1.19 g/m3 and 1.61 g/m3 considering the signal rays crossing from the side of the research area 

and a RMS of 1.79 g/m3 without this consideration, Ding et al. (2017) obtained a RMS of 1.23 g/m3 and 1.45 g/m3 by 

utilizing the new parametric methods and the traditional methods, Yao et al. (2017) achieved  the RMS from 1.48-1.80 g/m3 

using different voxel division approaches, etc, the total RMS of 1.43 g/m3 for the two time periods in this paper can be 

considered as a good agreement with the radiosonde data regardless of the weather conditions. Moreover, it should also be 10 

noted that there are many different settings in tomographic experiments by different groups, such as the selection of 

tomographic boundary, differences of experimental period and weather condition, division rule of horizontal and vertical 

voxel, addition of other observations. 

 

Fig. 10 Linear regression of the water vapor density from radiosonde and tomography based on the genetic algorithm. (a), (b) 15 

and (c) represent rainy days, rainless days and their combination, respectively. 
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To explore the overall accuracy of water vapor density reconstructed by the GA tomography, the linear regression analysis 

and box plot were adopted for different weather conditions. Figure 10 shows the linear regression of the water vapor density 

for rainy days (a), rainless days (b) and their combination (c), in which the scatter points of three graphs are close to the 1:1 

lines. Compared with the coefficients of regression equations, the results from rainless days are slightly better than those of 

rainy days. When combining the data of two periods, the starting point of the regression equation is 0.5631 and the slope is 5 

0.9468, which indicates that water vapor density with high accuracy can be achieved by tomography based on the GA. 

Figure 11 shows the box plots, in which the WVD residuals are concentrated in the range of -2 to 2 mm, and the rainless 

scenario is better than the rainy scenario. The Q1/Q3 are -1.28/1.08, -1.20/0.65 and -1.24/0.87 mm for rainy days, rainless 

days and their combination, respectively. The upper and lower boundaries are located near 4 mm and -4mm. There are no 

outliers present in this box plots probably due to the small number of WVD residuals. 10 

 

Fig. 11 Box plots of the WVD residuals 

3.5 Comparison with tomographic results of the Least Squares method  

The Least squares method is most commonly used in water vapor tomography, and it has been proven by a large number of 

experiments that water vapor density with high accuracy can be obtained with this method (Flores, et al., 2000; Zhang et al., 15 

2017; Zhao et at., 2017). To verify the accuracy of the genetic algorithm, we compared the tomographic results between the 

genetic algorithm and the least squares method in this section. The specific process and introductions of the least squares 

method can be seen in detail in previous articles (Flores et al., 2000, Guo et al., 2016, Yang et al., 2018). Figure 12 shows 

the three-dimensional distribution of water vapor density derived from tomography based on the GA and the least squares 

method. The water vapor computed by the European Centre for Medium-Range Weather Forecasts (ECMWF) data, which 20 
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provides various meteorological parameters according to the pressure layer with a spatial resolution of 0.125°*0.125°, is 

displayed in the figure as a reference. Here both the GA and the least squares method can obtain a reasonable tomographic 

result. For tomographic results in some voxels, the GA achieves the closer results to the ECMWF data, while for other 

voxels, the least squares method performs better. In general, both methods (the GA and the least squares) have a good 

consistency with ECMWF data regardless of the weather conditions, and can accurately describe the spatial distribution of 5 

water vapor. Additionally, a larger variation of water vapor with altitude occurs in a rainy scenario than in a rainless scenario, 

especially in the upper atmosphere, which is well captured by the GA and the least squares method. Numerical results 

including RMS and MAE during the whole experimental period are listed in Table 3 to show the comparison of the GA and 

the least squares method, in which the water vapor density derived from ECMWF data is regarded as the true value. It 

indicates that the result of the GA is a little better than that of least squares method.  10 

 

Fig. 12 The three-dimensional distribution of water vapor density derived from ECMWF data, the GA method and the Least 

squares method (upper for rainless scenario and lower for rainy scenario)  

Table 3 Statistical results of the GA and the Least squares method comparison, ECMWF data as a reference (g/m3) 
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GA method  Least squares method 

RMS MAE RMS MAE 

Rainy scenario 1.84 1.42 1.94 1.47 

Rainless scenario 1.71 1.39 1.79 1.37 

average 1.78 1.41 1.87 1.42 

To further demonstrate the tomographic results of the GA and the least squares method, regression and boxplot are 

conducted and displayed in Figure 13.  It covers all solutions, each of which contains 560 voxel results. In the left panel, a 

good linear regression relationship is showed by the distribution of scatter points and the straight line of regression. 

Specifically, the starting point of the regression equation is 0.5198 and the slope is 0.9401. In the right panel, it shows the 

distribution of differences between the two types of tomographic results. The Q1 and Q3 are -0.84 and 0.60 g/m3, which 5 

means more than 50% of the differences between the two methods are within 1 g/m3. The upper and lower bound are 2.75 

and -2.98 g/m3, and outliers only account for 3.11%. Therefore, the tomographic results based on the GA has a good 

agreement with that of least squares method in this experiment. A reliable tomographic result can be achieved by the GA 

without being restricted by constraint equations and matrix inversion like the traditional least squares method. 

 10 

Fig. 13 Regression (left) and boxplot (right) for tomographic results of the GA and the Least squares method 

Moreover, a more detailed comparison between GA and Least squares method is conducted using the voxels above the 

radiosonde station. Fig. 14 shows the changes of water vapor density derived from GA and Least squares method with 
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altitudes in different days (rainless days), in which the radiosonde data and ECMWF data are considered as reference data. 

All the profiles derived from the two methods decrease with increasing height and show a good consistency with the 

reference data. The statistical values are computed and listed in Table 4 to better show the comparison of GA and Least 

squares method. The numerical results including RMS and MAE indicate that both the GA and Least squares method can 

achieve good tomographic results compared with the reference values (radiosonde and ECMWF data), whether in the rainy 5 

or rainless scenario. The GA, which has an average RMS/MAE of 1.43/1.19 and 1.30/1.05 g/m3 compared with radiosonde 

and ECMWF data, respectively, performs a little better than the Least squares method, of which the average RMS/MAE are 

1.49/1.23 and 1.36/1.12 g/m3.  

 

Fig. 14 Water vapor density comparisons between GA and Least squares method in the selected voxels at UTC 0:00 and 10 

12:00 from DOY 225 to 231 (rainless days), radiosonde and ECMWF data are used as reference. 
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Table 4 Statistical results of the GA and the Least squares method using radiosonde and ECMWF data as reference in the 

selected voxels (g/m3) 

Data comparison 
Rainy Days Rainless Days Average 

RMS MAE RMS MAE RMS MAE 

Radiosonde vs GA 1.51 1.29 1.35 1.08 1.43 1.19 

Radiosonde vs Least 

squares method 
1.58 1.34 1.40 1.16 1.49 1.25 

ECMWF vs GA 1.35 1.12 1.25 0.97 1.30 1.05 

ECMWF vs Least 

squares method 
1.43 1.20 1.29 1.03 1.36 1.12 

3.6 Analysis of results in different weather conditions  

 

Fig. 15 Changes of water vapor density with altitude in different weather conditions 5 

In our experiments, the comparison under various weather conditions illustrate that tomographic result of rainless scenarios 

was better than of rainy scenarios, which is the same as the conclusion of other studies (Yao et al., 2016, Zhao et al., 2017 

and Ding et al., 2017). This is due to the fact that the spatial structure of atmospheric water vapor is relatively stable in 

rainless weather, while its spatial distribution changes faster in rainy weather. This imposes certain limitations on 



22 

 

tomography to obtain accurate water vapor during the unstable weather conditions. Additionally, the average PWV during 

the two-time period were counted from the radiosonde data, 68.95 mm for the rainy day and 48.26 mm for the rainless day. 

The larger value of slant water vapor is utilized in rainy weather, which may make tomography producing more errors. 

Moreover, all the water vapor density along the radiosonde path were collected during the experiments and their changes 

with altitude were shown in Fig. 15, in which the rainy and rainless weather were represented by blue and red dots. The 5 

situation of 8-12 km is magnified to better show the water vapor information outside the tomographic region. In the figure, 

the larger value of WVD can be observed above 8 km in rainy days compared with that of rainless days. For the rainless 

situation, the value of WVD within 8-12 km is small and near to zero, while the value is basically not close to zero in the 

rainy situation, especially in the range of 8-10 km, which is substantially greater than 0.5 g/m3. Referring to the selection of 

the tomographic heights in other articles, considering the long-term statistics of water vapor in Hong Kong, and taking into 10 

account the drawbacks of the excessive number of tomographic voxels, we selected 8 km as the top boundary of the research 

area in this paper, which ignores the water vapor information above 8 km in our tomographic model. Obviously, it has less 

influence on the accuracy of the tomographic result in rainless weather condition. For the rainy weather condition, we think 

the effect could be slightly larger, which is one reason why the tomographic results of rainy days were worse than those of 

rainless days in our experiments. 15 

4 Conclusions 

In this paper, a new tomography approach based on the genetic algorithm was proposed to reconstruct a three-dimensional 

water vapor field in Hong Kong under rainy and rainless weather conditions. The inversion problem was transformed into an 

optimization problem that no longer depends on excessive constraints, a priori information and external data. Thus, many 

problems do not need to be considered, such as the difficulty of inverting the sparse matrix, the limitation and irrationality of 20 

constraints, the weakening of tomographic technique by prior information, and the restriction of obtaining external data. 

Based on the fitness function established by the tomographic equation, the water vapor tomographic solution could be 

achieved by the genetic algorithm through the process of selection, crossover and mutation.  

Our new approach is validated by tomographic experiments using GPS data collected over Hong Kong from DOY 163 to 

169, 2017 (rainy days) and 225 to 231, 2017 (rainless days). The problem of matrix ill-condition was discussed and analysis 25 

by the grayscale graph and condition number. In a comparison of the SWV residuals, internal and external accuracy testing 

are both used for the GA tomography. The RMS/MEA of SWV are 1.52/0.94 and 10.07/8.44 mm for the internal and 

external accuracy testing, respectively, which illustrates a good tomographic result. When mapping the SWV back to the 

zenith direction, most of the stations achieved a small RMS (<1.5 mm). It is proposed that follow-up research be undertaken 

to examine whether the existence of multiple stations in the same voxel will affect the tomographic medeling. The 30 

normalization and box plot of SWV residuals were adopted in external accuracy testing, indicating a good tomographic 

result based on the proposed method. In addition, the water vapor density of the proposed method agreed with that of 
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radiosonde, and the statistical results show that the RMS and MEA are 1.43 g/m3 and 1.19 g/m3, respectively. A close 

relationship between the WVD derived from tomography and that of radiosonde was also detected by linear regression 

analysis. The WVD residuals were displayed in the form of box plot with a small boundaries and quartiles as well as no 

outliers. To better display the three-dimensional distribution of tomographic results, the ECMWF data is utilized. And Least 

squares method is selected as the representative of traditional tomographic method to compare with the GA, a good 5 

consistency is demonstrated in terms of RMS, MAE, linear regression and boxplot.  It indicates that a reliable tomographic 

result can be achieved by the GA without being restricted by constraint equations and matrix inversion like traditional least 

squares method. Moreover, the comparison under various weather conditions illustrated that tomographic result of rainless 

scenario was better than that of rainy scenario, and the reasons were discussed. 

 10 
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