
RESPONSE TO REFEREE #1: 

We thank Referee #1 for taking the time to review the manuscript and provide valuable and constructive feedback.  

The referee’s comments are reproduced in bold; excerpts from the revised manuscript are in red type.  

P2, line 41: “Lidar can detect wind velocity in clear air, but cannot work during precipitation.” In fact, it has been 

well demonstrated that horizontal wind speed can be correctly measured in rain. 

We have modified the manuscript as follows: 

Emitted laser light is scattered by fine aerosol particles in the atmosphere; the back-scattered light is 

condensed by telescopes and received by an optical transceiver. Since the wavelength of the received 

light varies according to the velocity of the aerosol particles due to the Doppler effect, wind speed can 

be calculated by comparing this wavelength with that of the received light (Inokuchi and Akiyama, 

2019). However, when rain is too heavy, the backscattering signal is weakened due to strong 

attenuation by raindrops and a decrease in aerosols (Wei et. al 2019), making it difficult to measure the 

wind velocity at a distance. 

P7, line 193: the authors should list the possible physical origins of the random noise sources in their proposed 

lidar observation method. 

We have modified the manuscript as follows: 

The random noise is caused by the reduced intensity of the received light due to the thin aerosol 

concentration in the sky. A general Lidar signal consists of random noise superimposed on the spectral 

signal. If the signal intensity is low, random noise may be detected by peak search. (Additional 

randomness caused by environmental factors and data processing in Lidar is considered here as 

randomness of the wind-speed values.)  

P21, line 428: “Flight demonstrations are to be performed in 2021. The results of this research will be applied to 

this flight demonstration.” If possible, it would be useful and interesting if the authors can provide some more 

detail of their proposed experimental campaign.  

We have modified the manuscript as follows: 

Currently, the Lidar system is being modified to be smaller and lighter in order to suit small experimental 

aircraft. The onboard Lidar system and real-time airflow-vector estimation will be validated by flight 

experiments in 2021; the whole gust-alleviation system, including preview control, will be demonstrated 

in 2022. The results of this research will be applied to this flight demonstration. 

P3, line 95: “Lidars are assumed to be compliant...” 

We have modified the manuscript as follows: 

The Lidars are assumed to be compliant with the specifications for preview control currently under 

development by the JAXA. 

P4, line 121: “the estimation accuracy of the vertical wind velocity is required to be lower than 2.6 ms-1 in the 

LOS distance of 500 m” – I suggest use of the word “better” rather than “lower”. 

We have modified the manuscript as follows: 

... the estimation accuracy of the vertical wind velocity must be better than 2.6 m s-1 ... 



P11, line 258: “opening size of optical antenna” – specify radius or diameter? 

We have modified the manuscript as follows: 

The Lidar sensor is shown in Fig. 2; its specifications are given in Table 1 (Inokuchi and Akiyama 2019). 

Laser pulses generated by an optical transceiver are amplified by optical amplifiers (Sakimura et. al. 

2013) incorporated into an optical antenna and radiated into the atmosphere from optical telescopes. 

The heat generated by the optical amplifiers is dissipated by a chiller unit using water as a coolant. The 

optical antenna is equipped with a 150 mm large-aperture telescope for long range observations and a 

50 mm small-aperture telescope for vector conversion of short-range observations. 

The approach of combining lidar returns from different times does have some similarities with a method 

previously demonstrated by the ZHAW group and it is worth citing the following presentation, slide 51: 

https://presentations.copernicus.org/EMS2017/EMS2017-322_presentation.pdf 

We have modified the manuscript as follows: 

Neininger, B.: Trends in airborne atmospheric observations, European Meteorological Society Annual 

Meeting 2017,  14, EMS2017-322, 2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESPONSE TO REFEREE #2: 

We thank Referee #2 for taking the time to review the manuscript and provide valuable and constructive feedback.  

The referee’s comments are reproduced in bold; excerpts from the revised manuscript are in red type.  

Specific Comments 

a) Line 27: Add a reference to this 2014 FAA study or report. 

We have modified the manuscript as follows: 

For both fatal and non-fatal aircraft accidents, the impact of atmospheric turbulence can be significant. 

The Japan Transport Safety Board has stated that accidents caused by turbulence accounted for 48% of 

non-fatal aircraft accidents in Japan involving commercial airplanes from 2003-2012. An increase in the 

rate of accidents related to turbulence was reported by the Federal Aviation Administration in 2006, Kim 

and Chun in 2011, and Williams in 2017. 

 

b) Line 28: How many fatal accidents were observed in this time frame? 

We have modified the manuscript as follows: 

Statistics reported by Boeing (2018) show that 322 non-fatal and 51 fatal accidents occurred worldwide 

in commercial jet flights from 2009 through 2018. 

 

c) Line 34: Are these turbulence-related accidents results in LOC-I? I don’t exactly 

follow the logic presented here, and if LOC-I accidents are related to CAT (which is 

the main topic of the paper). Please clarify how statistics in this whole paragraph are 

related to each other and relevant. 

Aircraft accidents are often caused by a combination of factors that are difficult to completely identify. LOC-I can 

be caused by human factors, environmental factors, system factors, or a combination of these. First, the statistics 

show that wind phenomena (wind shear and atmospheric turbulence) are significant factors in LOC-I. Second, the 

statistics of aircraft accidents in Japan show the atmospheric turbulence is the largest factor in non-fatal accidents 

in Japan. Although non-fatal accidents (mentioned in the Japanese statistics) and fatal ones (mentioned in the LOC-

I statistics) are quite different in their impact, turbulence affects both. Non-fatal accidents include events such as 

broken bones in passengers not wearing their seat belts and burns from spilling hot coffee while serving a cabin 

attendant. 

We have modified the manuscript as follows: 

Atmospheric turbulence poses a potential risk to aircraft operation. Statistics reported by Boeing (2018) 

show that 322 non-fatal and 51 fatal accidents occurred worldwide in commercial jet flights from 2009 

through 2018. Of the fatal accidents, the largest proportion (25.5%) were due to Loss of Control-In Flight 

(LOC-I). The International Air Transportation Association (2016) shows that LOC-I frequently occurs 

when the aircraft speed is well below the stall speed; in conjunction with weather conditions, low speed 

is the most common factor in LOC-I accidents. Forty-two percent of LOC-I accidents occurred under 



degraded meteorological conditions affecting aircraft speed, in particular strong wind shear and 

atmospheric turbulence.  

 For both fatal and non-fatal aircraft accidents, the impact of atmospheric turbulence can be 

significant. The Japan Transport Safety Board has stated that accidents caused by turbulence accounted 

for 48% of non-fatal aircraft accidents in Japan involving commercial airplanes from 2003-2012. An 

increase in the rate of accidents related to turbulence was reported by the Federal Aviation 

Administration in 2006, Kim and Chun in 2011, and Williams in 2017. 

d) Line 38: There are numerical predictions of CAT. Please add a statement and pro- 

vide any supporting references for if/why these are insufficient for avoiding CAT. 

 

We have modified the manuscript as follows: 

Numerical weather prediction (NWP), which is an essential tool for aircraft operation, can 

forecast weather conditions for days and even weeks in advance and output broader-area weather 

information than can Radar or Lidar. However, NWP cannot explicitly resolve disturbances as small as 

most turbulence, leading to a very large predictive uncertainty (Sharman et al. 2006, Kim et al. 2011). 

Therefore, some researchers have developed an alternative approach that predicts turbulence potential 

by calculating turbulence indicators from NWP results; for example, Sharman et al. (2006) have 

developed an approach called graphical turbulence guidance (GTG) that combines such indicators. The 

turbulence potential can also be used to determine operational flight routes (Kim et al. 2015), but it has 

a large spatio-temporal gap on the scale of aircraft motion because it is based on NWP results such as 

the meso-scale model. It thus provides insufficient information to implement turbulence avoidance on 

aircraft in flight.  

 

 

e) Line 42: Rephrase the sentence ‘Aerosol particles are received instead of laser 

beams due to a scattering light effect caused by the rain particles’, as it is unclear. 

Does this mean that the dominant signal comes from raindrops, which are not passive 

tracers of air motion (whereas aerosols can be safely assumed to be passive tracers 

due to their small size). 

We have modified the manuscript as follows: 

Emitted laser light is scattered by fine aerosol particles in the atmosphere; the back-scattered light is 

condensed by telescopes and received by an optical transceiver. Since the wavelength of the received 

light varies according to the velocity of the aerosol particles due to the Doppler effect, wind speed can 

be calculated by comparing this wavelength with that of the received light (Inokuchi and Akiyama, 

2019). However, when rain is too heavy, the backscattering signal is weakened due to strong 



attenuation by raindrops and a decrease in aerosols (Wei et. al 2019), making it difficult to measure the 

wind velocity at a distance. 

f) Line 48: How far in front of an aircraft can CAT be detected? 

We have modified the manuscript as follows: 

Inokuchi et al. (2012) have shown observationally that airborne Doppler Lidar can detect CAT in front of 

an aircraft in flight at altitudes of 3,200 m; the Lidar information can be detected 30 seconds before the 

turbulence affects the aircraft. The aircraft's flight speed in the test was 320 kt (160 m/s), so it detected 

CAT from a distance of about 4.8 km. 

g) Line 75: This is not true. A single lidar can measure the vertical velocity if the beam 

is scanned at different angles (e.g., upwards and downwards using a prism). It is only 

not possible when the beam is fixed. 

We have modified the manuscript as follows: 

However, a fixed single Doppler Lidar system can only detect the line-of-sight (LOS) wind, providing a 

one-dimensional piece of information; the vertical wind velocity in front of the aircraft cannot be 

measured by such a system (Hamada, 2019). It is necessary to perform the Lidar measurements in two 

directions, upward and downward, to obtain the vertical wind velocity (Neininger, 2017). 

h) Line 92: Clarify there and throughout that the horizontal wind (u and v) is not measured, rather 

only the component that is parallel to the look-direction (i.e., headwind/tailwind component, not 

crosswind). 

We have modified the manuscript as follows: 

In this study, “horizontal wind” means any headwind/tailwind component that does not include the 

crosswind component. 

i) Sect. 2.1: Please provide more details on the Doppler lidar itself. Does it use heterodyne- or direct-

detection? What is its wavelength, PRF, pulse energy, band-width, aperture diameter, etc? How many 

pulses are averaged? What is the data rate?Also list any other relevant details and provide a written 

description of the system. 

We have modified the manuscript as follows: 

The Lidar sensor is shown in Fig. 2; its specifications are given in Table 1 (Inokuchi and Akiyama 2019). 

Laser pulses generated by an optical transceiver are amplified by optical amplifiers (Sakimura et. al. 

2013) incorporated into an optical antenna and radiated into the atmosphere from optical telescopes. 

The heat generated by the optical amplifiers is dissipated by a water-cooled chiller unit. The optical 

antenna is equipped with a 150 mm large-aperture telescope for long range observations and a 50 mm 

small-aperture telescope for vector conversion of short-range observations. 

 

j) Line 120: Where do these requirements for the frequency/accuracy come from? 



We have modified the manuscript as follows: 

The control requirements are the conditions necessary to halve the peak variation in acceleration by 

control. This value has been specified using control simulations (Hamada, 2019), and Monte Carlo 

simulations have also been performed. 

 

k) Line 131: Change ‘areas’ to ‘distance’, as area connotes a 2-D space. Also change 

the wording ‘area’ in Fig.2. 

 

We modified the Figure 2 (Figure 3 in revised paper) according to the referee’s comment. See answer to (l) below. 

 

 

l) Figure 2: The circles in the figure make it seem like the lidars are sweeping out a 

scan circle (similar to a conical scan). This is not true, suggest removing the circles. 

We have modified Fig. 2 (now Fig. 3) as follows: 

 

 

 

Fig. 3 Distance to wind-field region between the Lidars for two line-of-sight (LOS) distances  

 

 

m) Line 156: Why was a first-degree polynomial used and not a higher-order polynomial? 

We have modified the manuscript as follows: 



Depending on the number of past LOS wind data used, the order of the polynomial expression used in 

the extrapolation varies. The aerosol concentration in the upper sky is low, suggesting that there is 

considerable missing data and noise. A sufficient number of past LOS wind data may not be available to 

estimate a high-order polynomial expression, and this could affect the robustness of the control. For this 

reason, a first-degree polynomial expression is adopted in this study and used in the least-squares 

method (LSM) to extrapolate the wind-field values according at the horizontal line. The airflow vector is 

calculated by Eq. (1) using the extrapolated LOS wind. 

n) Sect. 2.3: It would be helpful if a figure could be added showing one more multiple example spectra 

(preferably for both a valid and invalid measurement), also showing what these values (k_1st, k_2nd, 

k_ave) signify. 

We have modified the manuscript as follows: 

Figure 5 shows a conceptual explanation of the variables of simplified Kalman gain in the cases of 

correct measurement and of an error peak. In this study, the filtering algorithm is carried out first when 

the observation data is obtained: 

 𝐾 = {
1   |𝑘1𝑠𝑡 − 𝑘2𝑛𝑑| = 1 𝑎𝑛𝑑 |𝑘1𝑠𝑡 − 𝑘𝑎𝑣𝑒| < 𝑘𝑑𝑖𝑓  

0    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
} 

 

(4) 

 

Fig. 5 Conceptual explanation of the variables of simplified Kalman gain. 

 (a) Correct measurement case of K=1.  (b) Case with the error peak of K=0 

 

o) Lines 175-189: It would also be help to add a figure showing how exactly the LSM 

estimation is used to QC bad measurements. Once invalid measurements are removed 

following this LSM quality-control process, is the initial LSM fitting done again to obtain 

a better estimate of the wind? I would think this process could be repeated until there 



are no more poor LOS estimates going into the fitting. 

We have added a figure, as the referee suggested, and modified the manuscript as follows: 

Figure 6 explains the concept behind Tuckey’s biweight methodology as applied to Lidar. The concept of 

a robust LSM is validated by analyzing the difference between the observed LOS wind values and those 

estimated by the polynomial expression used in LSM. In the 1st step, the LOS wind is estimated by using 

the general LSM (Eq. (2)). In the 2nd step, the difference dj
T between the observed LOS wind value and 

that estimated from the polynomial expression is found: 

𝑑𝑗
𝑇 = 𝑊𝑗

𝑇 − (𝑎𝑗𝑧 + 𝑏𝑗) . (5) 

 A permissible difference range L is defined and weights wj
T (dj

T) are calculated depending on where dj
T 

falls in the distance range: 

𝑤𝑗
𝑇(𝑑𝑗

𝑇) = 0  ( 𝑑𝑗
𝑇 < −𝐿) 

𝑤𝑗
𝑇(𝑑𝑗

𝑇) = (1 − (
𝑑𝑗

𝑇

𝑤𝑗
𝑇)

2

)

2

(−𝐿 ≤ 𝑑𝑗
𝑇 ≤ 𝐿)  . 

𝑤𝑗
𝑇(𝑑𝑗

𝑇) = 0  ( 𝑑𝑗
𝑇 > 𝐿) 

(6) 

Weights are assigned to each LOS wind velocity value. In the 3rd step, a new first-degree polynomial 

expression for the LSM with the weighted data is estimated as follows. 
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(7) 

This process is repeated until the weight of the error value decreases and converges. 

 



 

Fig. 6 Conceptual explanation of Tuckey’s biweight methodology applied to line-of-sight (LOS) wind at various distances. First 
step: simple least-squares fit. Second step: observations are compared with the estimate. The data are weighted, and 

extreme outliers are excluded, using Eq. (6). Third step: Least-squares fit of the weighted data. 

 

 

p) Figure 5: It makes sense to show the vertical velocity with its sign, not just it’s 

magnitude, in this plot, as the sign is expected to change around the vortex. 

We modified the Figure 5 (Figure 8 in revised paper) according to the referee’s comment. As the referee 

comments, it is important to specify the direction of rotation of a vortex because the vertical wind speed changes 

from positive to negative around the vortex. Therefore, the direction of rotation of the vortex is now indicated by 

arrows in the revised figure. 



 
 

 

 

q) Figure 6: I don’t really think this figure is valuable and it could be removed. The only 

information it contains that is not in the text is the dimensions of the model volume, 

which could be stated in the text instead. 

Figure 6 has been removed, in agreement with the referee’s comment. 

 

r) Figure 7: I suggest using a divergent colorbar (i.e., a colorbar that is either white or 

grey for w=0), which is typically used for vertical velocity. It would be helpful to add the 

modeled flight path to this figure. 

We modified Figure7 (Figure 9 in revised paper) according to the referee’s comment. Because of the difference in 

the maximum and minimum vertical winds at the top and bottom and the difficulty of setting the divergent 

colorbar center to 0 m/s, the colorbar was left as it was. However, an example of an aircraft flight path is shown. 



 
Fig. 9 Vertical wind velocity distribution map generated by JMA-NHM 

 

s) Lines: 271-275: These lines would be best in the caption for Figs. 9 and 10, that way 

the reader doesn’t need to refer back (several pages in the text) to understand what is 

in Fig. 9 and 10 when examining those figures. 

We have modified the manuscript as follows (note that Fig. 9 is now Fig. 11): 

Fig. 11 Distributions of the horizontal and vertical wind components estimated by the simple vector conversion method 

vs. the proposed method (at time 10 s). Upper figures:  ideal vortex model; middle figures: simple vector conversion method; 

lower figures: proposed method with five-past LOS wind datasets. Left figures:  horizontal wind values; right figures: vertical 

wind values 

and a similar for Fig. 12 (at time 15 sec). 

t) Line 275: Clarify what is meant exactly by ‘after 10 s or 15 s’? 

We have modified the manuscript as follows: 

Figures 11 and 12 show the results of starting the flight from the edge of the computational space, 10 

and 15 seconds later and 15 seconds later. Thus, they represent the time before and during the aircraft's 

close approach to the vortex core. 

u) Line 301 and 331, 389: How are the pseudo-routes generated? Are they at random 

locations in the vortex, or staggered? Are there limits to the heights that they are limited 

to? 

We have modified the manuscript as follows: 

Line 353: Next, the statistical estimation performance is evaluated by using 100 pseudo-routes that are 

randomly generated 750 m up and down from the center of the vortex core. 



Line 386: Next, the statistical estimation performance is evaluated using 100 pseudo-routes that are 

randomly generated between 2 km and 10 km altitude. 

Line 418: Next, the statistical estimation performance [in this case, different from that in Line 353] is 

evaluated by using 100 pseudo-routes that are randomly generated 750 m up and down from the center 

of the vortex core. 

 

 

v) Lines 322-325: These lines also would be best in the caption for Figs. 11 and 12. 

We modified the sentences and added the explanation to the caption according to the referee’s comment.  

 

w) Fig. 12: The colorbar axis on the right plots is not correct. It shows vertical winds of 

8 m/s, but the values shown for the NWP output (Fig. 7) did not exceed 2 m/s. 

The right colorbar of Fig. 12 (now called Fig. 14) was indeed incorrect and has been modified: 

 

 

 

x) Lines 391-392: This text should be moved to the caption to describe what each 



panel indicates. 

We modified the sentences and added the explanation to the caption according to the referee’s comment. 

 

y) Line 425: One notable exception to this is wakes from other (larger) aircrafts. These 

localized but intense vortices pose a safety hazard. The authors should specifically 

state here that these hazards will not be detected with this technique. 

We have modified the manuscript as follows: 

An exception to this is aircraft-generated wake turbulence, which still poses a safety risk. The radius of 

the actively fluctuating wake-turbulence core is only a few meters, so the proposed method could lead 

to erroneous predictions. 

Editorial Corrections 

a) Line 87: Change ’smaller than that in the atmosphere’ to ‘smaller than at lower 

altitudes’. 

We have modified the manuscript as follows: 

In addition, actual Lidar observations involve errors, noise, and loss of data, with  negative effects on 

aircraft control, as reported by Misaka et al. (2015); these problems are worse at higher altitudes, where 

the aerosol density is smaller than it is at lower ones. 

b) Line 151: Remove one instance of the word ‘method’. 

We have modified the sentence according to the referee’s comment. 

 

c) Figure 3: The top-middle lidar beam should be labeled T-1, not T-2. 

We have modified the manuscript as follows: 
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Correspondence to: Ryota Kikuchi (Email: kikuchi-ryota@doerresearch.com) 10 

Abstract. As part of control techniques, gust-alleviation systems using airborne Doppler Lidar technology are 11 

expected to enhance aviation safety by significantly reducing the risk of turbulence-related accidents. Accurate 12 

measurement and estimation of the vertical wind velocity are very important in the successful implementation of such 13 

systems. An estimation algorithm for the airflow vector based on data from airborne Lidars is proposed and 14 

investigated for preview control to prevent turbulence-induced aircraft accidents in flight. An existing technique —15 

simple vector conversion— assumes that the wind field between the Lidars is homogeneous, but this assumption fails 16 

when turbulence occurs due to a large wind-velocity fluctuation. The proposed algorithm stores the line-of-sight (LOS) 17 

wind data at every moment and uses recent and past LOS wind data to estimate the airflow vector and to extrapolate 18 

the wind field between the airborne twin Lidars without the assumption of homogeneity. Two numerical 19 

experiments—using the ideal vortex model and numerical weather prediction, respectively—were conducted to 20 

evaluate the estimation performance of the proposed method. The proposed method has much better performance than 21 

simple vector conversion in both experiments, and it can estimate accurate two-dimensional wind-field distributions, 22 

unlike simple vector conversion. The estimation performance and the computational cost of the proposed method can 23 

satisfy the performance demand for preview control.  24 

1 Introduction 25 

 Atmospheric turbulence poses a potential risk to aircraft operation. Statistics reported by Boeing (2018) show 26 

that 322 non-fatal and 51 fatal accidents occurred worldwide in commercial jet flights from 2009 through 2018. Of 27 

the fatal accidents, the largest proportion (25.5%) were due to Loss of Control-In Flight (LOC-I). The International 28 

Air Transportation Association (2016) shows that LOC-I frequently occurs when the aircraft speed is well below the 29 

stall speed; in conjunction with weather conditions, low speed is the most common factor in LOC-I accidents. Forty-30 

two percent of LOC-I accidents occurred under degraded meteorological conditions affecting aircraft speed, in 31 

particular strong wind shear and atmospheric turbulence.  32 



 For both fatal and non-fatal aircraft accidents, the impact of atmospheric turbulence can be significant. The 33 

Japan Transport Safety Board has stated that accidents caused by turbulence accounted for 48% of non-fatal aircraft 34 

accidents in Japan involving commercial airplanes from 2003-2012. An increase in the rate of accidents related to 35 

turbulence was reported by the Federal Aviation Administration in 2006, Kim and Chun in 2011, and Williams in 36 

2017. Accidents caused by convective systems such as cumulonimbus clouds have decreased owing to advances in 37 

airborne Radar (Airbus, 2020; Sermi et al. 2015). However, non-cloud atmospheric turbulence, called clear-air 38 

turbulence (CAT), cannot be detected by Radar, as reported by Soreide et al., 2000; Barny, 2012; and Inokuchi et al., 39 

2009. Airborne CAT-observation systems to minimize risks of turbulence-related accidents are essential for aviation 40 

safety. 41 

Numerical weather prediction (NWP), which is an essential tool for aircraft operation, can forecast weather 42 

conditions for days and even weeks in advance and output broader-area weather information than can Radar or Lidar. 43 

However, NWP cannot explicitly resolve disturbances as small as most turbulence, leading to a very large predictive 44 

uncertainty (Sharman et al. 2006, Kim et al. 2011). Therefore, some researchers have developed an alternative 45 

approach that predicts turbulence potential by calculating turbulence indicators from NWP results; for example, 46 

Sharman et al. (2006) have developed an approach called graphical turbulence guidance (GTG) that combines such 47 

indicators. The turbulence potential can also be used to determine operational flight routes (Kim et al. 2015), but it 48 

has a large spatio-temporal gap on the scale of aircraft motion because it is based on NWP results such as the meso-49 

scale model. It thus provides insufficient information to implement turbulence avoidance on aircraft in flight.  50 

 Recently, airborne Doppler Lidar has been developed by Soreide et al., 2000; Barny, 2012; Inokuchi et al., 51 

2009; Machida, 2017; and Inokuchi and Akiyama, 2019. Emitted laser light is scattered by fine aerosol particles in 52 

the atmosphere; the back-scattered light is condensed by telescopes and received by an optical transceiver. Since the 53 

wavelength of the received light varies according to the velocity of the aerosol particles due to the Doppler effect, 54 

wind speed can be calculated by comparing this wavelength with that of the received light (Inokuchi and Akiyama, 55 

2019). However, when rain is too heavy, the backscattering signal is weakened due to strong attenuation by raindrops 56 

and a decrease in aerosols (Wei et. al 2019), making it difficult to measure the wind velocity at a distance. Japan 57 

Aerospace Exploration Agency (JAXA) is researching and developing a coherent Doppler Lidar capable of remotely 58 

detecting air turbulence in clear-air conditions, and has conducted a flight demonstration of a Lidar system that can 59 

provide turbulence information to pilots (Inokuchi et al., 2009; Machida, 2017; Inokuchi and Akiyama, 2019). 60 

Inokuchi et al. (2012) have shown observationally that airborne Doppler Lidar can detect CAT in front of an aircraft 61 

in flight at altitudes of 3,200 m; the Lidar information can be detected 30 seconds before the turbulence affects the 62 

aircraft. The aircraft's flight speed in the test was 320 kt (160 m/s), so it detected CAT from a distance of about 4.8 63 

km. 64 

 65 

 66 

Based on advance airflow information, flight demonstrations have been carried out with the aim of providing pilots 67 

with the information they need to make decisions: whether to change course to avoid wind shear, and whether to turn 68 

on seatbelt-sign lighting during cruise and altitude changes (Inokuchi and Akiyama, 2019). Although Lidar systems 69 



are useful for providing onboard wind information to pilots, avoiding turbulence at high altitudes is difficult as the 70 

range of detection that facilitates pilots to be warned is short (Hamada, 2019). Gathering such information involves 71 

emitting a laser beam and receiving the scattered light from aerosol particles that are much smaller than precipitation 72 

droplets in the air. Therefore, when the number of aerosol particles that emit scattered light is small, it is difficult to 73 

measure wind information at a distance. Furthermore, as altitude increases, the aerosol density decreases, and the 74 

observation range tends to decrease accordingly. The maximum observation range and aerosol density measured at 75 

each altitude are shown in Inokuchi and Akiyama, 2019.  76 

 Advance knowledge of turbulent atmospheric conditions would improve the performance of automatic 77 

aircraft-vibration reduction systems. Automatic control to alleviate aircraft vibration is called gust-alleviation and has 78 

been studied since the 1970s, mostly with only the help of feedback sensors such as inertial measurement units (Regan 79 

and Jutte, 2012). Recently, methods of reducing the vibrations due to turbulence with the help of preview controlling 80 

based on airborne Lidar observation have been reported by Schmitt et al., 2007; Fezans et al., 2019; and Hamada, 81 

2019. The aim of the Aircraft Wing with Advanced Technology Operation (AWIATOR) project is the development 82 

of new direct-lift control devices and a Lidar system for turbulence measurement (Schmitt et al., 2007). Another 83 

project—“Demonstration of Lidar-based CAT detection” (DELICAT) (Barny, 2012)—developed airborne ultraviolet 84 

Lidar for gust and turbulence measurements. The test flights were carried out using an Airbus 340 aircraft equipped 85 

with ultraviolet Lidar. In both the AWIATOR and the DELICAT experiments, the measurement range was short, 86 

because the Lidar was developed for controlling the aircraft automatically.  87 

 In order to implement an airborne Doppler Lidar gust-alleviation system successfully, it is very important to 88 

measure the vertical wind velocity accurately. Both horizontal and vertical winds affect aircraft motion, but the effect 89 

of changing the vertical wind velocity is greater. This is because the effect of modifying the angle of attack is relatively 90 

larger than the effect of changing the horizontal wind velocity, which affects only the airspeed (Fezans et al., 2019). 91 

However, a fixed single Doppler Lidar system can only detect the line-of-sight (LOS) wind, providing a one-92 

dimensional piece of information; the vertical wind velocity in front of the aircraft cannot be measured by such a 93 

system (Hamada, 2019). It is necessary to perform the Lidar measurements in two directions, upward and downward, 94 

to obtain the vertical wind velocity (Neininger, 2017). Figure 1 shows a representation of this concept. The vertical 95 

wind-velocity vector is generated from the differences between the upward and downward LOS winds by using simple 96 

vector conversion. Unfortunately, this method is incapable of estimating the vertical wind velocity with high accuracy 97 

to control the aircraft automatically because the technique assumes homogeneity between the upward and downward 98 

Lidars (Fezans et al., 2019). In this study, a fully turbulent field with atmospheric turbulence and gusts is considered; 99 

under these conditions, it is difficult to estimate the vertical wind velocity with high accuracy using simple vector 100 

conversion. In particular, the estimation accuracy of the vertical wind velocity rapidly worsens when the estimation 101 

position is located farther ahead from the aircraft.  102 

 In addition, actual Lidar observations involve errors, noise, and loss of data, with  negative effects on aircraft 103 

control, as reported by Misaka et al. (2015); these problems are worse at higher altitudes, where the aerosol density is 104 

smaller than it is at lower ones. Misaka et al. (2015) proposed a filtering algorithm based on a simple Kalman filter to 105 

remove wind-velocity errors from Lidar measurements. For preview control, it is essential to deal with the Lidar errors, 106 



noise and loss of data more carefully. An accurate airflow vector estimation method and an efficient real-time filtering 107 

algorithm are required. 108 

 In this study, an estimation method and an airflow-vector filtering algorithm are proposed for preview control 109 

to prevent turbulence-induced aircraft accidents. The method works for both horizontally and vertically directed winds, 110 

and uses both upward and downward Lidars. (In this study, “horizontal wind” means any headwind/tailwind 111 

component that does not include the crosswind component.) The Lidar system in this paper is that also used by JAXA 112 

in its ongoing “Lidar-based gust alleviation control” research project. The Lidars are assumed to be compliant with 113 

the specifications for preview control currently under development by the JAXA. The proposed algorithm stores the 114 

LOS wind data continually and uses recent and past LOS wind data to estimate the airflow vector and the wind field 115 

between Lidars, whereas simple vector conversion utilizes only recent LOS wind data. The airflow vector is calculated 116 

by using wind data extrapolated from the horizontal and vertical wind components; the estimation accuracy of the 117 

airflow vector in front of the aircraft is improved by using such extrapolated wind data because the region between 118 

the Lidars represents a non-homogeneous one. A polynomial expression is used to extrapolate the wind field. In 119 

addition, the proposed method can estimate the two-dimensional distribution of the wind field between the Lidars, 120 

which simple vector conversion cannot.  121 

 Two test configurations—an ideal vortex flow field and a weather field—are calculated by an NWP system 122 

and utilized to evaluate the performance of the airflow vector. These experiments generate a large number of pseudo-123 

Lidar measurements along flight routes from the reference wind field for evaluation of the estimated performance. 124 

Comparing the prediction results with the reference wind field can confirm all the wind-field values. 125 

 126 

Fig. 1 Concept of the airborne Lidars observation system 127 

2 Methods 128 

  2.1 Airborne Lidar Specifications 129 

 The airborne Lidar observation system currently under development by JAXA for preview control to prevent 130 

turbulence-induced aircraft accidents is shown in this section. This system has airborne Lidars that are aiming upwards 131 

and downwards; the angle between them is 20 degrees, that is, 10 degrees between the horizontal line and each Lidar. 132 



The Lidar sensor is shown in Fig. 2; its specifications are given in Table 1 (Inokuchi and Akiyama 2019). Laser pulses 133 

generated by an optical transceiver are amplified by optical amplifiers (Sakimura et. al. 2013) incorporated into an 134 

optical antenna and radiated into the atmosphere from optical telescopes. The heat generated by the optical amplifiers 135 

is dissipated by a water-cooled chiller unit. The optical antenna is equipped with a 150 mm large-aperture telescope 136 

for long range observations and a 50 mm small-aperture telescope for vector conversion of short-range observations. 137 

Each Lidar measures the LOS wind velocity with an observational accuracy of ± .09 m s-1; the paired values are used 138 

to estimate the airflow vector in the region between the Lidars. The observational resolution of each Lidar is 139 

approximately 25 m. There are additional performance requirements for preview control: the estimation frequency 140 

and estimation accuracy of vertical wind velocity. The frequency of estimation must be more than 5 Hz, and the 141 

estimation accuracy of the vertical wind velocity must be better than 2.6 m s-1 in the LOS distance of 500 m. The 142 

control requirements are the conditions that are necessary for halving the peak variation in acceleration by control. 143 

This value has been specified using control simulations (Hamada, 2019), and Monte Carlo simulations have also been 144 

performed. 145 

 146 

Fig. 2 Coherent Doppler Lidar used in this work 147 

 148 

Table 1. Coherent Doppler Lidar Specifications 149 

Laser Wavelength 1.55 μm 

Laser Output 3.3 W 

Pulse Repetition Frequency 1,000 Hz 

Laser Beam Diameter 150, 50 mm 

System Weight 83.7 kg 

Power Consumption 936 W 

Data Rate 5 Hz 



 Next, an existing technique for estimating the airflow vector from a pair of LOS wind values is reviewed. 150 

The airflow vector in the region between the upward and downward Lidars is conventionally estimated via simple 151 

vector conversion. This procedure is similar in concept to the vertical azimuth display approach used in general ground 152 

Lidar systems (Newsom et al., 2017). The simple vector conversion is given by 153 

𝑢𝑥
𝑇 =

(𝑊1
𝑇 + 𝑊2

𝑇)

2𝑐𝑜𝑠 𝜃 
, 

𝑢𝑧
𝑇 =

(𝑊1
𝑇 − 𝑊2

𝑇)

2𝑠𝑖𝑛 𝜃
, 

(1) 

where 𝑢𝑥
𝑇 and 𝑢𝑧

𝑇 are the horizontal and vertical wind velocity measurements at the observation time T; 𝑊1
𝑇 and 154 

𝑊2
𝑇 are the LOS wind velocities of the upward and downward directed Lidars at the observation time T; and 𝜃 is the 155 

angle between the horizontal line and each Lidar, which is 10 degrees in this study. The simple vector conversion 156 

assumes that the wind-field region between the Lidars is homogeneous (Newsom et al., 2017). The assumption of 157 

homogeneity seems natural: the regions between the Lidars are 69.5 m and 173.6 m at the LOS distances of 200 m 158 

and 500 m ahead of the aircraft (Fig. 3). Nevertheless, the assumption would be wrong if a large fluctuation in wind 159 

velocity occurs, creating turbulence. In homogenous conditions, a simple vector conversion can estimate the airflow 160 

vector accurately; however, in non-homogenous conditions, the estimation is expected to have poor accuracy. 161 

 162 

Fig. 3 Distance to wind-field region between the Lidars for two line-of-sight (LOS) distances  163 

  2.2 Estimation Algorithm Based on Extrapolation 164 

 Whereas simple vector conversion utilizes recent LOS wind data to estimate the airflow vector, our proposed 165 

method stores the LOS wind data continuously and uses both recent and past values to extrapolate the wind field in 166 

the region between the Lidars where it has not been directly measured. The airflow vector is then calculated from Eq. 167 

(1) and the extrapolated horizontal and vertical components of the wind velocity. The airflow-vector estimation 168 

accuracy far ahead of the aircraft is improved relative to simple vector conversion by using the extrapolated wind data 169 

because the region between the upward and downward Lidars is no longer assumed to be homogeneous; our algorithm 170 

uses a polynomial expression to extrapolate data points from both recent and past measurements, allowing it to be 171 



used in non-homogenous wind fields. In addition, the proposed method can estimate the two-dimensional distribution 172 

of the wind field between the Lidars, again unlike simple vector conversion. 173 

 174 

 Figure 4 shows the overview of the proposed estimation method when a current data point and two past data 175 

points are used. When the aircraft speed is V and the time span of observation is dt, the airflow moves backwards at 176 

V×dt because the aircraft is advancing. Current observation times are denoted as T and past observation times as T-1 177 

and T-2. The proposed method uses the current LOS wind values (W1
T and W2

T) and the past LOS wind values (W1
T-178 

1, W2 T-1 and W1
T-2, W2 T-2). The perpendicular distances between the horizontal line and each Lidar are denoted as zT, 179 

zT-1, and zT-2, respectively.  Depending on the number of past LOS wind data used, the order of the polynomial 180 

expression used in the extrapolation varies. The aerosol concentration in the upper sky is low, suggesting that there is 181 

considerable missing data and noise. A sufficient number of past LOS wind data may not be available to estimate a 182 

high-order polynomial expression, and this could affect the robustness of the control. For this reason, a first-degree 183 

polynomial expression is adopted in this study and used in the least-squares method (LSM) to extrapolate the wind-184 

field values according at the horizontal line. The airflow vector is calculated by Eq. (1) using the extrapolated LOS 185 

wind. The equation used in the extrapolation method is 186 

 187 

Fig. 4 Overview of estimation by proposed method when line-of-sight wind data from 0, 1, and 2 past time-steps dT  188 
are used. V = speed of aircraft; W1

T and W2
T = wind speeds measured at time T by the two Lidars; z = vertical distance 189 

perpendicular to velocity of aircraft 190 

 191 

𝑊𝑗
′(𝑧) = 𝑎𝑗𝑧 + 𝑏𝑗   , 

where 

(2) 

 

 



𝑎𝑗 =
𝑁 ∑𝑇
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2 . 

(3) 

 192 

  2.3 Filtering Error and the Lack of Wind-Velocity Data  193 

 In this study, two filtering algorithms are used to remove the error and the loss of data in airborne Lidars. 194 

First, a filtering algorithm that is a simple representation of a Kalman filter with simplified Kalman gain is used; this 195 

filtering algorithm is described in detail in the study of Misaka et al., 2015. The algorithm assumes that infinite 196 

variance is used to exclude outliers and loss of data. This method uses the Lidar spectrum data at each range-bin; the 197 

algorithm defines the validity of the measurements during the Lidar data peak-detection process. To identify the 198 

correct and incorrect LOS wind-velocity values, two spectrum thresholds are defined. First, the largest and second-199 

largest spectrum values, k1st and k2nd, which are the Fast Fourier Transform points for the first and second spectrum 200 

peaks, respectively, are adjacent to each other; i.e., the magnitude of the distance between the largest and second-201 

largest spectrum values in the Fast Fourier Transform is equal to one. Second, the distance between k1st and the 202 

averaged spectrum peak kave is required to be less than a certain value kdif, which represents the only hyper-parameter 203 

in this algorithm as well as a parameter related to smoothness. kave is the index that conveys the location of the spectrum 204 

peak averaged in short ranges, e.g., 2–30 range-bins from the lidar origin. Figure 5 shows a conceptual explanation of 205 

the variables of simplified Kalman gain in the cases of correct measurement and of an error peak. In this study, the 206 

filtering algorithm is carried out first when the observation data is obtained: 207 

 𝐾 = {
1   |𝑘1𝑠𝑡 − 𝑘2𝑛𝑑| = 1 𝑎𝑛𝑑 |𝑘1𝑠𝑡 − 𝑘𝑎𝑣𝑒| < 𝑘𝑑𝑖𝑓  

0    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
} 

 

(4) 



 208 

Fig. 5 Conceptual explanation of the variables of simplified Kalman gain. 209 

 (a) Correct measurement case of K=1.  (b) Case with the error peak of K=0 210 

 211 

 Secondly, a robust least-squares estimation, based on Tuckey’s biweight methodology (Huber, 2008), is 212 

carried out to reduce the impact of the error in the LOS wind velocity. This method is based on the LOS wind data, in 213 

contrast to the spectrum data from Lidar observations in the first method. Although the filtering algorithm based on a 214 

simple Kalman filter can remove the error from the Lidar spectrum data, error filtering via this algorithm is not perfect 215 

despite being useful. As error data can be a reason for miscontrol, it is essential to deal with the error and the loss of 216 

data of the Lidars more carefully when the filtering algorithm is used for the preview control. Therefore, the robustness 217 

of the estimated airflow vector is secured by combining the simple Kalman filtering algorithm with the results of 218 

robust LSM, using Eqs. (2) and (3). In addition, the robust LSM estimation can employ the extrapolation algorithm 219 

effectively as per Eqs. (2) and (3). Therefore, a simpler and more robust algorithm is provided. Figure 6 explains the 220 

concept behind Tuckey’s biweight methodology as applied to Lidar. The fundamental principle involves comparing 221 

the observed LOS wind values with the estimated ones from the polynomial expression used in the LSM. In the 1st 222 

step, the LOS wind is estimated using the general LSM (Eq. (2)). In the 2nd step, the difference  dj
T between the 223 

observed LOS wind value and that estimated from the polynomial expression is found: 224 

𝑑𝑗
𝑇 = 𝑊𝑗

𝑇 − (𝑎𝑗𝑧 + 𝑏𝑗) . (5) 

 A permissible difference range L is defined and weights wj
T (dj

T) are calculated depending on where dj
T falls in the 225 

distance range: 226 

𝑤𝑗
𝑇(𝑑𝑗

𝑇) = 0  ( 𝑑𝑗
𝑇 < −𝐿) 

𝑤𝑗
𝑇(𝑑𝑗

𝑇) = (1 − (
𝑑𝑗

𝑇

𝑤𝑗
𝑇)

2

)

2

(−𝐿 ≤ 𝑑𝑗
𝑇 ≤ 𝐿)  . 

𝑤𝑗
𝑇(𝑑𝑗

𝑇) = 0  ( 𝑑𝑗
𝑇 > 𝐿) 

(6) 



Weights are assigned to each LOS wind velocity value. In the 3rd step, a new first-degree polynomial expression for 227 

the LSM with the weighted data is estimated as follows. 228 

 229 
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(7) 

This process is repeated until the weight of the error value decreases and converges. 230 

 231 

 232 

Fig. 6 Conceptual explanation of Tuckey’s biweight methodology applied to line-of-sight (LOS) wind at various distances. 233 
First step: simple least-squares fit. Second step: observations are compared with the estimate. The data are weighted, and 234 

extreme outliers are excluded, using Eq. (6). Third step: Least-squares fit of the weighted data. 235 

 236 

 237 

 238 

  2.4 Filtering Wind-Velocity Noise  239 

 Lidar is subject not only to measuring errors and loss of LOS data values but also to random noise; this type 240 

of noise also leads to a poor estimation of the airflow vector. The random noise is caused by the reduced intensity of 241 

the received light due to the thin aerosol concentration in the sky. A general Lidar signal consists of random noise 242 

superimposed on the spectral signal. If the signal intensity is low, peak search may only detect the random noise. 243 

(Additional randomness caused by environmental factors and data processing in Lidar is considered here as 244 

randomness of the wind-speed values.)  245 



 A simple spline algorithm generates a curve that passes through all sample points; therefore, it is not able to 246 

generate a smooth curve when the sample points have random noise, and a smoothing spline algorithm is often applied 247 

to remove the random noise in the Lidar LOS wind values, as in the study by Woltring, 1986. The curve generated by 248 

this algorithm does not pass through all sample points, and because of that, it can be smoother, even when there is 249 

random noise from Lidar LOS wind measurements. The smoothing spline model minimizes the criterion function Cp,  250 

𝐶𝑝 = ∑𝑛
𝑖=1 𝑣𝑖{𝑦𝑖 − 𝑠𝑝(𝑥)}

2
+ 𝑝 ∫ (

𝑑2𝑠𝑝

𝑑𝑥2
)

2

𝑑𝑥 , (8) 

 251 

where yi is a sample point value, sp (x) is the value generated by a simple spline algorithm, vi is a weighted factor, and 252 

p is the regularization parameter. The smoothest curve is generated when the criterion function Cp is minimized. 253 

  2.5 System Flowchart 254 

 The airflow-vector estimation algorithm is a sequence of five different processes, which are summarized 255 

below. The system flowchart is shown in Fig. 7.  256 

 1) The filtering algorithm based on a simple Kalman filter is used to remove the error in Lidar LOS 257 

wind-data values. 258 

 2) The smoothing spline method is applied to reduce the negative effect of the random noise in LOS 259 

wind-data values and extrapolates the values at positions for which no measurements can be read. This is identified 260 

as the first-step error. 261 

 3) Extrapolation, based on the polynomial expression, is carried out to estimate the wind-field values 262 

by using current and past LOS wind data. 263 

 4) A robust LSM model is applied to obtain a more accurate polynomial expression. The calculation 264 

repeats until the parameter converges. 265 

 5) The airflow vector is calculated by Eq. (1) with the extrapolated LOS wind. 266 



 267 

Fig. 7 System flowchart for the airflow vector estimation algorithm 268 

3 Test Configurations 269 

  3.1 Ideal Vortex Model 270 

 We have conducted numerical experiments to evaluate the performance of actual airborne Lidars. The ideal 271 

vortex model is defined and used to evaluate the estimated performance of the airflow vector. In this study, the 272 

Hallock-Burnham vortex model (Hinton et al., 1997) is used. The experiment generates a large number of pseudo-273 

Lidar values, from which the airflow vector is estimated. The estimation results are then compared with the reference 274 

wind-field values of the ideal vortex model. Figure 8 shows the distribution of wind velocity generated using the 275 

Hallock-Burnham vortex model. 276 



 277 

Fig. 8 The distribution of vertical wind velocity generated by the Hallock-Burnham vortex model 278 

 279 

  3.2 NWP model 280 

 The results predicted by a numerical weather model—the Japan Meteorological Agency Non-Hydrostatic 281 

Model (JMA-NHM)—are used to evaluate airflow-vector estimation performance (Saito et al., 2007; Kikuchi et al., 282 

2015). To obtain high-resolution weather prediction, a one-way multi-nesting technique (Kikuchi et al. 2015) is 283 

employed for downscaling purposes. The computational domain is nested four times to increase grid resolutions from 284 

5.0 to 0.05 km gradually (in the sequence 5.0, 1.5, 0.5, 0.15, and 0.05 km). 285 

 Three-hour mesoscale objective analysis data, collected using a mesoscale four-dimensional variational data-286 

assimilation system at the Japan Meteorological Agency (Saito et al., 2007), are used for the initial condition of 5.0 287 

km grid resolution. The experiment generates a large number of simulated twin-Lidar observation values along flight 288 

routes from the wind-field data generated by JMA-NHM, which are more realistic than ideal-vortex model results. 289 

The airflow vector is estimated from the pseudo-Lidar observations and compared with the JMA-NHM reference field. 290 

Figure 9 shows the distribution of the vertical wind velocity values generated by JMA-NHM.  291 

 292 



 293 

Fig. 9 Vertical wind velocity distribution map generated by JMA-NHM 294 

  3.3 Generation of pseudo-errors and noise 295 

 To confirm the effectiveness of the proposed filtering algorithms, errors and noise are generated artificially 296 

by using the parameter of the backscattering coefficient in the atmosphere and the statistics-based coherent Lidar 297 

equation (Kameyama et al., 2007). The backscattering coefficient is strongly related to the aerosol density in the 298 

atmosphere, and it has an impact on the Lidar measurements and estimation performance. When the backscattering 299 

coefficient is very low, the measurement performance is worse, and the LOS wind data show errors and noise. Apart 300 

from this, the measurement performance is related to the focal distance, pulse width, and Lidar power (Kameyama et 301 

al., 2007). The signal-noise ratio (SNR) at the receiver, at each LOS distance, is calculated by using the coherent Lidar 302 

equation and the detailed operating condition of JAXA’s Lidar (Inokuchi and Akiyama 2019): 303 

𝑆𝑁𝑅(𝑅) =
𝜂 𝑃𝑡  ∆𝑅 𝛽 𝐾2𝑅 𝜋𝐷2

4𝑅2

ℎ 𝑓 𝐵 𝑆𝑅𝐹(𝑅)
 (9) 
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𝑅

𝐹
}

2
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}

2
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𝐴𝑐 𝐷
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 (10) 

𝑆𝑜(𝑅) = (1.1 𝑘2 𝑅 𝐶𝑛
2)−

3
5 (11) 

  304 

Here, R is the observation distance, η is the system efficiency, Pt is the light-transmission power, ΔR is the resolution 305 

range, β is the backscattering coefficient, K is the atmospheric transmittance, D is the opening size of the optical 306 

antenna, h is Planck’s constant, f is optical frequency, B is received bandwidth, F is focal distance, k is wave number, 307 

Ac is the vignetting factor of the optical antenna, and Cn
2 is the atmospheric structure constant. In this study, the 308 

conditions are set according to the design specification for airborne Lidars. Six atmospheric conditions are prepared 309 

in order to evaluate the filtering performance. The backscattering coefficients are (standard case) 1.8×10 -8 sr-1m-1, (a) 310 

1.8×10-11 sr-1m-1, (b) 1.35×10-11 sr-1m-1, (c) 0.9×10-11 sr-1m-1, (d) 0.45×10-11 sr-1m-1, and (e) 0.18×10-11 sr-1m-1. Figure 311 

10 shows the statistics for the error and noise as functions of SNR bandwidth.  312 



 313 

Fig. 10 Probability of error and standard deviation of noise as functions of signal-noise ratio (SNR) 314 

bandwidth 315 

4 Results 316 

4.1 Ideal Vortex Model without Error and Noise 317 

 The numerical experiments with the ideal vortex model have been carried out, and Figs. 11 and 12 show the 318 

distributions of the horizontal and vertical wind components that are estimated by the simple vector conversion and 319 

the proposed method. The flights start at the edge of the computational space. Figs. 11 and 12 show the results after 320 

10 and 15 s, respectively. Thus, they represent the instants of time before and during the aircraft's close approach to 321 

the vortex core. As shown in Figs. 11 and 12, the simple vector conversion method, which assumes that the wind field 322 

of the region between the Lidars is homogeneous, cannot accurately reproduce the two-dimensional distribution 323 

between the Lidars. On the other hand, the figures confirm that the proposed method can estimate the two-dimensional 324 

distribution of wind-field values between the Lidars. Figure 11 shows that the two-dimensional distribution obtained 325 

with the proposed method is very similar to that of the reference field. In addition, the results show that the horizontal 326 

wind velocity with simple vector conversion is approximately –7 m/s, whereas that with the proposed method is –9.5 327 

ms-1; the horizontal wind velocity of the reference field is –9.0 ms-1 at LOS distance of 450–500 m. Figure 12 shows 328 

that the results of the horizontal and vertical wind velocities with simple vector conversion are considerably lower 329 

than those of the reference field. The horizontal wind results show that the value obtained with the simple vector 330 

conversion is approximately –9.5 ms-1, whereas that with the proposed method is approximately –3.5 ms-1; the 331 

horizontal wind velocity of the reference field is approximately –4.5 ms-1 at LOS distance of 450–500 m. The vertical 332 

wind results show that the value obtained with simple vector conversion is approximately –1.0 m/s, whereas that 333 

obtained with the proposed method is approximately 8.5 ms-1; the vertical wind velocity of the reference field is 334 

approximately 7.0 ms-1 at LOS distance of 450–500 m. Therefore, simple vector conversion has significantly large 335 

errors between the reference and estimated values. The errors in both the horizontal and vertical wind values estimated 336 

by the proposed method are much smaller than those estimated with simple vector conversion. Although the two-337 

dimensional distribution of the horizontal wind-field values of the proposed method is larger than that of the reference 338 

field at a LOS distance of 450–500 m, the vertical wind-field values can provide a good assessment of the reference 339 

field shown in Fig. 12. The 15 s timing in Fig. 12 is a more challenging case than others because the aircraft is 340 

positioned very close to the center of the vortex, and the wind direction changes abruptly. Although it is difficult to 341 



estimate the perfect wind-field value at this time by using the proposed method, the proposed estimation method 342 

demonstrably has a much higher accuracy than simple vector conversion. Overall, the proposed method has much 343 

better performance than the simple vector conversion method, and it can estimate the two-dimensional distribution of 344 

wind field values accurately, unlike the simple vector conversion method. 345 

 Next, the statistical estimation performance is evaluated using 100 pseudo-routes that are randomly generated 346 

750 m above and below the center of the vortex core; Fig. 13 shows the results for the vertical wind values, along with 347 

the performance required for automatic control. The root mean square error (RMSE) between the reference-field value 348 

and the estimated wind-field value is used for evaluating the estimation performance. Moreover, the effect of the 349 

number of past Lidar observations used to determine the wind field, i.e., the past LOS wind, is checked. Simple vector 350 

conversion cannot satisfy the performance requirement at a LOS distance greater than 350 m. This means that 351 

achieving preview control using the simple vector conversion method may be difficult. At a LOS distance of 500 m, 352 

the RMSEs of the vertical wind values of the simple vector conversion and proposed methods are approximately 4.0 353 

ms-1 and 1.2 ms-1, respectively. The proposed method can cater to the performance demand even if the number of past 354 

LOS wind values used is different; a lower number leads to better estimation performance. 355 

 356 

Fig. 11 Distributions of the horizontal and vertical wind components estimated by the simple vector conversion method 357 

vs. the proposed method (at time 10 s). Upper figures:  ideal vortex model; middle figures: simple vector conversion 358 

method; lower figures: proposed method with five-past LOS wind datasets. Left figures:  horizontal wind values; right 359 

figures: vertical wind values 360 

 361 



 362 

Fig. 12 Distributions of the horizontal and vertical wind components estimated by the simple vector conversion method 363 
vs. the proposed method (at time 10 s). Upper figures:  ideal vortex model; middle figures: simple vector conversion 364 

method; lower figures: proposed method with five-past LOS wind datasets. Left figures:  horizontal wind values; right 365 
figures: vertical wind values 366 

 367 

Fig. 13 Statistical estimation performance (root mean square error) of vertical wind values (ideal vortex model). Num = 368 
number of past line-of-sight (LOS) wind values used 369 

4.1 Numerical Weather Prediction without Error and Noise 370 

 We also conducted numerical experiments with NWP values. Figs. 14 and 15 show the distributions of the 371 

horizontal and vertical wind components that are estimated by simple vector conversion and the proposed method. 372 



Figure 14 shows the results for the instants of time before and during the approach to a vertical wind fluctuation. The 373 

simple vector conversion method cannot accurately reproduce the two-dimensional distribution of the wind field 374 

between the Lidars. On the other hand, the proposed method can estimate the two-dimensional distribution of the wind 375 

field between the Lidars more accurately. Figure 15 shows that the wind velocities predicted by the simple vector 376 

conversion method are higher than the reference fields at 300-500 m of LOS distance, in contrast to those of the 377 

proposed method.  378 

 Next, the statistical estimation performance is evaluated using 100 pseudo-routes that are randomly generated 379 

between 2 km and 10 km altitude. Fig. 16 shows the results, along with the performance requirement for automatic 380 

control. The effect of the number of past LOS wind-values used is also checked. In this case, both simple vector 381 

conversion and the proposed method can satisfy the performance demand for preview control; however, the 382 

performance results of simple vector conversion are much worse than those of the proposed method. Moreover, the 383 

proposed method can estimate quite accurate wind-field values. In this case, the use of a higher number of past LOS 384 

wind values leads to better estimation performance. 385 

 386 

 387 

Fig. 14 Distributions of horizontal and vertical wind components estimated via simple vector conversion and proposed 388 

method before approach to vertical wind fluctuation. Upper figures:  ideal vortex model; middle figures: simple vector 389 

conversion method; lower figures: proposed method with five-past LOS wind datasets. Left figures:  horizontal wind 390 

values; right figures: vertical wind values 391 

 392 



 393 

Fig. 15 Distributions of horizontal and vertical wind components estimated via simple vector conversion and proposed 394 

method immediately during approach to vertical wind fluctuation. Upper figures:  ideal vortex model; middle figures: 395 

simple vector conversion method; lower figures: proposed method with five-past LOS wind datasets. Left figures:  396 

horizontal wind values; right figures: vertical wind values  397 

 398 

 399 

Fig. 16 Statistical estimation performance (root mean square error) for numerical weather prediction results. Num = 400 
number of past line-of-sight (LOS) wind values used 401 

4.2 Ideal vortex model with error and noise 402 

 In this section, numerical experiments with error and noise in LOS wind values are conducted to evaluate the 403 

estimation performance of the proposed method. These numerical experiments show the error/noise-filtering 404 



performance difference between simple vector conversion and the proposed method with extrapolation from the past 405 

LOS wind. Six atmospheric conditions are prepared in order to evaluate the filtering performance. The backscattering 406 

coefficients are (standard case) 1.8×10-8 sr-1m-1, (a) 1.8×10-11sr-1m-1, (b) 1.35×10-11 sr-1m-1, (c) 0.9×10-11 sr-1m-1, (d) 407 

0.45×10-11 sr-1m-1, and (e) 0.18×10-11 sr-1m-1. 408 

 First, numerical experiments with the ideal vortex model are carried out. Figure 17 shows the LOS wind 409 

values, which include the measured data with error and noise, the reference wind, the smoothing spline, and the general 410 

spline model results. Figure 17 shows that the smoothing spline can filter the error and noise data of LOS wind values. 411 

When the general spline is used, the error can be filtered correctly by using a simple Kalman filter and a robust LSM; 412 

however, the noise cannot be filtered. Next, the statistical estimation performance is evaluated using 100 pseudo-413 

routes that are randomly generated 750 m above and below the center of the vortex core. Fig. 18 shows the results of 414 

the statistical estimation performance with error and noise. In addition, the difference due to the atmospheric 415 

conditions in the six cases with different backscattering coefficients is also checked. Simple vector conversion cannot 416 

satisfy the performance demand at a distance farther than 350 m LOS and cannot work correctly under atmospheric 417 

condition (e). The proposed method can always satisfy the performance demand except under atmospheric condition 418 

(e). It thus shows much better performance than simple vector conversion, even though it is difficult to estimate the 419 

wind field values by either method for atmospheric condition (e), which contains much larger noise levels than the 420 

other conditions. 421 

 422 

Fig. 17 Line-of-sight (LOS) wind values: measured data with error and noise, reference wind, smoothing spline, and 423 
general spline 424 

 425 



Fig. 18 Statistical estimation performance (root mean square error) for line-of-sight (LOS) wind velocities including error 426 
and noise under six atmospheric-condition scenarios (a–e and standard) (assuming ideal vortex model). Left figure: 427 

simple vector conversion; right figure: proposed method 428 

 In addition, the cross-plots of the reference and the estimated vertical wind are shown as Fig. 19. In Figs. 19 429 

(a) and (b) the results of the simple vector conversion are presented; (c) and (d) show the results of the proposed 430 

method. Figs. 19 (a) and (c) are the cases without error and noise, whereas (b) and (d) are the cases with error and 431 

noise. By comparing (a) and (c), we can deduce that the proposed method provides a much better estimation than does 432 

simple vector conversion. The results in (b) and (d) are spread wider than those in (a) and (c), because of the noise 433 

data of LOS wind values. It is worth mentioning that the noise data have more negative effects on the result at 500 m 434 

LOS distance than at 100 m and 300 m LOS. Nevertheless, comparison of (b) and (d) shows that the proposed method 435 

can provide more accurate estimations than the simple vector conversion method. 436 



 437 

Fig. 19 Cross-plots of the reference and the estimated vertical wind data. Left figures: 100 m line-of-sight (LOS) distance; 438 
middle figures: 300 m LOS distance; right figures: 500 m LOS distance. (a), (b):  Simple vector conversion; (c), (d): 439 

proposed method. (a), (c): cases without error and noise; (b), (d): cases with error and noise.  The dots indicate the wind 440 
speed estimated at 5 Hz, and the dotted lines indicate the performance demand for control. 441 

 442 



4.3 Numerical weather prediction with error and noise 443 

 We also carry out numerical experiments with NWP. The statistical estimation performance is conducted by 444 

using 100 pseudo-routes between 2 km and 10 km altitude. Fig. 20 shows the results of the statistical estimation 445 

performance with error and noise. Six different atmospheric conditions (standard, (a), (b), (c), (d), and (e), defined by 446 

their backscattering coefficients) are used. In this case, both simple vector conversion and the proposed method can 447 

satisfy the performance requirement for preview control; however, the simple vector conversion shows worse 448 

performance than the proposed method. The proposed method can estimate wind-field values quite accurately and 449 

displays better performance than the simple vector conversion method. As in the previous experiment, it is difficult to 450 

estimate the wind field-values for atmospheric condition (e) by using either simple vector conversion or the proposed 451 

method. 452 

 453 

Fig. 20 Statistical estimation performance (root mean square error) for line-of-sight (LOS) wind velocities (including 454 
error and noise) under six atmospheric-condition scenarios (a–e and standard) with numerical weather-prediction data. 455 

Left figure: simple vector conversion; right figure: proposed method 456 

5. Conclusion 457 

 In this study, an airflow vector estimation algorithm based on upward and downward airborne Lidars has 458 

been proposed for preview control to prevent turbulence-induced aircraft accidents. This estimation algorithm uses 459 

the technique of extrapolating the wind-field values by using the LSM and the current and past LOS wind datasets to 460 

improve the accuracy of estimated wind values. Two test configurations for numerical experiments (ideal vortex flow 461 

and realistic NWP weather field values) have been used to evaluate the estimation of the airflow vector. 462 

 Numerical experiments on LOS wind estimation show that the proposed extrapolation method has much 463 

better performance than simple vector conversion methods, and it can estimate the two-dimensional distribution of 464 

wind-field values accurately, which simple vector conversion cannot. The estimation performance and the 465 

computational cost of the proposed method can satisfy the performance demand for preview control.  466 

 Numerical experiments with error and noise in the LOS wind data have been conducted to evaluate the 467 

performance of the proposed estimation method. These numerical experiments show that the smoothing spline model 468 

can filter noise correctly and reduce its negative effects. The proposed method performs much better than the simple 469 

vector conversion method, although it is difficult to estimate the wind-field values for atmospheric condition (e) with 470 

either method. Atmospheric condition (e) has more noise than other conditions, and when the noise exceeds a certain 471 

level, it becomes difficult to estimate the air flow regardless of the method applied. 472 



 The proposed algorithm can satisfy the performance demands for preview control in both estimation 473 

performance and computational cost. It can estimate a two-dimensional distribution that cannot be estimated by 474 

existing methods. This is valuable for improving the accuracy of the preview control: for example, the proposed 475 

method can cope with the critical case where the flight direction of the aircraft is at a steep angle with the aircraft 476 

either ascending or descending.  477 

 The findings of this study are subject to certain limitations. The target size of the atmospheric turbulence is 478 

assumed by the proposed algorithm to be comparable to or larger than the observation region between the Lidars. 479 

Therefore, it is difficult to estimate a wind field with turbulence smaller than this. The effect on the aircraft vibration 480 

due to such minor turbulence, however, is minimal. An exception to this is aircraft-generated wake turbulence, which 481 

still poses a safety risk. The radius of the actively fluctuating wake-turbulence core is only a few meters, so the 482 

proposed method could lead to erroneous predictions. A second limitation is that the current results are obtained from 483 

numerical experiments and not from evaluations of actual observations. Currently, the Lidar system is being modified 484 

to be smaller and lighter in order to suit small experimental aircraft. The onboard Lidar system and real-time airflow-485 

vector estimation will be validated by flight experiments in 2021; the whole gust-alleviation system, including preview 486 

control, will be demonstrated in 2022. The results of this research will be applied to this flight demonstration. 487 

 488 
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