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Abstract. The control technique in a gust alleviation system by using the airborne Doppler Lidar technology is 10 

expected to enhance aviation safety to minimize the risks of turbulence-related accidents. Accurate measurement 11 

and estimation of the vertical wind velocity are very important in the successful implementation of a gust alleviation 12 

system by using the airborne Doppler Lidar technology. An estimation algorithm of airflow vector based on the 13 

airborne Lidars is proposed and investigated for preview control to prevent turbulence-induced aircraft accidents in 14 

flight. The use of the simple vector conversion method, which is an existing technique, assumes that the wind field 15 

between the Lidars is homogeneous. The assumption of a homogeneous field would be wrong when turbulence 16 

occurs due to large wind velocity fluctuation. The proposed algorithm stores the line-of-sight (LOS) wind data with 17 

each passing moment and uses recent and past LOS wind data in order to estimate the airflow vector. The recent and 18 

past LOS wind data are used to extrapolate the wind field between the airborne twin Lidars. Two numerical 19 

experiments—ideal vortex model and numerical weather prediction—were conducted to evaluate the estimation 20 

performance of the proposed method. The proposed method has much better performance than simple vector 21 

conversion in the two numerical experiments, and it can estimate accurate two-dimensional wind field distributions 22 

unlike simple vector conversion. The estimation performance and the computational cost of the proposed method 23 

can satisfy the performance demand for preview control.  24 

1 Introduction 25 

 Atmospheric turbulence poses a potential risk to aircraft operation, and an increase in the rate of accidents 26 

related to turbulence has been reported by the Federal Aviation Administration in 2014. Statistics reported by 27 

Boeing (2015) show that fatal accidents and onboard fatalities occurred worldwide in commercial jet flights from 28 

2006 through 2015. From these statistics, 23% of accidents were due to Loss of Control-In Flight (LOC-I), which is 29 

the largest proportion of accidents by percentage. The International Air Transportation Association (2016) shows 30 

that LOC-I frequently occurs when the aircraft speed is well below the stall speed; in conjunction with weather 31 

conditions, it is the most common factor for LOC-I accidents, with 42% of LOC-I accidents having occurred under 32 

degraded meteorological conditions. The Japan Transport Safety Board has identified that accidents caused by 33 

turbulence accounted for 48% of aircraft accidents involving commercial airplanes from 2003-2012 in Japan. The 34 
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accidents caused by convective systems such as cumulonimbus have decreased owing to advances in airborne Radar 35 

(Airbus, 2020; Sermi et al. 2015). However, non-cloud atmospheric turbulence, called clear air turbulence (CAT), 36 

cannot be detected by Radar, as reported by Soreide et al., 2000, Barny, 2012, and Inokuchi et al., 2009; therefore, 37 

airborne observation methods for CAT are needed. CAT observation and prediction systems are essential to aviation 38 

safety to minimize risks of turbulence-related accidents. 39 

 Recently, airborne Doppler Lidar has been developed by Soreide et al., 2000; Barny, 2012; Inokuchi et al., 40 

2009; Machida, 2017; and Inokuchi and Akiyama, 2019. Lidar can detect wind velocity in clear air, but cannot work 41 

during precipitation. Aerosol particles are received instead of laser beams due to a scattering light effect caused by 42 

the rain particles. The aerosol particles are much smaller than precipitation droplets in the air (Inokuchi and 43 

Akiyama, 2019). Japan Aerospace Exploration Agency (JAXA) is researching and developing a coherent Doppler 44 

Lidar capable of remotely detecting air turbulence in clear air conditions, and has conducted the flight demonstration 45 

of a Lidar system that includes a provision to provide turbulence information to pilots (Inokuchi et al., 2009, 46 

Machida, 2017; Inokuchi and Akiyama, 2019). Inokuchi et al., 2009 showed that airborne Doppler Lidar can detect 47 

CAT in front of an aircraft in flight at altitudes of 3,200 m during a flight observation campaign. Based on advance 48 

airflow information, flight demonstrations were carried out with the aim of providing pilots with information to 49 

judge the need to go around from an approach to avoid wind shear, and the need for seat belt sign lighting during 50 

cruise and altitude changes (Inokuchi and Akiyama, 2019). Although Lidar systems are useful for providing wind 51 

information to pilots, these systems may be able to provide short-range turbulence information to avoid turbulence 52 

tactically, particularly in high altitude (Hamada, 2019) by emitting a laser beam, and by receiving scattered light 53 

from aerosol particles that are much smaller than precipitation droplets in the air. Therefore, when the number of 54 

aerosol particles that emit scattered light is small, it is difficult to measure wind information at a distance. As 55 

altitude increases, the aerosol density decreases, and the observation range tends to decrease accordingly. The 56 

maximum observation range and aerosol density measured at each altitude are shown by Inokuchi and Akiyama, 57 

2019. For this reason, automatic control to alleviate aircraft vibration is important, as well as for providing 58 

turbulence information. 59 

 The automatic control to alleviate aircraft vibration is called the gust alleviation control and has been 60 

studied since the 1970s; most of them were based on feedback sensors only, such as inertial measurement units 61 

(Regan and Jutte, 2012). Recently, reduced effect of turbulence by preview controlling based on airborne Lidar 62 

observation has been reported in the studies by Schmitt et al., 2007; Fezans et al., 2019; and Hamada, 2019. The aim 63 

of the Aircraft Wing with Advanced Technology Operation (AWIATOR) is the development of new direct-lift 64 

control devices and a Lidar system for turbulence measurement (Schmitt et al., 2007). Another project on Lidar 65 

systems was called “Demonstration of Lidar based CAT detection” (DELICAT) by Barny, 2012. This project 66 

developed airborne ultraviolet Lidar for gust and turbulence measurements. The test flights were carried out by 67 

using an Airbus 340 aircraft with ultraviolet Lidar. In both the AWIATOR and the DELICAT experiments, the 68 

measurement range was short, because the Lidar was developed for controlling the aircraft automatically.  69 

 In order to successfully implement a gust alleviation system by using the airborne Doppler Lidar 70 

technology, it is very important to measure the vertical wind velocity accurately. Both horizontal and vertical winds 71 
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affect the aircraft motion; the effect of changing the vertical wind velocity is greater due to the fact that the angle of 72 

attack is relatively larger than the effect of changing the horizontal wind velocity, which affects only the airspeed 73 

(Fezans et al., 2019). However, the single Doppler Lidar system can only detect the LOS wind as a one-dimensional 74 

piece of information, and for this reason, the vertical wind velocity in front of the aircraft cannot be measured by the 75 

single Lidar system (Hamada, 2019). It is necessary to perform Lidar measurements in two directions, upward and 76 

downward, in order to obtain the vertical wind velocity. Figure 1 shows a representation of this concept. The vertical 77 

wind velocity vector is generated from the differences between the upward and downward LOS winds by using the 78 

simple vector conversion. The simple vector conversion is incapable of estimating the vertical wind velocity with 79 

high accuracy to control the aircraft automatically because the technique assumes homogeneity between the upward 80 

and downward Lidars (Fezans et al., 2019). In this study, a fully turbulent field with atmospheric turbulence and 81 

gust was considered; under these conditions, it is difficult to estimate the vertical wind velocity with high accuracy 82 

using simple vector conversion. In particular, the estimation accuracy of the vertical wind velocity rapidly worsened 83 

when the estimation position was located farther ahead from the aircraft.  84 

 In addition, actual Lidar observations have some errors, noise, and loss of data, which lead to negative 85 

effects on aircraft control, as reported by Misaka et al. (2015). These errors, noise and loss of data increase at higher 86 

altitudes, where aerosol density is smaller than that in the atmosphere. Misaka et al. (2015) proposed a filtering 87 

algorithm based on a simple Kalman filter to remove the wind velocity errors with Lidar measurements. It is 88 

essential to deal with the Lidar errors, noise and loss of data more carefully for preview control. In this case, an 89 

accurate airflow vector estimation method and an efficient real-time filtering algorithm are required to use Lidars 90 

accurately for preview control. 91 

 In this study, an estimation method and an airflow vector filtering algorithm, for both horizontal and 92 

vertical wind directions, based on upward and downward Lidars, is proposed for preview control to prevent 93 

turbulence-induced aircraft accidents. The Lidars system in this paper is also used by JAXA in its ongoing “Lidar-94 

based gust alleviation control” research project. The Lidars are assumed to compliant with the specifications for 95 

preview control currently under development by the JAXA. The proposed algorithm stores the LOS wind data 96 

continuously, and uses recent and past LOS wind data to estimate the airflow vector, although the simple vector 97 

conversion utilizes recent LOS wind data. The recent and past LOS wind data are used to extrapolate the wind field 98 

between Lidars. The airflow vector is calculated by using the extrapolated wind data from its horizontal and vertical 99 

components. The estimation accuracy of the airflow vector in front of the aircraft is improved by using the 100 

extrapolated wind data because the area between the Lidars represents a more homogeneous area. A polynomial 101 

expression is used to extrapolate the wind field by using the recent and past LOS wind data. In addition, the 102 

proposed method can estimate the two-dimensional distribution of the wind field between the Lidars unlike the 103 

simple vector conversion.  104 

 Two test configurations, an ideal vortex flow field and a weather field, were calculated by numerical 105 

weather prediction (NWP) system, were utilized to evaluate the performance of the airflow vector. The experiment 106 

generates a large amount of pseudo-Lidars measurements along flight routes from the reference wind field for 107 
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evaluation of the estimated performance. The experiment can compare the prediction results with the reference wind 108 

field in order to confirm the entire wind field values. 109 

 110 

Fig. 1 Concept of the airborne Lidars observation system 111 

2 Methods 112 

  2.1 Airborne Lidar specifications 113 

The airborne Lidar observation system for preview control to prevent turbulence-induced aircraft accidents currently 114 

under development by JAXA is shown in this section. This system has airborne Lidars that are aiming upwards and 115 

downwards. The angle between airborne Lidars that are aimed in the upward and downward direction is 20 degrees, 116 

that is, 10 degrees between the horizontal line and each Lidar. Each Lidar measures the LOS wind velocity, and a 117 

couple of LOS wind velocity values are used to estimate the airflow vector in the area between the Lidars. There are 118 

additional performance requirements for preview control, namely, the estimation frequency and estimation accuracy 119 

of vertical wind velocity. The frequency of estimation is required to be more than 5 Hz, and the estimation accuracy 120 

of the vertical wind velocity is required to be lower than 2.6 ms-1 in the LOS distance of 500 m. In addition, the 121 

observation accuracy of LOS wind is ±0.9𝑚𝑠−1 and the observation resolution of a Lidar is approximately 25 m. 122 

Next, an existing technique to estimate the airflow vector, by using a couple of LOS wind values, is shown. The 123 

airflow vector in the area between upward and downward Lidars has been estimated by simple vector conversion. 124 

This procedure is a similar concept as the vertical azimuth display approach in general ground Lidar systems 125 

(Newsom et al., 2017). This simple vector conversion is given as 126 

𝑢𝑥
𝑇 =

(𝑊1
𝑇 + 𝑊2

𝑇)

2𝑐𝑜𝑠 𝜃 
, 

𝑢𝑧
𝑇 =

(𝑊1
𝑇 − 𝑊2

𝑇)

2𝑠𝑖𝑛 𝜃
, 

(1) 

where 𝑢𝑥
𝑇 and 𝑢𝑧

𝑇 are the horizontal and vertical wind velocity measurements at the observation time T, 𝑊1
𝑇 and 127 

𝑊2
𝑇 are the LOS wind velocities of the upward and downward directed Lidars at the observation time T, and 𝜃 is the 128 

angle between the horizontal line and each Lidar, which is 10 degrees in this study. The simple vector conversion 129 

assumes that the wind field area between the Lidars is homogeneous (Newsom et al., 2017). Figure 2 shows the 130 

explanation of the assumption. The areas between the Lidars are 69.5 m and 173.6 m at the LOS distances of 200 m 131 
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and 500 m ahead of the aircraft; therefore, the areas between the Lidars are assumed to be homogeneous. However, 132 

the assumption of a homogeneous field would be wrong when a large fluctuation in wind velocity occurs, creating 133 

turbulence. In homogenous conditions, a simple vector conversion can estimate the airflow vector accurately; 134 

however, in non-homogenous conditions, the estimation is expected to have poor accuracy. 135 

 136 

Fig. 2 The explanation of the assumption 137 

 138 

  2.2 Estimation Algorithm based on Extrapolation 139 

The proposed method stores the LOS wind data continuously, and uses recent and past LOS wind data values in 140 

order to estimate the airflow vector, although the simple vector conversion utilizes recent LOS wind data. The recent 141 

and past LOS wind data are used to extrapolate the wind field between the Lidars, and this area between the Lidars 142 

has not been measured directly by the Lidars. The airflow vector is calculated by using Eq. (1) and the extrapolated 143 

wind data of its horizontal and vertical components. The airflow vector estimation accuracy far ahead of the aircraft 144 

is improved by using the extrapolated wind data because it is valid to assume that the area between upward and 145 

downward Lidars is non-homogeneous. The simple vector conversion only can be applied to homogenous wind field 146 

conditions, but the algorithm can extrapolate data points by using past measurements so that it can be used in non-147 

homogenous wind field conditions. A polynomial expression is used to extrapolate the wind field values by using 148 

the recent and past LOS wind data. In addition, the proposed method can estimate the two-dimensional distribution 149 

of the wind field between the Lidars unlike the simple vector conversion. 150 

Figure 3 shows the overview of the proposed method estimation method when an actual data point and two-past 151 

LOS wind data points are used. When the aircraft speed is V and the time span of observation is dt, the airflow 152 

moves backwards at V×dt because the aircraft is advancing. Actual observation times are denoted as T and past 153 

observation times are T-1 and T-2. The proposed method uses the actual LOS wind values (W1
T and W2

T) and the 154 

past LOS wind values (W1
T-1, W2 T-1 and W1

T-2, W2 T-2). The distances between the horizontal line and each Lidar are 155 

denoted as zT, zT-1 and zT-2, respectively. A first-degree polynomial expression of the least-squares method (LSM) is 156 

applied and using some LOS wind data values, the wind field values are extrapolated according to Eqs. (2) and (3). 157 

The calculated polynomial expression is used to obtain the extrapolated LOS wind at the horizontal line, and the 158 

airflow vector is calculated by Eq. (1) and the extrapolated LOS wind. 159 
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 160 

Fig. 3 Overview of estimation by proposed method when the recent and two-past LOS wind data are used 161 

 162 

𝑊𝑗
′(𝑧) = 𝑎𝑗𝑧 + 𝑏𝑗  

 

(2) 

 

𝑎𝑗 =
𝑁 ∑ 𝑧𝑖 𝑊𝑗

𝑖𝑇
𝑖=𝑇−(𝑁−1) − ∑ 𝑧𝑖𝑇

𝑖=𝑇−(𝑁−1) ∑ 𝑊𝑗
𝑖𝑇

𝑖=𝑇−(𝑁−1)

𝑁 ∑ (𝑧𝑖)2𝑇
𝑖=𝑇−(𝑁−1) − (∑ 𝑧𝑖𝑇

𝑖=𝑇−(𝑁−1) )
2 , 

 

𝑏𝑗 =
∑ 𝑧𝑖𝑇

𝑖=𝑇−(𝑁−1) ∑ 𝑊𝑗
𝑖𝑇

𝑖=𝑇−(𝑁−1) − ∑ 𝑧𝑖 𝑊𝑗
𝑖𝑇

𝑖=𝑇−(𝑁−1) ∑ 𝑧𝑖𝑇
𝑖=𝑇−(𝑁−1)

𝑁 ∑ (𝑧𝑖)2𝑇
𝑖=𝑇−(𝑁−1) − (∑ 𝑧𝑖𝑇

𝑖=𝑇−(𝑁−1) )
2 . 

(3) 

 163 

  2.3 Filtering error and the lack of wind velocity data  164 

 In this study, two filtering algorithms are used to remove the error and the loss of data of LOS wind 165 

velocity in airborne Lidars. Firstly, we use a filtering algorithm that is a simple representation of the Kalman filter 166 

with simplified Kalman gain (Misaka et al., 2015). The algorithm assumes that infinite variance is used to exclude 167 

outliers and loss of data. This method uses the Lidar spectrum data at each range-bin, and the algorithm defines the 168 

validity of the measurements during the Lidar data peak detection process. To identify the correct and non-correct 169 

LOS wind velocity values, two spectrum thresholds are defined. Firstly, the largest and second-largest spectrum 170 

values, k1st and k2nd, are adjacent to each other, i.e., the distance between the largest and second-largest spectrum 171 

values in the Fast Fourier Transform is equal to one. Secondly, the distance from the averaged spectrum peak kave is 172 

less than a certain allowance kdif, which represents the only hyper-parameter in this algorithm as well as a parameter 173 

related to smoothness. In this study, the filtering algorithm is carried out first when the observation data is obtained. 174 

 𝐾𝑖,𝑗 = {
1   |𝑘1𝑠𝑡 − 𝑘2𝑛𝑑| = 1 𝑎𝑛𝑑 |𝑘1𝑠𝑡 − 𝑘𝑎𝑣𝑒| < 𝑘𝑑𝑖𝑓

0    𝑂𝑡ℎ𝑒𝑟𝑠
} (4) 
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 Secondly, a robust LSM estimation, based on Tuckey’s biweight methodology (Huber, 2008), is carried out 175 

to reduce the impact of the error in the LOS wind velocity. This method is based on the LOS wind data unlike the 176 

spectrum data of Lidar observation at the first method. Although the filtering algorithm based on a simple Kalman 177 

filter can remove the error, it is essential to deal with the error and the loss of data of the Lidars more carefully when 178 

the filtering algorithm is used for the preview control. Therefore, the robustness of the estimated airflow vector is 179 

secured by using the filtering algorithm based on a simple Kalman filter together with robust LSM. In addition, the 180 

robust LSM estimation can make use of the extrapolation algorithm effectively as per Eqs. (2) and (3). Therefore, 181 

the robust LSM estimation provides a simpler and more robust algorithm. The concept of a robust LSM is validated 182 

by analyzing the difference between the observed LOS wind values and those LOS wind values estimated by the 183 

polynomial expression. Weights are defined to each LOS wind velocity value, and the weights are changed 184 

depending on the validation numbers. The difference dj
T between the observed LOS wind values and estimated LOS 185 

wind values from the polynomial expression is defined by Eq. (5) with Eq. (2). The permissible difference range L is 186 

defined and the weights wj
T (dj

T) are calculated depending on dj
T. Three thresholds for defining wj

T (dj
T) from L are 187 

used as shown in Eq. (6). Equation 7 shows the calculation of the polynomial expression of the first degree with 188 

LSM and weights wj
T (dj

T). 189 

𝑑𝑗
𝑇 = 𝑊𝑗

𝑇 − (𝑎𝑗𝑧 + 𝑏𝑗) (5) 

𝑤𝑗
𝑇(𝑑𝑗

𝑇) = 0  ( 𝑑𝑗
𝑇 < −𝐿) 

𝑤𝑗
𝑇(𝑑𝑗

𝑇) = (1 − (
𝑑𝑗

𝑇

𝑤𝑗
𝑇

)

2

)

2

(−𝐿 ≤ 𝑑𝑗
𝑇 ≤ 𝐿) 

𝑤𝑗
𝑇(𝑑𝑗

𝑇) = 0  ( 𝑑𝑗
𝑇 > 𝐿) 

(6) 

𝑎𝑗′ =
∑ 𝑤𝑗

𝑖𝑇
𝑖=𝑇−(𝑁−1) ∑ 𝑤𝑗

𝑖𝑧𝑖 𝑊𝑗
𝑖𝑇

𝑖=𝑇−(𝑁−1) − ∑ 𝑤𝑗
𝑖𝑧𝑖𝑇

𝑖=𝑇−(𝑁−1) ∑ 𝑤𝑗
𝑖𝑊𝑗

𝑖𝑇
𝑖=𝑇−(𝑁−1)

∑ 𝑤𝑗
𝑖𝑇

𝑖=𝑇−(𝑁−1) ∑ 𝑤𝑗
𝑖(𝑧𝑖)2𝑇

𝑖=𝑇−(𝑁−1) − (∑ 𝑤𝑗
𝑖𝑧𝑖𝑇

𝑖=𝑇−(𝑁−1) )
2  

𝑏𝑗′ =
∑ 𝑤𝑗

𝑖𝑧𝑖𝑇
𝑖=𝑇−(𝑁−1) ∑ 𝑤𝑗

𝑖𝑊𝑗
𝑖𝑇

𝑖=𝑇−(𝑁−1) − ∑ 𝑤𝑗
𝑖𝑧𝑖 𝑊𝑗

𝑖𝑇
𝑖=𝑇−(𝑁−1) ∑ 𝑤𝑗

𝑖𝑧𝑖𝑇
𝑖=𝑇−(𝑁−1)

∑ 𝑤𝑗
𝑖𝑇

𝑖=𝑇−(𝑁−1) ∑ 𝑤𝑗
𝑖(𝑧𝑖)2𝑇

𝑖=𝑇−(𝑁−1) − (∑ 𝑤𝑗
𝑖𝑧𝑖𝑇

𝑖=𝑇−(𝑁−1) )
2  

(7) 

 190 

  2.4 Filtering wind velocity noise  191 

 The Lidar observation is subject to not only measuring errors and loss of LOS data values but also random 192 

noise; this type of noise also leads to a poor estimation of the airflow vector. A simple spline algorithm generates a 193 

curve that passes through all sample points; therefore, the simple spline algorithm is not able to generate a smooth 194 

curve when the sample points have random noise, and a smoothing spline algorithm is applied to remove the random 195 

noise of the Lidar LOS wind values, as in the study by Woltring, 1986. The generated smoothing spline algorithm 196 
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curve does not pass through all sample points, and because of that, it can produce a smoother curve, even if it has 197 

random noise from Lidar LOS wind measurements. The smoothing spline model minimizes the criterion function Cp, 198 

per Eq. (8) where yi is a sample point value, sp (x) is the value generated by a simple spline algorithm, vi is a 199 

weighted factor and p is regularization parameter. The smoothest curve is generated when the criterion function Cp 200 

is minimized. 201 

𝐶𝑝 = ∑

𝑛

𝑖=1

𝑣𝑖{𝑦𝑖 − 𝑠𝑝(𝑥)}
2

+ 𝑝 ∫ (
𝑑2𝑠𝑝

𝑑𝑥2
)

2

𝑑𝑥 (8) 

  2.5 System flowchart 202 

 The airflow vector estimation algorithm is a sequence of five different processes, which are summarized 203 

below. The system flowchart is shown in Fig. 4.  204 

 1) The filtering algorithm based on simple Kalman filter is carried out to remove the error of LOS 205 

wind data when the Lidar measures LOS wind data values. 206 

 2) The smoothing spline method is applied to reduce the negative effect of the random noise of LOS 207 

wind data values and extrapolates the value at the position for which no measurements can be read. . This is 208 

identified as the first step error. 209 

 3) The extrapolation, based on the polynomial expression, is carried out to estimate the wind field 210 

values by using current and past LOS wind data. 211 

 4) A robust LSM model is applied to obtain a more accurate polynomial expression, and repeats the 212 

calculation until the parameter converges. 213 

 5) The airflow vector is calculated by Eq. (1) and the extrapolated LOS wind. 214 
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 215 

Fig. 4 System flowchart for the airflow vector estimation algorithm 216 

3 Test Configurations 217 

  3.1 Ideal vortex model 218 

Numerical experiments are used to evaluate the performance of actual airborne Lidars. The ideal vortex model is 219 

defined and used to evaluate the estimated performance of the airflow vector. In this study, the Hallock-Burnham 220 

vortex model (Hinton et al., 1997) is used as the ideal vortex model. The experiment generates a large amount of 221 

pseudo Lidars values along flight routes by the ideal vortex model. The airflow vector is estimated by using the 222 

pseudo-Lidars readings, and the estimated airflow vector is compared with the reference field of the ideal vortex 223 

model. The experiment can compare the estimation results with the reference wind field values to confirm the entire 224 
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wind field. Figure 5 shows the distribution of vertical wind velocity generated by the Hallock-Burnham vortex 225 

model. 226 

 227 

Fig. 5 The distribution of vertical wind velocity generated by the vortex model 228 

 229 

  3.2 NWP model 230 

The results predicted by the numerical weather model, that is, the Japan Meteorological Agency Non-Hydrostatic 231 

Model (JMA-NHM), are used to evaluate the airflow vector estimation performance. In this study, JMA-NHM is 232 

employed to obtain the wind field for the evaluation (Saito et al., 2007 and Kikuchi et al., 2015). To obtain the high-233 

resolution weather prediction, a one-way multi-nesting technique (Kikuchi et al. 2015) is conducted for downscaling 234 

purposes. The computational domain is nested four times to increase grid resolutions from 5.0 to 0.05 km gradually 235 

(as follows: 5.0, 1.5, 0.5, 0.15, and 0.05 km). 236 

A three-hour mesoscale objective analysis data, collected using a mesoscale four-dimensional variational data 237 

assimilation system at the Japan Meteorological Agency (Saito et al., 2007), are used for the initial condition of 5.0-238 

km grid resolution. The experiment used the JMA-NHM wind field, which can provide more realistic test results 239 

than the ideal vortex model for the performance evaluation. The experiment generates a large amount of pseudo twin 240 

Lidar observation values along flight routes from the wind field data generated by JMA-NHM. The airflow vector is 241 

estimated by using the pseudo-Lidar observation, and the estimated airflow vector is compared with the reference 242 

field of JMA-NHM. Figures 6 and 7 show the experiment concept used by JMA-NHM and the distribution of the 243 

vertical wind velocity values generated by JMA-NHM.  244 
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Fig. 6 The concept of the experiment used by JMA-NHM. 

 245 

Fig. 7 Vertical wind velocity distribution map generated by JMA-NHM 246 

  3.3 Generation of pseudo errors and noise 247 

Errors and noise were generated artificially to confirm the effect of the proposed filtering algorithms. Errors and 248 

noise are generated by using the parameter of the backscattering coefficient in the atmosphere and the statistics-249 

based coherent Lidar equation (Kameyama et al., 2007). The backscattering coefficient that is strongly related to the 250 

aerosol density in the atmosphere has an impact on the Lidar measurements and estimation performance. When the 251 

backscattering coefficient is very low, the measurement performance is worse, and the LOS wind data show errors 252 

and noise. In addition, the measurement performance is related to the focal distance, pulse width and Lidar power 253 

(Kameyama et al., 2007). The signal-noise ratio (SNR) at the receiver, at each LOS distance, is calculated by using 254 

the coherent Lidar equation and the detailed operating condition of JAXA’s Lidar [7-9]. 255 

𝑆𝑁𝑅(𝑅) =
𝜂 𝑃𝑡  ∆𝑅 𝛽 𝐾2𝑅 𝜋𝐷2

4𝑅2

ℎ 𝑓 𝐵 𝑆𝑅𝐹(𝑅)
 (9) 

𝑆𝑅𝐹(𝑅) = 1 + {1 −
𝑅

𝐹
}

2

{
𝑘(𝐴𝑐  𝐷)2

8𝑅
}

2

+ {
𝐴𝑐 𝐷

2𝑆0(𝑅)
}

2

 (10) 

𝑆𝑜(𝑅) = (1.1 𝑘2 𝑅 𝐶𝑛
2)−

3
5 (11) 

  256 

R is the observation distance, η is system efficiency, Pt is light transmission power, ∆R is the resolution range, β is 257 

backscattering coefficient, K is atmospheric transmittance, D is the opening size of optical antenna, h is Planck 258 

constant, f is optical frequency, B is received bandwidth, F is focal distance, k is wave number, Ac is vignetting 259 

factor of optical antenna and Cn
2 is atmospheric structure constant. In this study, the conditions are set according to 260 

the design specification for airborne Lidars. In this study, six atmospheric conditions are prepared in order to 261 

evaluate the filtering performance. The backscattering coefficients are (Standard case) 1.8×10-8 sr-1m-1, (a) 1.8×10-11 262 
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sr-1m-1, (b) 1.35×10-11 sr-1m-1, (c) 0.9×10-11 sr-1m-1, (d) 0.45×10-11 sr-1m-1, and (e) 0.18×10-11 sr-1m-1. Figure 8 shows 263 

the statistics for the error and noise depending on the SNR bandwidth.  264 

 265 

Fig. 8 Probability of error and standard deviation of noise 266 

4 Results 267 

4.1 Ideal Vortex Model without Error and Noise 268 

The numerical experiments of the ideal vortex model are carried out, and Figs. 9 and 10 show the distributions of the 269 

horizontal and vertical wind components that are estimated by the simple vector conversion and the proposed 270 

method. The upper figures show the wind field values generated by the ideal vortex model; the middle figures 271 

represent the wind field values estimated by the simple vector conversion method, and the lower figures are the wind 272 

field values estimated by the proposed method with five-past LOS wind datasets. Figures to the left represent the 273 

horizontal wind values, and figures to the right represent the vertical wind values. Figure 9 shows the results after 10 274 

s and Fig. 10 after 15 s.  275 

As shown in Figs. 9 and 10, the results of the simple vector conversion method cannot be shown in a two-276 

dimensional distribution between the Lidars, as the assumption is that the wind field of the area between the Lidars 277 

is homogeneous. On the other hand, it is confirmed that the proposed method can estimate the two-dimensional 278 

distribution of wind field values between the Lidars. Figure 9 shows that the two-dimensional distribution obtained 279 

with the proposed method are very similar to that of the reference field. In addition, the results show that the 280 

horizontal wind velocity with the simple vector conversion is approximately -7 m/s, whereas that with the proposed 281 

method is -9.5 ms-1; the horizontal wind velocity of the reference field is -9.0 ms-1 at LOS distance of 450-500 m. 282 

Figure 10 shows that the results of the horizontal wind and vertical wind with simple vector conversion are 283 

considerably lower than those of the reference field. The horizontal wind results show that the value obtained with 284 

the simple vector conversion is approximately -9.5 ms-1, whereas that with the proposed method is approximately -285 

3.5 ms-1; the horizontal wind velocity of the reference field is approximately -4.5 ms-1 at LOS distance of 450-500 m. 286 

The vertical wind results show that the value obtained with simple vector conversion is approximately -1.0 m/s, 287 

whereas that obtained with the proposed method is approximately 8.5 ms-1; the vertical wind velocity of the 288 

reference field is approximately 7.0 ms-1 at LOS distance of 450-500 m. Therefore, simple vector conversion has 289 

significantly large errors between the reference and estimated values. The errors in both the horizontal and vertical 290 

wind values estimated by the proposed method are much smaller than those estimated with simple vector conversion. 291 
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Although the two-dimensional distribution of the horizontal wind field values of the proposed method is larger than 292 

that of the reference field at LOS distance of 450-500 m, the two-dimensional distribution of the vertical wind field 293 

values of the proposed method can provide a good assessment of the reference field shown in Fig. 10. The 15-s 294 

timing in Fig. 10 is a more challenging case than others because the aircraft is positioned very close to the center of 295 

the vortex, and the wind direction changes abruptly. Although it is difficult to estimate the perfect wind field value 296 

at this time by using the proposed method, it is confirmed that the proposed estimation method has much higher 297 

accuracy than simple vector conversion. From the above, the proposed method has much better performance than 298 

the simple vector conversion method, and it can estimate the two-dimensional distribution of wind field values 299 

accurately unlike the simple vector conversion method. 300 

Next, a statistical estimation performance is conducted by using 100-pseudo routes; Fig. 11 shows the results for the 301 

vertical wind values along with the performance demand for automatic control. The root mean square error (RMSE) 302 

between the reference field value and the estimated wind field value is used for evaluating the estimation 303 

performance. In addition, the difference in the number of past Lidar observations used to determine the wind field, 304 

that is the past LOS wind, is checked. The simple vector conversion cannot satisfy the performance demand at LOS 305 

distance farther than 350 m. This means that it might be difficult to achieve preview control using the simple vector 306 

conversion method. At the LOS distance of 500 m, the RMSEs of the vertical wind values of the simple vector 307 

conversion and proposed method is approximately 4.0 ms-1 and 1.2 ms-1, respectively, and the RMSE can be reduced 308 

to 30%. The proposed method can satisfy the performance demand even if the number of using the past LOS wind 309 

values is different. In this case, a lower number of using the past LOS wind leads to better estimation performance. 310 

 311 
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Fig. 9 Distributions of the horizontal and vertical wind components estimated by the simple vector conversion method 312 
vs. the proposed method (10 s) 313 

 314 

Fig. 10 Distributions of the horizontal and vertical wind components estimated by the simple vector conversion method 315 
vs. the proposed method (15 s) 316 

 317 

Fig. 11 Statistical estimation performance of vertical wind values (Ideal vortex model) 318 

4.1 NWP without Error and Noise 319 

The numerical experiments with NWP values were carried out, and Figs. 12 and 13 show the distributions of the 320 

horizontal and vertical wind components that are estimated by the simple vector conversion and the proposed 321 

method. Upper figures are reference wind field values generated by NWP; middle figures are the wind fields 322 
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estimated by the simple vector conversion method; lower figures are the wind fields estimated by the proposed 323 

method with five-past LOS wind. Left figures correspond to horizontal wind, and right figures correspond to vertical 324 

wind. Figure 12 shows the results after 10 s and Fig. 13 after 15 s. As shown in Figs. 12 and 13, the results of the 325 

simple vector conversion method cannot show the two-dimensional distribution of the wind field between the Lidars. 326 

On the other hand, the proposed method can estimate the two-dimensional distribution of the wind field between the 327 

Lidars. Figure 13 shows that the wind velocity of the simple vector conversion method is higher than the reference 328 

fields at 300-500 m of LOS distance. From the above, the proposed method has much better performance than 329 

simple vector conversions. 330 

Next, the statistical estimation performance is conducted by using 100-pseudo routes, and Fig. 14 shows the results 331 

of the statistical estimation performance with the performance demand to control automatically. In addition, the 332 

difference of the number of using past LOS wind is also checked. In this case, both simple vector conversion and the 333 

proposed method can satisfy the performance demand to preview control; however, the simple vector conversion 334 

performance results are much worse than those of the proposed method. The proposed method can estimate quite 335 

accurate wind field values. In this case, the use of past LOS wind numbers, higher leads to a better estimation 336 

performance. 337 

 338 

Fig. 12 Distributions of the horizontal and vertical wind components that are estimated by simple vector conversion and 339 
the proposed method (10 s) 340 
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 341 

Fig. 13  Distributions of the horizontal and vertical wind components that are estimated by simple vector conversion 342 
and the proposed method (15 s) 343 

 344 

Fig. 14 Statistical estimation performance (NWP) results 345 

4.2 Ideal vortex model with error and noise 346 

In this section, the numerical experiments with error and noise of LOS wind values are conducted to evaluate the 347 

estimation performance of the proposed method. This numerical experiment shows the error/noise-filtering 348 

performance difference between simple vector conversion and the proposed method with extrapolation by using the 349 

past LOS wind. In this study, the atmospheric conditions are used to evaluate six different cases, to generate error 350 

and noise data in the LOS wind values. In this study, six atmospheric conditions are prepared in order to evaluate the 351 

filtering performance. The backscattering coefficients are (Standard case) 1.8×10-8 sr-1m-1, (a) 1.8×10-11sr-1m-1, (b) 352 

1.35×10-11 sr-1m-1, (c) 0.9×10-11 sr-1m-1, (d) 0.45×10-11 sr-1m-1, and (e) 0.18×10-11 sr-1m-1. 353 
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The numerical experiments with the ideal vortex model were carried out. Figure 15 shows the LOS wind values, 354 

which include the measured data with error and noise, reference wind, the smoothing spline, and the general spline 355 

model results. Figure 15 shows that the smoothing spline can filter the error and noise data of LOS wind values. 356 

When the general spline is used, the error can be filtered correctly by using a simple Kalman filter and a robust 357 

LSM; however, the noise cannot be filtered. Next, a statistical estimation performance is conducted by using 100-358 

pseudo routes, and Fig. 16 shows the results of the statistical estimation performance with error and noise. In 359 

addition, the difference of the atmospheric condition in six-case (standard, (a), (b), (c), (d), (e) in the backscattering 360 

coefficients) is also checked. The figure to the left is the simple vector conversion results, and the figure to the right 361 

shows the proposed method results. The simple vector conversion cannot satisfy the performance demand at a 362 

distance farther than 350 m LOS, and cannot work correctly at atmospheric condition (e). The proposed method can 363 

satisfy the performance demand except at atmospheric conditions (e). The proposed method shows much better 364 

performance than the simple vector conversion, even though it is difficult to estimate the wind field values for 365 

atmospheric condition (e) by using both the simple vector conversion and the proposed method, due to the fact, that 366 

atmospheric condition (e) contains much larger noise levels than other conditions. 367 

 368 

Fig. 15 LOS wind values with measured data with error and noise, reference wind, the smoothing spline and general 369 
spline 370 

 371 

Fig. 16 Statistical estimation performance results with the error and noise (Ideal vortex model) 372 

In addition, the cross-plots of the reference and the estimated vertical wind are shown as Fig. 17. In Fig. 17 (a), (b) 373 

the results of the simple vector conversion are presented, (c), (d) show the results of the proposed method, (a) and 374 

(c) are the cases without error and noise, and the (b) and (d) are the cases with error and noise. The left figures are 375 
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the wind data at 100 m LOS distance, middle figures are the wind data at 300 m LOS distance, and the right figures 376 

are the wind data at 500 m LOS distance. The dots indicate the wind speed estimated at 5 Hz, and the dotted lines 377 

indicate the performance demand of the control. By comparing (a) and (c), we can deduct that the proposed method 378 

provides a much better estimation than the simple vector conversion. The results in (b) and (d) are spread wider than 379 

those in (a) and (c), because of the noise data of LOS wind values. It is worth mentioning that the noise data have 380 

more negative effects on the result at 500-m LOS distance than at 100 m and 300 m LOS. A comparison of (b) and 381 

(d) shows that the proposed method can provide more accurate estimations than the simple vector conversion 382 

method. 383 
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 384 

Fig. 17 Cross-plots of the reference and the estimated vertical wind 385 

 386 
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4.3 NWP with error and noise 387 

The numerical experiments with NWP were carried out. The statistical estimation performance is conducted by 388 

using 100-pseudo routes, and Fig. 18 shows the results of the statistical estimation performance with error and noise. 389 

In addition, six different atmospheric condition cases (standard, (a), (b), (c), (d),  and (e) in the backscattering 390 

coefficients) were used. Figures to the left show simple vector conversion results and figures to the right show 391 

results with the proposed method. In this case, both the simple vector conversion and the proposed method can 392 

satisfy the performance demand to preview control; however, the simple vector conversion shows worse 393 

performance compared to the proposed method. The proposed method can estimate quite accurately wind field 394 

values. In addition, the proposed method displays better performance than the simple vector conversion method, and 395 

similar to the previous experiment, it is difficult to estimate the wind field values for atmospheric condition (e) by 396 

using both the simple vector conversion and the proposed method. 397 

 398 

Fig. 18 The results of the statistical estimation performance with the error and noise (NWP) 399 

 400 

5. Conclusion 401 

In this study, an airflow vector estimation algorithm based on upward and downward airborne Lidars has been 402 

proposed for preview control to prevent turbulence-induced aircraft accidents. This estimation algorithm uses the 403 

technique of extrapolating the wind field values by using the LSM and the current and past LOS wind datasets to 404 

improve the accuracy of estimated wind values. Two test configurations of numerical experiments, 1) ideal vortex 405 

flow field and 2) realistic weather field values with calculated NWP numbers, were used to evaluate the estimated 406 

performance of the airflow vector. 407 

The numerical experiments of LOS wind were conducted to evaluate the estimation performance of the proposed 408 

method. These numerical experiments showed the difference in performance between simple vector conversion 409 

methods and the proposed extrapolation method. The proposed method has much better performance than the simple 410 

vector conversion methods, and it can estimate the two-dimensional distribution of wind field values accurately, 411 

unlike the simple vector conversion method. The estimation performance and the computational cost of the proposed 412 

method can satisfy the performance demand for preview control.  413 
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The numerical experiments with error and noise of LOS wind were conducted to evaluate the performance of the 414 

proposed estimation method. These numerical experiments showed the error/noise-filtering performance difference 415 

between the simple vector conversion method and the proposed extrapolation method. It was also shown that the 416 

smoothing spline model could filter noise correctly and reduce its negative effects. Therefore, the proposed method 417 

has shown a much better performance than the simple vector conversion method; however, it is still difficult to 418 

estimate the wind field values for atmospheric condition (e) with both methods. Atmospheric condition (e) has larger 419 

noise than other conditions, and when the noise exceeds a certain level, it is difficult to estimate the airflow 420 

regardless of the method applied. 421 

The findings of this study are subject to certain limitations. The target size of the atmospheric turbulence by the 422 

proposed algorithm is assumed to be comparable or larger than the observation area between the Lidars. Therefore, 423 

it is difficult to estimate a wind field with turbulence smaller than that of the observation area between the Lidars. 424 

However, the effect on the aircraft vibration due to such minor turbulence is minimal, and it is considered to be 425 

excluded from the proposed algorithm. The second limitation is that the current results are obtained from numerical 426 

experiments and not from evaluations of actual observations. Currently, the LIDAR system is being modified to be 427 

smaller and lighter in order to suit small experimental aircraft. Flight demonstrations are to be performed in 2021. 428 

The results of this research will be applied to this flight demonstration. 429 

 430 

The proposed algorithm can satisfy the performance demands for preview control in both estimation performance 431 

and computational cost. The proposed method can estimate a two-dimensional distribution that cannot be estimated 432 

by existing methods. This is valuable information for improving the accuracy of the preview control: for example, it 433 

is now possible to cope with a critical case where the flight direction of the aircraft is at a steep angle with the 434 

aircraft either ascending or descending. This point is also an advantage of the proposed method. 435 
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