
Response to comments by anonymous referee #1: 

 

In the work submitted, Lei et al. presented the design, construction, calibration and validation of 

a nano-HTDMA apparatus, which can be used to measure hygroscopic growth of aerosol particles 

down to < 10 nm. The technique they developed is very important, and they also carried out 

calibration and validation experiments very comprehensively. The paper is also well-written, and 

I only have a few comments. 

Response: We are grateful to referee #1 for her/his comments and suggestions to improve our 

manuscript. We have implemented changes based on these comments in the revised manuscript. 

We repeat the specific points raised by the reviewer in italic font, followed by our response. The 

pages numbers and lines mentioned are with respect to the Atmospheric Measurement Techniques 

Discussions (AMTD) version. 

 

General comments:  

(1) Compared to “sizing accuracy”, “sizing offset” may better describe the actual content of 

Section 3.1.1. Sections 2.2.1 and Section 3.1.1: I think both sizing accuracy (difference between 

actual size and the size measured using a DMA) and sizing offset (i.e. measured difference between 

the two DMAs) are important for H-TDMA. While sizing offset has been carefully characterized 

(Section 3.1.1) for particles down to a few nm, not much information has been provided for the 

sizing accuracy for <100 nm particles. Although experiments to determine size accuracy for <100 

nm particles seem to be impossible, as discussed in Section 2.2.1, could the author estimate the 

sizing accuracy from a theoretical view? 

Response: Good comment, and thanks. Yes, the reviewer is right, it is not possible to determine 

size accuracy for < 100 nm particles, and sub-20 nm PSL is even not available. Following the 

reviewer’s suggestion, here we try to estimate the sizing accuracy in this size range through error 

propagation by using differential mobility analysis (DMA) transfer function and the uncertainties 

of its input parameters (Duplissy et al., 2009; Wiedensohler et al., 2012). According to Knutson 

and Whitby (1975), sizing of DMA transfer function mainly depends on sheath flow rates and high 

voltage (HV) applied to the DMA as follows: 
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where 𝑧𝑝
∗ is the central electrical mobility, Qsh is the sheath flow rate, V is the applied voltage, L is 

the length of the classification region within the DMA, and r1 and r2 are the inner and outer radii 

of the DMA annulus, respectively. n is the number of elementary charges of particles. e is the 

elementary charges. Cc is the slip correction. 𝜇  is the flow viscosity. 𝑑𝑝
∗  is the mean particle 

mobility diameter.  

According to Eq. (R3) above, we use the following error propagation formula (Eq. (R4)) (Taylor 

and Taylor, 1997) to calculate the uncertainties in sizing of nanoparticles. In our study, the flow 

accuracy of mass flow meter (TSI series 4000) is within ±2%. The deviation of voltage applied to 

the nano-DMAs (0-12500 V, 0-350 V) varies around the set value when test with voltage power 

supply (HCE 0-12500, HCE 0-350, Fug Electronic) shown in Table R1. Thence, the sizing 

accuracy is obtained using Eq. (R5) as shown in Table R1. 
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Table R1 (new Table S5 in revised SI). Uncertainties of nano-DMA voltage (V) and sheath flow 

rates (Qsh), and calculated size uncertainty. 

Size (nm) Uncertainties in V and Qsh  Uncertainty  

(Sizing accuracy) 

100 2648.2±0.02592 V, 10±0.02 L/min 0.2000% 

60 1063.0±0.02686 V, 10±0.02 L/min 0.2000% 

20 131.1±0.01519 V, 10±0.02L/min 0.2003% 

10 33.7±0.02435 V, 10±0.02 L/min 0.2127% 

8 21.6±0.03725 V, 10±0.02 L/min 0.2641% 

6 12.2±0.06920 V, 10±0.02 L/min 0.6014% 

 

 



Related additions and changes included in the revised manuscript: 

Page 13 line 299, we add: “As discussed in Sec. 2.2.1, it is difficult to verify the sizing accuracy 

of sub-100 nm aerosol nanoparticles using PSL nanoparticles. Duplissy et al. (2009) and 

Wiedensohler et al. (2012) suggested to estimate the sizing accuracy of sub-100 nm nanoparticles 

through DMA transfer function. The theoretical DMA transfer function (see SI. S2. Eq. (S2-S4)) 

was proposed by Knutson and Whitby (1975) and they noted that sizing is crucially dependent on 

flow rates and high voltage (HV) applied to the DMA. In our study, the flow accuracy calibrated 

by the mass flow meter (TSI series 4000) is within ±2%. The variation of voltage applied to the 

nano-DMAs (0-12500 V, 0-350 V) around the set value were measured with voltage power supply 

(HCE 0-12500, HCE 0-350, Fug Electronic) and summarized in Table S5. According to the error 

propagation formula (see SI. S2. Eq. (S5)) (Taylor and Taylor, 1997), the calculated uncertainty in 

sizing of 6-100 nm nanoparticles increases as size decreases (Table S5).The estimated sizing 

accuracy is slightly smaller than the sizing offset of two nano-DMAs, but in principle they are still 

consistent with each other. This suggests that uncertainties of slip correction, DMA dimensions 

(inner and outer radius, length), temperature, pressure, and viscosity of air may also affect the 

sizing accuracy (see SI. S2. Eq. (S4), Kinney et al., 1991). Besides, Wiedensohler et al. (2012) also 

suggested that particle losses, the size- and material-dependent CPC counting efficiency can affect 

the size accuracy of DMAs.” 

 

Related additions included in the supplementary information: 

Line 156, we add: 

S2. Calculation of sizing accuracy of sub-100 nanoparticles 

 Knutson and Whitby (1975) proposed the following theoretical differential mobility analyzer 

(DMA) transfer function and showed that sizing is crucially dependent on sheath flow rates and 

high voltage (HV) applied to the DMA. 
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where 𝑧𝑝
∗ is the central electrical mobility, Qsh is the sheath flow rate, V is the applied voltage, L is 

the length of the classification region within the DMA, and r1 and r2 are the inner and outer radii 



of the DMA annulus, respectively. n is the number of elementary charges of particles. e is the 

elementary charges. Cc is the slip correction. 𝜇  is the flow viscosity. 𝑑𝑝
∗  is the mean particle 

mobility diameter.  

According to Eq. (S4) above, we use the following error propagation formula ((Taylor and Taylor, 

1997) to calculate the uncertainties in sizing of nanoparticles. In our study, the flow accuracy of 

mass flow meter (TSI series 4000) is within ±2%. The deviation of voltage applied to the nano-

DMAs (0-12500 V, 0-350 V) varies around the set value when test with voltage power supply 

(HCE 0-12500, HCE 0-350, Fug Electronic) shown in Table S5. Thence, the uncertainties in sizing 

of nanoparticles are obtained based on the following Eq. (S5) as shown in Table S5.  
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(2) Line 300-305: It is interesting to find that sizing offset (<0.9%) is smallest at 8 and 10 nm, 

smaller than that at smaller diameter (6 nm) and at larger diameter (20 nm or larger). Is there any 

explanation. 

Response: Thanks for the comment. Uncertainties in the sheath flow rates and nano-DMA voltages 

will increase as size decreases, which results in a larger size offset of 6-nm nanoparticles compared 

with other sizes. However, we observed that the peak diameter of number size distribution of the 

generated pure water is ~20-30 nm (Figure R1), which is more likely due to presence of impurities 

in the water. This interferes the accurate measurement of 20-nm nanoparticles.  
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Figure R1. Number concentration scanned for water nanoparticles by the nano-DMA2 at RH below 5 % at 298 K. 



Page 13 line 305, we add: “As discussed above, uncertainties in the sheath flow rates and nano-

DMA voltages will increase as size decreases, which results in a larger sizing offset of 6-nm 

nanoparticles compared with other sizes.” 

 

Technical comments: 

(1) Line 57: change "challenge" to "challenging". 

Response: Many thanks. We have revised in the following sentence and now they read as: 

Page 3 line 55-57: “In addition, by knowing the hygroscopicity of newly formed nanoparticle, one 

can infer the involving chemical species (e.g., organic ratio) in particle formation and initial growth 

(Wang et al., 2010), which is otherwise difficult and highly challenging to measure directly (Wang 

et al., 2010; Ehn et al., 2014).” 

 

(2) Line 349-353: I am not sure Wikipedia is a reliable source for physical/chemical constants. 

I would recommend textbooks/handbooks instead. 

Response: Thanks for your suggestions. We have cited Atkins et al. (2006) in the following 

sentence: 

Page 15 line 349-353: “It may due to the heat produced from the inner electrode of nano-DMA2, 

which we estimated to be ~0.08 W (𝑄 = 𝑚𝑑𝑇𝐶𝑝,) by considering the density and heating capacity 

of air, and aerosol and sheath air flow rate (ρ=1.2041kg/m3; Cp=1.859kJ/kg°C) (Atkins et al., 2006).” 

 

 

 

 

 

 

 

 

 

 

 



Reference: 

Atkins, P., De Paula, J., and Walters, V.: Physical Chemistry, W. H. Freeman, 2006. 

Kinney, P. D., Pui, D. Y. H., Mullholland, G. W. & Bryner, N. P. Use of the Electrostatic 

Classification Method to Size 0.1 μm SRM Particles—A Feasibility Study. Journal of Research 

of the National Institute of Standards and Technology, 96, 147, 1991. 

Knutson, E. O. and Whitby, K. T.: Aerosol classification by electric mobility: apparatus, theory, 

and applications, Journal of Aerosol Science, 6, 443-451, 1975. 

Taylor, J. R. and Taylor, S. L. L. J. R.: Introduction To Error Analysis: The Study of 

Uncertainties in Physical Measurements, University Science Books, 1997. 

 Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., 

Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., 

Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., 

Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, 

C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, 

A., Horn, H. G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., 

Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size 

spectrometers: harmonization of technical standards and data structure to facilitate high quality 

long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 

657-685, 2012. 

 

 

 

 

 

 

 

 

 

 



Response to comments by anonymous referee #2: 

 

This manuscript “Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for 

investigating hygroscopic properties of sub-10 nm aerosol nanoparticles” presents a design of a 

HTDMA to measure the hygroscopicity particle down to ~6 nm. The performance and the methods 

to calibrate and validate the setup were also reported. This setup was shown to have low sizing 

offset (<1.4% for 100 nm particle). High accuracy for flow rates of aerosol and sheath flow (±1%) 

and high accuracy for voltages applied to DMA (±0.1%) were found to be crucial to achieve the 

low sizing offset. Also the DMA2 and humidification system were designed to be placed in housing 

with stable temperate (±0.1K). The RH of sheath flow was set to the same as RH of aerosol flow to 

prevent the pre-deliquescence. Using this setup, the authors measured the deliquescence and the 

efflorescence RH as well as the growth factors of ammonium sulfate and sodium sulfate. For 

ammonium sulfate, no significant size dependence of DRH and ERH was observed while clear size 

dependence was observed. Determining the hygroscopicity of nano-particles is important to 

understand aerosol-water interaction and provides constraints on the chemical composition of 

nano-particles. This nano-HTDMA has excellent performance and will be useful to measure 

hygroscopictiy of atmospheric nano-particles. The manuscript is well-written and fit well the scope 

of AMT. I recommendation its publication in AMT after addressing the following minor comments. 

Response: We are grateful to referee #2 for the comments and the constructive suggestions. We 

address in the following the comments and suggestions by referee #2 and provide improvements 

based on these clarify the questioned issues in the revised manuscript. The pages numbers and lines 

mentioned are with respect to the Atmospheric Measurement Techniques Discussions (AMTD) 

version. 

 

Minor comments:  

(1) What is the smallest particle size that the HTDMA can measure? 

The title “Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for 

investigating hygroscopic properties of sub-10 nm aerosol nanoparticles” reads a little redundant 

for me. In addition, the manuscript discusses many experiments for particle >10 nm. I suggest 

optimizing the title. 

 



Response: Thanks for the comment. At the moment, the smallest size that we can measure is 6 nm. 

The main purpose of the instrument development is to have a device that is able to measure 

hygroscopic growth of sub-10 nm nanoparticles. We discussed that the results of 20 nm and 100 

nm are to compare with literature studies, which are the most abundant (especially for 100 nm) and 

also are to demonstrate the differences between measuring hygroscopic growth of sub-10 nm 

nanoparticles and larger ones. Following the suggestion, we revised the tittle as “Nano-HTDMA 

for investigating hygroscopic properties of sub-10 nm aerosol nanoparticles”.  

 

Related additions and changes included in the revised manuscript: 

Page 1 line 1-2: “Nano-HTDMA for investigating hygroscopic properties of sub-10 nm aerosol 

nanoparticles”. 

 

(2) Line 428-434, and Fig. 8d, the same method, electrospray was used to generate aerosol <20 

nm in this study and the study by Biskos et al. 2006. But the results (growth factors) are still 

different. Can the authors discuss the difference? Is it possible to generate particles of the same 

size, i.e. 20 nm with different methods and compare the GF? 

Response: Thanks for the comment. 

The morphology of particles may affect their hygroscopic behavior (Mikhailov et al., 2004, 2009). 

Iskandar et al. (2003) and Wang et al. (2019) show that the morphology of the aerosol particles 

mainly depends on initial properties of droplets (e.g., chemical composition and solution 

concentration) and drying process. In Table 1, we compared the generation conditions with Biskos 

et al. 2006b for 6-10 nm ammonium sulfate nanoparticles using an electrospray. Different from 

generation conditions in Biskos et al. (2006b) for 6-10 nm ammonium sulfate nanoparticles, in our 

study, in order to minimize the multiple charged nanoparticles, three different concentrations are 

used so that the size (e.g., 6, 8, 10 nm) selected by the nano-DMA1 was always slight larger than 

peak of the number size distribution of the generated nanoparticles by the electrospray. This is to 

ensure that we could have as many as nanoparticles as possible to compensate the strong 

nanoparticle losses in the nano-HTDMA system. Besides different generation conditions shown in 

Table R1, the drying rate is mainly dependent on drying flow rates in the HTDMA system (Wang 

et al., 2019). The RH of dried ammonium sulfate aerosol nanoparticles varies due to the different 

aerosol/sheath flow rates employed in Biskos et al. (2006b) and this study, respectively. These 



differences may lead to the small difference in growth factor of ammonium sulfate nanoparticles 

prior to the deliquescence. 

Following reviewer’s suggestion, we used an electrospray and an atomizer to generate 20-nm 

ammonium sulfate aerosol nanoparticles, respectively. We then compared their hygroscopic 

growth factors prior to deliquescence. Figure R1a shows a ~ 0.1 higher growth factor of 20-nm 

ammonium sulfate generated by an electrospray than that using an atomizer in the RH range from 

55% to 82%. Figure R1b shows the results of 20-nm sodium chloride nanoparticles using an 

electrospray and a vaporization-condensation method (Biskos et al., 2006a), respectively. Also, 

There is a slight difference in the growth factor of 20-nm sodium chloride at RH between 20% and 

60% using the different generation methods. 

Table R1. Comparison of generation of ammonium sulfate (AS) nanoparticles with diameter from 

6-10 nm with Biskos et al. (2006b) using an electrospray  

Generation of 6-10 

nm AS nanoparticles 

AS concentration 

(mM) 

Size of 

capillary 

Flow rates RH of generated AS 

nanoparticles 

Biskos et al. (2006b) 10 40 μm 2 l/min dry air 0.1% 

This study 1, 5, 20 20 μm 1 l/min dry N2 2% 
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Figure R1 (new Figure S12 in revised SI). Hygroscopic growth factors of 20-nm (a) ammonium sulfate from our 

study (AS) nanoparticles and (b) sodium chloride (NaCl) nanoparticles from Biskos et al. (2006a) using the different 

generation methods prior to deliquescence.  

 

Page 19 line 432, we add: “Different from generation conditions of for 6-10 nm ammonium sulfate 

nanoparticles in Biskos et al. (2006b), in our study, in order to minimize the multiple charged 



nanoparticles, three different concentrations are used so that the size selected by the nano-DMA1 

(i.e., 6, 8, 10 nm) was always slight larger than peak of the number size distribution of the generated 

nanoparticles by the electrospray. This also helps us to have as many as nanoparticles as possible 

to compensate the strong nanoparticle losses in the nano-HTDMA system. In addition, we used 

both electrospray and atomizer to generate 20-nm ammonium sulfate, and compared their 

hygroscopic growth factors prior to deliquescence. Figure S12a shows a ~ 0.1 higher growth factor 

of 20-nm ammonium sulfate generated by the electrospray than that using the atomizer in the RH 

range from 55% to 82%, which is similar to the difference in hygroscopic growth factor of 20-nm 

NaCl aerosol nanoparticles using the different generation methods as observed in Fig S12b in 

Biskos et al. (2006a). Besides different generation conditions, the morphology of dried ammonium 

sulfate particles may also differ slightly between our study and Biskos et al. (2006) because of 

different dying rates, as drying flow rates and RH of the dried ammonium sulfate in the two 

HTDMA systems are different too.” 

 

(3) Fig. 5 and Fig. 7, can the author discuss why the 6 nm AS showed a slight increase with 

increasing RH. 

Response: Thanks for the comments. Yes, a slight increase in hygroscopic growth factor of 6-nm 

ammonium sulfate nanoparticles was observed in the RH range from 65 to 79% RH before 

deliquesces. This is attributed to water adsorption onto the surfaces of these nanoparticles. It seems 

that there is more water adsorption onto the small nanoparticles than that of large nanoparticles. 

Similar phenomenon has also observed by Hämeri et al. (2000, 2001), Romakkaniemi et al. (2001), 

Biskos et al. (2006a, b, 2007), and Giamarelou et al. (2018). The reason for such enhanced 

adsorption at smaller sizes is still to be investigated. 

 

Page 19 line 428, we added: “For example, a slight increase in hygroscopic growth factor of 6-

nm ammonium sulfate nanoparticles is observed in the RH range from 65 to 79% RH before 

deliquescence. This is attributed to water adsorption onto the surfaces of these nanoparticles. It 

seems that smaller nanoparticles have a stronger tendency of adsorbing water when approaching 

the DRH than the larger ones. Similar phenomenon has also observed by Hämeri et al. (2000, 2001), 

Romakkaniemi et al. (2001), Biskos et al. (2006a, b, 2007), and Giamarelou et al. (2018). The 

reason for such enhanced adsorption at smaller sizes is still to be investigated.” 



 

(4) Fig.7, why the DRH for 20 nm AS is different from others (the dashed line)? Also the coloring 

of efflorescence and deliquescence in this panel contradicts the caption. 

Response: Thanks for the comment. The DRH of 20-nm ammonium sulfate is slightly different 

from that at other sizes. Also, the similar phenomenon was observed for 20-nm ammonium sulfate 

nanoparticles from Biskos et al. (2006b) shown in Fig. R2, which shows in agreement with our 

study. To my knowledge, we observed that the peak diameter of number size distribution of pure 

water is ~20-30 nm (Figure S2a), which is more likely due to presence of impurities in the water. 

This interferes the accurate measurement of 20-nm nanoparticles.  

 

Figure R2. Comparison of the hygroscopic behavior of 20-nm ammonium sulfate (AS) with Biskos et al. (2006b). 
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Page 45 line 917, we revised the color of 20-nm ammonium sulfate in both deliquescence and 

efflorescence measurement modes and made the color consistent with citation: 

 

Figure 7. Mobility-diameter hygroscopic growth factors (gf) of ammonium sulfate (AS) aerosol nanoparticles with dry 

mobility diameter from 6 to 100 nm in the deliquescence mode (red square and error bar) and the efflorescence mode 

(royal square and error bar). Deliquescence, and efflorescence relative humidity (DRH&ERH, black dashed line) of 

ammonium sulfate (AS) nanoparticles with dry mobility diameter from 6 to 100 nm.  

 

(5) Line 375-376, “double-mode phenomenon was not observed 375 for 8 and 6 nm ammonium 

sulfate nanoparticles”. Is this because of the slower mass transfer of water vapor for larger 

particles? 



Response: Many thanks. No, this is not because of the slower mass transfer of water vapor for 

larger sulfate nanoparticles. Double-mode phenomenon was observed for 99-nm sodium chloride 

in Mikhailov et al. (2004) and for 10-nm ammonium sulfate and sodium chloride in Biskos et al. 

(2006b, 2007) in the deliquescence measurement mode, respectively. They attributed this to the 

co-existence of solid and liquid phase of aerosol nanoparticles due to the slight inhomogeneity of 

RH within nano-DMA2. Bezantakos et al. (2016) have shown the difference of RH for sheath flow 

and aerosol flow upstream of DMA2 and temperature gradient within DMA2 can result in RH non-

uniformities within DMA2. In our study, we also observed this double-mode phenomenon for 

ammonium sulfate nanoparticles with diameters (e.g., 100, 60, 20, 10 nm) but not for 8 and 6 nm 

ammonium sulfate nanoparticles. Because this phenomenon is an essentially stochastic process.  

 

(6) Line 472-474, why does DRH/ERH of sodium sulfate show a clear size dependence while 

ammonium sulfate does not? 

Response: Many thanks.  

Different from ammonium sulfate, of which DRH and ERH shows no significant size dependence, 

there is a strong size-dependence of DRH and ERH of sodium sulfate according to our observations 

down to 6 nm. The different size dependence of DRH and ERH between sodium chloride and 

ammonium sulfate have been theoretically studied and explained by Cheng et al. (2015). The main 

reason is the different concentration dependence of solute activities and the different solute-liquid 

surface tension, e.g., the same change in solute molality leads to a larger change in the solute 

activity of sodium chloride than that of ammonium sulfate shown in Fig. R3. The phase transition 

concentration (deliquescence and crystallization concentration) of ammonium sulfate is thus more 

sensitive to the size change compared to that of sodium chloride, leading to the almost unchanged 

DRH and ERH of ammonium sulfate nanoparticles (Cheng et al., 2015). For the size dependence 

of phase transition of sodium sulfate, there is a clear size effect on DRH and ERH similar to that 

of sodium chloride but different from that of ammonium sulfate in the size range from 6 to 20 nm, 

suggesting that non-ideality of solution property is close to that of sodium chloride but weaker than 

that of ammonium sulfate.  

 



 

Figure R3. Saturation ratio of solute activity (𝑎𝑠
∗/𝑎𝑠,𝑏𝑢𝑙𝑘

∗ ) as a function of molality b for ammonium sulfate (AS) and 

sodium chloride (NaCl). Reprinted with permission by Cheng et al. (2015). 

 

Page 20 line 466-477, we revised: “The strong size-effect on the DRH and ERH of sodium 

chloride and on hygroscopic growth factors of ammonium sulfate have been observed by Biskos 

et al. (2006a, b, 2007) and theoretically studied and explained by Cheng et al. (2015). Owning to 

the strong non-ideality of aqueous ammonium sulfate solution, the phase transition concentration 

(deliquescence and crystallization concentration) of ammonium sulfate is much more sensitivity to 

the size changes from 60 nm to 6 nm than that of sodium chloride, leading to the almost unchanged 

DRH and ERH of ammonium sulfate nanoparticles (Cheng et al., 2015). Compared the three 

compounds, the size-dependent hygroscopicity of sodium sulfate nanoparticles from 20 nm to 6 

nm is similar to that of sodium chloride, but different to that of ammonium sulfate, where no 

significant change in DRH and ERH was observed. However, in this size range, the increase of the 

ERH and the decrease of growth factor upon decreasing size seems to be stronger for sodium sulfate 

than sodium chloride, although no significant change in DRH was observed from micrometer size 

particles down to 20 nm.” as 

“Different from ammonium sulfate, of which DRH and ERH shows no significant size dependence, 

there is a strong size-dependence of DRH and ERH of sodium sulfate according to our observations 

down to 6 nm. The different size dependence of DRH and ERH between sodium chloride and 

ammonium sulfate have been theoretically studied and explained by Cheng et al. (2015). The main 

reason is the different concentration dependence of solute activities and the different solute-liquid 



surface tension, e.g., the same change in solute molality leads to a larger change in the solute 

activity of sodium chloride than that of ammonium sulfate. The phase transition concentration 

(deliquescence and crystallization concentration) of ammonium sulfate is thus more sensitive to 

the size change compared to that of sodium chloride, leading to the almost unchanged DRH and 

ERH of ammonium sulfate nanoparticles (Cheng et al., 2015). For the size dependence of phase 

transition of sodium sulfate, a strong size effect on DRH and ERH is similar to that of sodium 

chloride but different from that of ammonium sulfate in the size range from 6 to 20 nm, suggesting 

that non-ideality of solution property is close to that of sodium chloride but weaker than that of 

ammonium sulfate.” 

 

Technical comments: 

(1). Line 347, “excuses air” or “excess air”? 

Response: Many thanks. We have carefully checked and revised the whole of manuscript and 
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 18 

Abstract. Interactions between water and nanoparticles are relevant for atmospheric multiphase processes, 19 

physical chemistry, and materials science. Current knowledge of the hygroscopic and related physico-20 

chemical properties of nanoparticles, however, is restricted by limitations of the available measurement 21 

techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential 22 

mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic 23 

growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed methods of 24 

calibration and validation are provided. Beside maintaining accurate and stable sheath/aerosol flow rates 25 

(±1%), high accuracy of DMA voltage (±0.1%) in the range of ~0-50 V is crucial to achieve accurate sizing 26 

and small sizing offsets between the two DMAs (<1.4%). To maintain a stable relative humidity (RH), the 27 
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humidification system and the second DMA are placed in a well-insulated and air conditioner housing 30 

(±0.1K). We also tested and discussed different ways of preventing pre-deliquescence in the second DMA. 31 

Our measurement results for ammonium sulfate nanoparticles are in good agreement with Biskos et al. 32 

(2006b), with no significant size-effect on the deliquescence and efflorescence relative humidity (DRH, 33 

ERH) at diameters down to 6 nm. For sodium sulfate nanoparticles, however, we find a pronounced size-34 

dependence of DRH and ERH between 20 and 6 nm nanoparticles. 35 

 36 

1 Introduction 37 

The climatic effects of aerosol nanoparticles have attracted increasing interests in recent years (Wang et 38 

al., 2016; Andreae et al., 2018; Fan et al., 2018). Interactions between water and nanoparticles are relevant 39 

for atmospheric multiphase processes, physical chemistry, and materials science (Zheng et al., 2015; Cheng 40 

et al., 2015, 2016). Aerosol nanoparticles in the atmosphere are mostly originating from new particle 41 

formation, and a fraction of these nanoparticles could potentially grow into sizes to efficiently act as cloud 42 

condensation nuclei and thus to change the contributions of aerosol nanoparticles to climate forcing 43 

(Lihavainen 2003; Wiedensohler et al., 2009; Sihto et al., 2011; Kirkby et al., 2011; Keskinen et al., 2013; 44 

Dunne et al., 2016; Kim et al., 2016). These processes strongly depend on the chemical composition and 45 

physico-chemical properties of these nanoparticles (Köhler, 1936; Su et al., 2010; Wang et al., 2015; Cheng 46 

et al., 2015). One of the most important physico-chemical properties of nanoparticles is their hygroscopic 47 

behavior that describes their ability to take up water, and it can differ significantly from that of larger 48 

particles (Hämeri et al., 2000, 2001; Gao et al., 2006; Biskos et al., 2006a, b, 2007; Cheng et al., 2015). 49 

To understand and predict hygroscopic properties of nanoparticles, current thermodynamic models mostly 50 

rely on the concentration-dependent thermodynamic properties (such as water activity and interfacial 51 

energy) derived from the measurements of large aerosol particles or even bulk samples (Tang and 52 

Munkelwitz, 1994; Tang 1996; Pruppacher and Klett, 1997; Clegg et al., 1998). They are thus difficult or 53 
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impossible to be applied to describe the hygroscopic behavior of sub-10 nm nanoparticles which can be 54 

often supersaturated in concentration compared to bulk solutions (Cheng et al., 2015). Furthermore, the 55 

nanosize effect on these properties may also need to be considered (Cheng et al., 2015). The lack of such 56 

data hinders the understanding and an accurate simulation of the interaction of water vapor and atmospheric 57 

nanoparticles. In addition, by knowing the hygroscopicity of newly formed nanoparticle, one can infer the 58 

involving chemical species (e.g., organic ratio) in particle formation and initial growth (Wang et al., 2010), 59 

which is otherwise difficult and highly challenging to measure directly (Wang et al., 2010; Ehn et al., 2014). 60 

Hence, to measure the hygroscopicity of nanoparticles is essential to improve our understandings of aerosol 61 

formation, transformation, and their climate effects. 62 

Different techniques have been employed to characterize the hygroscopic properties of aerosol particles in 63 

different sizes (Fig. S1) (Tang et al., 2019), such as Fourier transform infrared spectrometer (FT-IR) (Zhao 64 

et al., 2006), Raman spectroscopy (Dong et al, 2009), electrodynamic balance (EDB) (Chan and Chan, 65 

2003, 2005; Chan et al.,  2008), optical tweezers (Reid et al., 2011; Rickards et al., 2013), hygroscopicity 66 

tandem differential mobility analyzer (HTDMA) (e.g., Rader and McMurry, 1986; Mikhailov et al., 2004; 67 

2008; 2009; Biskos et al., 2006a, b, 2007; Cheng et al., 2008, 2009; Eichler et al., 2008; Stock et al., 2011; 68 

Hong et al., 2014, 2015; Lei et al., 2014; 2018; Mikhailov and Vlasenko, 2019), and atomic force 69 

microscopy (AFM) (Estillore et al., 2017).  Using these techniques, most of the early lab studies focus on 70 

the hygroscopic behavior of particles in accumulation modes and super-micron size range, including 71 

deliquescence, efflorescence of pure components and the effect of organics on the change or suppression 72 

of deliquescence and efflorescence of these inorganic components in mixtures. 73 

For nanoparticles with diameters down to sub-10 nm, there are, however, only very few studies attempting 74 

to investigate their interactions with water molecules, which mainly utilized the setup with humidified 75 

tandem DMAs (Hämeri et al., 2000, 2001; Sakurai et al., 2005; Biskos et al., 2006a, b, 2007; Giamarelou 76 

et al., 2018). In Table S1, we summarized the measured DRH and ERH of ammonium sulfate nanoparticles 77 
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in the size range from 6 to 100 nm using HTDMAs. In these studies, the results of the observed 80 

deliquescence and efflorescence relative humidity (respective DRH and ERH) and prompt or non-prompt 81 

phase transitions of ammonium sulfate nanoparticles, however, do not show universal agreement. The 82 

technical challenges in HTDMA measurements, especially in the sub-10 nm size range, mainly lie on: (1) 83 

accurate sizing and small sizing offset of the two DMAs, (2) highly stable measurement conditions in the 84 

whole system. Large sizing offset between the two DMAs may lead to significant error in the measured 85 

growth factor based on error propagation (Mochida and Kawamura, 2004). Massling et al. (2011) and 86 

Zhang et al. (2016) suggested that to achieve good hygroscopic growth factor of nanoparticles, the sizing 87 

offset of the two DMAs should be within ±2-3%, which is however very difficult to maintain for the sub-88 

10 nm size range. To accurately measure phase transition (e.g., DRH and ERH), a highly stable 89 

measurement condition is essential, especially maintaining a small temperature perturbation in the 90 

humidification system and inside the second DMA to prevent pre-deliquesce. For example, a 0.8 K 91 

fluctuation of the experimental temperature during the measurement can result in a 4% difference in RH 92 

(0-90%) inside the humidified DMA (Hämeri et al., 2000), leading to an inaccurate determination of the 93 

phase transition. Another problem is the prompt versus non-prompt phase transition. Although effects of 94 

impurities on the phase transition of aerosol nanoparticles (Biskos et al., 2006a; Russell and Ming, 2002) 95 

may be one possible reason of the previously observed non-prompt phase transitions (e.g., Hämeri et al., 96 

2000), the apparent non-prompt phase transition of aerosol nanoparticles has been thought to be mainly due 97 

to the inhomogeneity of RH and temperature in the humidified DMA during measurements (Biskos et al., 98 

2006b; Bezantakos et al., 2016). Moreover, the hygroscopic measurements are in general difficult for 99 

nanoparticles with diameters below 20 nm due to high diffusion losses of nanoparticles (Seinfeld and 100 

Pandis, 2006). 101 

In this study, we present a design of nano-HTDMA setup that enables high accuracy and precision in 102 

hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed 103 

methods of calibration and validation are provided. We discuss in detail how to maintain the good 104 
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performance of the system by minimizing uncertainties associated with the stability and accuracy of RH, 105 

temperature, voltage for nanoparticle classification, and sheath and aerosol flows in the DMA systems. We 106 

then apply the nano-HTDMA system to study the size dependence of the deliquescence and the 107 

efflorescence of aerosol nanoparticles of two specific inorganic compounds (e.g., ammonium sulfate and 108 

sodium sulfate) for sizes down to 6 nm. 109 

 110 

2. Methods 111 

2.1 Nano-HTDMA system 112 

A nano-HTDMA system is built up to measure the aerosol nanoparticle hygroscopic growth factor (gf), 113 

especially aiming for accurate measurement of phase transition and hygroscopic growth factor for 114 

nanoparticles in the sub-10 nm size range. Here, gf is defined as the ratio of mobility diameters of 115 

nanoparticles after humidification (𝐷𝑚(RH)) to that at dry condition (𝐷𝑚(< 10% RH)) (see SI. S1. Eq. (S1)). 116 

As presented in Fig. 1, the nano-HTDMA composes three main components, including two nano-117 

differential mobility analyzers (nano-DMA, TROPOS Model Vienna-type short DMA; Birmili et al., 1997), 118 

an ultrafine condensation particle counter (CPC, TSI Model 3776), and a humidification system. Table 1 119 

shows the technical specification, where the DMA system, humidification system, and temperature system 120 

of the three HTDMAs setup are compared among the systems of Biskos et al. (2006b), Hämeri et al. (2000) 121 

and this study. 122 

In our setup (Fig. 1), the first nano-DMA (nano-DMA1) is used to produce quasi-monodisperse 123 

nanoparticles at a desired dry diameter. The flow rate of the closed-loop sheath flow in the nano-DMA1 is 124 

maintained at 10 l/min. The ratio of sheath flow to aerosol flow is 10:1.5. The sheath flow is dried to RH 125 

below 10% by two custom-built Nafion dryers (TROPOS Model ND.070) in parallel. The quasi-126 

monodisperse nanoparticles produced by nano-DMA1 then enter the humidification system, which can be 127 
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set to deliquescence mode (from low RH to high RH for measuring deliquescence) or efflorescence mode 128 

(from high RH to low RH for measuring efflorescence). In the deliquescence mode, dry nanoparticles are 129 

humidified by a Nafion humidifier (NH-1, TROPOS Model ND.070, L. 24˝) to a target RH. In the 130 

efflorescence mode, nanoparticles are first exposed to a high RH condition (~97% RH) in a Nafion 131 

humidifier (NH-2, Perma Pure Model MH-110, L. 12˝) and then dried to a target RH through NH-1. The 132 

humid flow in the outer tube of NH-1 is a mixture of high-humidity air produced with a custom-built Gore-133 

Tex humidifier and heater (GTHH: TROPOS Model Di. 0.6˝, L. 11.8˝) and dry air in variable proportions. 134 

To have a precise control of the aerosol RH, the flow rates of the humid and dry air are adjusted with a 135 

proportional-integral-derivative (PID) system, including two mass flow controllers (MFC: MKS Model 136 

MF1) and a RH sensor (Vaisala Model HMT330) downstream of NH-1. 137 

The residence time is ~5.4 s in the NH-1for both the deliquescence and the efflorescence modes. Many 138 

groups have reported that the residence time of a few seconds is sufficient to reach equilibrium for 139 

measuring hygroscopic growth or shrink of inorganic salt particles, e.g., ammonium sulfate and chloride 140 

sodium (Chan and Chan, 2005; Duplissy et al., 2009; Lei et al., 2014, 2018; Giamarelou et al., 2018). More 141 

specifically, Kerminen (1997) estimated the time for reaching the water equilibrium to be between 8 x 10-142 

6 s and 0.005 s for 100 nm nanoparticles at 90% RH at 25°C with accommodation coefficients from 0.001 143 

to 1, respectively. In our study, we measured the inorganic aerosol nanoparticles with diameters from ~100 144 

nm down to 6 nm, thus the equilibrium time should be even shorter as nanoparticle size decreases (Table. 145 

S2). In NH-2, the residence time is ~0.07 s for the deliquescence of inorganic aerosol nanoparticles at very 146 

high RH condition (~97% RH), which is much longer than the time estimated for phase transition by 147 

Duplissy et al. (2009) (in the order of a few milliseconds) and Raoux et al. (2007) (in the order of a few 148 

nanoseconds). In addition, we have tested a longer NH-2 (Perma Pure Model MH-110, L. 48˝) in the 149 

efflorescence mode, and no significant difference in measured growth factors are found, indicating that the 150 

residence time in NH-1 and NH-2 should be sufficient. 151 
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The number size distribution of the humidified nanoparticles is measured with a combination of the second 153 

nano-DMA (nano-DMA2) and the ultrafine CPC. Similar to Biskos et al. (2016b), a multiple Nafion 154 

humidifier (NH-3, Pure Model PD-100) is used in our nano-HTDMA system to rapidly adjust the RH of 155 

the sheath flow of nano-DMA2. The sheath flow is fed into the outer tube of NH-3 to minimize its pressure 156 

drop. The RH of humid flow in the inner tube of NH-3 is controlled with a similar PID system as that for 157 

NH-1. A RH sensor (Vaisala Model HMT330) downstream of NH-3 is used to provide feedback to the PID 158 

system. In our nano-HTDMA system, a dew point mirror (DPM: EDGE TECH Model MIRROR-99) is 159 

placed in the excess flow line to measure the RH and temperature of excess flow of the nano-DMA2. During 160 

the operation, the difference between sheath flow RH and aerosol flow RH has been maintained within 161 

±1% (see more details in Section 2.2). 162 

The sheath flow is maintained to the set flow rate with a PID-controlled recirculation blower (RB: 163 

AMETEK Series MINISPIRAL). Prior to every size scan, the sheath flow rate of nano-DMA2 is adjusted 164 

by the PID system according to the measurement of a mass flow meter (MFM: TSI Series 4000) in the 165 

sheath flow line. In order to minimize the pressure drop along the recirculating sheath flow loop, low flow 166 

resistance MFM and hydrophobic filter (HF: Whatman Model 6702-3600) are used. A heat exchanger (HE, 167 

Ebmpapst Model 4414FM) is installed downstream of the RB to minimize the temperature perturbation in 168 

the sheath flow by the heat generated in the RB. 169 

As aforementioned, temperature non-uniformity is the main contributor to the fluctuation of RH within 170 

humidified DMA. Temperature difference within nano-DMA2 is unavoidable mainly due to temperature 171 

difference between inner electrode and the rest of nano-DMA2 parts and/or the temperature difference 172 

between aerosol and sheath flow (Duplissy et al., 2009; Bezantakos et al., 2016). As shown in Fig. 1, to 173 

investigate and monitor the temperature difference within nano-DMA2 during measurements, a 174 

temperature sensor (THERMO ELECTRON Model Pt100) is placed at the inlet of the sheath flow and the 175 

temperature of sheath excess flow is monitored by the DPM. Note that, a DPM should be installed as close 176 
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as possible to the nano-DMA2 in the excess flow, which better represents the conditions inside the nano-177 

DMA2, such as temperature and RH (Wiedensohler et al., 2012). In addition, the temperature of aerosol 178 

flow is monitored at the inlet of the aerosol flow of nano-DMA2. 179 

Moreover, to maintain a stable environment that required for the growth factor measurements, nano-DMA2 180 

with its sheath flow humidification system is placed in a well-insulated housing chamber (marked with 181 

yellow dashed lines in Fig. 1). An air conditioner (Telemeter Electro Model TEK-1004-RR-24-IP55) is 182 

installed inside the housing to maintain a constant temperature (292.15±0.1 K), which is set to be ~1 K 183 

lower than the constant laboratory temperature (293 K) in order to achieve high RH (~90%) inside nano-184 

DMA2. 185 

2.2 Calibration of nano-HTDMA 186 

The purpose of this study is to design and build a nano-HTDMA system that is able to measure the 187 

hygroscopic properties of nanoparticles, especially in the sub-10 nm size range. A small perturbation in the 188 

measurement conditions may lead to large biases in the results. Hence, to provide high quality 189 

hygroscopicity measurements of nanoparticles, systematic calibration of the nano-HTDMA should be 190 

conducted regularly to ensure the accuracy and stability of the measurement conditions. Table 1 lists the 191 

possible sources of uncertainty, which could affect the performance of the HTDMAs. In our setup, 192 

nanoparticle sizing, aerosol/sheath flow rates, the high voltage (HV) applied to nano-DMAs, RH sensors, 193 

and temperature sensors are calibrated and verified independently. 194 

Note that in the following, for calibration and/or checking of different parameters, the criteria and/or 195 

standard that the nano-HTDMA system has to meet are listed mainly according to the suggestions from 196 

Duplissy et al., (2009) and Wiedensohler et al. (2012), which are not specifically provided for accurately 197 

measuring sizes or hygroscopic growth of sub-10 nm nanoparticles. Compared with these criteria, to 198 

measure hygroscopic growth of sub-10 nm nanoparticles, we have achieved a better condition for our nano-199 
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HTDMA system after comprehensive calibrations described as follows (more details about performance of 200 

our system see section 3). 201 

2.2.1 Sizing accuracy 202 

For particle diameters higher than 100 nm, the verification of sizing accuracy of DMAs can be 203 

accomplished by using certified particles of known sizes such as polystyrene latex (PSL) spheres (Hennig 204 

et al., 2005; Mulholland et al., 2006; Duplissy et al., 2009; Wiedensohler et al., 2012, 2018). The particle 205 

sizing of nano-DMA2 is checked with PSL by switching off the sheath flow and the HV supply of nano-206 

DMA1, which actually in this case does not function as a DMA, but rather a stainless-steel tube. Sizing 207 

agreement between measured diameters and nominal diameters of PSL particles above 100 nm should be 208 

within ±3% (Wiedensohler et al., 2012). After confirming the accurate sizing of nano-DMA2, the sizing 209 

accuracy of nano-DMA1 can be in turn checked by the nano-DMA2 with a full scan of a certain size of 210 

PSL selected by the nano-DMA1. Note that, it is important to check not only the sizing accuracy of both 211 

DMAs, but also the sizing agreement between the nano-DMA1 and nano-DMA2. To achieve good 212 

hygroscopicity measurements of nanoparticles, the sizing offset of the two DMAs should be within ±2-3% 213 

(Massling et al., 2011; Zhang et al., 2016). 214 

For nanoparticles with diameters smaller than 100 nm, the sizing accuracy is, however, difficult to check 215 

by using PSL nanoparticles. This is mainly because the size of residual material in the solution also peaks 216 

around 20 – 30 nm (Fig. S2a), resulting in an asymmetric number size distribution of generated PSL 217 

nanoparticles (Fig. S2b) (Wiedensohler et al., 2012). PSL nanoparticles with diameters below 20 nm are 218 

not commercially available (https://www.thermofisher.com/order/catalog/product/3020A), making the 219 

verification in this size range even impossible. Sizing accuracy of nanoparticles is critically determined by 220 

sheath flow rates and HV applied to the nano-DMAs. However, unlike for the 100 nm nanoparticles, a ±2-221 

3% sizing offset between the two DMAs would be very difficult to maintain for nanoparticles with 222 

diameters smaller than 20 nm. Thence, accurate calibrations of sheath flow rates and high voltage are crucial 223 

https://www.thermofisher.com/order/catalog/product/3020A
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for constraining the uncertainty associated with sizing of nanoparticles below 100 nm. The calibrations for 224 

aerosol/sheath flow, DMA voltage, and sensors will be described in detail in the following Section 2.2.2-225 

2.2.5. 226 

2.2.2 Aerosol and sheath flow 227 

Sizing accuracy of a DMA directly depends on the accuracies of aerosol and sheath flow rates. The aerosol 228 

flow rate at the inlet of the nano-DMA1 is checked by using a bubble flow meter (Gilian Model Gilibrator-229 

2). Wiedensohler et al. (2012) recommended that the measured aerosol flow rate should not deviate more 230 

than 5% from the set flow rate during the measurements, otherwise one should check the flow rate of CPC 231 

or if there is a leakage in the system. Details about leakage checking can be found in Birmili et al. (2016). 232 

To calibrate the sheath flow, a verified MFM (TSI Series 4000) is placed in the recirculating sheath flow 233 

close-loop upstream of the MFM. By applying a series of sheath flow rates, a calibration curve (flow rate 234 

vs. MFM analogue output) can be obtained according to the reading of the reference MFM. Maximum 235 

deviation of 2% from the sheath flow rate value of the reference MFM is recommended by Wiedensohler 236 

et al. (2012), which can keep sizing accuracy of 200 nm PSL particles within ±2%. 237 

2.2.3 DMA voltage 238 

The sizing of nano-DMAs is very sensitive to the accuracy and precision of the voltages applied, especially 239 

when measuring nanoparticles in the sub-10 nm diameter range. A verified reference voltage meter with 240 

voltage up to 1000 V (Prema Model 5000 DMM, accuracy 0.005%) is used to calibrate the HV supply of 241 

the nano-DMAs (0-350 V). By setting a series of analogue voltage values, the HV applied to nano-DMA 242 

can be calibrated according to the values shown in the reference voltage meter. For our nano-DMAs, sub-243 

10 nm in particle sizes correspond to voltage below 50 V. Thence, voltage calibration should be performed 244 

with a higher resolution (smaller voltage interval) from 0 to 50 V (shown in the insert of Fig. 2). 245 

2.2.4 RH sensor 246 
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One typical method to calibrate RH sensors in a HTDMA system is to measure the hygroscopic growth 247 

factors of ammonium sulfate (Hennig et al., 2005), although the effects of shape factors, restructuring, and 248 

impurities in the solutions may hamper a reliable RH calibration with this method (Duplissy et al., 2009). 249 

Moreover, this indirect RH sensor calibration through measurement of the hygroscopic growth factors of 250 

ammonium sulfate (usually with nanoparticle diameters around or above 100 nm) only calibrates the RH 251 

values higher than the ERH of the pure salt. Calibration of RHs below ERH of ammonium sulfate is 252 

important for the phase transition measurements. Most importantly, we are investigating the hygroscopic 253 

growth factors of ammonium sulfate nanoparticles. Hence, using ammonium sulfate nanoparticles to 254 

calibrate RH sensors in our system becomes invalid. 255 

Therefore, we alternatively calibrate the RH sensors by using a DPM (EDGE TECH Model MIRROR-99), 256 

which is recommended in several previous studies (Hennig et al., 2005; Duplissy et al., 2009; Biskos et al., 257 

2006a, b, 2007). In the calibration, the DPM and RH sensors should be kept in the well-insulated chamber 258 

with constant laboratory conditions (e.g., flow rates, temperature, and pressure). By running the DPM and 259 

all the other RH sensors in parallel at various RHs (5% to 90%), a calibration curve of the RHs measured 260 

by the DPM against analogue voltages of RH sensor can be obtained. 261 

2.2.5 Temperature sensor 262 

Since all our temperature sensors and the high accurate DPM (EDGE TECH Model MIRROR-99) are 263 

installed in the aforementioned well-insulated chamber and the chamber temperature is maintained with air 264 

conditioner at about 292.15±0.1 K, we calibrate the temperature sensors and corrected their systematic shift 265 

by comparing the record of temperature sensors and the DPM by keeping them in parallel inside the 266 

chamber over a 12-hour time period. 267 

2.3 Particle generation 268 
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The experiments shown in this study were conducted using laboratory generated ammonium sulfate and 270 

sodium sulfate nanoparticles. Nanoparticles with diameters of 6, 8, and 10 nm were generated by an 271 

electrospray (AG: TSI Model 3480) with 1, 5, and 20 mM aqueous solution of ammonium sulfate and 272 

sodium sulfate (Aldrich, 99.99%), respectively. The generated particles were then diluted and dried to RH 273 

below 2% by mixing with dry and filtered N2 (1 l/min) and CO2 (0.1 l/min). The dried polydisperse aerosol 274 

nanoparticles were subsequently neutralized by a Po210 neutralizer. To avoid blocking the 25-μm capillary 275 

of the electrospray with high solution concentration, we used an atomizer (AG: TSI Model 3076) to 276 

generate nanoparticles with diameters of 60-100 nm and 20 nm with 0.05 and 0.001 wt% solution of 277 

ammonium sulfate and sodium sulfate (Aldrich, 99.99%), respectively. Also, 100-nm PSL nanoparticles 278 

were atomizing a PSL solution of mixing 3 drops of 100-nm PSL with 300 mL distilled and de-ionized 279 

milli-Q water. The generated nanoparticles were subsequently dried to RH below 10% with a custom-built 280 

Nafion dryer (ND: TROPOS Model ND.070) and then neutralized by a Kr85 neutralizer. 281 

The solutions used in our measurements were prepared with distilled and de-ionized milli-Q water 282 

(resistivity of 18.2 MΩ cm at 298.15 K). Note that, for 100-60 nm and 20 nm, the solution concentration 283 

was adjusted so that the sizes selected by the nano-DMA1 were always larger than the peak diameter of the 284 

number size distribution of the generated nanoparticles to minimize the influence of the multiple charged 285 

nanoparticles in hygroscopicity measurements. The influence of multiple charges on sub-10 nm particles 286 

is expected to be very small, we, however, still used different concentrations so that the sizes selected by 287 

the nano-DMA1 were always around the peak of the number size distribution of the generated nanoparticles 288 

by the electrospray (Fig. S3). This is to ensure that we could have as many particles as possible to 289 

compensate the strong loss of very small particles in the whole humidification systems. 290 

 291 

3 Results and discussion 292 

3.1 Performance of the nano-HTDMA 293 
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3.1.1 Sizing accuracy 294 

In this section, we show the performance of our nano-HTDMA after a full calibration, including accuracy 295 

and stability of the aerosol/sheath flow rates, the voltage applied to the nano-DMAs, and nanoparticle-296 

sizing accuracy. In our study, the sheath/aerosol flow rates and nano-DMA voltage supply have been 297 

calibrated every day and every two weeks, respectively. The deviations of the measured aerosol/sheath flow 298 

rates from the set-point values are less than ±1%, which is lower than the maximum variation of 2% 299 

recommended by Wiedensohler et al. (2012). 300 

The voltage applied to the nano-DMAs (up to 350 V) is kept within ±0.1% around the set value shown in 301 

the voltage meter. As shown in Fig. 3a, when test with 100-nm PSL nanoparticles, the average peak 302 

diameter of scans from the nano-DMA2 is 100.4 nm, which matches well with the mean diameter of PSL 303 

nanoparticles (100±3 nm, Thermo Fisher Scientific Inc.). Afterwards, when using nano-DMA1 select 100 304 

nm PSL, the scanned size distribution by nano-DMA2 has a peak diameter at 100.3 nm (Fig. 3b), indicating 305 

a good sizing accuracy of the nano-DMA1 too. As discussed in Sec. 2.2.1, it is difficult to verify the sizing 306 

accuracy of sub-100 nm aerosol nanoparticles using PSL nanoparticles. Duplissy et al. (2009) and 307 

Wiedensohler et al. (2012) suggested to estimate the sizing accuracy of sub-100 nm nanoparticles through 308 

DMA transfer function. The theoretical DMA transfer function (see SI. S2. Eq. (S2-S4)) was proposed by 309 

Knutson and Whitby (1975) and they noted that sizing is crucially dependent on flow rates and high voltage 310 

(HV) applied to the DMA. In our study, the flow accuracy calibrated by the mass flow meter (TSI series 311 

4000) is within ±2%. The variation of voltage applied to the nano-DMAs (0-12500 V, 0-350 V) around the 312 

set value were measured with voltage power supply (HCE 0-12500, HCE 0-350, Fug Electronic) and 313 

summarized in Table S5. According to the error propagation formula (see SI. S2. Eq. (S5)) (Taylor and 314 

Taylor, 1997), the calculated uncertainty in sizing of 6-100 nm nanoparticles increases as size decreases 315 

(Table S5).The estimated sizing accuracy is slightly smaller than the sizing offset of two nano-DMAs, but 316 

in principle they are still consistent with each other. This suggests that uncertainties of slip correction, DMA 317 
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dimensions (inner and outer radius, length), temperature, pressure, and viscosity of air may also affect the 318 

sizing accuracy (see SI. S2. Eq. (S4), Kinney et al., 1991). Besides, Wiedensohler et al. (2012) also 319 

suggested that particle losses, the size- and material-dependent CPC counting efficiency can  affect the size 320 

accuracy of DMAs. 321 

After calibration, on average a <1.4% sizing offset between the two nano-DMAs can be achieved for 322 

ammonium sulfate nanoparticles with dry diameters of 100 nm, 60 nm and 20 nm (Fig. 3c, Fig.5, Table S3, 323 

Fig. S4, and Fig. S5), which is much better than the 2-3% criteria recommended by Massling et al. (2011) 324 

and Zhang et al. (2016).  For sub-10 nm ammonium sulfate nanoparticles, our system has an average sizing 325 

offset of <0.9% for 10 and 8 nm particles and ~1.4% for 6 nm particles, respectively (Fig. 3d, Fig. 5, Table 326 

S3, and Fig. S6). As discussed above, uncertainties in the sheath flow rates and nano-DMA voltages will 327 

increase as size decreases, which results in a larger sizing offset of 6-nm nanoparticles compared with other 328 

sizes. Note that, we also tested to calibrate the DMA voltage with a voltage meter with lower accuracy of 329 

±1%, and the DMA voltages can only be kept within ±1% around the set value. In this way, we found a 330 

much larger sizing offset for the sub-10 nm particles, i.e., 5.4% and 6.0% for 8 and 6 nm ammonium sulfate 331 

nanoparticles, respectively. These results show that maintaining an accurate sheath/aerosol flow (with ±1% 332 

around the set value) together with a careful voltage calibration (with ±0.1% around the set value, especially 333 

in low voltage range, i.e., <50 V for our system) is the key for accurate sizing of sub-10 nm nanoparticles. 334 

3.1.2 Preventing pre-deliquescence in the deliquescence measurement mode 335 

Pre-deliquescence of dry nanoparticles in the deliquescence measurement mode is an important issue that 336 

needs to be resolved in order to obtain accurate DRH (Biskos et al., 2006b; Duplissy et al., 2009; 337 

Bezantakos et al., 2016; Hämeri et al., 2000). Since temperature and RH are closely linked and accurate 338 

monitoring of these two quantities in the system are critical for nano-HTDMA measurements, we calibrated 339 

all RH and T sensors regularly (every two weeks in this study). To prevent pre-deliquescence and optimize 340 

the system, we have conducted three tests using ammonium sulfate nanoparticles with a dry diameter of 341 
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100 nm. In the first test, we regulated the RH of excess flow (RHe) and made it equal to that of the aerosol 342 

flow at the inlet of nano-DMA2 (RHa), i.e., RHe=RHa, as done by previous HTDMA measurements, e.g., 343 

Villani et al. (2008). As shown in Fig. 4a, the measured growth factors of 100-nm ammonium sulfate are 344 

in good agreement with predictions of the Extended Aerosol Inorganic Model (E-AIM; Clegg et al., 1998) 345 

at RH above 80%. However, the ammonium sulfate nanoparticles deliquesce at 75% RH, which is 346 

significantly lower than the expected DRH (80%, Tang and Munkelwitz (1994)). Since our RH sensors 347 

were all well calibrated and the uncertainty of RH measurement is ±1%, it is reasonable to hypothesize that 348 

the RH upstream of nano-DMA2 has already reached the deliquesce RH of ammonium sulfate 349 

nanoparticles. When these aerosol nanoparticles move downstream of the nano-DMA2, the RH decreases 350 

back to 75%, which dehydrates the deliquesced ammonium sulfate nanoparticles. To avoid the pre-351 

deliquescence, Hämeri et al. (2001) has suggested to set RHa to be 3-5% lower than RHe. In the second test, 352 

we have configured and regulated the system following this suggestion, i.e., RHeRHa+3%. In this case, 353 

the ammonium sulfate nanoparticles still deliquesce at 79% RH (Fig. 4b), even if RHa is 6% lower than 354 

RHe. 355 

Previous studies (Biskos et al., 2006b; Bezantakos et al., 2016) have shown that RH non-uniformities within 356 

the nano-DMA2 can result in inaccurate measurements of phase transition and hygroscopic growth of 357 

aerosol nanoparticles. One reason for RH non-uniformities within nano-DMA2 is that the sheath flow RH 358 

is different from the aerosol flow RH at the inlet of the DMA (Hämeri et al., 2000, 2001). Another important 359 

reason is the existence of temperature gradient within nano-DMA2 (Bezantakos et al., 2016). Hence, in the 360 

third test, we moved the RH sensor from the excess flow downstream of nano-DMA2 to the sheath flow 361 

upstream of nano-DMA2 and then regulated RH of sheath flow (RHs) the same as RHa (shown in Fig. 1), 362 

i.e., RHs=RHa, as done by Kreidenweis et al. (2005), Biskos et al. (2006a, b), and Massling et al. (2011). 363 

Note that to minimize the temperature gradient within the nano-DMA2 in our system so that nanoparticles 364 

can undergo almost the same RH conditions, the nano-DMA2 with its sheath flow humidification system 365 

has been placed in a well-insulated air-conditioned chamber.  The air temperature inside the chamber can 366 
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be maintained at an almost constant level (292.15±0.1 K).  In addition, a heat exchanger was installed 368 

downstream of the recirculation blower to minimize the temperature perturbation in the sheath flow by the 369 

heat generated in the RB. Unlike previously reported by Bezantakos et al. (2016) that the RH at the outlet 370 

was higher than that the inlet of the sheath air, we monitored that the sheath flow temperature at the inlet 371 

of nano-DMA2 is slightly lower (less than ~0.2 K) than that at the outlet, i.e., the RHs at the inlet of nano-372 

DMA2 is slightly higher (~ 1%) than the RH of the excess air at the outlet.  It may due to the heat produced 373 

from the inner electrode of nano-DMA2, which we estimated to be ~0.08 W (𝑄 = 𝑚𝑑𝑇𝐶𝑝,𝑘) by considering 374 

the density and heating capacity of air, and aerosol and sheath air flow rate ((ρ=1.2041kg/m3; Cp= 375 

1.859kJ/kg°C) (Atkins et al., 2006). Although this temperature perturbation (less than ~0.2 K between the 376 

sheath flow at the inlet and the excess flow at the outlet of the nano-DMA2) is larger than the ideal condition 377 

of less than 0.1 K that Duplissy et al. (2009) and Wiedensohler et al. (2012) suggested, our experimental 378 

results show that a prompt phase transition can be still achieved.  In this case, the measured DRH of 379 

ammonium sulfate nanoparticles is almost at 80% (Fig. 4c and 4d). 380 

3.1.3 Prompt phase transition of ammonium sulfate 381 

Figure 5 and 6 show the normalized particle number size distributions measured by the nano-DMA2 in the 382 

respective deliquescence and efflorescence measurement modes for ammonium sulfate nanoparticles with 383 

dry mobility diameters of 20 nm, 10 nm, and 6 nm (see Fig. S4 for 100 nm, see Fig. S5 for 60 nm, see Fig. 384 

S6 for 8 nm). In the deliquescence measurement mode (Fig. 5, Fig. S4a, and Fig. S5a), we observed the 385 

similar double-mode phenomenon as reported by Mikhailov et al. (2004) and Biskos et al. (2006b, 2007). 386 

For example, at 20 nm, there are two distinct intersecting modes of particle size distributions determined 387 

by the nano-DMA2 in the RH range from 79% to 83% RH (around the DRH of ammonium sulfate). Biskos 388 

et al. (2006b, 2007) attributed these two modes to the co-existence of solid and liquid phase nanoparticles 389 

at RH close to the DRH of ammonium sulfate, due to the slight inhomogeneity of RH in the second nano-390 

DMA, i.e., some nanoparticles have already undergo deliquescence (liquid state) and some are not (solid). 391 
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This is evident through a double-mode log-normal fitting (red and blue modes in Fig. 5). Until RH ~82%, 396 

the peak diameter of the red mode at 82% RH is similar to that at 11% RH, indicating that these 397 

nanoparticles are still in a solid state. At 82% RH, a population of ammonium sulfate nanoparticles starts 398 

to deliquesce and exists in a distinct mode with significant larger peak diameter (blue mode), although 399 

majority of the nanoparticles remain solid (red mode). Further increase RH, the peak diameter of 400 

normalized number size distribution of the blue mode increases, indicating the continuous growth the 401 

nanoparticles after deliquescence. However, in our case the double-mode phenomenon was not observed 402 

for 8 and 6 nm ammonium sulfate nanoparticles (Fig. 5 and Fig. S6a). To have a better estimation of DRH 403 

when the double modes occurred, the peak diameter of the mode with larger number of nanoparticles was 404 

chosen for growth factor calculation (Biskos et al., 2006b, 2007). For example, for 20 nm ammonium 405 

sulfate nanoparticles, the peak diameters of normalized number size distribution of the red and blue modes 406 

are used to calculate growth factor at RH between 79% to 83%, respectively. 407 

For the efflorescence measurement mode, we adopted the approach of Biskos et al. (2006b) and used the 408 

geometric standard deviation of number size distribution (sigma: σ) to quantify the diversity of the sizes of 409 

nanoparticles. As shown in Fig. 6, Fig. S4b, Fig. S5b, and Fig. S6b, broadening of the normalized number 410 

size distributions measured with nano-DMA2 was only observed for 20-nm ammonium sulfate 411 

nanoparticles in the RH range from 33% to 30%. There, at RH higher than 33% or lower than 30%, σ stays 412 

stably at 1.072. However, clear increases of σ (1.078-1.087) were observed for RH between 33% and 30%. 413 

The normalized number size distributions in the RH range from 33% to 30% can be further resolved by 414 

double-mode fit with fixed σ of 1.072 (the red and the blue mode in Fig. 6 for 20 nm). The ammonium 415 

sulfate nanoparticles in the red mode at RH between 33% to 30% are in solid state because the peak diameter 416 

of red mode is similar as that at 11% RH. However, within this RH range, the peak diameter of the blue 417 

mode is significantly larger, indicating that these nanoparticles are still in liquid state. Further decreasing 418 

RH (lower than 30%), only one mode has been observed and the peak diameter of the normalized number 419 

size distribution almost unchanged as RH decreases (red mode in Fig. 6 for 20nm), which means that the 420 
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nanoparticles have been all in the solid state. Similar to the deliquescence measurement shown above and 422 

in Fig. 5, the co-existence of solid and aqueous phase nanoparticles at RH 30-33% is also very likely to 423 

stem from the slight heterogeneous RH in nano-DMA2 (Biskos et al., 2006b). To have a better estimation 424 

of ERH when the broadening phenomenon exists, the peak diameter of the mode with larger number of 425 

nanoparticles was used for growth factor calculation. After such data processing in both deliquescence and 426 

efflorescence modes, we obtained prompt deliquescence and efflorescence of 6 to 100 nm ammonium 427 

sulfate nanoparticles (more details in Section 3.1.4). 428 

3.1.4 Size-dependent hygroscopicity of ammonium sulfate nanoparticles  429 

Figure 7 shows the humidogram of ammonium sulfate nanoparticles measured by our nano-HTDMA 430 

system in the size (dry diameter) range of 6-100 nm. The detailed comparison between our results and 431 

Biskos et al. (2006b) during both deliquescence and efflorescence measurements are presented in Fig. 8a 432 

and b (also Fig. S7). In general, our results are in a good agreement with the measurement results of Biskos 433 

et al (2006) and the theoretical prediction by Cheng et al. (2015). First, there is a strong size dependence in 434 

the hygroscopic growth factor of ammonium sulfate nanoparticles, and smaller ammonium sulfate 435 

nanoparticles exhibit lower growth factor at a certain RH. For example, the difference of the growth factor 436 

between 6 and 100 nm nanoparticles is up to 0.28 at 80% RH (Fig. S8a). Second, there is, however, no 437 

significant size dependence in both DRH and ERH (Fig. S8b). For nanoparticles of different sizes (6-100 438 

nm), the DRH and ERH of ammonium sulfate varies slightly from ~80-83% and ~30-34%, respectively. 439 

This variation of the DRH and ERH along the size is much smaller for ammonium sulfate nanoparticles 440 

than for sodium chloride (Biskos et al. 2006a, 2007). 441 

Although our results in general agree well with Biskos et al. (2006b), the growth factors of 10, 8, and 6 nm 442 

ammonium sulfate nanoparticles that we measured at high RH (i.e., > ~70%) are slightly lower (~0.02 in 443 

growth factor) than that in Biskos et al. (2006b) in both deliquescence and efflorescence processes (Fig. 8b 444 

and Fig. S7). We calculated the uncertainties of growth factor of 10-nm ammonium sulfate from 80% to 445 
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90% RH for our system and Biskos et al. (2006b) system by √((𝑔𝑓
√2Ɛ𝐷𝑝

𝐷𝑝
)

2

+ (Ɛ𝑅𝐻
𝑑𝑔𝑓

𝑑𝑅𝐻
)

2

, ) (Mochida 446 

and Kawamura, (2004)).  Here, ƐDp, ƐRH, and gf are uncertainty of particle mobility diameter, uncertainty 447 

of relative humidity, and growth factor with respect to RH, respectively. The average sizing offsets of our 448 

system and Biskos et al. (2006b) for 10 nm ammonium sulfate are taken here as 
Ɛ𝐷𝑝

𝐷𝑝
 (see Table 1). As shown 449 

in the insert of Fig. 8b, the discrepancies between the two systems are still within measurement uncertainty. 450 

In addition, compared to Biskos et al. (2006b), our results show a similar re-structuring in deliquescence 451 

mode at RH between about 20% to 75% for 100, and 60 nm ammonium sulfate nanoparticles (Fig 8c). 452 

However, different than in Biskos et al. (2006b), we do not find re-structuring for smaller ammonium 453 

sulfate nanoparticles (20, 10, 8, and 6 nm) at RH below deliquescence point (Fig. 8c and Fig. 8d). There 454 

seems to be continuous water adsorption and the adsorbed water layers (Romakkaniemi et al., 2001) 455 

become significantly thicker when RH closer to the DRH (i.e, RH > 70%). For example, a slight increase 456 

in hygroscopic growth factor of 6-nm ammonium sulfate nanoparticles is observed in the RH range from 457 

65 to 79% RH before deliquescence. This is attributed to water adsorption onto the surfaces of these 458 

nanoparticles. It seems that smaller nanoparticles have a stronger tendency of adsorbing water when 459 

approaching the DRH than the larger ones. Similar phenomenon has also observed by Hämeri et al. (2000, 460 

2001), Romakkaniemi et al. (2001), Biskos et al. (2006a, b, 2007), and Giamarelou et al. (2018). The reason 461 

for such enhanced adsorption at smaller sizes is still to be investigated. Note that, the ammonium sulfate 462 

hygroscopic data from Biskos et al. (2006b) shown here are all generated by an electrospray, but in our 463 

experiments, only the ammonium sulfate nanoparticles with diameters smaller than 20 nm (i.e., 10, 8, and 464 

6 nm) were generated by an electrospray, while the larger nanoparticles (i.e., 20, 60, and 100 nm) were 465 

generated by a atomizer. Different from generation conditions of for 6-10 nm ammonium sulfate 466 

nanoparticles in Biskos et al. (2006b), in our study, in order to minimize the multiple charged nanoparticles, 467 

three different concentrations are used so that the size selected by the nano-DMA1 (i.e., 6, 8, 10 nm) was 468 
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always slight larger than peak of the number size distribution of the generated nanoparticles by the 471 

electrospray. This also helps us to have as many as nanoparticles as possible to compensate the strong 472 

nanoparticle losses in the nano-HTDMA system. In addition, we used both electrospray and atomizer to 473 

generate 20-nm ammonium sulfate,  and compared their hygroscopic growth factors prior to deliquescence. 474 

Figure S12a shows a ~ 0.1 higher growth factor of 20-nm ammonium sulfate generated by the electrospray 475 

than that using the atomizer in the RH range from 55% to 82%, which is similar to the difference in 476 

hygroscopic growth factor of 20-nm NaCl aerosol nanoparticles using the different generation method as 477 

observed in Fig S12b in Biskos et al. (2006a). Besides different generation conditions, the morphology of 478 

dried ammonium sulfate particles may also differ slightly between our study and Biskos et al. (2006) 479 

because of different dying rate, as drying flow rates and RH of the dried ammonium sulfate in the two 480 

HTDMA systems are different too. This means the different generation methods and drying conditions may 481 

influence the surface structure of the nanoparticles and thus their interaction with the adsorbed water layers 482 

(Iskandar et al., 2003; Xin et al., 2019). 483 

3.2 Size-dependent hygroscopicity of sodium sulfate nanoparticles 484 

As a common constituent of atmospheric aerosol particles (Tang and Munkelwitz, 1993, 1994; Tang 1996; 485 

Tang et al., 2007), hygroscopicity of sodium sulfate with diameters above 20 nm particles has been 486 

investigated by a few groups (Tang et al., 2007; Xu and Schweiger, 1999; Hu et al., 2010).  However, its 487 

hygroscopic behavior in the sub-10 nm size range has not been investigated yet.  In this study, we applied 488 

our nano-HTDMA system to measure the hygroscopic growth factors, DRH, and ERH of sodium sulfate 489 

nanoparticles with dry size from 20 nm down to 6 nm. 490 

Figure 9 shows the measured size-resolved hygroscopic growth factors of sodium sulfate nanoparticles. 491 

Different from the observations by Tang et al. (2007) using an electrodynamic balance (EDB), we observed 492 

prompt deliquescence and efflorescence for both 20-nm and 6-nm sodium sulfate nanoparticles. Two 493 

intersecting modes in the measured number size distribution of humidified sodium sulfate nanoparticles is 494 
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observed at RH close to the DRH (Fig. S9 and S10 in the Supplementary Information) and ERH, suggesting 495 

an externally mixed of aqueous and solid nanoparticles. As shown in Sect. 3.1.3, a similar phenomenon is 496 

also observed for ammonium sulfate, which could be attributed to the slight RH heterogeneities in nano-497 

DMA2, which makes only part of the nanoparticles deliquesce at RH close to the DRH, while the others 498 

remain in solid state. 499 

Together with the hygroscopic growth of 14-16 µm and 200-20 nm sodium sulfate measured previously by 500 

Tang et al. (2007) and Hu et al. (2010), we show a strong size dependence in hygroscopic growth factors 501 

of sodium sulfate nanoparticles (Fig. S11d).  For example, at RH 84%, the hygroscopic growth factor of 6 502 

nm sodium sulfate is only ~ 1.3 (in efflorescence mode), while the respective growth factors are about 1.5 503 

and 1.8 for 20 nm and 14-16 µm particles. As shown in Fig. 9, E-AIM already agrees well with the 504 

hygroscopic growth of micrometer particles (14-16 µm) without shape correction (DeCarlo et al., 2004), 505 

i.e., shape factor () of 1.0. However, to explain observation, a shape factor of ~1.16 and 1.26 would be 506 

needed for 20 nm and 6 nm sodium sulfate nanoparticles, respectively. 507 

There is no significant change in DRH between 14-16 µm (~84%) and 20 nm (~84%) sodium sulfate 508 

particles (Fig. 9).  This is consistent with Hu et al. (2010) where no change in DRH from 200 nm down to 509 

20 nm (~82%, see Table 1 from Hu et al. (2010)) was observed. However, a significant increase of DRH 510 

occurred when further decreasing particle diameters to 6 nm (DRH = ~90%). The size dependence of ERH 511 

is stronger than that of DRH, as there is already a clear increase of ERH from micrometer 14-16 µm (~57%) 512 

to 20 nm (~62%) sodium sulfate particles.  When further reducing the particle diameters to 6 nm, an almost 513 

6% increase of DRH can be found, compared to the micrometer 14-16 µm particles (i.e., ERH increases 514 

from 57 to 82%, respectively). Different from ammonium sulfate, of which DRH and ERH shows no 515 

significant size dependence, there is a strong size-dependence of DRH and ERH of sodium sulfate 516 

according to our observations down to 6 nm. The different size dependence of DRH and ERH between 517 

sodium chloride and ammonium sulfate have been theoretically studied and explained by Cheng et al. 518 
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(2015). The main reason is the different concentration dependence of solute activities and the different 520 

solute-liquid surface tension, e.g., the same change in solute molality leads to a larger change in the solute 521 

activity of sodium chloride than that of ammonium sulfate. The phase transition concentration 522 

(deliquescence and crystallization concentration) of ammonium sulfate is thus more sensitive to the size 523 

change compared to that of sodium chloride, leading to the almost unchanged DRH and ERH of ammonium 524 

sulfate nanoparticles (Cheng et al., 2015). For the size dependence of phase transition of sodium sulfate, a 525 

strong size effect on DRH and ERH is similar to that of sodium chloride but different from that of 526 

ammonium sulfate in the size range from 6 to 20 nm, suggesting that non-ideality of solution property is 527 

close to that of sodium chloride but weaker than that of ammonium sulfate. As different hydrates of sodium 528 

sulfate may exist during the deliquescence and efflorescence processes (Xu and Schweiger, 1999), to 529 

explain the underline mechanism of the size dependent hygroscopicity of sodium sulfate particles can be 530 

challenging. 531 

 532 

4 Summary and Conclusion 533 

In this study, we presented our newly designed and self-assembled nano-HTDMA for measuring 534 

hygroscopicity of nanoparticles in the sub-10 nm diameter size range. We also introduced the 535 

comprehensive methods for system calibration and reported the performance of the system, focusing on the 536 

sizing accuracy and preventing pre-deliquescence in the deliquescence measurement mode. By comparing 537 

with previous studies on ammonium sulfate nanoparticles (Biskos et al., 2006b), we show that our system 538 

is capable of providing high quality data of the hygroscopic behavior of sub-10 nm nanoparticles. We then 539 

extended our measurements for sodium sulfate nanoparticles, of which size-dependent deliquescence and 540 

efflorescence have been clearly observed for nanoparticles down to 6 nm in size, with similar behavior as 541 

sodium chloride. 542 

Deleted:  The strong size-effect on the DRH and ERH of 543 
sodium chloride and on hygroscopic growth factors of 544 
ammonium sulfate have been observed by Biskos et al. 545 
(2006a, b, 2007) and theoretically studied and explained by 546 
Cheng et al. (2015). Owning to the strong non-ideality of 547 
aqueous ammonium sulfate solution, the phase transition 548 
concentration (deliquescence and crystallization 549 
concentration) of ammonium sulfate is much more sensitivity 550 
to the size changes from 60 nm to 6 nm than that of sodium 551 
chloride, leading to the almost unchanged DRH and ERH of 552 
ammonium sulfate nanoparticles (Cheng et al., 2015). 553 
Compared the three compounds, the size-dependent 554 
hygroscopicity of sodium sulfate nanoparticles from 20 nm to 555 
6 nm is similar to that of sodium chloride, but different to that 556 
of ammonium sulfate, where no significant change in DRH 557 
and ERH was observed.  However, in this size range, the 558 
increase of the ERH and the decrease of growth factor upon 559 
decreasing size seems to be stronger for sodium sulfate than 560 
sodium chloride, although no significant change in DRH was 561 
observed from micrometer size particles down to 20 nm.  562 
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As we know, atmospheric aerosol particles consist of not only inorganic components, but also a vast number 563 

of organic components existing in the atmosphere. However, their physico-chemical properties are still not 564 

fully understood, especially when comes to the nano-scale and supersaturated concentration range. The 565 

nano-HTDMA system can be directly applicable to explore the size dependence of aerosol nanoparticles. 566 

Combing the multi-size measurements of hygroscopicity and the Differential Köhler Analyses (DKA, 567 

Cheng et al., 2015) in nano size range, we will be able characterize and parameterize the water activity and 568 

surface tension of different inorganic and organic systems. This will further help us to understand the 569 

formation and transformation of aerosol nanoparticles in the atmosphere and their interaction with water 570 

vapor. 571 
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Tables 941 

Table 1. Accuracy, precision and sources of uncertainty associated with HTDMA measurements. 942 

 Biskos et al. (2006b) Hämeri et al. (2000) Nano-HTDMA  

(This study) 

DMA System 

Type of DMA1 & DMA2 TSI nano-DMAs Hauke-type DMAs Vienna-type short DMAs 

Accuracy of aerosol flow in 

DMA2 

±1% (0.3-1.5 l/min) - ±1% (1.5 l/min) 

Accuracy of sheath flow in 

DMA2 

±1% (5-15 l/min) - ±1% (10 l/min) 

Accuracy of DMA voltage ±0.1% (0-500V) - ±0.1% (0-350V) 

Sizing accuracy of DMA2 

using PSL 

3% - 0.4% (100-nm PSL) 

Sizing agreement between 

DMAs 

using ammonium sulfate 

3.1% (10 nm) a 

 

±1% b 

 

0.6% (100 nm) c 

0.5% (60 nm) c 

1.4% (20 nm) c 

0.9% (10 nm) c 

-0.2% (8 nm) c 

1.4% (6 nm) c 

Precision of particle-sizing <2% - <2% (6-200 nm) d 
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Humidification System 

Type of RH sensor RH sensors 

(Omega Model HX93AV) 

Dew point mirror (GE) 

RH sensors  

(Vaisala Humitter model 50Y) 

Dew point mirror (Edge) 

RH sensors 

(Vaisala model HMT 330) 

Accuracy of RH sensors  

(0-90% RH) 

±2.5% RH 

 

±3% RH e 

 

±1% (RH sensor) 

 

Position of the probe in the 

system 

Inlet of DMA2 

(RHa sensor 
f, RHs sensor 

g) 

 

Inlet of DMA2 (RHa sensor) & excess air  

(RHs sensor, dew point mirror) 

Inlet of DMA2 (RHa sensor, 

RHs sensor) & excess air 

(dew point mirror) 

RH setting RHa=RHs RHs≥RHa+3% RHa=RHs 

Temperature Control System 

Temperature control type Thermally isolated environment 

(humidification+DMA2)h 

Thermally isolated 

environment (DMA2) 

Box T regulated 

(humidification+DMA2) 

Difference in T 

between inlet and outlet of 

DMA2 

- - <0.2°C 

-Not reported. 943 
a According to the scans of the second DMA for the hygroscopic growth of 10 nm ammonium sulfate and the growth factors at different RHs provided by Biskos et al. 944 
(2006b), we retrieved an average sizing offset of Biskos et al. (2006b) system to be ~3.1% at 10 nm (see SI, S1). 945 
b Size range not given. 946 
c See Table S2 in supporting information. 947 
d Value calculated according to the relative standard derivation. 948 
e From Vaisala Humitter model 50Y manual. 949 
f RHa: the RH of aerosol flow. 950 
g RHs: the RH of sheath flow.  951 
h Bezantakos et al. (2016).952 
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Figures 953 

 954 

Figure 1. Experimental setup of the nano-HTDMA. Here, AG: aerosol generator (aerosol atomizer or electrospray); 955 

ND: nafion dryer; Kr-85: Krypton source aerosol neutralizer; Nano-DMA: nano differential mobility analyzer; TPF: 956 

total particle filter; HF: hydrophobic filter; MFC: mass flow controller; MFM: mass flow meter; RB: recirculation 957 

blower; DPM: dew point mirror; GTHH: Gore-Tex humidifier and heater; NH: nafion humidifier; HE: heat exchanger; 958 

CPC: condensation particle counter; Black line: aerosol line; Blue line: sheath line;  Royal blue line: humidified air; 959 

Green line: MilliQ water (resistivity of 18.2 MΩ cm at 298.15 K). RHa and RHs (measured by RH sensors) represent 960 

the RH of aerosol and sheath flow in the inlet of nano-DMA2, respectively. RHe (measured by dew point) represents 961 

the RH of excess air. T represent the temperature of aerosol and sheath flow in the inlet of nano-DMA2, respectively.  962 
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Figure 2. An example of voltage calibration of the nano-DMA2. 967 
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 976 

Figure 3. Sizing accuracy and sizing offset of nano-DMAs after calibration. (a) Normalized number size distribution 977 

scanned by the nano-DMA2 for 100-nm PSL nanoparticles (black solid square). The black solid line marks peak 978 

diameter from the Gaussian fits for the scan (red curve). Normalized number size distributions scanned by the nano-979 

DMA2 for 100-nm PSL nanoparticles (b), 60-nm (c), and 10-nm (d) ammonium sulfate (AS) selected by the nano-980 

DMA1 at RH below 5% at 298 K (black solid square). The dotted lines mark the diameters of the monodispersed 981 

nanoparticles selected by the nano-DMA1, i.e., 100 nm in (b), 60 nm in (c) and 10 nm in (d). The black solid lines 982 

mark the peak diameters from the Gaussian fits (red curve). 983 
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 986 

Figure 4. Mobility-diameter hygroscopic growth factors (gf) of 100-nm ammonium sulfate (AS) nanoparticles at 298 987 

K measured in deliquescence mode. In comparison, the E-AIM model predicted growth factors of ammonium sulfate 988 

nanoparticles at 100 nm. (a) RHe=RHa, (75%, 75%) represents the (RHe, RHa), (b) RHe≥RHa+3%, (75%, 72%) 989 

represents the (RHe, RHa), and (c) RHs = RHa. (d) The enlarged view of the RH range of 70% to 84% in Fig. 4c. (80%, 990 

80%) represents the (RHs, RHa). RHs and RHe are the RH of sheath flow in the inlet of nano-DMA2 and in the excess 991 

air line, respectively; RHa is the RH of aerosol flow in the inlet of nano-DMA2. 992 
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 997 

Figure 5. Deliquescence-mode measurements of ammonium sulfate (AS) aerosol nanoparticles with dry mobility 998 

diameter from 20-6nm. The measured (black square) and fitted (solid lines) normalized size distribution are shown for 999 

increasing RH. The red and blue lines represent the aerosol nanoparticles in the solid and liquid state, respectively.  1000 

The RH history in each measurement is 5% → X%, where X is the RH value given in each panel.  1001 
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 1003 

Figure 6. Efflorescence-mode measurements of ammonium sulfate (AS) aerosol nanoparticles with dry mobility 1004 

diameter from 20-6nm. The measured (black circle) and fitted (solid lines) normalized size distribution are shown for 1005 

increasing RH. The red and blue lines represent the aerosol nanoparticles in the solid and liquid state, respectively. 1006 

The RH history in each measurement is 5%→97%→X%, where X is the RH value given in each panel. 1007 
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 1011 

Figure 7. Mobility-diameter hygroscopic growth factors (gf) of ammonium sulfate (AS) aerosol nanoparticles with dry 1012 

mobility diameter from 6 to 100 nm in the deliquescence mode (red square and error bar) and the efflorescence mode 1013 

(royal square and error bar). Deliquescence, and efflorescence relative humidity (DRH&ERH, black dashed line) of 1014 

ammonium sulfate (AS) nanoparticles with dry mobility diameter from 6 to 100 nm.  1015 
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 1019 

Figure 8. (a-b) Mobility-diameter hygroscopic growth factors (gf, black squares), deliquescence and efflorescence 1020 

relative humidity (DRH&ERH, black dashed lines) of ammonium sulfate (AS) nanoparticles with dry diameter 60 and 1021 

10 nm, respectively. Red squares and dashed lines show the respective results from Biskos et al. (2006b), respectively. 1022 

Black and red uncertainties of growth factors at certain RH are calculated by √((𝑔𝑓
√2Ɛ𝐷𝑝

𝐷𝑝
)

2

+ (Ɛ𝑅𝐻
𝑑𝑔𝑓

𝑑𝑅𝐻
)

2

), where 1023 

ƐDp, ƐRH, and gf are uncertainty of particle mobility diameter, uncertainty of relative humidity, and growth factor with 1024 

respect to RH,  respectively (Mochida and Kawamura 2004). (c-d) Comparison of growth factors of ammonium sulfate 1025 

(AS) nanoparticles with dry diameter range from 6 to 100 nm with Biskos et al. (2006b) prior to deliquescence of 1026 

ammonium sulfate nanoparticles. 1027 

 1028 

1029 
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Figure 9. Mobility-diameter hygroscopic growth factors (gf), deliquescence and efflorescence relative humidity 1031 

(DRH&ERH, red and blue dashed lines) of sodium sulfate nanoparticles with dry diameter 20 (red square) and 6 (blue 1032 

square) nm, respectively. Black squares and dashed lines show the respective results from Tang et al. (2007) with 1033 

electrodynamic balance (EDB), respectively. In this study, the black, red, and blue curves show E-AIM predictions, 1034 

including the Kelvin effect and shape factors (χ). 1035 
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Table S1: Deliquescence and efflorescence relative humidity of ammonium sulfate below 100 nm reported by difference studies in 1 

temperature ranging from 290-300K 2 

Deliquescence relative 

humidity (DRH)  

Efflorescence relative 

humidity (ERH) 

Technique 

(initial particle size) 

Reference 

80-86%* (8 nm) 

80-85%* (10 nm) 

80-90%* (15 nm) 

78-80%* (30 nm) 

76-79%* (50 nm) 

 HTDMA 

(8.10,15,30,50 nm) 

Hämeri et al. (2000)  

(cf. Figure 2a, 2b, 2c, 2d, and 2e) 

76-80%* 65%* HTDMA  

(100 nm) 

Gysel et al. (2002) 

(cf. Figure 2) 

82% (6 nm) 

81% (8 nm) 

80% (10 nm) 

82% (20 nm) 

80% (40 nm) 

80% (60 nm) 

34% (6 nm) 

33% (8 nm) 

35% (10 nm) 

35% (20 nm) 

36% (40 nm) 

33% (6 nm) 

HTDMA  

(6,8,10,20,40,60 nm) 

Biskos et al. (2006b) 

- 27-31%* (43.7 nm) 

21-30.7%* (47 nm) 

HTDMA 

(43.7,47 nm)                       

Gao et al. (2006) 

(cf. Figure 5) 

78-81%* - HTDMA 

(100 nm) 

Duplissy et al. (2009) 

(cf. Figure 4) 

77-78%* - HTDMA Duplissy et al. (2009) 

Deleted:  3 



(100 nm) (cf. Figure 4) 

78-80%* 

 

29-34%* 

 

HTDMA 

(100 nm) 

Mikhailov et al. (2009) (cf. Fig4) 

77-78% - HTDMA 

(100 nm) 

Wu et al. (2011) 

-: Not reported 4 

*: Data retrieved from figures in the references 5 

80-86%:  Non-prompt deliquescence of 8-nm ammonium sulfate from 80% to 86% RH 6 

27-31%:  Non-prompt efflorescence of 43.7-nm ammonium sulfate from 31% to 27% RH 7 

82%:  Prompt deliquescence of 6-nm ammonium sulfate at 82% RH      8 

 9 

 10 

 11 

 12 



Table S2. Residence time (s) for the water equilibrium for particles with diameter ranging from 6 13 

to 100 nm particles at RH=90% at 25°C 14 

    χ   1 0.1 0.01 0.001 

100nm 6.26 x10-6 3.55 x10-5 3.12x10-4 0.0031 

60nm 6.04 x10-6 3.34 x10-5 3.07x10-4 0.0030 

20nm 6.03 x10-7 5.17 x10-6 5.08x10-5 5.07x10-4 

10nm 1.88 x10-7 1.74 x10-6 1.73x10-5 1.72x10-4 

8nm 3.10x10-8 1.93x10-7 1.82x10-6 1.81x10-5 

6nm 1.48x10-8 1.08x10-7 1.04x10-6 1.03x10-5 

 15 

 16 

 17 

Table S3. Average sizing offset between nano-DMAs in the nano-HTDMA system at RH below 18 

10% 19 

 Average sizing offset (nm)a 

 

Size agreement between nano-DMA1 

and nano-DMA2b 

 

100-nm (NH4)2SO4 

 

0.619318 

 

0.619318% 

 

60-nm (NH4)2SO4 

 

0.298691 

 

0.4978% 

 

20-nm (NH4)2SO4_ 

 

0.278311 

 

1.3916% 

 

10-nm (NH4)2SO4 

 

0.089647 

 

0.8965% 

 

8-nm (NH4)2SO4 

 

-0.01598 

 

-0.19975% 

 

6-nm (NH4)2SO4_ 

 

0.083965 

 

1.3994 % 
a Calculation from  (�̅� 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑦 𝑛𝑎𝑛𝑜−𝐷𝑀𝐴2 − 𝐷𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑛𝑎𝑛𝑜−𝐷𝑀𝐴1) 20 

b Calculation from [(�̅� 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑦 𝑛𝑎𝑛𝑜−𝐷𝑀𝐴2 − 𝐷𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑛𝑎𝑛𝑜−𝐷𝑀𝐴1)/ 𝐷𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑛𝑎𝑛𝑜−𝐷𝑀𝐴1]×100% 21 

 22 
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Table S4. The values of Dm, gf, and Dm (< 5% RH) of 10-nm ammonium sulfate of Biskos et al. 25 

(2006b) system in the different RHs. 26 

Relative humidity Dm gf Dm (<5 % RH) 

25% 10.3982439 0.992914120 10.47245043 

76% 10.38867117 1.017488426 10.21011237 

78% 10.54314064 1.027692308 10.25904404 

80% 13.31036607 1.293796610 10.28783502 

44% 11.56059002 1.120463542 10.31768513 

35% 11.24527292 1.084064417 10.37325157 

34% 10.59107394 1.007786565 10.50924304 

32% 10.24542551 1.003831854 10.20631639 

31% 10.20845456 1.001920937 10.18888236 

30% 10.38101934 1.001441750 10.36607405 

29% 10.27755951 1.003183756 10.2779752 

24% 10.26077112 0.997295121 10.28860053 

 27 

 28 

Table S5. Uncertainties of nano-DMA voltage (V) and sheath flow rates (Qsh), and calculated size 29 

uncertainty. 30 

Size (nm) Uncertainties in V and Qsh Uncertainty  

(Sizing accuracy) 

100 2648.2±0.02592* V, 10±0.02* L/min 0.2000% 

60 1063.0±0.02686 V, 10±0.02 L/min 0.2000% 

20 131.1±0.01519 V, 10±0.02L/min 0.2003% 

10 33.7±0.02435 V, 10±0.02 L/min 0.2127% 

8 21.6±0.03725 V, 10±0.02 L/min 0.2641% 

6 12.2±0.06920 V, 10±0.02 L/min 0.6014% 

 31 
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Figure S1. Methods for measuring hygroscopicity of atmospheric aerosol particles in different size (Dp). 33 
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 38 

Figure S2. (a) Number concentration scanned for water nanoparticles by the nano-DMA2 at RH below 5 % at 298 K. 39 

(b) Normalized number size distribution scanned for 22-nm PSL nanoparticles by nano-DMA2 after calibration. 40 
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 44 

Figure S3. Number size distribution of ammonium sulfate (AS) nanoparticles (black solid square) generated by the 45 

electrospray. (a) 20mM, (b) 5mM, and (c) 1mM AS solution. The dotted line marks peak diameter from the Gaussian 46 

fits for the scan (red curve). The black solid lines mark the diameters of the monodispersed nanoparticles selected by 47 

the nano-DMA1. 48 

 49 
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 51 



 52 

 53 

Figure S4. Deliquescence-mode (a) and efflorescence-mode (b) of 100-nm ammonium sulfate (AS) aerosol 54 

nanoparticles. The measured (black square) and fitted (solid lines) normalized size distribution are shown for 55 

increasing RH (5%→X%, where X is the RH value given in each panel) and decreasing RH (5%→97%→X%, where 56 

X is the RH value given in each panel), respectively. The red and blue lines represent the aerosol nanoparticles in the 57 

solid and liquid state, respectively. 58 

 59 
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 61 

 62 

Figure S5. Deliquescence-mode (a) and efflorescence-mode (b) of 60-nm ammonium sulfate (AS) aerosol 63 

nanoparticles. The measured (black square) and fitted (solid lines) normalized size distribution are shown for 64 

increasing RH (5%→X%, where X is the RH value given in each panel) and decreasing RH (5%→97%→X%, where 65 

X is the RH value given in each panel), respectively. The red and blue lines represent the aerosol nanoparticles in the 66 

solid and liquid state, respectively. 67 
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 69 

 70 

Figure S6. Deliquescence-mode (a) and efflorescence-mode (b) of 8-nm ammonium sulfate (AS) aerosol nanoparticles. 71 

The measured (black square) and fitted (solid lines, single-mode log-normal fit) normalized size distribution are shown 72 

for increasing RH (5%→X%, where X is the RH value given in each panel) and decreasing RH (5%→97%→X%, 73 

where X is the RH value given in each panel), respectively. The red and blue lines represent the aerosol nanoparticles 74 

in the solid and liquid state, respectively. 75 
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 78 

 79 

Figure S7. Mobility-diameter hygroscopic growth factors (gf, black squares), deliquescence and efflorescence relative 80 

humidity (DRH&ERH, black dashed lines) of ammonium sulfate (AS)  nanoparticles with dry diameter from 6 to 100 81 

nm, respectively. Red squares and dashed lines show the respective results from Biskos et al. (2006b).  82 

 83 
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 87 

Figure S8. (a) Comparison of mobility-diameter hygroscopic growth factors (gf) of 100-nm (black square) with 6-nm 88 

(red square) ammonium sulfate (AS) nanoparticles. (b) Dependence of deliquescence and efflorescence relative 89 

humidity (DRH&ERH) of ammonium sulfate (AS) on dry volume equivalent diameter (Dve). The measured DRH and 90 

ERH of ammonium sulfate within RH uncertainty (black line + black square) compared with data from Biskos et al. 91 

(2006b) (red square) in the volume equivalent diameter with shape factor (χ=1.02) range from 5 to 100 nm.  92 
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 107 

 108 

Figure S9. Deliquescence-mode (a) and efflorescence-mode (b) of 20-nm sodium sulfate aerosol nanoparticles. The 109 

measured (black square) and fitted (solid lines) normalized size distribution are shown for increasing RH (5%→X%, 110 

where X is the RH value given in each panel) and decreasing RH (5%→97%→X%, where X is the RH value given in 111 

each panel), respectively. Red/blue solid line is fitted by a single-mode log-normal fit. Red, blue, and black lines are 112 

fitted by a double-mode log-normal fit. The red and blue lines represent the aerosol nanoparticles in the solid and liquid 113 

state, respectively. The voltage applied to the nano-DMAs (0-12500 V) is kept within ±1% around the set value shown 114 

in the voltage meter. 115 
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 117 

 118 

Figure S10. Deliquescence-mode (a) and efflorescence-mode (b) of 6-nm sodium sulfate aerosol nanoparticles. The 119 

measured (black square) and fitted (solid lines) normalized size distribution are shown for increasing RH (5%→X%, 120 

where X is the RH value given in each panel) and decreasing RH (5%→97%→X%, where X is the RH value given in 121 

each panel), respectively. Red/blue solid line is fitted by a single-mode log-normal fit. Red, blue, and black lines are 122 

fitted by a double-mode log-normal fit. The red and blue lines represent the aerosol nanoparticles in the solid and liquid 123 

state, respectively. The voltage applied to the nano-DMAs (0-350 V) is kept within ±1% around the set value shown 124 

in the voltage meter. 125 
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 128 

Figure S11. (a) Comparison of mobility-diameter hygroscopic growth factors (gf) of 20-nm (a) and 60-nm (b) 129 

ammonium sulfate (AS) nanoparticles with Biskos et al. (2006b) and Hu et al. (2010). (black squares: in this study; 130 

red square: Biskos et al. (2006b); blue square: Hu et al. (2010)).  (c) Comparison of mobility-diameter hygroscopic 131 

growth factors of 20-nm Na2SO4 nanoparticles with Hu et al. (2010). (black squares: in this study; red square: Hu et 132 

al. (2010)). (d) Mobility-diameter hygroscopic growth factors of Na2SO4 nanoparticles with diameter from 6 nm to 133 

14~16 um at 84% RH (black solid squares: in this study; black open square: Hu et al. (2010); black open cycle: Tang 134 

et al. (2007)). A fitting equation (𝑔𝑓 =
1.804

1+(0.5267∗𝐷)−0.8194 ) based on this study at 6-nm, 20-nm Na2SO4, and 14~16 um 135 

data from Tang et al. (2007). 136 
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 141 

Figure S12. Hygroscopic growth factors of 20-nm (a) ammonium sulfate (AS) nanoparticles from our study and (b) 142 

sodium chloride (NaCl) nanoparticles from Biskos et al. (2006a) using the different generation methods prior to 143 

deliquescence of ammonium sulfate.  144 
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S1. Calculation of sizing offset of 10-nm AS 162 

The mobility growth factor (gf) is given by: 163 

     𝑔𝑓 =
𝐷𝑚(𝑅𝐻)

𝐷𝑚(<10 % 𝑅𝐻)
                                                                                                                   (S1)                  164 

gf  was from the data of Biskos et al. (2006b) in the different RHs (see the SI. Fig.5). Dm  was 165 

retrieved the data of Biskos et al. (2006b) in the different RHs (see the SI. Fig.2) as follows: 166 
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Figure S13. Measured (black square) and fitted (red solid line) normalized number size distributions are show for 168 

ammonium sulfate aerosol particles at 25% RH. The black square symbols show the data of Biskos et al. (2006b) (see 169 

the S1. Fig. 2).  170 

Therefore, the initial dry mobility diameter (Dm (< 5% RH)) was obtained using Eq. (S1) based on 171 

values of gf and Dm in the different RHs (see SI. Table S4). We further calculated the average sizing 172 

offset of 10-nm ammonium sulfate of Biskos et al. (2006b) system based on the values of Dm (< 173 

5% RH). The average sizing offset of 10-nm was ~3.1%. 174 
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S2. Calculation of sizing accuracy of sub-100 nanoparticles 189 

 Knutson and Whitby (1975) proposed the following theoretical differential mobility analyzer 190 

(DMA) transfer function and showed that sizing is crucially depend on sheath flow rates and high 191 

voltage (HV) applied to the DMA. 192 

𝑧𝑝
∗ =

𝑄𝑠ℎ𝑙𝑛
𝑟2
𝑟1

2𝜋𝐿𝑉
                                                                                                                                     (S2) 193 

𝑧𝑝
∗ =

𝑛𝑒𝐶𝑐

3𝜋𝜇𝑑𝑝
∗                                                                                                                                         (S3) 194 

𝑑𝑝
∗ =

2𝑉𝐿𝑛𝑒𝐶𝑐

3𝜇𝑄𝑠ℎ𝑙𝑛
𝑟2
𝑟1

                                                                                                                                    (S4) 195 

where 𝑧𝑝
∗ is the central electrical mobility, Qsh is the sheath flow rate, V is the applied voltage, L is 196 

the length of the classification region within the DMA, and r1 and r2 are the inner and outer radii 197 

of the DMA annulus, respectively. n is the number of elementary charges of particles. e is the 198 

elementary charges. Cc is the slip correction. 𝜇  is the flow viscosity. 𝑑𝑝
∗  is the mean particle 199 

mobility diameter.  200 

According to Eq. (S4) above, we use the following error propagation formula ((Taylor and Taylor, 201 

1997) to calculate the uncertainties in sizing of nanoparticles. In our study, the flow accuracy of 202 

mass flow meter (TSI series 4000) is within ±2%. The deviation of voltage applied to the nano-203 

DMAs (0-12500 V, 0-350 V) varies around the set value when test with voltage power supply 204 

(HCE 0-12500, HCE 0-350, Fug Electronic) shown in Table S5. Thence, the uncertainties in sizing 205 

of nanoparticles are obtained based on the following Eq. (S5) as shown in Table S5.  206 

𝛿𝑑

𝑑
= √(

𝛿𝑉

𝑉
)

2

+ (
𝛿𝑄𝑠ℎ

𝑄𝑠ℎ
)

2

                                                                                                               (S5) 207 
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