
Reply to: Anonymous Referee #1 
 

General Comments to the Author 

 

The author gives a very detailed critique of the operational MODIS cloud mask (MOD35) aggregation 

strategy using the CALIOP lidar cloud detection product as “ground truth”. Collocated 1-km CALIOP 

and Aqua MODIS data is used to assign mean cloud amounts to the four output cloud mask categories 

(confident clear, probably clear, probably cloudy, confident cloudy) for various illumination and 

surface types.  

 

The manuscript is very well written and organized with tables and figures that add detail and 

understanding to the text. The main object of the paper is to ascertain the suitability of the operational 

aggregation method from pixel level (Level 2) to temporal and spatial averages (Level 3). The current 

method simply compares numbers of cloudy pixels to the total number when calculating cloud 

amounts, where “cloudy” includes confident cloudy and probably cloudy categories and “clear” is 

confident clear and probably clear categories. This makes the implicit assumption that the two cloudy 

categories indicate 100% cloudiness while the two clear categories imply 0% cloudiness. The author 

concludes that this method leads to significant errors in regional level 3 cloud amounts and reassigns 

cloudiness values to each mask output category based on the collocated CALIOP cloud detection data. 

 

My only objection is that the author makes the assumption that variability in the confidence of clear 

sky depends only on cloud fractions within 1-km pixels. However, there are other possibilities. Some 

of them are: 1) optically thin clouds that cover an entire pixel (thin cirrus) 2) surface brightness 

approaches that of clouds 3) orientation of clouds relative to the sun (scattering angle, 3-D effects) 4) 

variability in surface characteristics (brightness, topography, shadows, land/water boundaries). 

 

The stated philosophy of the MODIS cloud mask is to be clear sky conservative (see cloud mask 

ATBD), i.e., if there is any hint of cloudiness in a given pixel, it should be considered “not clear”. In 

this sense then, the practice of considering both confident and probably cloudy pixels to be “cloudy” 

during aggregation seems reasonable to me, given that no information about cloud morphology is 

available. However, this is not to say that the present study is not useful as an error analysis or 

otherwise beneficial to users.  

 

I am recommending the manuscript be accepted for publication with minor revisions as outlined in the 

specific comments below. 

 

I am aware that the confidence in detecting clear sky is not only a function of cloud fraction within the 

IFOV. Thermal and reflectance contrast between a cloud and a background is controlled by many 

factors, including those listed by the Reviewer. The role of the cloud masking algorithm is to account 

for all of these factors as closely as possible, and maximize cloud detection success. In this study, only 

the resulting product of cloud detection (the Level 2 cloud mask) is evaluated. There is no attempt to 

investigate which factor – and to what degree – impacts the performance of the L2 algorithm. It is 

assumed that the algorithm, and the resulting L2 product, come “as they are”, and are not 100% 

perfect.  

 

The goal is to use the MODIS L2 product with independent data (namely CALIOP) to evaluate how 

the further processing of Level 2 observations impacts the uncertainty level of the L3 product (gridded 

monthly cloud amount). The study does not focus on generating the Level 2 product itself, but on 

calculating the Level 3 data, which is why cloud detection conditions are not explored in detail. We 

only consider day-time and night-time differences, latitudinal variability, and individual algorithm 

paths – assuming the latter reflect variation in the background’s brightness temperature, reflectance, 

topography, etc. Differences in MODIS and CALIOP sensitivity to cirrus are discussed.  

 



Specific Comments to the Author 

Many high, very optically thin clouds detected by CALIOP have no chance to be categorized as 

cloudy by observations from a passive radiometer such as MODIS. Please mention this as a partial 

reason for the 21.5% cloud amount associated with confident clear. 

 

Explanation added (in the Discussion section), as suggested. 

 

Abstract: What is the meaning of “uncertainties were related to the efficiency of the cloud masking 

algorithm”? Please clarify or delete. 

 

This has been deleted in order to keep the abstract concise (clarification at this point would make the 

Abstract too discursive).  

 

Please delete “Until the algorithm can be significantly modified”. After 20 years, algorithm issues 

notwithstanding, large and potentially disruptive modifications to the cloud mask are unlikely and 

probably unwise.  

 

Deleted, as suggested. 

 

Line 133: “IFOV” should be “scan lines”.  

 

In my opinion, ‘IFOV’ is the correct term. The CALIOP-MODIS matching procedure is IFOV-based, 

not scan line-based. MODIS is a whiskbroom-type scanner, meaning one rotation of the instrument’s 

mirror results in a scan of 10 lines (considering 1 km detections only). Each line is then divided into 

1354 instantaneous fields of view. Only a few, those located close to the MODIS ground track (~10 

IFOVs per scan event, ~2030 per data granule) can be matched with CALIOP detections. The use of 

‘scan lines’ would be misleading in this context. 

 

Line 183: “probably cloudy” should be “probably clear”. 

 

Corrected. 

 

Line 140: The first two sentences beginning at line 140 are probably better placed at the beginning of 

Section 3.2. I would eliminate the last sentence of this section as it seems superfluous. 

 

Changed, as suggested. 

 

Lines 152-154: This would be a good place to insert a few words about the difficulty of cloud 

detection from passive instruments during polar night. Thermal contrast is almost nil in these 

situations and what does exist is often due to temperature inversions, many times multiple ones, that 

exist with or without clouds being present. Please explain that in polar night, CALIOP has an even 

bigger advantage in detecting clouds than in warmer climes. 

 

The discussion has been added – as suggested – however, not in the Results, but in the Discussion 

section. 

 

Line 258: What is “the most modest version” of the MODIS cloud mask? Please explain or eliminate 

the phrase. 

 

Clarified, as suggested (changed to Collection 061). 

 

Lines 265-268: Given the errors inherent in remote sensing of cloud properties in general, and in the 

difficulty of accurate cloud detection in particular, I am surprised that the author would ever expect 

100% accuracy from any type of cloud amount calculation. All algorithms are inadequate in some way 



and to some extent. I strongly advise the author to eliminate the section beginning with “We found the 

approach to be inadequate” and ending with “environmental conditions”. The statistics given here are 

just a restatement of previously reported results. Of course there are limitations to the cloud masking 

procedure and undoubtedly “certain cloud regimes and/or environmental conditions” are more difficult 

than others. On the other hand, it is quite fair to report the results of the 100% clear/cloud assumptions 

in the MODIS cloud amount calculations, as is done immediately following. 

 

The MODIS cloud detection algorithm is only one of many methods, and no method is completely free 

of limitations. 100% and 0% are only points of reference – the theoretical cloud fraction that an ideal, 

perfect algorithm would give (if it existed). However, because the Reviewer found this paragraph to be 

a restatement of previously-reported results, I have followed the recommendation and deleted the 

suggested part. 

 

Line 275: I think you mean Table 3. Please add a sentence or two justifying the use of collocated near-

nadir CALIOP data on entire swaths of MODIS data or a description of a corrective measure. 

 

Corrected and additional information added.  

 

Line 310: The sentence beginning with “Therefore, the standard” is unnecessary. 

 

Deleted, as suggested. 

 

Line 327: Variability is to be expected within algorithm paths as they are necessarily very general 

categories. The statement that the same thresholds are applied in widely varying locations is not 

completely true. The important 0.65 µm daytime land cloud test is a function of background NDVI 

and scattering angle. Please include this information. 

 

Information included, as suggested. 

 

Line 329: Again, the text “Until significant modifications are made to the MODIS cloud masking 

algorithm,” is unnecessary and a bit high-handed. I would simply begin with 

“CALIOP-based : : :”. 

 

Changed, as suggested. 

 

References Line 63: Fontana et al., 2013 is missing from the reference list. 

 

Reference added. 

 

Figures and Tables Table 3: Caption should indicate that the cloud fractions listed are 

CALIOP-based. 

 

Information added, as suggested. 

  



Reply to: Anonymous Referee #2 
 

Major comments: 

 

1. Line 71: the author mentioned that “no research-based, objective alternatives to the 0/0/100/100 

interpretation currently in use have been put forward”. However Line 250 reviewed the validation 

work conducted by Wang et al. (2016) which also estimated the cloud fraction for four MODIS cloud 

masks. The reviewer suggested reviewing Wang’s work in the introduction and also emphasizing 

what’s new in this work. For example, Wang’s work focused on daytime only, this work included 

daytime, night time and both day and night time. Moreover, this work examined how those four cloud 

fractions changed for different MODIS cloud mask algorithm paths and latitude regions. 

 

Wang et al. (2016) is an excellent study. It validates the MODIS cloud mask (daytime only), with a 

focus on multilayer clouds, and considering different cloud regimes (with 2D histograms). However, 

the latter study does not provide a CALIOP-based cloud fraction for each of the four MODIS cloud 

mask classes. It may be possible to obtain these fractions (global values only) by an analysis of the 

confusion matrix (Table 2) presented by the authors. However, no direct information is provided about 

these values, how such statistics could be derived, or why (while this is the main objective of our 

study). For this reason, I prefer not to change the Introduction. I do, however, fully acknowledge the 

work of Wang et al. (2016), and refer to their results in the Discussion. 

 

2. The cloud fractions were derived with two months data, i.e., January and July 2015. While the 

author demonstrated the fractions could have a large variability depending on environmental 

conditions. Could they also have a seasonal variation? How valid to apply the same numbers to 

different seasons for the whole MODIS mission? 

 

The seasonality of the CALIPSO-based cloud fraction for MODIS cloud mask classes can be expected 

wherever environmental conditions are dominated by a strong seasonal cycle, in particular regions 

where the cloud regime changes noticeably. On the other hand, seasonal environmental change is 

consistent with changes in the frequency of per-location MODIS algorithm paths. Therefore, when 

regional CALIOP-based fractions per algorithm path are used (instead of fixed global fractions) the 

seasonality effect is balanced (at least partially). An operational use of CALIPSO-based factions 

would require the development of a relevant ‘climatology’. An investigation of such a climatology 

would be an interesting extension of this study. 

 

3. The author considered CALIPSO data as “ground truth” by including all cloud layers detected by 

CALIOP. As CALIOP data reported quality flags, it is possible to choose confident clouds only. For 

example, including clouds with cloud-aerosol discrimination score between 20 and 100 (low, middle 

and high confidence) or 70 and 100 (high confidence only) by specifying the range of parameter 

CAD_Score. Not sure how this filter might change the current findings in the paper. 

 

Our study found that 95.6% of analysed CALIOP observations had CAD confidence of at least 70%, 

and confidence was below 20% for only 1.5% of data. These statistics did not differ between day and 

night, or January and July. High, stable CAD values makes it possible to conclude that filtering for 

data with CAD >70% or >80% would have no impact on the results. On the other hand, CAD results 

varied slightly more in the tropics, and this issue is discussed in the paper.  

 

4. In the paper, the cloud fractions are further estimated for each cloud mask algorithm path and 

day/night conditions. It is noted that the CALIOP has different detection sensitivity during day and 

night, i.e., CALIOP is able to detect more thin cirrus clouds around the tropical region at night than 

during the day. This might help understand the day/night discrepancies in Figure1-3. 

 

Additional information about CALIOP daytime/ night-time sensitivity has been added to the 

Discussion. 

 



5. As briefly touched by the author in Line 238, the level 2 CALIOP cloud layer product reported 

detected cloud layers only. It is very possible there are aerosol layers detected and those aerosol layers 

would be reported in aerosol products but not in cloud products. In this scenario, the sky is not exactly 

“clear”. To avoid confusions, some researchers use “cloud free” instead “clear”. 

 

I agree that ‘cloud-free’ is much more accurate in the context of this research, and I have changed 

‘clear’ to ‘cloud-free’ whenever possible. Nonetheless, I have retained ‘clear’ in the name of the 

MODIS cloud mask, since these names are widely (and officially) used in MODIS product 

documentation.  

 

Minor comments: 

 

1. Abstract: keep consistency when describing four cloud fraction numbers and cloud mask 

categories. Line 7: “confident cloudy”, “probably cloudy”, “probably clear”, “confident 

clear”. Line 14: 21.5%, 27.7%, 66.6%, 94.7%. 

 

Corrected, as suggested.  

 

2. Line 16: “selected locations”? Please give a few locations as examples. 

 

Examples added, as suggested.  

 

3. Line 17: “error” → “uncertainty”? 

 

Changed – ‘uncertainty’ is the more relevant term.  

 

4. Line 18: What is “our method”? 

 

The method used in the study to calibrate MODIS cloud amount. This sentence has been rephrased.  

 

5. Line 19: “robust” is a strong word. Does the author would like to say something like “We 

recommend using the cloud fraction ratios found in this work to improve MODIS 

estimates.” 

 

The sentence has been rephrased. 

 

6. Line 20: “other mission”? Other passive missions? 

 

Passive cloud imagers – the sentence has been rephrased. 

 

7. Line 24: “W m-2” should be “W m-2”. 

 

Corrected.  

 

8. Line 48: “The procedure implemented by NASA…” → The procedure implemented by MODIS 

science working group? 

 

I agree. The procedure was developed by the MODIS Science Team or – more precisely – the 

Atmosphere Discipline Group within the MODIS Science Team. As the MODIS Science Team is a 

collaboration coordinated by NASA, I used NASA, but I agree that MODIS Science Team is more 

accurate. NASA has been changed to MODIS Science Team throughout the manuscript.  

 

9. Line 51: “- see, for example, ” → e.g. ? 

Changed. 



 

10. Line 54: “NASA’s approach” → standard procedure? It is not an approach from an agency. 

Instead, it is from MODIS science working group. 

 

Changed. See reply to comment 8. 

 

11. Line 54: “… are both allowed and in use.” → “… are adopted by other groups.” ? 

 

Changed (shortened) to: “… are in use.” 

 

12. Line 63: Moved “in Switzerland” after “observations”. It would be nice to specify the number of 

ground-based observations, i.e., “… compared MODIS data with n ground ground-based 

observations…”. 

 

Changed, as suggested.  

 

13. Line 70: “NASA standard approach” → standard procedure or standard approach? 

 

Changed to ‘procedure’. 

 

14. Line 71: “… currently in use have been put forward” is confusing. Does the author mean “… 

currently widely used are still missing” or something like that? 

 

Rephrased. 

 

15. Line 72: “… based on quantitative, empirical lidar observations” is confusing. Does the author 

mean “… based on a quantitative analysis with lidar observations”? 

 

Rephrased. 

 

16. Line 75: The CALIPSO was launched in 2006 instead of 2016. 

 

Corrected.  

 

17. Line 77-78: Consider removing “This is because” and “which means that” to make a concise and 

formal statement. 

 

The sentence justifies why the study uses CALIOP as a reference. The phrase, “Furthermore, the use 

of short...” at the beginning of the following sentence is a logical continuation. Therefore, I prefer to 

leave the paragraph as it is.  

 

18. Line 83: Add “with CALIOP observations” after “… correspond to”. 

 

Added, as suggested. 

 

19. Line 83: Again it is not an approach from an agency. The author probably meant “current standard 

approach” or “current standard procedure”. 

 

Changed. See also reply to comment 8. 

 

20. Line 84: Does the author mean “Finally, we evaluate whether the MODIS Level 3 standard 

approach is reliable”? 

 

Clarified, as suggested. 

 



21. Line 101: Consider removing “This is made available”. 

 

Rephrased, as suggested. 

 

22. Line 103: Consider replacing “product; this was used to assign” with “with”. 

 

Rephrased, as suggested. 

 

23. Line 108: Below 8.2 km, CALIOP has a horizontal resolution 0.333 km not 0.33 km. 

 

‘0.33 km’ corrected to ‘0.333 km’ 

 

24. Line 109: Between 20.2 km and 30.1 km, CALIOP has a horizontal resolution 5/3 km and vertical 

resolution 180 m. From 30.1 km to 40 km, the horizontal resolution is 5 km and the vertical resolution 

is 300 m. Please refer to Table 2 in Winker et al. [2006]. 

 

Corrected and clarified, as suggested. 

 

25. Line 114: “CAL_LID_L2” → level 2 cloud layer products. 

 

Changed, as suggested. 

 

26. Line 115: (version 4.20) → (version 4.20, CAL_LID_L2_01kmCLay-Standard-V4-20)? 

 

Product codename added, as suggested. 

 

27. Line 119: “Number Layers Found” variable → “Number_Layers_Found” parameter 

 

Changed, as suggested. 

 

28. Line 130: “… January and July 2005 …” should be “… January and July 2015 …” Any special 

reasons to choose these two months? 

 

Yes, these two months represent atmospheric conditions for summer (July) and winter (January) in the 

northern hemisphere. The selection of these months makes it possible to investigate contrasting cloud 

regimes in mid-latitudes (more cumuliform in summer, more stratiform in winter) and season-

dependent conditions for cloud detection (e.g. snow cover).  

 

29. Line 141: Add “MODIS” after “perfect” would help a reader understand. 

 

Added, as suggested. 

 

30. Line 147: Based on Table 1, should the number “86.7%” be “64.2%” at night? 

 

In fact, it should be ‘84.2% at night’ (as in Table 1) – corrected. 

 

31. Line 151: Should the number “77.4%” be “73.3%”? 

 

Corrected. 

 

32. Line 157: Is this region “ITCZ”? Does this high frequency misdetections due to high sensitivity of 

CALIOP? In other words, CALIOP detected very thin cirrus clouds which are invisible to MODIS. 

 

Yes, it is the intertropical convergence zone. I have expanded on cloud detection by MODIS and 

CALIOP at low latitudes in the Discussion. 



 

33. Line 159: “… MODIS tended to falsely detect cloud rather than fail to detect it”. This sentence is 

confusing. Does this mean higher percentage occurrence or larger area spatial extent? Should “Only” 

be removed? 

 

The statement was deleted.  

 

34. Line 166: It is not exactly “every fifth MODIS” even though the percentage is about 20%. 

 

Changed to “one fifth of MODIS”. 

 

35. Line 172-173: “no significant day/night difference” even though it is 12.3% for ‘probably cloud’? 

 

Clarified. 

 

36. Figure 3g and 3h: What does black color over Southern Ocean mean? 

 

It means there were no confident clear detections by MODIS in these regions at that time.  

 

37. Line 183: Should  probably cloudy’ be ‘probably clear’? 

 

Corrected – ‘probably clear’ is the correct term. 

 

38. Line 186: What does “this” in ‘…, but this was …” mean? 

 

Rephrased and clarified. 

 

39. Table 3: Use same terms to describe snow-covered conditions in the context and table caption. For 

example, use “Snow-free” and “Snow-covered” or “No snow” and “Snow”. 

 

Corrected, as suggested (‘snow-covered’ and ‘snow-free’ are now used consistently).  

 

40. Line 205- 215: The author chose three cloud masking algorithm paths for detailed discussion. It 

would help a reader understand why those three if providing some explanations. Explain “Results” in 

Line 205 and “A similar pattern” in Line 211. Which results? Which pattern? 

 

Four algorithm paths are described in the text. The first is “the combination of night, an oceanic 

background and snow-cover (or sea ice)”. This scenario is notable because it “constituted the ‘most 

cloudy’ scenario”. The second is “snow-free land at night”, this was chosen because: “Results [for it] 

were most consistent with the standard Level 3” (already mentioned in the manuscript). The two other 

scenarios are “snow-free land during the day”, and “ice-free oceans”. The choice of the latter is 

justified in the paper: it is “the most frequent algorithm path”. I agree that the justification of the 

choice of “snow-free land during the day” was missing. Therefore, following the Reviewer’s 

suggestion, I have added an explanation (it is of particular interest for land/ vegetation MODIS 

remote sensing). 

 

Lines 205 and 211 have been clarified, as suggested.  

 

41. Line 223: Add a dot between MODIS collection “6” and “1”? 

There are two conventions in use: a three-digit name with leading zero (005, 055, 006, 061, etc.), or to 

divide a collection number by 100 and use a coma (5.0, 5.5, 6.0, 6.1, etc.). I prefer to use the first, 

hence ‘61’ has been changed to ‘061’.  

 



42. Line 225: It is confusing to discuss level 3 product here since no plots or work on level 3 clouds 

presented so far. 

 

Clarified. The implications for Level-3 data are presented in the Discussion, but not before. The first 

paragraph of the section only introduces issues that are discussed in the following paragraphs. I have 

made this point clearer in the new version of the manuscript.  

 

43. Line 235 and Line 240: The author claimed that temporal and spatial separations between Aqua 

and CALIPSO do not impact the results significantly. If not complicated, it is a good idea to show the 

plots when using different time and range shifts. 

 

I have prepared the plots, as suggested. I also agree that they might be interesting for some readers. 

However, I leave it to the Editor to decide whether they should be included in the main text, or as 

additional/ supporting online material (the latter would be my choice).  

 

44. Line 246: Explain acronym “AVHRR”. 

 

Explained, as suggested. 

 

45. Line 316: What is the spatial grid used to plot Figure 8? 

 

All figures use the equirectangular projection with 2.5°2.5° spatial resolution. 

 

46. Line 321: The author drew a conclusion “Whenever MODIS cloud amount is estimated at a spatial 

resolution of ~10 degrees of finer, …”. There seems no evidence in the paper to support this 

conclusion. Something missing? 

 

Ten degrees longitude/ latitude was the approximate area of cloud amount uncertainties in China, 

along the coast of the Arabian Peninsula, north-west Africa, and some locations in North America. 

However, I agree that the figure could be misleading when considering, for example, polar regions 

where the area is much larger. Consequently, the reference to “10 degrees” has been deleted, and 

replaced by “regional/local”.  

 

47. Line 324: Discussions on MODIS level 3 cloud product could be moved from “Summary and 

Conclusions” section to previous “Discussion” section 

 

I prefer not to move the discussion about Level 3 data from the Discussion to the Results. The key 

‘technical’ objective of the study was to derive CALIOP-based cloud fraction from MODIS. The 

outcome of this work is reported in the Results section. A discussion of the implications of these results 

for calculating global cloud amounts is a different matter. In my opinion, the present structure of the 

manuscript clearly separates the results of the study’s calculations from a discussion of their impact.  
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Abstract. The Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection procedure classifies instantaneous 

fields of view (IFOV) as either ‘confident cloudy’clear’, ‘probably cloudy’clear’, ‘probably clear’cloudy’, or ‘confident 

clear’cloudy’. The cloud amount calculation requires quantitative cloud fractions to be assigned to these classes. The 

operational procedure used by the NASAMODIS Science Team assumes that ‘confident clear’ and ‘probably clear’ IFOV are 

cloud-free (cloud fraction 0%), while the remaining categories are completely filled with clouds (cloud fraction 100%). This 10 

study demonstrates that this ‘best guess’ approach is unreliable, especially on a regional/ local scale. We use data from the 

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument flown on the Cloud-Aerosol Lidar and Infrared 

Pathfinder Satellite Observation (CALIPSO) mission, collocated with MODIS/ Aqua IFOV. Based on 33,793,648 paired 

observations acquired in January and July 2015, we conclude that actual cloud fractions to be associated with MODIS cloud 

mask categories are 21.5%, 27.7%, 66.6%, and 94.7%. Spatial variability is significant, even within a single MODIS algorithm 15 

path, and the operational approach introduces uncertainties of up to 30% of cloud amount, notably in the polar regions at night, 

and in selected locations over the northern hemisphere (e.g. China, the north-west coast of Africa, and eastern parts of the 

United States). Consequently, aApplications of MODIS data on a regional/ local at ~10 degrees resolution (or finer)scale 

should first assess the extent of the uncertainty. error. Uncertainties were related to the efficiency of the cloud masking 

algorithm. We suggest using CALIPSO-based cloud fractions Until the algorithm can be significantly modified, our method 20 

is a robust way to calibrate improve (correct) MODIS cloud amount estimates. This approach It can also be also used for 

MODIS/ Terra data, and other passive cloud imagers, missions where the footprint is collocated with CALIPSO. 

1 Introduction 

Cloud plays a key role in distributing solar energy in the Earth’s atmosphere (Trenberth et al., 2009). Consequently, research 

into the present and future state of the climate system requires accurate information about cloud amount. Depending on its 25 

frequency and physical properties, cloud can both heat (greenhouse effect: +30 Wm-2) and cool (albedo effect: –48 Wm-2) the 

atmosphere. Their net effect on the planetary radiation budget is negative, meaning the Earth would be warmer if all cloud 

disappeared (Ramanathan and Kiehl, 2006).  
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The Global Climate Observing System identifies 13 Essential Climate Variables. This set of critical environmental parameters 

characterize the Earth’s climate (Hollmann et al., 2013); they not only include cloud properties, but also highlight that our  30 

knowledge of cloud relies largely on satellite remote sensing. Satellite cloud climatology starts with a cloud mask. The aim is 

to decide whether cloud is present in a sensor’s instantaneous field of view (IFOV), or whether it is cloud free. Input data 

includes at-sensor registered radiances, along with other auxiliary information that aims to maximize cloud detection.  

Efficient cloud detection algorithms have to consider the technical limitations of sensors, available computing power, and 

environmental factors such as the background (e.g. water, land, snow) and solar illumination (day and night). The resulting 35 

cloud mask takes the form of a map that divides IFOV into at least two categories: ‘cloud free’, and ‘cloud contaminated’ (or 

‘cloud filled’). Many masking algorithms introduce additional categories in order to reflect the level of uncertainty in cloud 

detection (Derrien and Le Gléau, 2005; Dybbroe et al., 2005; Kopp et al., 2014).  

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a cloud imaging instrument that is flown onboard NASA’s 

paired polar orbiting satellites: Terra and Aqua. Circling the Earth in the morning orbit (10:30 local solar time; Terra), and 40 

afternoon orbit (13:30 local solar time, Aqua), these twin sensors provide a global picture of cloud four times each day, at 

1 km/pixel resolution (Guenther et al., 2002; Platnick et al., 2003). With 36 spectral channels, continuous correction for orbital 

drift, and precisely-calibrated detectors, MODIS has set a new standard in cloud remote sensing, and is still considered to be 

a state-of-the-art cloud imager, despite being launched in 1999 (Terra), and 2002 (Aqua).  

MODIS’s cloud detection scheme results in four cloud mask categories: ‘confident cloudy’, ‘probably cloudy’, ‘probably 45 

clear’, and ‘confident clear’ (Frey et al., 2008). The fact that these classes are presented as qualitative, text-based labels rather 

than a numeric probability causes the technical problem of how to quantitatively interpret these labels. A numeric interpretation 

is mandatory when instantaneous observations (Level 2 products) are aggregated spatially and/ or temporally to provide 

climatological information such as mean monthly cloud amount (Level 3 products).  

The procedure implemented by NASA’s MODIS Science Team (hereinafter the ‘standard’ or ‘operational’ procedure) is to 50 

assume that IFOV declared ‘confident cloudy’ and ‘probably cloudy’ are, in fact, 100% cloud filled, while ‘confident clear’ 

and ‘probably clear’ are completely cloud free (cloud fraction of 0%) (Hubanks et al., 2008). The approach is widely used 

whenever there is a need to make a binary distinction between cloudy and clear cloud-free pixels – see, for example,e.g., Gao 

et al. (2008), Remer et al. (2012), Wilson and Oreopoulos (2013), Wilson, Parmentier, and Jetz (2014), Kraatz, Khanbilvardi, 

and Romanov (2017), Gomis-Cebolla, Jimenez, and Sobrino (2020).  55 

However, since the NASA’s MODIS Science Team (ST) approach is only a ‘best guess’, alterative assumptions are both 

allowed and in also used. For instance, it can be assumed that only ‘confident cloudy’ pixels are ‘cloudy’, while all remaining 

classes are 100% cloud free. Similarly, only ‘confident clear’ detections can be considered as truly clearcloud-free, while all 

other classes are assumed to be 100% cloud filled (Li et al., 2005). Krijger et al. (2007) argue that the latter approach leads to 

the false detection of small clouds, while cloud is frequently overlooked if the first method is applied. Another approach is 60 

simply to exclude ‘probably clear’ and ‘probably cloudy’ detections from the analysis. This strategy was adopted by Chan and 

Comiso (2013), whose work was based on only ‘confident clear’ and ‘confident cloudy’ categories of MODIS data.  
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Quantitative studies have shown that only considering the ‘confident cloudy’ class as cloudy may be more consistent with 

other cloud data such as Landsat observations (Melchiorre et al., 2020), or visual observations at meteorological stations 

(Kotarba, 2015). On the other hand,, in Switzerland, Fontana et al. (2013) compared MODIS data with ground-based 65 

observations in Switzerland (4 stations, 12 years of data), and found that results varied from station to station. 

The theoretical range of uncertainty related to various interpretations of the MODIS cloud mask was investigated by Kotarba 

(2015). The latter study found that the global cloud amount estimates may differ by up to 14%, depending on whether only 

‘confident cloudy’ detections are considered to be ‘cloudy’, or whether the definition is extended to include intermediate 

classes. The discrepancy was found to increase by up to 40–60% regionally, suggesting that MODIS cloud estimates are very 70 

uncertain in these areas. Such a wide range of uncertainty makes it difficult to run reliable studies on the climate system. 

Neither the NASA MODIS ST standard approachprocedure, nor any other ‘best guess’ variants have been validated on a global 

scale. Most importantly: no research-based, objective alternatives to the 0/0/100/100 interpretation currently in use have been 

put forwardsuggested. This study addresses this problem. Specifically, it provides global cloud fractions based on quantitative 

analysis of , empirical CALIOP lidar observations. 75 

CALIOP (the Cloud-Aerosol Lidar with Orthogonal Polarization) is a cloud profiling instrument flown onboard the CALIPSO 

(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) spacecraft. Launched in 2016, CALIPSO flies in close 

formation with the Aqua satellite, therefore both instruments – MODIS and CALIOP – sample the same fragment of the 

atmosphere tenths of seconds apart (Stephens et al., 2018). In this study, CALIPSO data is considered as ground truth. This is 

because CALIOP is an active remote sensing instrument, which means that it can sample the atmosphere during the day and 80 

at night with comparable sensitivity. Imaging radiometers (such as MODIS) perform less effectively at night, when solar 

channels are missing. Furthermore, the use of short wavelengths makes CALIOP very sensitive to cloud of low optical 

thickness (e.g. sub-visual cirrus) that is often missed by imagers (Ackerman et al., 2008).  

In the following sections we seek to answer the questions: 1) What quantitative cloud fractions (based on CALIOP 

observations) should be applied to do qualitative MODIS thematic cloud mask classes correspond to? and 2) What uncertainties 85 

in global cloud amount are introduced by the MODIS STNASA standard approachprocedure? Finally, our conclusions help to 

answer the question of we evaluate whether the MODIS Level 3 standard approach procedure for calculating the MODIS Level 

3 cloud amount is reliable. 

2. Data & Methods 

2.1 MODIS data 90 

The MODIS cloud detection scheme is based on thresholds that are applied to brightness temperature (thermal bands), and 

reflectance (solar channels), derived from observations in 22 spectral bands ranging from 0.66 µm to 13.9 µm. Ackerman et 

al. (1998), Frey et al. (2008), and Baum et al. (2012) provide very detailed descriptions of the cloud masking procedure. The 

general concept is as follows.  
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The algorithm executes a series of tests, each of which results in a confidence level (ranging from 0 to 1) that a particular IFOV 95 

is cloud free. Tests to detect similar cloud types are grouped. The lowest confidence level for a test within a group is set as the 

confidence level for the whole group. Confidence levels for groups are then multiplied to determine the final confidence level 

(Q). Finally, the IFOV is assigned to one of four cloud mask classes: ‘confident clear’ (Q > 0.99), ‘probably clear’ (Q > 0.95), 

‘probably cloudy’ (Q > 0.66), or ‘confident cloudy’ (Q ≤ 0.66). The exact number of spectral tests varies from a few to over a 

dozen, depending on the path through the algorithm. Paths reflect different environmental conditions, and are introduced to 100 

maximize success. Dedicated sets of spectral tests are executed for land, ocean, desert and coastal areas, for both day and night 

conditions. The presence of snow and/ or ice is taken into account, as is sunglint over oceans. Separate thresholds have been 

introduced for polar regions, which are defined as land and ocean within 30 degrees of each pole. 

Cloud detection results are stored in the 48-bit ‘Cloud Mask’ product, codenamed MYD35 (Aqua) and MOD35 (Terra) 

following the MODIS nomenclature. In this study, we evaluated the latest version of MYD35 (Collection 061) data, . This is 105 

made available in the form of 5-minute granules, at 1 km per pixel spatial resolution (at nadir), with native satellite projection. 

Each MYD35 file is accompanied by a MYD03 ‘Geolocation file’ product, that ; this was used to assign longitudestores 

longitude and latitude information to for individual cloud mask IFOV. 

2.2 CALIOP data 

CALIOP operates at 532 nm and 1064 nm. The instrument’s pencil-like beam only scans locations along the satellite’s ground 110 

track, as a trade-off for information on the vertical structure of cloud/ aerosols. Its spatial resolution is a function of the 

satellite’s altitude. Resolution is finest – 0.333 km horizontal, 30 m vertical – in the troposphere, up to 8.2 km. Between 8.2 km 

and 20.2 km, vertical resolution falls to 60 m, and horizontal sampling to 1 km. Above Between 20.2 km , and 30.1 km, data 

are even coarser: 5 1.667 km horizontal and 300 180 m vertical resolution. Higher in the atmosphere (30.1 km to 40.0 km) 

horizontal resolution decreases to 5 km, while vertical resolution is 300 m (Hunt et al., 2009; Winker et al., 2006).  115 

CALIOP detects cloud by applying thresholds to 532 nm attenuated scattering ratios. The aim is to separate the cloud signal 

from the clear air background (molecular scattering), aerosols, and instrument noise. The algorithm calculates cloud base 

height, cloud top height, and – as a consequence – the number of cloud layers within a profile. Up to 10 layers can be reported. 

The procedure is fully automatic (Vaughan et al., 2009). The output is stored in the Level 2 Cloud Layer Data CAL_LID_L2 

product, available at ⅓333 km, 1 km, and 5 km along-track sampling intervals. Here, we use the 1 km interval (version 4.20; 120 

CAL_LID_L2_01kmCLay-Standard-V4-20), as its resolution matches the spatial resolution of the MODIS cloud mask. 

Furthermore, 1 km is the highest available level of detail for CALIOP data within the troposphere.   

In order to use the CALIOP product to evaluate MODIS data, 3-dimensional cloud layer data was reduced to column-

integrated, binary cloud/ no cloud information. Specifically, we focused on the ‘Number_Layers_Found’ variable parameter 

provided in the CAL_LID_L2 product. ‘No cloud’ was recorded when the latter variable was set to 0 (i.e. zero layers found), 125 

and ‘cloud’ otherwise (i.e. at least one layer was reported). Geolocation was based on longitude and latitude arrays included 

in the product at 1 km spatial resolution.  
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In some cases, cloud and aerosol can appear similar to CALIOP. The cloud-aerosol discrimination (CAD) score, which is a 

numerical index stored in the CAL_LID_L2 product, provides information about the algorithm’s uncertainty in separating 

cloud and aerosol. In the case of cloud, CAD values vary between 0% (it is unclear whether aerosol or cloud was observed) 130 

and 100% (cloud detected with the highest confidence). The index is calculated for each cloud layer found in the CALIOP 

atmospheric profile. Since our study focuses on column-integrated information of cloud presence, we selected the highest CAD 

value within a profile. Statistics for January and July 2015 showed that 95.6% of considered CALIOP observations were 

characterized by a CAD score of at least 70%, while it was below 20% for only 1.5% of data. Therefore, the selected CALIOP 

data can be considered as a reliable reference for MODIS. See Supplementary Online Materials, Fig. S1 for more detailed 135 

statistics about CAD scores. 

2.3 Matching CALIOP and MODIS data 

Matching CALIOP data is a well-established method for the calibration/ validation of atmospheric products from various space 

missions. It has already been widely used for MODIS/ Aqua (Baum et al., 2012; Holz et al., 2009; Sun-Mack et al., 2014; 

Wang et al., 2016; Xie et al., 2010), and sensors flown onboard Suomi-NPP, NOAA, and MetOp polar orbiting spacecraft, 140 

which occasionally synchronize their orbital configuration with CALIPSO (Hutchison et al. 2014; Heidinger et al. 2012; 

Karlsson and Johansson 2013; Karlsson and Dybbroe 2010). CALIPSO also passes within the field of view of other 

geostationary satellites, and CALIOP data is used to assess their atmospheric products (Sèze et al., 2015; Shang et al., 2018).  

In this study, Aqua/ MODIS data for January and July 2005 were paired with corresponding CALIPSO/ CALIOP observations. 

The matching procedure selected a MODIS IFOV and compared it with the corresponding CALIOP profile (where the 145 

geometric centre was within the selected MODIS IFOV). Although very straightforward, the procedure was time-consuming 

since a single MODIS granule contains ~2030 IFOV, and a full day of Aqua observations produces 288 granules. 

The final database consisted of 33,793,648 MODIS–CALIOP paired observations. Average spatial separation between the 

centres of MODIS and CALIOP IFOV was 418 m, and 19% had a separation of less than 250 m. Temporal differences between 

lidar and imager observations were determined using the spacecrafts’ on-orbit separation, and ranged from 60 sec to 97 sec 150 

(81 sec on average). Our dataset excluded one MODIS cloud mask processing path: sunglint. This was because CALIPSO’s 

orbit has been intentionally designed to avoid sunglint areas, in order to avoid the lidar being ‘blinded’ by solar reflection from 

the ocean. 

Our empirical calculation of cloud fraction in each MODIS cloud mask class was based on the ratio of CALIOP cloudy 

detections to all detections within a class. A perfect MODIS cloud detection algorithm would categorise a 0% cloud fraction 155 

as ‘confident clear’, while a 100% cloud fraction would be categorised as ‘confident cloudy’. Our results showed that this was 

not true. 
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3 Results 

3.1 Misdetection of cloud and clear sky by MODIS 

The first key point that emerged from the matched MODIS–lidar observations was the accuracy of MODIS cloud detections. 160 

Overall accuracy in January and July 2015, compared to reference CALIOP data, was 89.4% during the day, and 86.784.2% 

at night (Tab. 1). This statistic assumes that ‘probably clear’ detections are merged with ‘confident clear’, and ‘probably 

cloudy’ detections are combined with ‘confident cloudy’. If a less tolerant approach is applied, i.e. only ‘confident clear’ and 

‘confident cloudy’ detections are considered (‘probably clear’/ ‘probably cloudy’ classes are interpreted as misdetections), 

overall accuracy fell to 81.9% during the day, and 77.473.3% at night. 165 

Clouds missed by MODIS, but detected by CALIOP were most frequent during the polar night, regardless of the hemisphere 

(Fig. 1c, d). Up to 40% of MODIS ‘confident clear’ and ‘probably clear’ detections were found to be incorrect around 

Antarctica in July, and the Arctic in January. Both polar oceans and the continental shelf were affected. Globally, daytime 

(Fig. 1a, b) misdetections were around half of those at night. They only exceeded 30% locally, and polar regions were less 

affected. A notable observation was July in the northern hemisphere, where only a few small regions of misdetection were 170 

observed. The analysis highlighted a belt of relatively higher frequency misdetections (15–25%) in the equatorial zone; here 

the magnitude of the effect was similar for both day and night.  

It was noticeable that MODIS tended to falsely detect cloud rather than fail to detect it. Only a few occasions were identified 

when over 10–15% of MODIS ‘confident cloudy’ and ‘probably cloudy’ observations were identified as clear cloud-free by 

CALIOP (Fig. 2). Further analysis showed that although false detection was rare in polar regions, it was significant in specific 175 

regions of the northern hemisphere. North-east China emerged as the most problematic area (Fig. 2a). Here, 50–70% of MODIS 

‘confident cloudy’ and ‘probably cloudy’ detections were cloud-free clear according to CALIOP. However, this high rate of 

false detection was only observed in January, and only during the day.  

3.2 Cloud fraction for cloud mask classes  

Our empirical calculation of cloud fraction in each MODIS cloud mask class was based on the ratio of CALIOP cloudy 180 

detections to all detections within a class. A perfect MODIS cloud detection algorithm would categorise a 0% cloud fraction 

as ‘confident clear’, while a 100% cloud fraction would be categorised as ‘confident cloudy’. 

On average, every one fifth of MODIS ‘confident clear’ detections wereas found to be cloudy by CALIOP. Consequently, the 

average cloud fraction for this class was 21.5%, instead of the theoretically expected 0% (Tab. 2). At night, the fraction was 

over twice the daytime value (29.5% compared to 12.7%). On the other hand, pixels flagged by the MODIS algorithm as 185 

‘confident cloudy’ were, almost always, contaminated with some cloud, and were sometimes cloud-filled. Regardless of the 

time of day, the actual CALIOP-based cloud fraction for ‘confident cloudy’ detections was close to 100%, reaching 94.7%. 

MODIS intermediate classes constituted 13.3% of all detections. CALIOP cloud fractions were 27.7% and 66.6% for ‘probably 

clear’, and ‘probably cloudy’ classes respectively. The statistics revealed a difference of up to 17% no significant day/ night  
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between day and night conditions, and it was especially small for the ‘probably clear’ class (1.3%) and the ‘confident cloudy’ 190 

class (daytime had no impact at all)., where the difference was only 1.3% (compared to 12.3% for ‘probably cloudy’). 

The parameters reported in Table 2 are global averages (means), and spatial diversity was observed. Differences were smallest 

for the ‘confident cloudy’ class – both during the day (Fig. 3a) and at night (Fig. 3b) – and the CALIOP-based cloud fraction 

exceeded 90% at almost every location. North-east China, the southern Arabian Peninsula and Eastern Antarctica were the 

only significant exceptions; here cloud fraction decreased to 50–70%.  195 

The cloud fraction distribution was homogeneous for the ‘confident clear’ class, however, only during the day (Fig. 3g). At 

night (Fig. 3h) it increased substantially in polar regions, especially over the oceans of the southern hemisphere, along the 

coast of Antarctica. Unlike polar regions, no noticeable day/ night difference was observed for mid- and low-latitudes (< 10%); 

here, the cloud fraction was very low (< 20%), and very few MODIS ‘confident clear’ detections were identified as cloudy by 

CALIOP. 200 

Among the MODIS intermediate classes, ‘probably cloudy’ clear’ differed most from CALIOP-based data. First, a high cloud 

fraction (> 70%) was observed at night along the equator and in polar regions (both oceanic and continental; Fig. 3f). At mid-

latitudes the cloud fraction for MODIS ‘probably clear’ observations was relatively low (< 10–20%). This pattern was inverted 

during the day (Fig. 3e). At this time a higher (50–75%) cloud fraction was noted for mid-latitudes, but this was only and over 

partially parts (typically land) of the true in polar regions. 205 

3.3 Cloud fraction as a function of the algorithm path 

The MODIS cloud detection algorithm distinguishes between day and night (Tab. 1, Tab. 2), and four types of background 

(land, desert, coast, ocean), each of which can be either snow-covered or snow-free. CALIOP-based cloud fractions for all 

algorithm paths are reported in Table 3. These values give a detailed understanding of MODIS cloud detection results. Data 

are given for each class of the MODIS cloud mask separately. In our study, we structured the paths through the algorithm in 210 

more detail. Snow-covered conditions were considered for land, desert, ocean and coast separately, while in the MODIS 

algorithm they are grouped as snow/ ice. This greater level of detail allowed us to observe how the presence of snow impacted 

the cloud mask over different backgrounds. 

Per-class estimates of cloud fraction were very consistent for all algorithm paths for the ‘confident cloudy’ category (Tab. 3). 

Final values ranged between 97.7% (night, snow-free, land) and 86.4% (night, snow-covered, desert), and were close to the 215 

standard Level 3 assumption of 100%. This finding contrasted with cloud fractions found for the ‘confident clear’ category. 

While MODIS recorded cloud-free conditions, CALIOP data revealed that the actual cloud fraction ranged from 8.0% (night, 

snow-free, land) to 49.7% (night, snow-covered, ocean). 

The combination of night, an oceanic background and snow-covered (or sea ice) constituted the ‘most cloudy’ scenario 

(Fig.  4). Here, a very high cloud fraction  was found for not only the ‘confident cloudy’ category (96.8%, Fig. 4a), but also 220 

all remaining classes: 82.5% (‘probably cloudy’; Fig. 4b), 73.3% (‘probably clear’; Fig. 4c) and, surprisingly, up to 49.7% for 

‘confident clear’ (Fig. 4d).  
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Results CALIOP-based cloud fractions were most consistent with the standard Level 3 interpretation for snow-free land at 

night (Fig. 5). Here, the cloud fraction for ‘confident clear’ was low (8.0%; Fig. 5d), and very high for ‘confident cloudy’ 

(97.7%; Fig. 5a). At the same time, intermediate classes were well-separated: 68.5% for ‘probably cloudy’ (Fig. 5b), and 25.6% 225 

for ‘probably clear’ (Fig. 5c). Globally, no significant difference was found for cloud fraction values for the night/ no snow-

free/ land algorithm path. A small exception was noted for the ‘probably clear’ type, where the cloud fraction was 10–30% 

higher in the tropics compared to the rest of the world. 

A similar pattern spatial distribution of CALIOP-based cloud fractions was observed for snow-free land during the day – the 

scenario of particular interest for land/ vegetation remote sensing with MODIS. The two notable differences were related to 230 

‘probably clear’ (Fig. 6c) and ‘confident clear’ categories (Fig. 6d). The latter occurred twice as often during the day (15.6%) 

than at night (8.0%). Similarly, cloud was more frequent in the ‘probably clear’ class. However, this was only found in the 

tropics and at high latitudes, which mirrored a zonal pattern that was only weakly seen at night.  

As ice-free oceans represent the majority of Earth’s surface, cloud detection over ocean is the most frequent algorithm path. 

Daytime conditions make detection easier (due to the availability of solar channels). Under such circumstances, CALIOP 235 

detected cloud in 10.5% of MODIS’s ‘confident clear’ observations (Fig. 7d), and confirmed 95.2% of ‘confident cloudy’ 

detections (Fig. 7a). Cloud fractions for intermediate classes (daytime over ice-free ocean) were 54.5% and 28.4% for 

‘probably cloudy’ (Fig. 7b) and ‘probably clear’ (Fig. 7c) categories, respectively. ‘Probably clear’ was the only class where 

there was a clear latitude-dependent cloud fraction: values increased by 30–60% along a path ~30–40 degrees north/ south. 

4 Discussion  240 

Our investigation of spatially and temporally collocated MODIS (cloud imager) and CALIOP (cloud profiling lidar) 

observations for January and July 2015 revealed that MODIS Collection 061 global cloud amount estimates are imperfect in 

two ways. First, dDuring the generation of the Level 2 product, the masking algorithm fails to accurately report cloud over 

polar regions, and over selected locations at lower latitudes. Consequently (as discussed in this section) Second, the Level 3 

product generation underestimates cloud fractions for cloud mask classes in numerous regions. The reliability of these results 245 

depends on several factors, most notably the spatial and temporal accuracy of Aqua/ MODIS and CALIPSO/ CALIOP 

collocation.  

Temporal differences between Aqua and CALIPSO observations varied from 60 seconds to 97 seconds. In this time, cloud can 

develop and move, introducing the risk that CALIOP observes a different state of the atmosphere compared to MODIS. Várnai 

and Marshak (2009) evaluated the problem by comparing MODIS reflectance with that collected by the Wide Field Camera. 250 

The latter is an imaging instrument flown onboard CALIPSO, along with CALIOP. They found that for low cloud, radiance 

differed only slightly over 72 seconds, and it was reasonable to ignore any discrepancies when focusing on aerosol properties 

(they gave no particular conclusions for cloud). In order to test how sensitive our results were to the time shift, we calculated 

the overall accuracy of the cloud detection algorithm as a function of the time between Aqua and CALIPSO passes. The results 
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were very consistent: despite the shift, accuracy remained at 86.7±0.1%. This finding confirmed that the temporal separation 255 

between Aqua and CALIPSO had no significant impact on the results of our study. 

Another potential source of uncertainty is the geometric mismatch between MODIS and CALIOP IFOV. They are not aligned 

perfectly: 66% of collocated IFOV were separated by less than 0.5 km, and 82% by less than 0.6 km. Similar statistics – 75% 

and 93%, respectively – were found by Wang et al. (2016) in their investigation of cloud based on MODIS and CALIOP 

observations. To investigate whether geometric conditions did have an impact on our results, we calculated the overall accuracy 260 

of the MODIS cloud mask as a function of the distance between MODIS and CALIOP IFOV. For ranges up to 1 km with a 

100 m step, the change in accuracy was insignificant: –87.0±0.3% on average. (See Supplementary Online Materials’ Fig. S2 

for more detailed statistics about the spatial and temporal separation between MODIS and CALIOP). 

It is possible that agreement between MODIS and CALIOP data is affected by cloud optical thickness (τ) or, more precisely, 

by the higher sensitivity of CALIOP in detecting optically-thin cloud. Ackerman et al. (2008) estimated the MODIS limit for 265 

τ to be approximately 0.4. A similar improvement in agreement with CALIOP as a consequence of increasing τ was observed 

by Karlsson and Håkansson (2017) for the Advanced Very High Resolution Radiometer (AVHRR) instrument. The latter study 

demonstrated that the imager’s probability of detection changed in the range 0.0<τ<1.0. We calculated the same statistic, and 

found that the probability distribution for MODIS was identical to AVHRR – although MODIS values were higher. This 

finding strongly suggests that cloud thickness has the same impact on our results as that found in previous studies.  270 

Collection 006 of MODIS data was investigated by Wang et al. (2016), who used lidar–radar (CALIPSO–CloudSat) profiles 

to focus on daytime multi-layered clouds. Our findings are consistent with those reported by Wang et al. (2016), despite the 

fact that the latter authors used a dataset of 267 million IFOV, while our study relied on around 33 million profiles. Their 

validation of Collection 006 reliability found overall agreement of 77.8% compared to our study, which found 81.9%. The 

difference may be due to the different sample sizes. Our result for cloud-free clear sky detection was slightly higher than in 275 

Wang et al. (2016): 25.5% compared to 20.9%. On the other hand, results for cloudy sky detection were very similar: 56.9% 

compared to 56.4% in our study.  

As reported by Wang et al. (2016), and previously by Baum et al. (2012) and Ackerman et al. (2008), cloud detection in polar 

regions remains an unsolved issue for MODIS. Our study revealed that even for the Collection 061, i.e. the most recent modest 

(July 2020) version of the MODIS cloud mask, up to 40% of cloud-free clear skies recorded detected during the polar night 280 

were actually cloudy. Daytime accuracy was lowest over China (in January), the USA/ Canada (in January) and over tropical 

ocean along the west (January) and east (July) coasts of Africa. In these cases, MODIS detected cloud that did not exist 

according to CALIOP. False detections may be due to snow cover (the USA/ Canada), high aerosol content over China (Zhang 

et al. 2019; Tan, Zhang, and Shi 2019), and ocean bordering desert regions in North Africa (Weinzierl et al., 2017; Zuluaga et 

al., 2012).  285 

As reported by Wang et al. (2016), and previously by Baum et al. (2012) and Ackerman et al. (2008), cloud detection in polar 

regions remains an unresolved issue for MODIS, and similar passive imaging radiometers. Polar night is especially 

challenging. Successful discrimination between cloud and the underlying surface requires radiance measurements in ice 
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absorption bands (e.g. 1.6 µm or 2.1 µm). But as these are only available in daytime, night-time detection has to rely on thermal 

infrared data. As thermal inversion in the polar tropopause decreases the thermal contrast between cloud and the background, 290 

the thermal signatures of cloud and the land/ ocean surface become indistinguishable, leading to cloud masking errors (Liu et 

al., 2004). CALIOP, however, does not require solar illumination to operate. As it uses light emitted by the instrument itself, 

its performance is far less affected by day-night conditions. CALIOP’s night-time data are of even higher quality, because 

solar illumination introduces an additional background signal and, thus, decreases the signal-to-noise ratio (Hunt et al., 2009). 

Furthermore, MODIS tends to miss up to ~20% of cloud along the Intertropical Convergence Zone (ITCZ), regardless of the 295 

time of year (January or June), and the time of day. This can be partially explained by the fact that MODIS is less sensitive to 

optically thin cloud than CALIPSO, and the ITCZ is the region where cirrus is most frequently observed (Sassen et al., 2009). 

The higher sensitivity of CALIOP to optically thin cirrus, and the higher sensitivity of the lidar during night-time, also explains 

why CALIOP-based cloud fractions for MODIS ‘confident clear’ and ‘probably clear’ classes are higher along the ITCZ  at 

night (Fig. 3f, h) than during the day (Fig. 3e, g). 300 

The main goal of our study was to investigate the validity of the standard (operational) approach to the quantitative 

interpolation interpretation of MODIS cloud mask classes. We found the approach to be inadequate. Our study found that it is 

unreasonable to assume that ‘confident cloudy’ and ‘probably cloudy’ IFOV are always cloudy. Similarly, ‘confident clear’ 

and ‘probably clear’ IFOV cannot be assumed to be clear. Our findings show that actual cloud fractions for these classes varied 

significantly, and never reached the expected 100% or 0%. The most accurate assumption was that ‘confident cloudy’ was 305 

actually cloudy. ‘Confident cloudy’ detections were confirmed as cloudy by CALIOP in at least 90% of cases (97.7% for 

night/ snow-free/ land, and 97.6% for day/ snow-covered/ land). For all remaining categories, cloud fractions reflected the 

limitations of the cloud masking procedure for certain cloud regimes and/ or environmental conditions. 

The most important consequence of calculating empirical cloud fractions for MODIS cloud mask categories is the ability to 

recalculate global cloud amount with new weights. Therefore, instead of using global fractions (reported in Table 2), we 310 

derived a set of dedicated fractions for each algorithm path, and each 2.5-degree grid box (i.e. a local equivalent to the data 

given in Table 23). This considers MODIS IFOV within the full swath (excluding sunglint), and not only those collocated with 

CALIOP. Full-swath data were used because the MODIS L3 cloud amount product applies the same cloud mask interpretation 

to all IFOVs, regardless of their off-nadir angle. On the other hand, the use of nadir-only MODIS observations would result in 

CALIOP-like spatial coverage of the data, creating significant gaps due to CALIOP’s pencil-like viewing geometry. Figure 8 315 

illustrates the results of the calculation and reports differences in cloud amount between the MODIS ST NASA operational 

product, and the product generated using the fractions presented in this study.  

The outcome of the simulation shows that the use of current operational cloud fractions introduces significant errors. In some 

locations, MODIS underestimates cloud amount by 20–40%, most notably in polar regions at night. An overestimation of 

similar magnitude is observed mostly over the northern hemisphere: the USA/ Canada and China in January (both day and 320 

night), and the tropical coasts of Africa during the day (both in January and July). Consequently, MODIS Level 3 estimates of 

cloud amount should be used with great caution in those regions. This is especially important for the Arctic, which is 
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undergoing a rapid change in climatic conditions (Serreze and Barry, 2011), and where cloud has been found to be an essential 

element in feedback (Kay et al. 2008; Vavrus 2004; Shupe and Intrieri 2004; Tan and Storelvmo 2019). 

The availability of collocated MODIS and CALIOP observations also allowed us to examine which of the three ‘best guess’ 325 

interpretations of cloud mask categories is most accurate: the one when only ‘confident cloud’ IFOV are ‘cloudy’, the one that 

only considers ‘confident clear’ as ‘clear’, or the operational approach? We therefore calculated merged global cloud amount 

for January and July 2015. Our results show that, on the global scale, the standard approach is closest to CALIOP reference 

data, although only during the day (Tab. 4). At night, it is more accurate to assume that only ‘confident clear’ is actually cloud-

freeclear. The global result is biased by the polar night. In these conditions, all three ‘best guess’ interpretations noticeably 330 

underestimate cloud amount. At low- and mid-latitudes the standard (operational) approach differs from CALIOP data by 

±2%. However, it should be noted that these statistics relate to large areas. As our study shows, regional differences are orders 

of magnitude larger. 

Our study assumed that CALIOP’s ‘cloudy’ IFOV was always completely cloud filled. This assumption is common when 

interpreting cloud masks based on data from the majority of imaging radiometers flown onboard meteorological and land-335 

imaging satellites. However, studies by Zhao and Di Girolamo (2006), and Kotarba (2010) suggest that this postulate may not 

be true. Both of the latter studies took advantage of a rare collocation between a meteorological imager (MODIS) and the high-

resolution land imager (ASTER) flown onboard the Terra satellite. Nearly 3,000 ASTER IFOV were located within each 

MODIS pixel. Kotarba (2010) showed that for sunglint-free, oceanic scenes in the tropics, actual cloud coverage for the 

‘confident cloudy’ MODIS category was 79.2% (mean) or 99.8% (median), instead of the assumed 100%. Comparable 340 

statistics for CALIOP are not available, as the CALIPSO spacecraft does not carry a high-resolution imager. Given the lack of 

alternatives, we must accept the hypothesis that ‘cloudy’ means 100% cloud filled. 

5 Summary and Conclusion 

This study investigated 33,793,648 collocated MODIS (cloud imager) and CALIOP (cloud profiling lidar) observations, 

acquired in January and July 2015. Our evaluation of the dataset allowed us to answer three, essential questions, related to 345 

global estimates of cloud amount resulting from the MODIS/ Aqua mission. These questions are:  

1. What are the actual cloud fractions corresponding to MODIS cloud mask classes? We found that these fractions 

are 21.5%, 27.7%, 66.6%, and 94.7%, rather than the MODIS Science TeamNASA-assumed values of 0%, 0%, 

100% ,and 100% for ‘confident clear’, ‘probably clear’, ‘probably cloudy’, and ‘confident cloudy’ categories, 

respectively (Tab. 2). Therefore, the standard (operational) approach used to generate MODIS Level 3 cloud 350 

amounts is inaccurate. Importantly, we found that the percentage of cloud cover to be assigned to MODIS cloud 

mask classes varied spatially (Fig. 3), and recommend that global fractions should be avoided, in favour of local 

alternatives. 
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2. How significant are uncertainties in global cloud amount estimates calculated using the MODIS ST NASA 

operational approach? We found that uncertainties were up to −30% of cloud amount in the polar regions at 355 

night, and up to +30% of cloud amount in selected locations over the northern hemisphere, more frequently 

during the day (Fig. 8).  

3. Is the MODIS Level 3 standard approach reliable? Our results showed that when a global cloud amount value 

is required (day and night, for all latitudes), the standard approach can be considered reliable (Tab. 4). We found 

that, in this case, it was more accurate than other ‘best guess’ approaches – namely only ‘confident clear’ is 360 

‘clear’ (other classes are ‘cloudy’), and ‘confident cloudy’ is ‘cloudy’ (other classes are ‘clear’). However, on a 

regional scale the standard approach fails (Fig. 8). Whenever MODIS cloud amount is estimated regionally or 

locally at a spatial resolution of ~10 degrees or finer, it is necessary to assess whether a particular location might 

be affected by an error of up to ±30%. 

Errors and uncertainties related to the generation of the MODIS Level 3 cloud amount product originate in the Level 2 product: 365 

the cloud mask (Fig. 1–2 vs. Fig. 8). The cloud detection algorithm is more-or-less accurate depending on environmental 

conditions, which are approximated as algorithm paths (Tab. 3). However, conditions within paths are not constant (Fig. 4–7): 

for instance, the same radiance/ reflectance thresholds are applied to Europe, the USA and China, while environmental 

conditions in these locations are not the same (e.g. different aerosol loads, different aerosol optical properties). The MODIS 

Science Team have attempted to discriminate between these conditions. For instance, since Collection 006 the 0.86 µm 370 

reflectance test over land considers thresholds that are a function of the Normalized Difference Vegetation Index (NDVI) and 

scattering angle. Although cloud misclassification is less frequent than in previous Collections,  it still occurs, and impacts the 

degree of uncertainty  of L3 cloud amount estimates, as shown in this study. 

CALIOP-based estimates of cloud fraction are a robust way to adjust (and correct) MODIS estimates. The method described 

in this paper can be used globally, with the exception of sunglint regions (which are not sampled by CALIOP). In these areas 375 

‘best guess’ findings can, potentially, be applied. The polar regions benefit most from the new method. Cloud fractions derived 

for MODIS/ Aqua may be also adopted for MODIS/ Terra, since the two sensors are expected to produce comparable and 

homogenous records. Moreover, the occasional collocation of the CALIPSO satellite with AVHRR and VIIRS instruments 

makes it possible to calculate similar cloud fractions for these missions, and produce more reliable cloud climatologies. 

Data availability 380 

MODIS data are available from the Level 1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active 

Archive Center (DAAC) at NASA’s Goddard Space Flight Center (https://earthdata.nasa.gov/eosdis/daacs/laads). CALIPSO 

products are available from the Atmospheric Science Data Center (ASDC) at NASA’s Langley Research Center 

(https://eosweb.larc.nasa.gov/).  
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Tables 

 530 

Table 1. Agreement in cloud detection between MODIS and CALIOP (% of all cases). Overall accuracy (given in brackets) 

refers to ‘confident clear’ and ‘confident cloudy’ detections. In other cases, ‘confident clear’ and probably clear’ were merged, 

as were ‘probably cloudy’ and ‘confident cloudy’.  

 

 MODIS 

Overall accuracy 
confident clear probably clear probably cloudy confident cloudy 

  Day+Night 

CALIOP 
clear 22.7 5.4 1.9 3.1 

86.7% (77.3%) 
cloudy 6.2 2.1 3.9 54.6 

  Day only 

CALIOP 
clear 25.5 5.1 1.7 3.2 

89.4% (81.9%) 
cloudy 3.7 2.0 2.4 56.4 

  Night only 

CALIOP 
clear 20.2 5.7 2.2 3.0 

84.2% (73.3%) 
cloudy 8.5 2.1 5.2 53.1 

 535 
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Table 2. Global cloud fractions for MODIS cloud mask classes derived from CALIOP observations (‘This study’), and used 

in the operational MODIS Science Team Level 3 product (‘Operational’). Numbers in brackets refer to class frequency (n = 540 

33, 793, 648).  

 

Source of cloud fractions 

for  

cloud mask classes 

 Cloud fractions (%) for MODIS  

cloud mask class (class frequency, % of n) 

confident 

clear 

(28.9%) 

probably 

clear 

(7.5%) 

probably 

cloudy 

(5.8%) 

confident 

cloudy 

(57.8%) 

Operational Day+Night 0.0 0.0 100.0 100.0 

This study 

Day+Night 21.5 27.7 66.6 94.7 

Day only 12.7 28. 4 58.4 94.7 

Night only 29.5 27.1 70.7 94.7 
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Table 3. CALIOP-based  Cloud cloud fractions for MODIS cloud mask classes, calculated individually for each MODIS 545 

algorithm path. Note that more paths are reported here than in the MODIS project. Snow-covered ocean, land, desert and coast 

constitute a single path in the operational algorithm, while here they are reported individually to highlight how snow impacts 

the results. The sunglint path is missing as CALIOP does not sample over sunglint areas. Numbers in brackets refer to how 

frequently (% of n) a given algorithm path was executed, n = 33, 793, 648. 

 550 

Cloud masking algorithm path 

CALIOP-based cCloud fractions [%] for MODIS  

cloud mask class 

confident 

clear 

probably 

clear 

probably 

cloudy 

confident 

cloudy 

Day 

(47.2) 

Snow-

covered 

(5.5) 

Land (0.2) 13.8 67.0 56.0 97.6 

Desert (3.9) 12.6 32.6 71.8 96.6 

Coast (0.2) 15.3 55.5 61.8 93.8 

Ocean (1.1) 20.5 76.3 69.7 88.6 

No Snow-

free 

(41.7) 

Land (6.7) 15.6 32.3 63.9 93.4 

Desert (3.4) 9.1 19.1 45.5 90.0 

Coast (1.6) 19.0 33.8 59.8 93.0 

Ocean (30.1) 10.5 28.4 54.5 95.2 

Night 

(52.8) 

Snow-

covered 

(15.8) 

Land (2.6) 31.4 65.0 80.9 93.9 

Desert (4.7) 34.3 65.3 75.9 86.4 

Coast (0.9) 29.8 60.8 75.0 93.7 

Ocean (7.6) 49.7 73.7 82.5 96.8 

No Snow-

free 

(37.0) 

Land (5.4) 8.0 25.6 68.5 97.7 

Desert (2.6) 8.2 23.5 55.8 95.4 

Coast (0.9) 10.9 23.0 60.9 96.4 

Ocean (28.1) 22.9 22.4 61.8 94.6 
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Table 4. Global cloud amount (%) calculated with different ‘best guess’ interpretations of the MODIS cloud mask product. 

Only MODIS IFOV collocated with CALIOP are considered. 

 

CALIOP 

MODIS cloud mask interpretation scenario 

Only ‘confident 

cloudy’ is ‘cloudy’ 

‘Confident clear’ and ‘probably clear’ 

are clear, while the rest is cloudy 

Only ‘confident 

clear’ is ‘clear’ 

 Global 

Day+Night 66.7 57.7 63.5 71.0 

Day 64.3 59.3 63.4 70.6 

Night 68.9 56.1 63.5 71.3 

 Polar regions (latitudes above 60ºN/S) 

Day+Night 66.9 50.5 57.6 61.0 

Day 64.8 59.0 62.6 66.4 

Night 68.5 44.1 53.9 57.0 

 Equatorial region (latitudes between 30ºN and 30ºS) 

Day+Night 59.8 52.8 58.0 67.4 

Day 56.2 49.9 54.8 65.4 

Night 63.5 55.7 61.2 69.4 

 Mid-latitudes (between polar and equatorial) 

Day+Night 73.3 68.9 74.2 83.6 

Day 72.0 69.1 72.7 79.1 

Night 74.6 68.8 75.7 87.9 

 555 

  



22 

 

Figures 

 

Figure 1. Observations declared ‘confident clear’ or ‘probably clear’ by the MODIS cloud masking algorithm, but identified 

as ‘cloudy’ by CALIOP. 560 

 

Figure 2. Observations declared ‘confident cloudy’ or ‘probably cloudy’ by the MODIS cloud masking algorithm, but 

identified as ‘clear’ by CALIOP. 

 

Figure 3. CALIOP-based  cloud  fraction  for  MODIS  cloud  mask  classes. 565 

 

Figure 4. CALIOP-based cloud fraction for MODIS cloud mask classes for the ‘nighttime, snow(ice)-covered ocean’ algorithm 

path, and corresponding histograms (red vertical line indicates the mean value). 

 

Figure 5. CALIOP-based cloud fraction for MODIS cloud mask classes for the ‘nighttime snow-free land’ algorithm path, and 570 

corresponding histograms (red vertical line indicates the mean value). 

 

Figure 6. CALIOP-based cloud fraction for MODIS cloud mask classes for the ‘daytime, snow-free land’ algorithm path, and 

corresponding histograms (red vertical line indicates the mean value). 

 575 

Figure 7. CALIOP-based cloud fraction for MODIS cloud mask classes for the ‘daytime, snow-free ocean’ algorithm path, 

and corresponding histograms (red vertical line indicates the mean value). 

 

Figure 8. Difference between the MODIS Science Team (MODIS ST)  Level 3 cloud amount product, and cloud amount 

calculated with the cloud fractions found in this study. Positive values indicate that the MODIS operational product 580 

overestimates cloud amount (with respect to CALIOP), while negative values indicate a MODIS underestimate. All MODIS 

observations refer to the full swath, not only those collocated with CALIOP. 

 

 

  585 
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Supplementary Online Material 

 

Figure S1. The average cloud-aerosol discrimination (CAD) score for CALIOP cloud data used in the study. Maps show spatial 

variation in the CAD score during the day (b), at night (c), and regardless of the time of the day (a). These plots demonstrate 

the high stability of CAD scores at various latitudes during the day (d) and at night (e). 590 

 

Figure S2. Overall accuracy of MODIS cloud detection as a function of the temporal (a, c) and spatial (b, d) separation of 

MODIS and CALIOP IFOVs. Top plots show the frequency of observations for individual time (a) and distance (b) ranges, 

while bottom plots report accuracy for these ranges. MODIS detections are validated using CALIOP cloud profiles as a 

reference. Accuracy is defined as the ratio of MODIS true detections (true positive and true negative) to all MODIS 595 

observations (see Table 1 in the main text for details). 
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Abstract. The Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection procedure classifies instantaneous 

fields of view (IFOV) as either ‘confident clear’, ‘probably clear’, ‘probably cloudy’, or ‘confident cloudy’. The cloud amount 

calculation requires quantitative cloud fractions to be assigned to these classes. The operational procedure used by the MODIS 

Science Team assumes that ‘confident clear’ and ‘probably clear’ IFOV are cloud-free (cloud fraction 0%), while the remaining 

categories are completely filled with clouds (cloud fraction 100%). This study demonstrates that this ‘best guess’ approach is 10 

unreliable, especially on a regional/ local scale. We use data from the Cloud-Aerosol Lidar with Orthogonal Polarization 

(CALIOP) instrument flown on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission, 

collocated with MODIS/ Aqua IFOV. Based on 33,793,648 paired observations acquired in January and July 2015, we 

conclude that actual cloud fractions to be associated with MODIS cloud mask categories are 21.5%, 27.7%, 66.6%, and 94.7%. 

Spatial variability is significant, even within a single MODIS algorithm path, and the operational approach introduces 15 

uncertainties of up to 30% of cloud amount, notably in polar regions at night, and in selected locations over the northern 

hemisphere (e.g. China, the north-west coast of Africa, and eastern parts of the United States). Consequently, applications of 

MODIS data on a regional/ local scale should first assess the extent of the uncertainty. We suggest using CALIPSO-based 

cloud fractions to improve MODIS cloud amount estimates. This approach can also be used for MODIS/ Terra data, and other 

passive cloud imagers, where the footprint is collocated with CALIPSO. 20 

1 Introduction 

Cloud plays a key role in distributing solar energy in the Earth’s atmosphere (Trenberth et al., 2009). Consequently, research 

into the present and future state of the climate system requires accurate information about cloud amount. Depending on its 

frequency and physical properties, cloud can both heat (greenhouse effect: +30 Wm-2) and cool (albedo effect: –48 Wm-2) the 

atmosphere. Their net effect on the planetary radiation budget is negative, meaning the Earth would be warmer if all cloud 25 

disappeared (Ramanathan and Kiehl, 2006).  

The Global Climate Observing System identifies 13 Essential Climate Variables. This set of critical environmental parameters 

characterize the Earth’s climate (Hollmann et al., 2013); they not only include cloud properties, but also highlight that our  

knowledge of cloud relies largely on satellite remote sensing. Satellite cloud climatology starts with a cloud mask. The aim is 
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to decide whether cloud is present in a sensor’s instantaneous field of view (IFOV), or whether it is cloud free. Input data 30 

includes at-sensor registered radiances, along with other auxiliary information that aims to maximize cloud detection.  

Efficient cloud detection algorithms have to consider the technical limitations of sensors, available computing power, and 

environmental factors such as the background (e.g. water, land, snow) and solar illumination (day and night). The resulting 

cloud mask takes the form of a map that divides IFOV into at least two categories: ‘cloud free’, and ‘cloud contaminated’ (or 

‘cloud filled’). Many masking algorithms introduce additional categories in order to reflect the level of uncertainty in cloud 35 

detection (Derrien and Le Gléau, 2005; Dybbroe et al., 2005; Kopp et al., 2014).  

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a cloud imaging instrument that is flown onboard NASA’s 

polar orbiting satellites: Terra and Aqua. Circling the Earth in the morning orbit (10:30 local solar time; Terra), and afternoon 

orbit (13:30 local solar time, Aqua), these twin sensors provide a global picture of cloud four times each day, at 1 km/pixel 

resolution (Guenther et al., 2002; Platnick et al., 2003). With 36 spectral channels, continuous correction for orbital drift, and 40 

precisely-calibrated detectors, MODIS has set a new standard in cloud remote sensing, and is still considered to be a state-of-

the-art cloud imager, despite being launched in 1999 (Terra), and 2002 (Aqua).  

MODIS’s cloud detection scheme results in four cloud mask categories: ‘confident cloudy’, ‘probably cloudy’, ‘probably 

clear’, and ‘confident clear’ (Frey et al., 2008). The fact that these classes are presented as qualitative, text-based labels rather 

than a numeric probability causes the technical problem of how to quantitatively interpret these labels. A numeric interpretation 45 

is mandatory when instantaneous observations (Level 2 products) are aggregated spatially and/ or temporally to provide 

climatological information such as mean monthly cloud amount (Level 3 products).  

The procedure implemented by NASA’s MODIS Science Team (hereinafter the ‘standard’ or ‘operational’ procedure) is to 

assume that IFOV declared ‘confident cloudy’ and ‘probably cloudy’ are, in fact, 100% cloud filled, while ‘confident clear’ 

and ‘probably clear’ are completely cloud free (cloud fraction of 0%) (Hubanks et al., 2008). The approach is widely used 50 

whenever there is a need to make a binary distinction between cloudy and cloud-free pixels – e.g., Gao et al. (2008), Remer et 

al. (2012), Wilson and Oreopoulos (2013), Wilson, Parmentier, and Jetz (2014), Kraatz, Khanbilvardi, and Romanov (2017), 

Gomis-Cebolla, Jimenez, and Sobrino (2020).  

However, since the MODIS Science Team (ST) approach is only a ‘best guess’, alterative assumptions are  also used. For 

instance, it can be assumed that only ‘confident cloudy’ pixels are ‘cloudy’, while all remaining classes are 100% cloud free. 55 

Similarly, only ‘confident clear’ detections can be considered as truly cloud-free, while all other classes are assumed to be 

100% cloud filled (Li et al., 2005). Krijger et al. (2007) argue that the latter approach leads to the false detection of small 

clouds, while cloud is frequently overlooked if the first method is applied. Another approach is simply to exclude ‘probably 

clear’ and ‘probably cloudy’ detections from the analysis. This strategy was adopted by Chan and Comiso (2013), whose work 

was based on only ‘confident clear’ and ‘confident cloudy’ categories of MODIS data.  60 

Quantitative studies have shown that only considering the ‘confident cloudy’ class as cloudy may be more consistent with 

other cloud data such as Landsat observations (Melchiorre et al., 2020), or visual observations at meteorological stations 
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(Kotarba, 2015). On the other hand,, Fontana et al. (2013) compared MODIS data with ground-based observations in 

Switzerland (4 stations, 12 years of data), and found that results varied from station to station. 

The theoretical range of uncertainty related to various interpretations of the MODIS cloud mask was investigated by Kotarba 65 

(2015). The latter study found that the global cloud amount estimates may differ by up to 14%, depending on whether only 

‘confident cloudy’ detections are considered to be ‘cloudy’, or whether the definition is extended to include intermediate 

classes. The discrepancy was found to increase by up to 40–60% regionally, suggesting that MODIS cloud estimates are very 

uncertain in these areas. Such a wide range of uncertainty makes it difficult to run reliable studies on the climate system. 

Neither the MODIS ST standard procedure, nor any other ‘best guess’ variants have been validated on a global scale. Most 70 

importantly: no research-based, objective alternatives to the 0/0/100/100 interpretation have been suggested. This study 

addresses this problem. Specifically, it provides global cloud fractions based on quantitative analysis of CALIOP lidar 

observations. 

CALIOP (the Cloud-Aerosol Lidar with Orthogonal Polarization) is a cloud profiling instrument flown onboard the CALIPSO 

(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) spacecraft. Launched in 2016, CALIPSO flies in close 75 

formation with the Aqua satellite, therefore both instruments – MODIS and CALIOP – sample the same fragment of the 

atmosphere tenths of seconds apart (Stephens et al., 2018). In this study, CALIPSO data is considered as ground truth. This is 

because CALIOP is an active remote sensing instrument, which means that it can sample the atmosphere during the day and 

at night with comparable sensitivity. Imaging radiometers (such as MODIS) perform less effectively at night, when solar 

channels are missing. Furthermore, the use of short wavelengths makes CALIOP very sensitive to cloud of low optical 80 

thickness (e.g. sub-visual cirrus) that is often missed by imagers (Ackerman et al., 2008).  

In the following sections we seek to answer the questions: 1) What quantitative cloud fractions (based on CALIOP 

observations) should be applied to MODIS thematic cloud mask classes? and 2) What uncertainties in global cloud amount 

are introduced by the MODIS ST standard procedure? Finally, we evaluate whether the standard procedure for calculating the 

MODIS Level 3 cloud amount is reliable. 85 

2. Data & Methods 

2.1 MODIS data 

The MODIS cloud detection scheme is based on thresholds that are applied to brightness temperature (thermal bands), and 

reflectance (solar channels), derived from observations in 22 spectral bands ranging from 0.66 µm to 13.9 µm. Ackerman et 

al. (1998), Frey et al. (2008), and Baum et al. (2012) provide very detailed descriptions of the cloud masking procedure. The 90 

general concept is as follows.  

The algorithm executes a series of tests, each of which results in a confidence level (ranging from 0 to 1) that a particular IFOV 

is cloud free. Tests to detect similar cloud types are grouped. The lowest confidence level for a test within a group is set as the 

confidence level for the whole group. Confidence levels for groups are then multiplied to determine the final confidence level 
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(Q). Finally, the IFOV is assigned to one of four cloud mask classes: ‘confident clear’ (Q > 0.99), ‘probably clear’ (Q > 0.95), 95 

‘probably cloudy’ (Q > 0.66), or ‘confident cloudy’ (Q ≤ 0.66). The exact number of spectral tests varies from a few to over a 

dozen, depending on the path through the algorithm. Paths reflect different environmental conditions, and are introduced to 

maximize success. Dedicated sets of spectral tests are executed for land, ocean, desert and coastal areas, for both day and night 

conditions. The presence of snow and/ or ice is taken into account, as is sunglint over oceans. Separate thresholds have been 

introduced for polar regions, which are defined as land and ocean within 30 degrees of each pole. 100 

Cloud detection results are stored in the 48-bit ‘Cloud Mask’ product, codenamed MYD35 (Aqua) and MOD35 (Terra) 

following the MODIS nomenclature. In this study, we evaluated the latest version of MYD35 (Collection 061) data, available 

in the form of 5-minute granules, at 1 km per pixel spatial resolution (at nadir), with native satellite projection. Each MYD35 

file is accompanied by a MYD03 ‘Geolocation file’ product, that stores longitude and latitude information for individual cloud 

mask IFOV. 105 

2.2 CALIOP data 

CALIOP operates at 532 nm and 1064 nm. The instrument’s pencil-like beam only scans locations along the satellite’s ground 

track, as a trade-off for information on the vertical structure of cloud/ aerosols. Its spatial resolution is a function of the 

satellite’s altitude. Resolution is finest – 0.333 km horizontal, 30 m vertical – in the troposphere, up to 8.2 km. Between 8.2 km 

and 20.2 km, vertical resolution falls to 60 m, and horizontal sampling to 1 km. Between 20.2 km and 30.1 km, data are even 110 

coarser: 1.667 km horizontal and 180 m vertical resolution. Higher in the atmosphere (30.1 km to 40.0 km) horizontal 

resolution decreases to 5 km, while vertical resolution is 300 m (Hunt et al., 2009; Winker et al., 2006).  

CALIOP detects cloud by applying thresholds to 532 nm attenuated scattering ratios. The aim is to separate the cloud signal 

from the clear air background (molecular scattering), aerosols, and instrument noise. The algorithm calculates cloud base 

height, cloud top height, and – as a consequence – the number of cloud layers within a profile. Up to 10 layers can be reported. 115 

The procedure is fully automatic (Vaughan et al., 2009). The output is stored in the Level 2 Cloud Layer Data product, available 

at 333 m, 1 km, and 5 km along-track sampling intervals. Here, we use the 1 km interval (version 4.20; 

CAL_LID_L2_01kmCLay-Standard-V4-20), as its resolution matches the spatial resolution of the MODIS cloud mask. 

Furthermore, 1 km is the highest available level of detail for CALIOP data within the troposphere.   

In order to use the CALIOP product to evaluate MODIS data, 3-dimensional cloud layer data was reduced to column-120 

integrated, binary cloud/ no cloud information. Specifically, we focused on the ‘Number_Layers_Found’ parameter provided 

in the CAL_LID_L2 product. ‘No cloud’ was recorded when the latter variable was set to 0 (i.e. zero layers found), and ‘cloud’ 

otherwise (i.e. at least one layer was reported). Geolocation was based on longitude and latitude arrays included in the product 

at 1 km spatial resolution.  

In some cases, cloud and aerosol can appear similar to CALIOP. The cloud-aerosol discrimination (CAD) score, which is a 125 

numerical index stored in the CAL_LID_L2 product, provides information about the algorithm’s uncertainty in separating 
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cloud and aerosol. In the case of cloud, CAD values vary between 0% (it is unclear whether aerosol or cloud was observed) 

and 100% (cloud detected with the highest confidence). The index is calculated for each cloud layer found in the CALIOP 

atmospheric profile. Since our study focuses on column-integrated information of cloud presence, we selected the highest CAD 

value within a profile. Statistics for January and July 2015 showed that 95.6% of considered CALIOP observations were 130 

characterized by a CAD score of at least 70%, while it was below 20% for only 1.5% of data. Therefore, the selected CALIOP 

data can be considered as a reliable reference for MODIS. See Supplementary Online Materials, Fig. S1 for more detailed 

statistics about CAD scores. 

2.3 Matching CALIOP and MODIS data 

Matching CALIOP data is a well-established method for the calibration/ validation of atmospheric products from various space 135 

missions. It has already been widely used for MODIS/ Aqua (Baum et al., 2012; Holz et al., 2009; Sun-Mack et al., 2014; 

Wang et al., 2016; Xie et al., 2010), and sensors flown onboard Suomi-NPP, NOAA, and MetOp polar orbiting spacecraft, 

which occasionally synchronize their orbital configuration with CALIPSO (Hutchison et al. 2014; Heidinger et al. 2012; 

Karlsson and Johansson 2013; Karlsson and Dybbroe 2010). CALIPSO also passes within the field of view of other 

geostationary satellites, and CALIOP data is used to assess their atmospheric products (Sèze et al., 2015; Shang et al., 2018).  140 

In this study, Aqua/ MODIS data for January and July 2005 were paired with corresponding CALIPSO/ CALIOP observations. 

The matching procedure selected a MODIS IFOV and compared it with the corresponding CALIOP profile (where the 

geometric centre was within the selected MODIS IFOV). Although very straightforward, the procedure was time-consuming 

since a single MODIS granule contains ~2030 IFOV, and a full day of Aqua observations produces 288 granules. 

The final database consisted of 33,793,648 MODIS–CALIOP paired observations. Average spatial separation between the 145 

centres of MODIS and CALIOP IFOV was 418 m, and 19% had a separation of less than 250 m. Temporal differences between 

lidar and imager observations were determined using the spacecrafts’ on-orbit separation, and ranged from 60 sec to 97 sec 

(81 sec on average). Our dataset excluded one MODIS cloud mask processing path: sunglint. This was because CALIPSO’s 

orbit has been intentionally designed to avoid sunglint areas, in order to avoid the lidar being ‘blinded’ by solar reflection from 

the ocean. 150 

Our empirical calculation of cloud fraction in each MODIS cloud mask class was based on the ratio of CALIOP cloudy 

detections to all detections within a class. A perfect MODIS cloud detection algorithm would categorise a 0% cloud fraction 

as ‘confident clear’, while a 100% cloud fraction would be categorised as ‘confident cloudy’.  

3 Results 

3.1 Misdetection of cloud and clear sky by MODIS 155 

The first key point that emerged from the matched MODIS–lidar observations was the accuracy of MODIS cloud detections. 

Overall accuracy in January and July 2015, compared to reference CALIOP data, was 89.4% during the day, and 84.2% at 
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night (Tab. 1). This statistic assumes that ‘probably clear’ detections are merged with ‘confident clear’, and ‘probably cloudy’ 

detections are combined with ‘confident cloudy’. If a less tolerant approach is applied, i.e. only ‘confident clear’ and ‘confident 

cloudy’ detections are considered (‘probably clear’/ ‘probably cloudy’ classes are interpreted as misdetections), overall 160 

accuracy fell to 81.9% during the day, and 73.3% at night. 

Clouds missed by MODIS, but detected by CALIOP were most frequent during the polar night, regardless of the hemisphere 

(Fig. 1c, d). Up to 40% of MODIS ‘confident clear’ and ‘probably clear’ detections were found to be incorrect around 

Antarctica in July, and the Arctic in January. Globally, daytime (Fig. 1a, b) misdetections were around half of those at night. 

They only exceeded 30% locally, and polar regions were less affected. A notable observation was July in the northern 165 

hemisphere, where only a few small regions of misdetection were observed. The analysis highlighted a belt of relatively higher 

frequency misdetections (15–25%) in the equatorial zone; here the magnitude of the effect was similar for both day and night.  

Only a few occasions were identified when over 10–15% of MODIS ‘confident cloudy’ and ‘probably cloudy’ observations 

were identified as cloud-free by CALIOP (Fig. 2). Further analysis showed that although false detection was rare in polar 

regions, it was significant in specific regions of the northern hemisphere. North-east China emerged as the most problematic 170 

area (Fig. 2a). Here, 50–70% of MODIS ‘confident cloudy’ and ‘probably cloudy’ detections were cloud-free according to 

CALIOP. However, this high rate of false detection was only observed in January, and only during the day.  

3.2 Cloud fraction for cloud mask classes  

Our empirical calculation of cloud fraction in each MODIS cloud mask class was based on the ratio of CALIOP cloudy 

detections to all detections within a class. A perfect MODIS cloud detection algorithm would categorise a 0% cloud fraction 175 

as ‘confident clear’, while a 100% cloud fraction would be categorised as ‘confident cloudy’. 

On average, one fifth of MODIS ‘confident clear’ detections were found to be cloudy by CALIOP. Consequently, the average 

cloud fraction for this class was 21.5%, instead of the theoretically expected 0% (Tab. 2). At night, the fraction was over twice 

the daytime value (29.5% compared to 12.7%). On the other hand, pixels flagged by the MODIS algorithm as ‘confident 

cloudy’ were, almost always, contaminated with some cloud, and were sometimes cloud-filled. Regardless of the time of day, 180 

the actual CALIOP-based cloud fraction for ‘confident cloudy’ detections was close to 100%, reaching 94.7%. 

MODIS intermediate classes constituted 13.3% of all detections. CALIOP cloud fractions were 27.7% and 66.6% for ‘probably 

clear’, and ‘probably cloudy’ classes respectively. The statistics revealed a difference of up to 17%  between day and night 

conditions, and it was especially small for the ‘probably clear’ class (1.3%) and the ‘confident cloudy’ class (daytime had no 

impact at all). 185 

The parameters reported in Table 2 are global averages (means), and spatial diversity was observed. Differences were smallest 

for the ‘confident cloudy’ class – both during the day (Fig. 3a) and at night (Fig. 3b) – and the CALIOP-based cloud fraction 

exceeded 90% at almost every location. North-east China, the southern Arabian Peninsula and Eastern Antarctica were the 

only significant exceptions; here cloud fraction decreased to 50–70%.  
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The cloud fraction distribution was homogeneous for the ‘confident clear’ class, however, only during the day (Fig. 3g). At 190 

night (Fig. 3h) it increased substantially in polar regions, especially over the oceans of the southern hemisphere, along the 

coast of Antarctica. Unlike polar regions, no noticeable day/ night difference was observed for mid- and low-latitudes (< 10%); 

here, the cloud fraction was very low (< 20%), and very few MODIS ‘confident clear’ detections were identified as cloudy by 

CALIOP. 

Among the MODIS intermediate classes, ‘probably clear’ differed most from CALIOP-based data. First, a high cloud fraction 195 

(> 70%) was observed at night along the equator and in polar regions (both oceanic and continental; Fig. 3f). At mid-latitudes 

the cloud fraction for MODIS ‘probably clear’ observations was relatively low (< 10–20%). This pattern was inverted during 

the day (Fig. 3e). At this time a higher (50–75%) cloud fraction was noted for mid-latitudes, and over parts (typically land) of 

the polar regions. 

3.3 Cloud fraction as a function of the algorithm path 200 

The MODIS cloud detection algorithm distinguishes between day and night (Tab. 1, Tab. 2), and four types of background 

(land, desert, coast, ocean), each of which can be either snow-covered or snow-free. CALIOP-based cloud fractions for all 

algorithm paths are reported in Table 3. These values give a detailed understanding of MODIS cloud detection results. Data 

are given for each class of the MODIS cloud mask separately. In our study, we structured the paths through the algorithm in 

more detail. Snow-covered conditions were considered for land, desert, ocean and coast separately, while in the MODIS 205 

algorithm they are grouped as snow/ ice. This greater level of detail allowed us to observe how the presence of snow impacted 

the cloud mask over different backgrounds. 

Per-class estimates of cloud fraction were very consistent for all algorithm paths for the ‘confident cloudy’ category (Tab. 3). 

Final values ranged between 97.7% (night, snow-free, land) and 86.4% (night, snow-covered, desert), and were close to the 

standard Level 3 assumption of 100%. This finding contrasted with cloud fractions found for the ‘confident clear’ category. 210 

While MODIS recorded cloud-free conditions, CALIOP data revealed that the actual cloud fraction ranged from 8.0% (night, 

snow-free, land) to 49.7% (night, snow-covered, ocean). 

The combination of night, an oceanic background and snow-covered (or sea ice) constituted the ‘most cloudy’ scenario (Fig. 4). 

Here, a very high cloud fraction  was found for not only the ‘confident cloudy’ category (96.8%, Fig. 4a), but also all remaining 

classes: 82.5% (‘probably cloudy’; Fig. 4b), 73.3% (‘probably clear’; Fig. 4c) and, surprisingly, up to 49.7% for ‘confident 215 

clear’ (Fig. 4d).  

CALIOP-based cloud fractions were most consistent with the standard Level 3 interpretation for snow-free land at night (Fig. 

5). Here, the cloud fraction for ‘confident clear’ was low (8.0%; Fig. 5d), and very high for ‘confident cloudy’ (97.7%; Fig. 

5a). At the same time, intermediate classes were well-separated: 68.5% for ‘probably cloudy’ (Fig. 5b), and 25.6% for 

‘probably clear’ (Fig. 5c). Globally, no significant difference was found for cloud fraction values for the night/ snow-free/ land 220 

algorithm path. A small exception was noted for the ‘probably clear’ type, where the cloud fraction was 10–30% higher in the 

tropics compared to the rest of the world. 
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A similar spatial distribution of CALIOP-based cloud fractions was observed for snow-free land during the day – the scenario 

of particular interest for land/ vegetation remote sensing with MODIS. The two notable differences were related to ‘probably 

clear’ (Fig. 6c) and ‘confident clear’ categories (Fig. 6d). The latter occurred twice as often during the day (15.6%) than a t 225 

night (8.0%). Similarly, cloud was more frequent in the ‘probably clear’ class. However, this was only found in the tropics and 

at high latitudes, which mirrored a zonal pattern that was only weakly seen at night.  

As ice-free oceans represent the majority of Earth’s surface, cloud detection over ocean is the most frequent algorithm path. 

Daytime conditions make detection easier (due to the availability of solar channels). Under such circumstances, CALIOP 

detected cloud in 10.5% of MODIS’s ‘confident clear’ observations (Fig. 7d), and confirmed 95.2% of ‘confident cloudy’ 230 

detections (Fig. 7a). Cloud fractions for intermediate classes (daytime over ice-free ocean) were 54.5% and 28.4% for 

‘probably cloudy’ (Fig. 7b) and ‘probably clear’ (Fig. 7c) categories, respectively. ‘Probably clear’ was the only class where 

there was a clear latitude-dependent cloud fraction: values increased by 30–60% along a path ~30–40 degrees north/ south. 

4 Discussion  

Our investigation of spatially and temporally collocated MODIS (cloud imager) and CALIOP (cloud profiling lidar) 235 

observations for January and July 2015 revealed that MODIS Collection 061 global cloud amount estimates are imperfect. 

During the generation of the Level 2 product, the masking algorithm fails to accurately report cloud over polar regions, and 

over selected locations at lower latitudes. Consequently (as discussed in this section) the Level 3 product generation 

underestimates cloud fractions for cloud mask classes in numerous regions. The reliability of these results depends on several 

factors, most notably the spatial and temporal accuracy of Aqua/ MODIS and CALIPSO/ CALIOP collocation.  240 

Temporal differences between Aqua and CALIPSO observations varied from 60 seconds to 97 seconds. In this time, cloud can 

develop and move, introducing the risk that CALIOP observes a different state of the atmosphere compared to MODIS. Várnai 

and Marshak (2009) evaluated the problem by comparing MODIS reflectance with that collected by the Wide Field Camera. 

The latter is an imaging instrument flown onboard CALIPSO, along with CALIOP. They found that for low cloud, radiance 

differed only slightly over 72 seconds, and it was reasonable to ignore any discrepancies when focusing on aerosol properties 245 

(they gave no particular conclusions for cloud). In order to test how sensitive our results were to the time shift, we calculated 

the overall accuracy of the cloud detection algorithm as a function of the time between Aqua and CALIPSO passes. The results 

were very consistent: despite the shift, accuracy remained at 86.7±0.1%. This finding confirmed that the temporal separation 

between Aqua and CALIPSO had no significant impact on the results of our study. 

Another potential source of uncertainty is the geometric mismatch between MODIS and CALIOP IFOV. They are not aligned 250 

perfectly: 66% of collocated IFOV were separated by less than 0.5 km, and 82% by less than 0.6 km. Similar statistics – 75% 

and 93%, respectively – were found by Wang et al. (2016) in their investigation of cloud based on MODIS and CALIOP 

observations. To investigate whether geometric conditions did have an impact on our results, we calculated the overall accuracy 

of the MODIS cloud mask as a function of the distance between MODIS and CALIOP IFOV. For ranges up to 1 km with a 
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100 m step, the change in accuracy was insignificant: 87.0±0.3% on average. (See Supplementary Online Materials’ Fig. S2 255 

for more detailed statistics about the spatial and temporal separation between MODIS and CALIOP). 

It is possible that agreement between MODIS and CALIOP data is affected by cloud optical thickness (τ) or, more precisely, 

by the higher sensitivity of CALIOP in detecting optically-thin cloud. Ackerman et al. (2008) estimated the MODIS limit for 

τ to be approximately 0.4. A similar improvement in agreement with CALIOP as a consequence of increasing τ was observed 

by Karlsson and Håkansson (2017) for the Advanced Very High Resolution Radiometer (AVHRR) instrument. The latter study 260 

demonstrated that the imager’s probability of detection changed in the range 0.0<τ<1.0. We calculated the same statistic, and 

found that the probability distribution for MODIS was identical to AVHRR – although MODIS values were higher. This 

finding strongly suggests that cloud thickness has the same impact on our results as that found in previous studies. Collection 

006 of MODIS data was investigated by Wang et al. (2016), who used lidar–radar (CALIPSO–CloudSat) profiles to focus on 

daytime multi-layered clouds. Our findings are consistent with those reported by Wang et al. (2016), despite the fact that the 265 

latter authors used a dataset of 267 million IFOV, while our study relied on around 33 million profiles. Their validation of 

Collection 006 reliability found overall agreement of 77.8% compared to our study, which found 81.9%. The difference may 

be due to the different sample sizes. Our result for cloud-free sky detection was slightly higher than in Wang et al. (2016): 

25.5% compared to 20.9%. On the other hand, results for cloudy sky detection were very similar: 56.9% compared to 56.4% 

in our study.  270 

Our study revealed that even for Collection 061, i.e. the most recent (July 2020) version of the MODIS cloud mask, up to 40% 

of cloud-free skies detected during the polar night were actually cloudy. Daytime accuracy was lowest over China (in January), 

the USA/ Canada (in January) and over tropical ocean along the west (January) and east (July) coasts of Africa. In these cases, 

MODIS detected cloud that did not exist according to CALIOP. False detections may be due to snow cover (the USA/ Canada), 

high aerosol content over China (Zhang et al. 2019; Tan, Zhang, and Shi 2019), and ocean bordering desert regions in North 275 

Africa (Weinzierl et al., 2017; Zuluaga et al., 2012). 

As reported by Wang et al. (2016), and previously by Baum et al. (2012) and Ackerman et al. (2008), cloud detection in polar 

regions remains an unresolved issue for MODIS, and similar passive imaging radiometers. Polar night is especially 

challenging. Successful discrimination between cloud and the underlying surface requires radiance measurements in ice 

absorption bands (e.g. 1.6 µm or 2.1 µm). But as these are only available in daytime, night-time detection has to rely on thermal 280 

infrared data. As thermal inversion in the polar tropopause decreases the thermal contrast between cloud and the background, 

the thermal signatures of cloud and the land/ ocean surface become indistinguishable, leading to cloud masking errors (Liu et 

al., 2004). CALIOP, however, does not require solar illumination to operate. As it uses light emitted by the instrument itself, 

its performance is far less affected by day-night conditions. CALIOP’s night-time data are of even higher quality, because 

solar illumination introduces an additional background signal and, thus, decreases the signal-to-noise ratio (Hunt et al., 2009). 285 

Furthermore, MODIS tends to miss up to ~20% of cloud along the Intertropical Convergence Zone (ITCZ), regardless of the 

time of year (January or June), and the time of day. This can be partially explained by the fact that MODIS is less sensitive to 

optically thin cloud than CALIPSO, and the ITCZ is the region where cirrus is most frequently observed (Sassen et al., 2009). 
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The higher sensitivity of CALIOP to optically thin cirrus, and the higher sensitivity of the lidar during night-time, also explains 

why CALIOP-based cloud fractions for MODIS ‘confident clear’ and ‘probably clear’ classes are higher along the ITCZ  at 290 

night (Fig. 3f, h) than during the day (Fig. 3e, g). 

The main goal of our study was to investigate the validity of the standard (operational) approach to the quantitative 

interpretation of MODIS cloud mask classes. The most important consequence of calculating empirical cloud fractions for 

MODIS cloud mask categories is the ability to recalculate global cloud amount with new weights. Therefore, instead of using 

global fractions (reported in Table 2), we derived a set of dedicated fractions for each algorithm path, and each 2.5-degree grid 295 

box (i.e. a local equivalent to the data given in Table 3). This considers MODIS IFOV within the full swath (excluding 

sunglint), and not only those collocated with CALIOP. Full-swath data were used because the MODIS L3 cloud amount 

product applies the same cloud mask interpretation to all IFOVs, regardless of their off-nadir angle. On the other hand, the use 

of nadir-only MODIS observations would result in CALIOP-like spatial coverage of the data, creating significant gaps due to 

CALIOP’s pencil-like viewing geometry. Figure 8 illustrates the results of the calculation and reports differences in cloud 300 

amount between the MODIS ST operational product, and the product generated using the fractions presented in this study.  

The outcome of the simulation shows that the use of current operational cloud fractions introduces significant errors. In some 

locations, MODIS underestimates cloud amount by 20–40%, most notably in polar regions at night. An overestimation of 

similar magnitude is observed mostly over the northern hemisphere: the USA/ Canada and China in January (both day and 

night), and the tropical coasts of Africa during the day (both in January and July). Consequently, MODIS Level 3 estimates of 305 

cloud amount should be used with great caution in those regions. This is especially important for the Arctic, which is 

undergoing a rapid change in climatic conditions (Serreze and Barry, 2011), and where cloud has been found to be an essential 

element in feedback (Kay et al. 2008; Vavrus 2004; Shupe and Intrieri 2004; Tan and Storelvmo 2019). 

The availability of collocated MODIS and CALIOP observations also allowed us to examine which of the three ‘best guess’ 

interpretations of cloud mask categories is most accurate: the one when only ‘confident cloud’ IFOV are ‘cloudy’, the one that 310 

only considers ‘confident clear’ as ‘clear’, or the operational approach? We therefore calculated merged global cloud amount 

for January and July 2015. Our results show that, on the global scale, the standard approach is closest to CALIOP reference 

data, although only during the day (Tab. 4). At night, it is more accurate to assume that only ‘confident clear’ is actually cloud-

free. The global result is biased by the polar night. In these conditions, all three ‘best guess’ interpretations noticeably 

underestimate cloud amount. At low- and mid-latitudes the standard (operational) approach differs from CALIOP data by 315 

±2%. However, it should be noted that these statistics relate to large areas. As our study shows, regional differences are orders 

of magnitude larger. 

Our study assumed that CALIOP’s ‘cloudy’ IFOV was always completely cloud filled. This assumption is common when 

interpreting cloud masks based on data from the majority of imaging radiometers flown onboard meteorological and land-

imaging satellites. However, studies by Zhao and Di Girolamo (2006), and Kotarba (2010) suggest that this postulate may not 320 

be true. Both of the latter studies took advantage of a rare collocation between a meteorological imager (MODIS) and the high-

resolution land imager (ASTER) flown onboard the Terra satellite. Nearly 3,000 ASTER IFOV were located within each 
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MODIS pixel. Kotarba (2010) showed that for sunglint-free, oceanic scenes in the tropics, actual cloud coverage for the 

‘confident cloudy’ MODIS category was 79.2% (mean) or 99.8% (median), instead of the assumed 100%. Comparable 

statistics for CALIOP are not available, as the CALIPSO spacecraft does not carry a high-resolution imager. Given the lack of 325 

alternatives, we must accept the hypothesis that ‘cloudy’ means 100% cloud filled. 

5 Summary and Conclusion 

This study investigated 33,793,648 collocated MODIS (cloud imager) and CALIOP (cloud profiling lidar) observations, 

acquired in January and July 2015. Our evaluation of the dataset allowed us to answer three, essential questions, related to 

global estimates of cloud amount resulting from the MODIS/ Aqua mission. These questions are:  330 

1. What are the actual cloud fractions corresponding to MODIS cloud mask classes? We found that these fractions 

are 21.5%, 27.7%, 66.6%, and 94.7%, rather than the MODIS Science Team-assumed values of 0%, 0%, 100% 

,and 100% for ‘confident clear’, ‘probably clear’, ‘probably cloudy’, and ‘confident cloudy’ categories, 

respectively (Tab. 2). Importantly, we found that the percentage of cloud cover to be assigned to MODIS cloud 

mask classes varied spatially (Fig. 3), and recommend that global fractions should be avoided, in favour of local 335 

alternatives. 

2. How significant are uncertainties in global cloud amount estimates calculated using the MODIS ST operational 

approach? We found that uncertainties were up to −30% of cloud amount in the polar regions at night, and up to 

+30% of cloud amount in selected locations over the northern hemisphere, more frequently during the day 

(Fig. 8).  340 

3. Is the MODIS Level 3 standard approach reliable? Our results showed that when a global cloud amount value 

is required (day and night, for all latitudes), the standard approach can be considered reliable (Tab. 4). We found 

that, in this case, it was more accurate than other ‘best guess’ approaches – namely only ‘confident clear’ is 

‘clear’ (other classes are ‘cloudy’), and ‘confident cloudy’ is ‘cloudy’ (other classes are ‘clear’). However, on a 

regional scale the standard approach fails (Fig. 8). Whenever MODIS cloud amount is estimated regionally or 345 

locally it is necessary to assess whether a particular location might be affected by an error of up to ±30%. 

Errors and uncertainties related to the generation of the MODIS Level 3 cloud amount product originate in the Level 2 product: 

the cloud mask (Fig. 1–2 vs. Fig. 8). The cloud detection algorithm is more-or-less accurate depending on environmental 

conditions, which are approximated as algorithm paths (Tab. 3). However, conditions within paths are not constant (Fig. 4–7): 

for instance, the same radiance/ reflectance thresholds are applied to Europe, the USA and China, while environmental 350 

conditions in these locations are not the same (e.g. different aerosol loads, different aerosol optical properties). The MODIS 

Science Team have attempted to discriminate between these conditions. For instance, since Collection 006 the 0.86 µm 

reflectance test over land considers thresholds that are a function of the Normalized Difference Vegetation Index (NDVI) and 
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scattering angle. Although cloud misclassification is less frequent than in previous Collections,  it still occurs, and impacts the 

degree of uncertainty  of L3 cloud amount estimates, as shown in this study. 355 

CALIOP-based estimates of cloud fraction are a robust way to adjust (and correct) MODIS estimates. The method described 

in this paper can be used globally, with the exception of sunglint regions (which are not sampled by CALIOP). In these areas 

‘best guess’ findings can, potentially, be applied. The polar regions benefit most from the new method. Cloud fractions derived 

for MODIS/ Aqua may be also adopted for MODIS/ Terra, since the two sensors are expected to produce comparable and 

homogenous records. Moreover, the occasional collocation of the CALIPSO satellite with AVHRR and VIIRS instruments 360 

makes it possible to calculate similar cloud fractions for these missions, and produce more reliable cloud climatologies. 
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 510 

Tables 

 

Table 1. Agreement in cloud detection between MODIS and CALIOP (% of all cases). Overall accuracy (given in brackets) 

refers to ‘confident clear’ and ‘confident cloudy’ detections. In other cases, ‘confident clear’ and probably clear’ were merged, 

as were ‘probably cloudy’ and ‘confident cloudy’.  515 

 

 MODIS 

Overall accuracy 
confident clear probably clear probably cloudy confident cloudy 

  Day+Night 

CALIOP 
clear 22.7 5.4 1.9 3.1 

86.7% (77.3%) 
cloudy 6.2 2.1 3.9 54.6 

  Day only 

CALIOP 
clear 25.5 5.1 1.7 3.2 

89.4% (81.9%) 
cloudy 3.7 2.0 2.4 56.4 

  Night only 

CALIOP 
clear 20.2 5.7 2.2 3.0 

84.2% (73.3%) 
cloudy 8.5 2.1 5.2 53.1 
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 520 

Table 2. Global cloud fractions for MODIS cloud mask classes derived from CALIOP observations (‘This study’), and used 

in the operational MODIS Science Team Level 3 product (‘Operational’). Numbers in brackets refer to class frequency (n = 

33, 793, 648).  

 

Source of cloud fractions 

for  

cloud mask classes 

 Cloud fractions (%) for MODIS  

cloud mask class (class frequency, % of n) 

confident 

clear 

(28.9%) 

probably 

clear 

(7.5%) 

probably 

cloudy 

(5.8%) 

confident 

cloudy 

(57.8%) 

Operational Day+Night 0.0 0.0 100.0 100.0 

This study 

Day+Night 21.5 27.7 66.6 94.7 

Day only 12.7 28. 4 58.4 94.7 

Night only 29.5 27.1 70.7 94.7 

 525 
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Table 3. CALIOP-based  cloud fractions for MODIS cloud mask classes, calculated individually for each MODIS algorithm 

path. Note that more paths are reported here than in the MODIS project. Snow-covered ocean, land, desert and coast constitute 

a single path in the operational algorithm, while here they are reported individually to highlight how snow impacts the results. 

The sunglint path is missing as CALIOP does not sample over sunglint areas. Numbers in brackets refer to how frequently (% 530 

of n) a given algorithm path was executed, n = 33, 793, 648. 

 

Cloud masking algorithm path 

CALIOP-based cloud fractions [%] for MODIS  

cloud mask class 

confident 

clear 

probably 

clear 

probably 

cloudy 

confident 

cloudy 

Day 

(47.2) 

Snow-

covered 

(5.5) 

Land (0.2) 13.8 67.0 56.0 97.6 

Desert (3.9) 12.6 32.6 71.8 96.6 

Coast (0.2) 15.3 55.5 61.8 93.8 

Ocean (1.1) 20.5 76.3 69.7 88.6 

Snow-free 

(41.7) 

Land (6.7) 15.6 32.3 63.9 93.4 

Desert (3.4) 9.1 19.1 45.5 90.0 

Coast (1.6) 19.0 33.8 59.8 93.0 

Ocean (30.1) 10.5 28.4 54.5 95.2 

Night 

(52.8) 

Snow-

covered 

(15.8) 

Land (2.6) 31.4 65.0 80.9 93.9 

Desert (4.7) 34.3 65.3 75.9 86.4 

Coast (0.9) 29.8 60.8 75.0 93.7 

Ocean (7.6) 49.7 73.7 82.5 96.8 

Snow-free 

(37.0) 

Land (5.4) 8.0 25.6 68.5 97.7 

Desert (2.6) 8.2 23.5 55.8 95.4 

Coast (0.9) 10.9 23.0 60.9 96.4 

Ocean (28.1) 22.9 22.4 61.8 94.6 
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Table 4. Global cloud amount (%) calculated with different ‘best guess’ interpretations of the MODIS cloud mask product. 535 

Only MODIS IFOV collocated with CALIOP are considered. 

 

CALIOP 

MODIS cloud mask interpretation scenario 

Only ‘confident 

cloudy’ is ‘cloudy’ 

‘Confident clear’ and ‘probably clear’ 

are clear, while the rest is cloudy 

Only ‘confident 

clear’ is ‘clear’ 

 Global 

Day+Night 66.7 57.7 63.5 71.0 

Day 64.3 59.3 63.4 70.6 

Night 68.9 56.1 63.5 71.3 

 Polar regions (latitudes above 60ºN/S) 

Day+Night 66.9 50.5 57.6 61.0 

Day 64.8 59.0 62.6 66.4 

Night 68.5 44.1 53.9 57.0 

 Equatorial region (latitudes between 30ºN and 30ºS) 

Day+Night 59.8 52.8 58.0 67.4 

Day 56.2 49.9 54.8 65.4 

Night 63.5 55.7 61.2 69.4 

 Mid-latitudes (between polar and equatorial) 

Day+Night 73.3 68.9 74.2 83.6 

Day 72.0 69.1 72.7 79.1 

Night 74.6 68.8 75.7 87.9 
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Figures 

 540 

Figure 1. Observations declared ‘confident clear’ or ‘probably clear’ by the MODIS cloud masking algorithm, but identified 

as ‘cloudy’ by CALIOP. 

 

Figure 2. Observations declared ‘confident cloudy’ or ‘probably cloudy’ by the MODIS cloud masking algorithm, but 

identified as ‘clear’ by CALIOP. 545 

 

Figure 3. CALIOP-based  cloud  fraction  for  MODIS  cloud  mask  classes. 

 

Figure 4. CALIOP-based cloud fraction for MODIS cloud mask classes for the ‘nighttime, snow(ice)-covered ocean’ algorithm 

path, and corresponding histograms (red vertical line indicates the mean value). 550 

 

Figure 5. CALIOP-based cloud fraction for MODIS cloud mask classes for the ‘nighttime snow-free land’ algorithm path, and 

corresponding histograms (red vertical line indicates the mean value). 

 

Figure 6. CALIOP-based cloud fraction for MODIS cloud mask classes for the ‘daytime, snow-free land’ algorithm path, and 555 

corresponding histograms (red vertical line indicates the mean value). 

 

Figure 7. CALIOP-based cloud fraction for MODIS cloud mask classes for the ‘daytime, snow-free ocean’ algorithm path, 

and corresponding histograms (red vertical line indicates the mean value). 

 560 

Figure 8. Difference between the MODIS Science Team (MODIS ST)  Level 3 cloud amount product, and cloud amount 

calculated with the cloud fractions found in this study. Positive values indicate that the MODIS operational product 

overestimates cloud amount (with respect to CALIOP), while negative values indicate a MODIS underestimate. All MODIS 

observations refer to the full swath, not only those collocated with CALIOP. 

 565 
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Supplementary Online Material 

 

Figure S1. The average cloud-aerosol discrimination (CAD) score for CALIOP cloud data used in the study. Maps show spatial 570 

variation in the CAD score during the day (b), at night (c), and regardless of the time of the day (a). These plots demonstrate 

the high stability of CAD scores at various latitudes during the day (d) and at night (e). 

 

Figure S2. Overall accuracy of MODIS cloud detection as a function of the temporal (a, c) and spatial (b, d) separation of 

MODIS and CALIOP IFOVs. Top plots show the frequency of observations for individual time (a) and distance (b) ranges, 575 

while bottom plots report accuracy for these ranges. MODIS detections are validated using CALIOP cloud profiles as a 

reference. Accuracy is defined as the ratio of MODIS true detections (true positive and true negative) to all MODIS 

observations (see Table 1 in the main text for details). 
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