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Abstract. Multi-hole probe mounted on an aircraft provide the air velocity vector relative to the aircraft, requiring knowledge
of the aircraft spatial orientation (e.g. Euler angles), translational velocity, and angular velocity to translate this information
to an Earth-based reference frame and determine the wind vector. As the relative velocity of the aircraft is typically an order
of magnitude higher than the wind velocity, the extracted wind velocity is very sensitive to multiple sources of error includ-
ing misalignment of the probe and aircraft coordinate system axes, sensor error and misalignment in time of the probe and
aircraft orientation measurements in addition to aerodynamic distortion of the velocity field by the aircraft. Here, we present
an approach which can be applied after a flight to identify and correct biases which may be introduced into the final wind
measurement. The approach was validated using a ground reference, different aircraft, and for the same aircraft at different

times. The results indicate significant reduction in wind velocity variance at frequencies which correspond to aircraft motion.
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1 Introduction

The past few decades have witnessed significant increase in the utilization of small unmanned aerial systems (sUAS) in a wide
range of atmospheric research areas, such as the evolution and structure of the atmospheric boundary layer (see, for example,
van den Kroonenberg et al., 2007; Van den Kroonenberg et al., 2008; Cassano et al., 2010; Bonin et al., 2013; Lothon et al.,
2014; Wildmann et al., 2015; Barfuss et al., 2018; de Boer et al., 2018; Kral et al., 2018; Bailey et al., 2019), turbulence (Balsley
et al., 2013; Witte et al., 2017; Bailey et al., 2019; Mansour et al., 2011; Calmer et al., 2018; Baserud et al., 2016), analysis of
aerosols and gas concentration in the atmosphere (Birfuss et al., 2018; Platis et al., 2016; Corrigan et al., 2008; Schuyler and
Guzman, 2017; Illingworth et al., 2014; Zhou et al., 2018), cloud microphysics (Ramanathan et al., 2007; Roberts et al., 2008)
and observation and analysis of extreme weather events such as hurricanes (Cione et al., 2016). This increasing interest in
sUAS is motivated in part by the rapid increase in their commercial development and use combined with advantages of sUAS
over traditional ground-based measurement systems utilizing either remote sensing or in situ approaches. Specifically, SUAS
can acquire high spatial and temporal resolution measurements in a relatively low-cost package that provides flexibility in

measurement location and flight path . In addition, when compared to manned aircraft measurements, their operation mitigates
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risks associated with measurement at lower altitudes and during hazardous conditions or events (Elston et al., 2015; Birfuss
et al., 2018; Barbieri et al., 2019) such as erupted volcanoes with ash covers (Pieri et al., 2017), near thunderstorms (Elston
etal., 2011) and over contaminated regions (Béarfuss et al., 2018).

The most common atmospheric properties sampled using SUAS are pressure, temperature, humidity and wind (e.g. Egger
et al., 2002; Hobbs et al., 2002; Balsley et al., 2013; Witte et al., 2017; Bérfuss et al., 2018; Rautenberg et al., 2018; Jacob
et al., 2018; Barbieri et al., 2019; Bailey et al., 2019). Although these scalar quantities are relatively straightforward to acquire,
obtaining all three components of the wind velocity vector is complicated by the presence of the continual translation and
rotation of the measurement platform, resulting in different approaches developed to determine the wind vector (Rautenberg
et al., 2018; Suomi and Vihma, 2018; Laurence and Argrow, 2018; Shevchenko et al., 2016). Wind velocity measurements
typically can be partitioned into several approaches: directly by using the instrumentation employing an on-board wind sensor
and subtract the aircraft kinematics(Suomi and Vihma, 2018; Cassano et al., 2016); indirectly using the attitude and position
data recorded by the inertial measurement unit (IMU) and GPS, respectively (Suomi and Vihma, 2018); using both techniques
(Rautenberg et al., 2018); or through calibration of the aircraft’s kinematic and dynamic response to the wind (Gonzélez-Rocha
et al., 2020).

Broadly speaking, wind measurements taken by sensors like sonic anemometers, single- and multi-hole pressure probes, and
hot-wires tend to have higher temporal (and hence spatial) response (Suomi and Vihma, 2018) . Multi-hole pressure probes
have been frequently used for sUAS-based wind velocity measurements (Van den Kroonenberg et al., 2008; Elston et al., 2015;
Spiess et al., 2007; Thomas et al., 2012) due to their high sampling frequency, light weight, simplicity, accuracy and almost
linear relation between pressure and velocity at large flow velocities (Suomi and Vihma, 2018). More importantly, multi-hole
probes are able to resolve all three wind velocity components. The simplest multi-hole probe capable of resolving all three
velocity components is the five-hole probe, composed of five holes arranged symmetrically on a semi-spherical or conical tip.
When the wind velocity is oriented in different directions relative to the probe axis, each hole converts a different proportion
of the dynamic pressure to stagnation pressure, allowing the dynamic pressure and direction to be determined using laboratory
or in-flight calibration of the probe’s directional response.

The use of five-hole probes in SUAS measurements has evolved from their employment in manned aircraft measurements
(Lenschow, 1970, 1972). Such measurements frequently employ in-flight calibration procedures. For instance, Parameswaran
and Jategaonkar (2004) presented the calibration procedure of five-hole probes using flight recorder data using an optimization
algorithm to estimate the time delay, biases and scale factors in the pressure measurements. Afterwards, the corrected five-hole
probe measurements were compared with the measurements from the inertial measurement unit to check their compatibility.
Driie and Heinemann (2013) present a comprehensive review of in-flight calibration of several atmospheric measurement
instruments, including five-hole probes. They identified five-hole probe in-flight calibration maneuvers to determine the sideslip
angle, angle of attack, static pressure and position errors. Moreover, they highlighted the need for in-flight calibration in the
experiment location under favorable atmospheric conditions and following removal of the sensors from the aircraft.

The simplicity and compact nature of multi-hole probes also make it particularly useful for fixed-wing sUAS. However,

as with manned aircraft, these aircraft have the ability to fly at velocities up to an order of magnitude greater than the wind
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velocity, their usage can be very sensitive to small errors in calibration and probe alignment (Suomi and Vihma, 2018; Laurence
and Argrow, 2018). Furthermore, accurate position and orientation determination usually requires very accurate orientation
information (e.g. obtained through the use of dual-antenna combination GPS/IMU units) and accurate time-stamping of the
data is critical to align sensor and and flight data. Here, we present an approach which can be implemented a posteriori
to minimize the impact of unidentified and unquantified biases introduced during wind velocity measurement which result
in contamination of the wind signal by the aircraft velocity. This contamination results in over- or under- estimation of the
wind vector and, in particular, errors in estimation of turbulence statistics (e.g. momentum fluxes, dissipation rate, turbulence
kinetic energy) measured by the sUAS. Hence, it is vital to minimize errors in the wind components measured by sUAS.
In the following sections we overview a multi-holes probe implementation and discuss the potential sources of bias within
the approach. We then present a simple automated optimization which is designed to identify and remove these biases and

demonstrate that this approach improves the wind estimate of an existing dataset.

2 Multi-hole Probe Implementation

Multi-hole probes are an adaptation of the common Pitot-static probe to allow the determination of relative wind direction as
well as magnitude. Widely used in laboratory wind-tunnel studies of three-dimensional flow fields, they found use in manned-
aircraft studies of atmospheric wind (Treaster and Yocum, 1978; Axford, 1968; Lenschow, 1972) before being adopted for
sUAS use. Five-hole probes, being the simplest form of multi-hole probes, are most common. The arrangement of the normal
vector of each plane of the holes on the probe tip typically consists of a central hole with normal vector in line with the probe
axis, measuring pressure P;, and with the normal vector of the remaining holes at an angle to the probe axis. Two holes measure
the pressure at opposing directions on the horizontal plane e.g. P» and Ps, with the remaining two on opposite directions on
the vertical plane, e.g. P, and Ps. Static pressure, Ps is also measured, either through a ring of holes oriented perpendicular
to the probe axis, or through an alternate pressure port. Wind tunnel calibrations are used to determine calibration coefficients,

for example

Cp,o, =(Po— P3)/(P1 — P) (D
CPyuen =(P2 = Ps)/(PL = P) 2)
CPrras =(P1 — Ro)/(P1 = P) 3)

P=(Py+P;+ Py + P5)/4, )

where Py = 0.5p|U ,,,|? + P is the total pressure, p the density of the air and |U,,| the magnitude of the relative air velocity
vector U ,,,. During calibration Py, P», Ps, Py, P5 and Ps are measured at different sideslip, /3, and pitch, «, angles at known
Py. Depending on the specifics of the probe geometry, a unique set of coefficients is recovered for each o and 5 combination up
to some limit (referred to as the cone angle) typically between 25° and 45° depending on the specifics of the probe geometry.
During measurement Py, Py, P, Py, P5 and P; are simultaneously sampled and Cp

yaw?
CPpitch

Cp, ..., calculated for each sample. The

known dependence of «, 8 and Cp,_,,, on Cp,

yaw?

from the calibration is then applied to determine «, 5 and Py which,
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when combined with a known p, provides the air velocity and direction relative to the probe axis. Additional calibration is also
possible to account for imprecise frequency response of the probes caused by resonance and viscous damping in the pressure
tubing and sensors (e.g. as described in Gerstoft and Hansen (1987)) which can potentially require additional corrections (e.g.
Yang et al., 2006). These additional corrections are not addressed here.

When implemented on a moving platform such as an aircraft, U, is no longer the wind velocity but is instead a combination

of the aircraft and wind velocity vectors
Ul =[Uls—[Us]s Q)

where U is the velocity vector of the sensor and U is the desired wind velocity vector. We have also introduced the subscript
B to indicate that these velocities are in a body-fixed frame of reference, i.e. a coordinate system attached to the aircraft. Due to
the pitch, roll and yaw angles of the aircraft, = [0 ¢ ], or more specifically their time rate of change Q, U, can experience

additional velocity relative to the aircraft velocity U .. = [Uae Vae Wae| (Lenschow and Johnson, 1968) such that
Udp = U+ x7]5 (6)

where 7 is the distance vector between the aircraft center of gravity and the measurement volume on the probe.

Note that the desired quantity is [U]; = [U V W], the wind velocity vector in the Earth-fixed inertial frame of reference.
Furthermore, U . is also typically measured in the Earth-fixed inertial frame (e.g. through global positioning system) and
therefore a transformation matrix L gy must be determined using the aircraft’s pitch (), roll (¢), and yaw () angles in the
inertial frame. The velocity vector [U .| along with 6, ¢, v and their rates as required to build 2 and Lp; can be measured
by an on-board inertial measurement unit and GPS, and are commonly provided by most autopilots used for sUAS operation.
Thus, providing enough information to determine [U]; from [U,,] 5.

However, as noted earlier, U, is often an order of magnitude larger than the desired U, making the process sensitive to
an abundance of small biases. For example, the procedure above assumes perfect alignment between the probe’s coordinate
system and the aircraft’s coordinate system. It also assumes that the €2 and Lz are measured at the aircraft’s center of gravity;
that r is precisely known; that there are negligible flow blockage effects in the wind tunnel calibration or from the aircraft
fuselage; and that all sensors are free of error. Although every effort can be made to minimize these biases, it is unlikely that
they can be removed completely. The result is that U often contaminated by U ;. This is most evident when Ly, U, and €2
are changing rapidly. The following section describes a procedure developed to determine additional calibration coefficients

and implement them following an in-flight calibration or measurement to minimize these biases.

3 Correction procedure

The net effect of the majority of biases can be summarized as influencing four parameters. Misalignment of probe and aircraft
axes, calibration errors, and aerodynamic distortion of the flow around the probe will introduce bias errors into the time-

dependent pitch, roll and yaw angles 6(t), ¢(¢) and (), which relate the measured velocity vector in body-frame coordinates
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to the aircraft velocity vector. In addition, calibration errors, transducer errors, and airframe aerodynamic effects (e.g. airframe
blockage and streamline deflection due to the generation of lift ) can also influence the direction of airflow relative to the probe
as well as the magnitude of the measured dynamic pressure Q(t) = 0.5p(¢)|U,,,(t)|? relative to the true dynamic pressure.
Note that the distortion of the flow may also depend on lift production of the aircraft and therefore Q(¢) may also include
dependence on lift coefficient, which is not considered in the version of the corrections described here. Finally, it is also
important for all sensor readings to precisely correspond to orientation readings in time to allow precise removal of aircraft
motion from measured relative air velocity. However, implementation of software and differences in sensor time response can
cause a delay between when probe measured velocity and aircraft measured velocity occur, e.g. the values of U ,,,(t) and U 4(t)

may not correspond to the same ¢. The proposed correction procedure assumes that these values are biased in a way such that

0(t) = 0, (t) + A (7
d(t) = dm(t) + Ag (3)
Y(t) = ym (1) + Ay )
Q) = Qum(t) (10)
U, (t) = Uy (b + At) (11)

where the subscripted m indicates the measured value. The objective is then to find Ae = {Af, A¢, Ay, ¢, At}. Using
assumptions about how these biases will impact U (¢) allows the determination of optimal values for Ae which minimize this
negative behavior. With Ae known, we are able to remove its influence on the final time-series of U (t).

The assumptions used here are relatively straightforward. The first being that any biasing of U (¢) by U s will result in U (t)
having dependence on the direction of travel of the aircraft. The second assumption we make is that the vertical component of
U (t) will be approximately zero in the mean. This assumption may not hold in flight over sloped terrain or/and for relatively
short flight domains (both spatial and temporal) , in which case an alternative assumption may be needed. Moreover, we assume
that the sensors have adequate response and the greatest error due to the specific configuration which logs IMU/GPS, pressure
transducers, and PTU on three separate systems.

The correction procedure, as implemented, follows a multistage approach used to optimize Ae. This multistage approach
was implemented to allow different objective functions to be used for different components of Ae. However, in practice, it is
likely that a well-implemented single-stage optimization will achieve the same results.

The first step is to identify a portion of the flight which will be used to determine Ae. This portion should not include any
significant acceleration or deceleration of the aircraft’s horizontal ground speed (e.g. as experienced during takeoff or landing)
and should include multiple changes of direction of the aircraft. In addition, the portion should be long enough to ensure
that unsteadiness in the mean winds, e.g. as introduced by thermals, are averaged out. Ideally, devoting a portion of the flight
after takeoff to conduct calibration orbits for later use in this process would be desired. With this portion of flight identified,
the determination of Ae is found by an optimization process seeking to minimize an objective function, §, through iterative

calculation of [U]; (as described in Section 2).
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Through perturbing Ae and examining its influence on U (t) it was found that the standard deviation of the horizontal
components of [U (¢)], specifically U (¢) and V' (¢), were most sensitive to At (due to the aircraft flight being predominantly in
the horizontal plane) with values of At as low as tenths or hundredths of a second contributing to large biases of the horizontal
components of [U (t)];. We thus first use a Nelder-Mead multidimensional unconstrained nonlinear minimization approach,
implemented using the Matlab fininsearch command, to identify the value of At which minimizes the objective function 6,
defined as

ov = (U)|v,.>0 — (U)|v,.<0 (12)
v = Mv.e>0 — (V)v,.<o0 (13)
0= 5[2] + 5‘2,. (14)

Note that ( )|, >0 indicates an average conditioned on when the aircraft is flying with positive inertial velocity component U
Likewise ()|u,.<o indicates an average of all values obtained when the aircraft inertial U, velocity component is negative.
The selection of U, vs V,. for conditioning is arbitrary, and should be selected based on the actual flight trajectory flown. For

flight trajectories without many trajectory changes, it was also found that the objective function
§=((U—={U))*) +((V—={V))?) (15)

was equally effective, but relies on the assumption that the biases will act only to increase the fluctuations of the velocity signal
at the probe. Here () indicates an average over the entire portion of the flight used to find Ae. The resulting value of At which
minimizes ¢ is then implemented in the remaining optimization stages.

The second stage follows a similar approach. Noting that the mean value of the vertical component of [U (¢)], i.e. W(t), is

most sensitive to A#, we then find the value of Af that minimizes
5= (W) (16)

using U, (t) = U, (1, + At) as found above.

The remaining elements of Ae, specifically ¢, A¢ and A+, are then found by minimizing ¢ as defined in Equation 14 using
U, (t) =U,p(tm + At) and 6 = 0,,, + A0 as found in the preceding two stages.

Finally, to ensure that the values of Ae determined using the latter optimization stages do not influence the values found
during the earlier stages, Ae is further refined by repeating the above three stages once again. In practice, this last step only

influenced Ae by one percent or less and likely can be omitted without loss of confidence in the final values of Ae.

4 Results

With Ae known, the biases described by Ae can be removed following Equations 7 to 11 prior to a final determination of
[U (t)];. To validate this correction procedure, we applied it to measurement data acquired during the LAPSE-RATE campaign

described in de Boer et al. (2018). The data was acquired using two different five-hole-probe-equipped fixed-wing aircraft, with
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the aircraft, probe, and data reduction procedures described in detail in Witte et al. (2017). We first demonstrate the correction
procedure in flights compared to a ground reference, followed by a demonstration of the improvements made to vertical profiles

of the wind velocity and direction.
4.1 Comparison to ground reference

A key part of the LAPSE-RATE campaign was an intercomparison study between numerous sUAS measuring pressure, tem-
perature, humidity, wind speed and wind direction. As detailed in Barbieri et al. (2019), the intercomparison was conducted
by flying the sUAS near the Mobile UAS Research Collaboratory (MURC) vehicle, which was equipped with a 15 m mast
supporting reference instruments, including a sonic anemometer. For the fixed-wing aircraft used here, this comparison was
performed by having the aircraft orbit the mast at 20 m above ground level with an orbit radius of 80 m. This orbit was
performed for approximately 5 minutes before the aircraft ascended to 120 m to perform similar orbits for 2 minutes, then
descending back to 20 m to resume the orbits around the tower for another 2 minutes before starting its landing pattern.

This circular flight pattern introduced a periodic variation in 6, vy and ¢, with the period corresponding to the time to complete
an orbit (approximately 25 s). Although convenient for the measurement of atmospheric parameters at a single geographic
location, these types of orbits consist of the worst-case scenario for the contamination of the measured wind direction by the
biases discussed in Section 2.

The periodicity is clearly evident in the estimated horizontal wind speed, Vj, = (U? + V?)!/2, and direction, 1, prior to
implementing the corrections, as shown in Fig. 1a and 1b respectively. Although the general trends of the measured wind
velocity and direction time series follow that of the reference velocity and direction, the magnitude of the fluctuations are
clearly contaminated by the aircraft velocity and direction. The period in the wind signal is consistent with the time required
to orbit the fixed mast at 25 s. Note that in Fig. 1 only the two portions of the flight where the sUAS is at the same altitude as
the reference sensors are presented.

The same time series are shown in Figs. 2a and 2b corrected following the procedure described in Section 3. The ten minutes
of flight between 12:49 MDT and 12:58 MDT were selected to conduct the optimization of Ae. The the result of optimization
was Ae = {Af=—6.4°, Ap =0.9°, Ay =2.1°, ( = 1.07, At = —0.045s} which highlights the sensitivity of the estimated
wind velocity and direction to even small deviations from ideal orientations. As shown in Fig. 2. The corrected signals are now
largely free of the 25 s periodicity, although there is some evidence of contamination between 12:56 MDT and 12:58 MDT.
When the aircraft returns to 18 m altitude for the second set of orbits (which were not included in the optimization) there is
little evidence of aircraft velocity contamination in the wind estimates.

The periodicity described above is more clearly evident in the difference between the power spectrum of horizontal wind
speed calculated for both the corrected and uncorrected cases. These spectra are presented in Fig. ??. The influence of the
periodic orbits of the aircraft is apparent in the uncorrected measurements as a spike at 0.035 Hz (consistent with an orbital
period of 28 s). This spike is greatly reduced by the correction. Importantly, besides what appears to be a harmonic peak at

0.07 Hz which is also reduced, the remainder of the spectrum appears largely unaffected by the correction.
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Figure 1. Comparison between uncorrected (a) horizontal wind speed and (b) wind direction measured by sUAS to the reference signal

measured by MURC. Gray lines indicate full signal from sUAS, whereas black lines indicate same signal downsampled to same data rate as

that of the MURC by plotting every 200th data point .
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Figure 2. Small unmanned aerial system-based wind measurements from Fig. 1 following correction compared to the reference signal
measured by MURC: (a) horizontal wind speed and (b) wind direction. Gray lines indicate full signal from sUAS, whereas black lines

indicate same signal downsampled to same data rate as that of the MURC by plotting every 200th data point .
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Figure 3. Power spectrum of horizontal wind magnitude calculated from uncorrected and corrected time series

To provide a more quantitative comparison between the SUAS and reference measurement, we directly compare the velocity
magnitude and direction measured at each instant a sample was made by the ground reference. This comparison is presented
in Fig. 4 in which a perfect comparison would result in the straight line as indicated on these figures. Note that, a perfect
correlation should not be expected as the SUAS and reference sensor were not collocated. Also shown as a dashed line on these
figures are the bounds described by 2 standard deviations of the difference between the SUAS and MURC measured values.

For the uncorrected velocity magnitude and direction, the comparison shown in Figs. 4a and 4b reveals a broad spread about
the reference line. This spread decreases significantly when the corrections are applied, as shown by comparison to Figs. 4c
and 4d. The mean difference between the two measurements decreases by approximately 35% in magnitude and direction
with correction, corresponding to an increase in the correlation coefficient from 0.13 to 0.19 in magnitude and 0.22 to 0.32
in direction. This increased correlation is reflected in the statistics. The correction brings the standard deviation of the sUAS
measured velocity much closer to the reference signal. The standard deviation in magnitude measured by the sUAS decreases
from 1.2 m/s to 0.90 m/s, very close to the value of 0.86 m/s measured by the reference. For direction the standard deviation

decreases with correction from 27° to 22° whereas it is 24° for the reference.
4.2 Implementation in profiling measurements

The results of the comparison to the ground reference provide confidence in the success of the correction. To demonstrate the
improvement offered by application of these corrections on vertical profiling by fixed-wing aircraft, we now examine their
impact on profiles of wind speed and direction measured by two separate aircraft at different locations. These two fixed-wing

aircraft were essentially identical in configuration to that described in Witte et al. (2017) and were flown at measurement sites
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separated by 16 km. Each aircraft measured an atmospheric profile every hour, with the two aircraft staggered in time by
30 minutes.

Each profile consisted of a 20 minute flight, with the aircraft performing a spiralling ascent to 900 m followed by a spiralling
descent, with this pattern repeated until the 10Ah battery was expended. In the following discussion the times are those cor-
responding to when the profile measuring flight initiates with the XY, Z coordinate system’s origin at the takeoff location.
These particular profiles were selected for discussion as they were measured during the boundary layer transition, and repre-
sent different behaviors, including the presence of turbulence and variability in the wind direction. The wind speeds during
these profiles were also low, producing a large ratio of aircraft velocity to wind velocity and therefore a challenging case to
accurately extract the wind components from the five-hole-probe signal.

As previously mentioned, the orbital flight patterns also represented a challenge for extracting the wind data due to the
periodic variation in 6, v and ¢ introducing a corresponding periodic variation in [U (¢)];. This bias can be clearly illustrated
by comparing ~ to v, as done for an example flight in Fig. 5a. For this flight, the aircraft completed a full 360° turn in
approximately 30 s, introducing a corresponding period in both the wind speed and direction before correction. Once the
corrections have been applied, as shown in Fig. 5b, there is a distinct reduction of periodicity in the direction of the wind
measured by the SUAS.

The mean of the corresponding wind speed and direction profiles are presented in Fig. 6 for sUAS 1 and Fig. 7 for sUAS 2.
In these figures both the uncorrected and corrected mean profiles are displayed in order to show the relative improvement
offered by application of the bias correction. For all profiling flights, the correction coefficients were determined by optimizing
using the entire flight once the aircraft was in its flight pattern. Before correction, the bias introduced by the aircraft trajectory
is apparent as large coherent deviations from the general trend, mostly evident in the velocity magnitude, but also present in
the direction. When the corrections were applied, these large deviations were greatly reduced, better representing the structure
of the boundary layer throughout the profiles. In the wind velocity profiles presented in Fig. 6 for sUAS 1 there were still
high velocity deviations, even in the corrected profiles near the surface corresponding to when the aircraft was being manually
controlled and experiencing strong accelerations. It has been found that the corrections presented here cannot completely
remove the bias due to aircraft acceleration, suggesting a potential time response lag between the five-hole probe and the
inertial measurement unit which agrees with what was reported in (Baserud et al., 2016) .

The corrected profiles show very different wind behaviors existed for the different sites and times. At the site measured by
sUAS 1, the profiles measured at 8:30 MDT and shown in Figs. 6a,b reflect the correspondence between the stable thermody-
namic conditions throughout the boundary layer and the horizontal wind magnitude, with winds increasing from 2 m/s near the
ground to 4 m/s at Z = 900 m and consistently between 1) = 0° and 100°. There was noticeably stronger velocity and direction
fluctuations measured for Z < 200 m, indicating the presence of turbulence near the surface. This turbulence appears to have
been still present at 9:30 MDT, as shown in Figs. 6¢,d, but at this time there was a region of calm air centered at Z = 600 m,
coinciding to a significant deviation in measured wind direction. For Z > 200 m, the corrected profile of wind direction was

consistent with the one measured at 8:30 MDT, excepting the region of calm air at Z = 600 m.

12
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Figure 5. Comparison between measured wind direction and aircraft yaw direction for (a) uncorrected and (b) corrected signals as a function

of time for a single flight.

At the site measured by sUAS 2, the corrected wind speed and direction profiles measured at 9:10 MDT and shown in
Figs. 7a,b reflect a boundary layer undergoing transition, with evidence of turbulence for Z < 500 m. At 10:10 MDT, as
shown in Figs. 7c¢,d, a multi-layer structure was also evident in the wind profiles in the form of significant changes in the
wind direction throughout the profile. The horizontal wind speed was relatively consistent between 1 to 2 m/s for Z < 800 m,
but there was evidence of stronger turbulence for Z < 500 m and moderate wind shear for Z > 700 m. As noted, the wind
direction exhibited significant variation in the range 400 m< Z < 500 m, with continual backing within 500 m< Z < 900 m,
and veering for Z < 900 m. These different altitudes of behavior were consistent with the measured potential temperature
changes (not included for conciseness), and became much easier to identify in the corrected profiles than they were before

correction.
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Figure 6. Comparison of mean (a) horizontal wind magnitude and (b) wind direction profiles measured by sUAS 1 at 8:30 MDT with and

without correction applied. Horizontal mean magnitude and direction profiles measured at 9:30 MDT shown in (c) and (d) respectively.

Table 1. Components of Ae determined by optimization for each sUAS for both flights.

sUAS Flight A6 A¢p Axy ¢ At
1 8:30MDT -49° 0.17° 26° 1.1 098s
1 9:30MDT  -58° 27° 21° 1.1 001s
2 9:10MDT  -3.9° 0.85° 14° 1.15 29s
2 10:10MDT -39° 0.78° 1.3° 1.15 265
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Figure 7. Comparison of mean (a) horizontal wind speed and (b) direction profiles measured by sUAS 2 at 9:10 MDT with and without

correction applied. Horizontal wind speed and direction profiles measured at 10:10 MDT shown in (c) and (d) respectively.

It is clear through comparison of the corrected and uncorrected profiles in Figs. 6 and 7 that the corrections reduce fluctua-
tions about the mean profile under different conditions and for different aircraft. Similar improvements have been observed for
other profiles measured with these and other SUAS. The coefficients determined by the optimization routine for these profiles
are presented in Table 1. Comparing each flight by the same sUAS demonstrates that the automated optimization converged on
nearly identical coefficients for the same SUAS with only one coefficient changing by more than 1° between each flight. Indeed,
the correction coefficients were found to be remarkably similar for each sUAS used throughout the LAPSE-RATE campaign.
This similarity between the coefficients reinforces the assumption that the biases are caused by physical misalignment between
the coordinate systems of the aircraft and five-hole probe. Note that bias corrected by At should not be expected to be consis-
tent for the systems used here, as the time series of U ,,, U 4. and €2 are measured by separate acquisition systems at different
rates and aligned using post-processing software. Thus the At bias is most likely introduced by errors in this alignment process

and can be expected to be random.
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5 Conclusions

Small unmanned aerial systems have been increasingly used in atmospheric research. Frequently, this research requires the
acquisition of the wind velocity vector. Multi-hole probe measurements are among the more common and reliable techniques
used for this purpose. However, when implemented on sUAS there is significant potential to introduce bias due to the large
ratio of aircraft velocity to the wind velocity. Therefore, the measured wind velocities are very sensitive to these small biases.
Furthermore, when conducting vertical profiles at a fixed location, these profiles typically require circular flight patterns which
increase the probability of small misalignment between the probe and the aircraft axes introducing a time-dependent, periodic
error in the wind velocity measurement that can propagate into post-flight analysis such as the calculation of energy spectra
and Reynolds stresses.

An approach was presented that can be applied in post-processing of the flight data to automatically estimate the biases in
axis misalignment, as well as errors in their alignment in time. Once estimated, these biases can be removed, improving the
quality of the wind estimate.

These corrections were validated using data acquired as part of the LAPSE-RATE field campaign. Measurements flown
near a ground-based reference system revealed significant reduction in measured oscillations of both wind magnitude and
direction, which corresponded to the aircraft flight pattern. Additional verification was conducted by comparing profiles of
wind speed and direction measured by two different aircraft at two different times. The estimated biases were within £1°
for each aircraft, and successful minimization of aircraft-induced oscillations in the measured profiles was observed for both
aircraft. These results confirm that the biases are most likely due to physical misalignment of the aircraft and probe axes, as

well as demonstrating that the same correction procedures can be applied to multiple aircraft.
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