Cover Letter and Author Responses

Point-by-point Responses to Anonymous Referee #1

1. Query/Comment: A revised manuscript needs to be much more focused.
Response: We thank the referee for this suggestion. A major revision to the manuscript
has been prepared that offers a more focussed discussion.
Edits to Manuscript: The revision tightens the presentation, and reorganizes portions to
retain only those that impact the overall discussion of characterizing calibration models.
Other portions e.g. Figure 7, has been moved to the supplementary material. We thank
the referee for pointing out the inefficiencies in the structuring of the paper.

2. Query/Comment: Abstract line 15 (performance improvements and missing reference)
Response: improvements are indeed in percentage points.
Edits to Manuscript: In the revision, we have included numerical values in a separate
table (a new Table 4) in the main paper which explicitly quantify the improvements.
These numerical values are referred to in the abstract and the main text to establish the
claimed improvement. The text in section 6.5 (5.2.1 in the revision) has also been
modified to similarly refer to Table 4 values to substantiate its claims.

3. Query/Comment: Line 133 - sites D and M are undefined
Response: we thank the referee for pointing this missing reference.
Edits to Manuscript: We have reordered the subsections in the revision so that sites D
and M are defined before they are referred to in the discussion.

4. Query/Comment: Section 2.4 does not seem like it needs to be its own section.
Response: We agree.
Edits to Manuscript: The revised manuscript merges this section within section 2.3.

5. Query/Comment: Line 203 - why are reference O3 concentrations <1 ppb scrubbed
from the dataset?
Response: We thank the referee for pointing this out. We indeed discarded only those
reference monitor values that were less than Oppb and have corrected this typographical
error. The reference monitors sometimes offer negative readings when powering up and
under some other anomalous operating conditions e.g. condensation at the inlet.
However, we note that less than 0.1% of the valid timestamps had reference O3 values
between 0 and 1 ppb.
Edits to Manuscript: The typographical error has been corrected.

6. Query/Comment: Creation of train-test splits in 70-30 ratio in section 3.3.1
Response: we chose a 70:30 split since it gave us sizable sets for both training and
testing. Machine learning and statistical estimation literature uses various splits such as
70:30, 80:20, etc. Our splits were repeated independently 10 times to allow two-sample
tests to be carried out. The k-fold split method as mentioned by the referee, is another
alternative. However, with k=10, the resulting 90:10 split offers a rather small test set
which we wished to avoid. We verified that the choice of the size of the split (e.g. 70:30
vs 80:20) does not alter the conclusions of the paper.
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Query/Comment: Creation of subsampled datasets in section 3.3

Response: To create the subsampled datasets in section 3.3, we took a split (a split
being a 70-30 division among train and test) and randomly subsampled 2500 points from
the training portion of the split. The test portion was not altered since the aim of this
experiment was to study how lack of training data affects calibration performance. To be
more specific, if a dataset contained a total of 10000 valid timestamps, the train-test
splits would contain resp. 7000-3000 points. For the subsampled version of this dataset,
we would sample 2500 points from the 7000 points, train on those 2500 points and then
test on the 3000 test points.

Edits to Manuscript: We have clarified this in the paper and reordered the placement of
section 3.3.1 to better explain this process.

Query/Comment: Section 4: enumeration of techniques studied in the paper
Response: We agree with the referee and are thankful for the suggestion.

Edits to Manuscript: We have included a glossary enumerating the names and brief
descriptions of all techniques so that references to various algorithms can be readily
checked. In order to improve the focus of the paper as suggested by the referee, we
have moved details of other algorithms to the supplementary material.
Query/Comment: Reason behind choosing k-NN style algorithms

Response: k-NN and kernel estimators (kernel ridge regression (KRR) and Nadaraya-
Watson (NW)) are well studied non-parametric estimators in literature. These are also
known to be asymptotically universal which theoretically guarantees their ability to
accurately model complex patterns when given diverse and sufficient data.

Edits to Manuscript: A brief explanation has been included in section 5.
Query/Comment: Figure 5 - replotting

Response: we thank the referee for pointing out the improvements to the figures.
Figures 5 and 9 in the old version chose to show data for different days as well as
different durations which was inefficient. Figure 5 also had a manual labelling error which
we have corrected in the revision.

Edits to Manuscript: We have replotted figures 5 and 9 in the revision to consistently
show results across the same two full days of operation (01-02 July and 20-21 Oct) for
sake of clarity. However, figure 5 has been moved to the supplementary to make the
discussion more focused.

Query/Comment: Interpreting Table 3

Response: A metric tells us how to compute distance between two points, say 8
dimensional vectors in our case. The Euclidean metric gives equal importance to all 8
dimensions when calculating distances. An alternative interpretation of a Mahalanobis
metric is that it tells us how to reorganize dimensions/features so that the resulting
distances, when used by the kNN algorithm, give better performance. Table 3 shows us
the optimal reorganization found by the metric learning technique. In particular, note that
it places heavy emphasis on the Rh and T features. This means that the optimal
Mahalanobis metric identifies that a high importance should be placed on Rhand T
features when computing distances for use by kNN.

Edits to Manuscript: A clarification has been added to the revision. However, we felt



that this discussion was not key to the focus of the paper and have moved this
discussion to the supplementary material.

12. Query/Comment: Analyzing where various algorithms offer high error in Figures 8, 10
Response: We thank the referee for this suggestion. To do this analysis, the (Rh, T)
space was divided into various buckets to analyze the performance of each algorithm in
each bucket. For data hungry non-parametric algorithms such as RT, NW(ML), KRR,
and KNN-D(ML), regions of larger error coincided almost entirely with regions where
data was scarce. This is as expected. The least squares method on the other hand
demonstrated no such clear trend on regions of high error. We also tracked the errors of
various algorithms across the day and found that for O3, whose diurnal levels are more
predictable, all algorithms tended to offer relatively larger errors when the (true) O3
levels were higher (i.e. during peak sunlight hours). For NO2, which demonstrates no
such predictable diurnal patterns, no patterns in errors were observed either.

Edits to Manuscript: The revision now contains a new figure 6 and an analysis of
situations in which various algorithms offer larger errors.

13. Query/Comment: Section 6.4 typesettting
Response: Sections 6.5 through 6.8 were meant to be subsections of section 6.4.
Edits to Manuscript: We have corrected this formatting error in the revision.

14. Query/Comment: Include a discussion on swapout experiments where training and
prediction are done across seasons or sites.

Response: Table 5 and section 6.8 in the old version do discuss cases when sensors
are trained in one season and tested in another season, which does include cases when
the site changes across seasons. We also request the referee to take a look at the
comment of Referee #3 on this point and our rebuttal to the comment (please see
“General Comments” bullet point 2 in our response to Referee #3).

Edits to Manuscript: We have changed the title of subsection (section 5.2.4 in the
revision) discussing the swapout experiment to highlight this.

15. Query/Comment: Line 118 - Plantower output
Response: The Plantower PMS7003 offers readings in microgram per cubic meter, We
thank the referee for pointing this out.

Edits to Manuscript: We have corrected the typographical error in the revision.

16. Query/Comment: Various comments on typography and formatting (e.g. line 133 -
defining sites D and M, line 94, adding a glossary, labelling panels in figures 6 and 9,
moving figure 7 to supplementary material)

Response: We thank the referee for taking pains to point out several improvements in
typography and formatting.
Edits to Manuscript: All suggestions have been incorporated in the revision.

Point-by-point Responses to Anonymous Referee #3

General Comments

1. Query/Comment: Invalid timestamps: were 52% datapoints indeed discarded?
Response: Although around half the timestamps were indeed rejected (those that had



even one invalid measurement), it was still the case, especially for summer months, that
at least one timestamp (frequently several) were found valid every hour. We note that
this does not contradict the rejection of 52% timestamps since site D (resp. site M)
offered timestamps at 1 minute (resp. 15 minute) intervals. Thus, the timestamps
considered valid could still accurately track diurnal changes in AQ parameters (as
indicated by Figure 9). A conservative approach was adopted when rejecting
timestamps. We recall that a total of 8 parameters are involved in the training process --
four voltage values, relative humidity and temperature values from the LCAQ sensor,
and two reference values (one each for O3 and NO2) from the reference monitors.
Timestamps where even one of these parameters had an invalid value were rejected. In
future work, data imputation techniques could be adopted to increase the number of
valid timestamps.

Edits to Manuscript: We have included a discussion on this in the revision. Table 1 has
been revised to include more illustrative examples of rejected timestamps.

2. Query/Comment: Creation of a dataset that is diverse w.r.t. location but not season
Response: The prospect of investigating the effect of spatial variation alone (without
bringing seasonal variations into account) is interesting and we did consider this in our
initial experiments but found that cross-sensor calibration is a challenging task in itself.
For example, even the relative humidity and temperature sensors present in LCAQ
sensors do not present good agreement across sensors. Thus, investigating spatial
variation alone would have required us to do some form of “model transfer” of calibration
models across LCAQ sensors. This is an encouraging direction for future work.

Edits to Manuscript: We have added a short discussion about this in section 3.2 itself
where the derived datasets are discussed.

3. Query/Comment: Out-of-sample generalization of parametric vs non-parametric models
Response: we thank the referee for making this suggestion. As noted by the referee,
performance drops are noticed in both algorithmic paradigms. However, as compared to
the non-parametric method KNN-D(ML), the drop for LS is less in some cases, but
comparable or worse in others. Of course, when diverse data is provided to both
algorithms, KNN-D(ML) is superior at exploiting the additional diversity in data.

Edits to Manuscript: We have updated Table 5 (table 6 in the revision) to include the
generalization results for the parametric linear least squares method LS as well.

Specific Comments

1. Query/Comment: Various comments on typography and formatting (e.g. “upto” vs “up
to”, typesetting 2.5 as a subscript in PM2.5, typesetting 2 as a superscript in R2, gas
labels in figure 9)

Response: We thank the referee for taking pains to point out several typography and
typesetting changes.
Edits to Manuscript: We have incorporated all changes in the revised version.

2. Query/Comment: Abstract: LCAQ are consistent but require calibration for accuracy.
Response: We thank the referee for suggesting this rewording and agree with the same.
Edits to Manuscript: We have incorporated all changes in the revised version.



Query/Comment: Lines 4, 52, 116, 188: reference to the word “commodity”
Response: The Alphasense electrochemical sensors used in the SATVAM LCAQ setup
were not customized or specifically tailored for our study. Hence we use the term
“‘commodity” to describe them.

Edits to Manuscript: We have clarified this term at its point of first use in the paper.
Query/Comment: Figure 3, lines 182, 184-186: number of sensors getting swapped
Response: We thank the referee for pointing this out. It seems we forgot to include a
clarificatory remark in the paper. There were indeed 7 sensors deployed in the field of
which 4 were swapped across sites. However, one of the sensors DM4 (that was
swapped) was experiencing sensor malfunction. Its onboard Rh and T sensors were
non-functional for the entire duration of the Jun deployment. For the Oct deployment, its
data had extremely large gaps (sometimes spanning several days), which was
qualitatively distinct from the other sensors which mostly experienced only intermittent
gaps lasting a few minutes. For this reason, this sensor was excluded from our study.
Although for sake of full disclosure we still mentioned in our original submission that 7
sensors were used, we forgot to include this clarificatory remark.

Edits to Manuscript: We have included this clarification in the revision and corrected
the number of sensors reported at various places in the paper to be consistent.
Query/Comment: Do Rh, T values come from: LCAQ sensors or reference monitors?
Response: Rh and T values were obtained from DHT22 sensors located in the
individual LCAQ sensors. This was done to ensure that the calibration models, once
trained, could perform predictions using data available from the LCAQ sensor alone and
not rely on data from a reference monitor.

Edits to Manuscript: We have clarified this in the revision in section 3.
Query/Comment: Clarify figure 6 labels, add plots showing site variation, and avoid
Gaussian fitting for unsigned data

Response: we agree with the referee’s suggestions and are thankful for the same.
Edits to Manuscript: We have moved this plot to the supplementary material in the
revised version as well as added plots that show differences across sites but in the same
season. We have also clarified all aspects of the plot as kindly pointed out in the
comments. We have also replaced Gaussian fits (dotted lines) with non-parametric KDE
fits which are more appropriate for data that is visibly non-Gaussian.

Query/Comment: Line 385: What does “statistically distributed” mean?

Response: We thank the referee for pointing out this typographical error. We meant to
write “normally distributed”. However, we have amended this statement since some of
the distributions do not seem normally distributed.

Edits to Manuscript: We have corrected this typographical error in the revision.
Query/Comment: Line 391: The figure does not appear to have 3rd or 4th rows.
Response: We regret this formatting error. Our initial submission to the journal was in a
two column format (in which Figure 6 did have 4 rows). However, we were requested by
the editorial desk to convert to a single column format. We did so but forgot to change
this piece of text to reflect the change in formatting. We have corrected this.

Edits to Manuscript: We have corrected this formatting error in the revision. However,
the figure and accompanying discussion has been moved to the supplementary material.



8. Query/Comment: shifting figure 7 to the supplementary and clarifying violin plot details
Response: We agree. We used the standard Python-based library seaborn to create the
plots. Seaborn seems to calculate medians and interquartile range of the combined left
and right data in the case of split violin plots. This can be seen in figure 7 (right) where
the median and interquartile ranges correspond to the combined data rather than the left
or the right data.

Edits to Manuscript: We have moved the small tutorial on interpreting violin plots to
the supplementary and added this clarification on medians and interquartile ranges.

9. Query/Comment: Section 6.4 appears incomplete
Response: The referee is indeed correct in observing that sections 6.5 through 6.8 were
meant to be subsections of section 6.4
Edits to Manuscript: We have corrected this formatting error in the revision.

General Comments on Edits to the Manuscript

Apart from changes to fix typographical or formatting errors (e.g. repeated words “sensor
sensor”, “inter” vs “intra” in title of section 6.2.2, labelling errors, subscript error in formatting
PM2.5, R2), most changes were done to improve the focus of the paper and make the writing
more concise. We agree with the comments of both referees that encouraged us to move

portions not essential to the core discussion, to the supplementary material.

1. Section 6.1 (Analysis of Raw Data) has been moved to the supplementary material
along with detailed descriptions of the deployment sites in section 2.2. It was suggested
in the review that Figure 6 etc be moved to the supplementary and we agreed that these
portions do not significantly contribute to the core discussion.

2. As suggested in the review, portions of sections 4 and 5 have been moved to the
supplementary material. The main text now briefly outlines baseline calibration methods,
motivates the proposed method and gives necessary details of the proposed method.
We agree with the referee comments on making the presentation of the calibration
algorithms tighter.

3. Additional results have been introduced in the main text as suggested in the referee
comments, for which we are thankful. For example, a glossary of the acronyms used in
the discussion, results of the parametric algorithm LS in the swapout experiments on the
aggregated datasets, a discussion on the cases in which various algorithms offer high
error, and numerical values of performance improvements offered by the proposed
method, in addition to the violin plots.

4. Algorithm 1 in the main paper has been simplified to describe only the proposed KNN-
D(ML) algorithm. Earlier the algorithm sought to describe the entire family of KNN-style
algorithms which may have been confusing. The general description of the KNN family
of algorithms that was earlier present in the main text has been moved to the
supplementary material for the interested reader.

5. The discussion around the diagonal entries of the learnt metric and the accompanying
Table 3 have been moved to the supplementary material. It seems that the discussion
may not be of general interest.
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Abstract. Risi
for-Low-cost sensors offer an attractive solution to the challenge of establishing affordable and dense spatio- temporal air

quality monitoring networks -

with greater mobility and lower maintenance costs

commodity-. These low-cost sensors havereasonably-high-aceuracy-offer reasonably consistent measurements, but require in-
field calibration to improve preeistonagreement with regulatory instruments. In this paper, we report the results of a deployment

and calibration study on a network of seven-six air quality monitoring devices built using the Alphasense O3 (0OX-B431) and
NO2 (NO2-B43F) electrochemical gas sensors. The sensors were deployed in two phases over a period of three months at
sites situated within two mega-cities with diverse geographical, meteorological and air quality parameters—%ﬂdabadr@ekﬁ

hs—. A unique
feature of our deployment is a swap-out experiment wherein fotir-three of these sensors were relocated to different sites in the
es-phases. This gives us a unique opportunity
to study the effect of seasonal, as well as geographical variations on calibration performance. We perfermrreport an extensive
study of more than a dozen parametric as-wel-as-and non-parametric calibration algorithmsand-find-local-calibration-metheds-to
offer-the-best performanee. We propose a novel local non-parametric calibration algorithm based on metric-learning that offers,

across deployment sites and phases, an average R2-eoefficient-of 0:873-R? coefficient of upto 0.923 with respect to reference
values for Oz calibration and 6-886-0.819 for NO; calibration. This represents an upte-9%-4 - 20 percentage point increase

in terms of R2-R? values offered by classical oes

default-calibration-models-offered-by-the-gassensor-manufacturer—non-parametric methods. We also offer a critical analysis

of the effect of various data preparation and model design choices on calibration performance. The key recommendations
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emerging out of this study include 1) incorporating ambient relative humidity and temperature asfree-parameters{orfeatures)

into-at-into calibration models, 2) assessing the relative importance of various features with respect to the calibration task at
hand, by using an appropriate feature weighing or metric learning technique, 3) fheﬂ%eﬁﬂee&}{e%eveﬁ%ypef-}eeal%m

local calibration techniques such as %

encountered-in-field-deploymentsKNN, 4) performing temporal smoothing over raw time series data, say-by-averaging-sensor
stenals-over-smal-windows;-but being careful to not do so too aggressively, and 5) making all efforts at ensuring that data with

enough diversity is demonstrated to the calibration algorithm while training to ensure good generalization. These results offer

insights into the strengths and limitations of these sensors, and offer an encouraging opportunity at using them to supplement

and densify compliance regulatory monitoring networks.

1 Introduction

Adverse-effects-ofairpollution-Elevated levels of air pollutants have a detrimental impact on the-health-ef-human-populations

human health as well as the economy (Chowdhury et al., 2018; Landrigan et al., 2018). For instance, high levels of ground-level
ozone-can-catise-severe-health-risks-ineluding-butnet-timited-to—-O3 has been linked to difficulty in breathing, increased fre-
quency of asthma attacks, and chronic obstructive pulmonary disease (COPD). The World Health Organization reported (WHO,
2018) that in 2016, 4.2 million premature deaths worldwide could be attributed to outdoor air pollution, 91% of which occurred
in low- and middle-income countries where air pollution levels often did not meet its guidelines. Peeision-makers—require

There is a need for menitering-accurately
real-time monitoring of air pollution levels aceurately-with dense spatio-temporal coverage.
Existing regulatory techniques for assessing urban air quality (AQ) rely on a small network of meniteringstations-providing

Quality Monitoring Stations (CAAQMS) —These-stations-that are instrumented with accurate air quality monitoring gas an-

alyzers and Beta-Attenuation Monitors and provide highly accurate measurements (Snyder et al., 2013; Malings et al., 2019).
However, these networks are established at a commensurately high setup and-eperating-cost—The-cost and are cumbersome to

AAANAR AT AR AR AR

maintain (Sahu et al., 2020), making dense CAAQMS networks impractical. However, the AQ data offered by asmal-number
of-these-monitors-across-a-citythese sparse networks, however accurate, imit-limits the ability to formulate AQ-improvement
effective AQ strategies (Garaga et al., 2018; Fung, 2019) Mefeever—GAAQMS—“ﬁ%h%mdmeﬂal—ga%—aﬁaﬁzefs—&nd—ﬁkef
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In recent years, the availability of low-cost AQ mont

LCAQ) monitoring devices has provided exciting opportunities for finer spatial resolution data (Rai-et-al52017; Baron-and-Saffel; 2617

Rai et al., 2017; Baron and Saffell, 2017; Kumar et al., 2015; Schneider et al., 2017; Zheng et al., 2019). The cost of a Fed-
eral Reference Method (FRM)-grade menitoring-CAAQMS system is around USD 200,000, while that of aJew-pewered

an LCAQ device running commodity AQ-sensors is under USD 500 (Jiao et al., 2016; Simmhan et al., 2019). Several

this manuscript, we use the term “commodity” to refer to sensors or devices that are not custom built and instead sourced
from commercially available options. The increasing prevalance of the emergence of eloud-computing-and-the-Internet of
Things (IoT) eyber-infrastruetare-infrastructure allows building large-scale networks of ltew-pewered-AQ-menitoring LCAQ
devices (Baron and Saffell, 2017; Castell et al., 2017; Arroyo et al., 2019). This-paves-a—wayforregulatory bodiesto-use-AQ
sensor-data-to-identify-patternsand

Dense LCAQ networks can complement CAAQMS to help regulatory bodies identify sources of pollution and efficient
pohiey-formutation;for-formulate effective policies, allow scientists to model the-interactions between climate change and pol-
lutionaceurately (Hagan et al., 2019), and-to-facilitate-the participation-of the-common-publie-allow citizens to make informed

decisions, e.g. on their commute (Apte et al., 2017; Rai et al., 2017), and encourage active participation in citizen science mere

aetivelyinitiatives (Gabrys et al., 2016; Commodore et al., 2017; Gillooly et al., 2019; Popoola et al., 2018).

1.1 Challenges in low-cost sensor calibration

Measuring ground-level ezene(O3 yandnitrogen-dioxide-(and NOo y-aceurately-using-sensers-is challenging as they occur at
parts per billion (ppb)-miere-levels-levels and intermix with other pollutants (Spinelle et al., 2017). Mestcommonly-available

low-costsensorsfor-these-gas-phase-compounds-LCAQ sensors are not designed to meet rigid performance standards and ma

enerate less accurate data as compared to regulatory-grade CAAQMS (Mueller et al., 2017; Snyder et al., 2013; Miskell et al., 2018

. Most LCAQ gas sensors are based either on metal oxide (MOx) or electrochemical (EC) technologles (Pang et al., 2017; Ha-
gan et al., 2019) i

Tn-addition-thesesensors-at-times-have-issues-of consisteney;stability-and-These present challenges in terms of sensitivity

towards environmental conditions ;-and cross-sensitivity (Zimmerman et al., 2018; Lewis and Edwards, 2016). For exam-

ple, 03 electrochemical sensors undergo redox reactions in the presence of NOo. Further-the-constaney-of low-cost-sensersis
i sThe sensors also exhibit loss of consistency or drift over time.
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For instance, in EC sensors, reagents are spent over time and have a typical lifespan of one to two years (Masson et al., 2015;
Jiao et al., 2016). Thus, there is need for reliable calibration techniques-that-meet-performanee-metriesrequired-by-of LCAQ
sensors to satisfy performance demands of end-use applicationseven—atlow—ambient-concentrations(DPe-Vito-etal; 2648

1.2 Related Works

Recent works have demeonstrated-that-valid-shown that LCAQ sensor calibration can be achieved by co-locating them-with
highly-aceurate-the sensors with regulatory-grade reference monitors and using various linear-and-non-tinearcalibration mod-
els (De Vito et al., 2018; Hagan et al., 2019; Morawska et al., 2018). For-thespeeific Zheng et al. (2019) considered the problem
of dynamic PM, 5 sensor calibration within a sensor network. For the case of SO, sensor calibration, Hagan et al. (2019) ob-
served that simple-parametric models such as leastsquares-linear least squares regression (LS) regression-could extrapolate to
wider concentration ranges, at which non-parametric regression model may faitstruggle. However, LS does not correct for the
dependence on temperature or relative humidity (RH)dependenee-of-the-signat, at which non-parametric models may be more
effective.

Since electrochemical sensors are configured such-that-the-responses-are-to have diffusion-limited responses, and the dif-
fusion eeeffictentcoefficients could get affected by varying-temperature; Hitchman-et-alk (1997 Massen-et-al(2045)-ambient
temperature, Sharma et al. (2019); Hitchman et al. (1997); Masson et al. (2015) found that at RH exceeding 75% there is sub-

stantial error, possibly due to condensation on the potentiostat electronics. Mererecently;-Simmhan et al. (2019) used non-
parametric approaches such as regression trees along with data aggregated from multiple co-located sensors to demonstrate
the effect of training dataset on calibration performance. Esposito et al. (2016) made use of neural networks and demonstrated
good calibration performance (with mean absolute error < 2 ppb) for the calibration of NO2 sensors. However, a simitarly

impressive-similar performance was not observed for O3 calibration. MereoverNotably, existing works have-meostly—been
tested-with-mostly use a localized deployment of a small number of sensor, for-instance-¢.g. Cross et al. (2017) who tested two

senser-devices, each containing one sensor per pollutantever4-months-with-35% training-data.

1.3 Our Contributions and the SATVAM initiative

The SATVAM initiative (Streaming Analytics over Temporal Variables from Air quality Monitoring) has feeused—on—the
development-and-calibration-of-been developing low-cost air quality (LCAQ) sensor networks based on highly portable IoT
software platforms. These sensors-LCAQ devices include (see Fig. 2) eontainPM2:5-PM; 5 as well as gas sensors. Details
on the IoT software platform and SATVAM node cyber infra-structure are available in (Simmhan et al., 2019). The weork-of

Delhi-India—The-focus of this paper is to build accurate and robust calibration models for the NO4 and O3 gas sensors present

in SATVAM devices. Our contributions are summarized below:
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1. We report the results of a deployment and calibration study involving 6-six sensors deployed at two sites over two phases
with vastly different meteorological, geographical and air quality parameters;-overtwo-phases—.

2. A unique feature of our deployment is a swap-out experiment wherein 4-three of these sensors were relocated to different

sites in the two phases (see Sect. 2 for deployment details).

3. The-swap-out-experiment-in-particularis-erueial-in-allowing-This allows us to investigate the efficacy of calibration

models when applied to weather and air quality conditions vastly different from those present during calibration. Fhis
Such an investigation is missing from previous works which mostly consider only localized calibrationef-a-couple-of
models.

4. We present an extensive study of parametric and non-parametric calibration models, both-parametric-and-non-parametrie

and develop a novel local calibration algorithm based on metric learning that offers beth-stable (across gases, sites and

deploymentphases)-as-well-as-aceurate-calibrationperformaneeseasons) and accurate calibration.

5. We present a-eritical-an analysis of the effect of data preparation techniques such as volume of data, temporal averaging

and data diversity, on calibration performance. This study-yields-several-simple-yet-erueial-yields several take-home
messages that signifieantly-can boost calibration performance.

2 Deployment Setup

Our deployment employed a network of LCAQ sensors as well as reference grade monitors for measuring both NO4 and O3

concentrations, deployed at two sites across two phases. Here-we-give-details-of the-deployment-setup—

2.1 Deployment Sites
SATVAM LCAQ sensor deployment and collocation with reference monitors was carried out at two sites. Fig. 1 presents the
eographical locations of these two sites.

1. Site D: located within the Delhi National Capital Region (NCR) of India at the Manav Rachna International Institute of
Research and Studies, Sector 43, Faridabad (28.45°N, 77.28°E, 209 m above mean sea level)

. Site M (in Mumbai
campus of IIT Bombay (19.13°N, 72.91°E, and 50 m above mean sea level).

: located within the city of Mumbai at the Maharashtra Pollution Control Board within the universit

We refer the reader to the supplementary material for additional details about the two deployment sites. Due to increasing
economic and industrial activities, a progressive worsening of ambient air pollution is witnessed at both sites. We considered
these two sites to cover a broader range of pollutant concentrations and weather patterns, so as to be able to test the reliability of
LCAQ networks. It is notable that the two chosen sites present different geographical settings as well as different air pollution
levels with site D of particular interest in_presenting significantly higher minimum O levels than site M, illustrating the
influence of the geographical variability over the selected region.
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Figure 1. A map showing the locations of the deployment sites. Fig. 1(b) and (c) on the right show a local-scale map of the vicinity of the
deployment sites — namely Site D at MRIU, Delhi NCR (Fig. 1(b)) and Site M at MPCB, Mumbai (Fig. 1(c))

ig. 1(a) shows the location of the sites on a map of India. Credit for Map Sources: Fi

, with the sites themselves

. 1(a) is taken
from the NASA Earth Observatory with the outlines of the Indian states in red taken from QGIS3.4 Madeira. Fig. 1(b) and (c) were obtained

from, and are, © Google Maps. The green markers for the sites in all figures were added separately.

Figure 2. Primary components of the SATVAM LCAQ (low-cost air-quality) sensor used in our experiments. The SATVAM ensemble-device
consists of a Plantower PMS7003 PM2:5-PM5, 5 sensor, Alphasense OX-B431 and NO2-B43F electrochemical sensors, and a DHT22 RH

and temperature sensor. Additional components (not shown here) include instrumentation to enable data collection and transmission.

2.2 Instrumentation

Low-eost-LCAQ Sensor Design: Each SATVAM LCAQ device contains two commodity electrochemical gas sensors (Al-
phasense OX-B421 and NO2-B42F) for measuring O3 (ppb) and NOy (ppb) levels, a PM sensor (Plantower PMS7003) for
measuring PM25(me-PM, 5 %m*) levels, and a DHT22 sensor for measuring ambient temperature in °C and RH in
pereentpercentage points. Fig. 2 shows the placement of these components. A notable feature of this device is its focus on
resouree-frugality with use of the very low-power ContikiOS platform and 6LoWPAN for providing wireless sensor network
communicationsconnectivity.

Detailed information on assembling these different components and the eyber-infrastructurerequired-to-make-a-customized

sensor-node-capable-of interfactng-within-interfacing with an IoT network is avatlable-inother-worksdescribed in (Simmhan
et al., 2019). These works-also-deseribe-in-detail-the-formation-of-sensors form a highly portable IoT software platform to
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transmit 6LoWPAN packets at 5 minute intervals containing five time-series data points ef-the-from individual sensors, namely

NOs, O3, PM2:5-PMs 5 (not presented in this study), temperature and relative-humidity-(RH)In-previous-deployments-whieh

h-RH. Given the large larger
number of devices spread across two cities and seasons in this study, a single border-router edge device was configured at both

sites using a Raspberry Pi that acquired data, integrated it, and connected to a cloud facility using a WiFi-link to the respective
campus broadband networks. A Microsoft Azure Standard D4s v3 VM was used to host the cloud service with 4 cores, 16
GB RAM and 100 GB SSD storage running an Ubuntu 16.04.1 LTS OS. The Pi edge device was designed to ensure that data
acquisition continues even in the event of cloud VM failuresfailure.

Reference Monitors: At both the deployment sites, O3 and NOy were measured simultaneously with data available at 1
minute intervals for site D deployments (both Jun and Oct) and 15 minute intervals for site M deployments. O3 and NO,
values were measured at site D using an ultraviolet photometric O3 analyzer (Model 49i O3 analyzer, Thermo Scientific™,
USA) and a chemiluminescence oxide of nitrogen (NOx) analyzer (Model 42i NOx analyzer, Thermo Scientific™, USA),
respectively. Regular maintenance and multi-point calibration, zero checks, and zero settings of the instruments were carried
out following the method described by (Gaur et al., 2014). The lowest detectable limits of reference monitors in measuring O3
and NOs are 0.5 ppb and 0.40 ppb, respectively, and with a precision of £0.25 ppb and £0.2 ppb, respectively. Similarly, the
deployments at site M had Teledyne T200 and T400 reference-grade monitors installed. These also have a UV photometric
analyzer to measure Og3 levels and use chemiluminescence to measure NO- concentrations with lowest detectable limits for O3
and NOg of 0.4 ppb and 0.2 ppb respectively and a precision of £0.2 ppb and £0.1 ppb respectively. For every deployment,

the reference monitors and the AQ sensors were time-synchronized, with the 1 minute interval data averaged across 15 minute

intervals for all site M deployments -
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2.3 Deployment Details

215 A total of four field co-location deployments, two each at sites D and M, were evaluated to characterize the calibration of the
low-cost sensors during two seasons of 2019. The two field deployments at site D were carried out from 27th Jun—6th Aug
2019 (7 weeks) and 4th Oct—27th Oct 2019 (3 weeks). The two field deployments at site M, on the other hand, were carried
out from 22nd Jun—21st Aug 2019 (10 weeks), and 4th Oct—27th Oct 2019 (3 weeks) respectively. For sake of convenience, we
will refer to both deployments that commenced in the month of June 2019 (resp. October 2019) as Jun (resp. Oct) deployments

220 even though the dates of both Jun deployments do not exactly coincide.
A total of six low-cost SATVAM LCAQ sensors were deployed at these two sites. We assign these sensors a unique numerical

identifier and a name that elearly-depiets-describes its deployment pattern. The name of a sensor is of the form XYn where X
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Sensors
DDl DM2 DD3 MMS5 MD6 MD7
Jun D D D M M M
Oct D M D M D D

Site M

\ MM5, MD6 \ DM2, MM5
MD7
' 3 ' i
Jun deployment Oct deployment

Figure 3. A schematic showing the deployment of the six LCAQ sensors across site D and site M during the two deployments. The sensors
subjected to the swap-out experiment are presented in bold. The outlines of the Indian states in red was taken from QGIS3.4 Madeira with

other highlights (e.g. for oceans) and markers being added separately.

(resp Y) indicates the site at which the sensor was deployed during the Jun (resp Oct) deployment and n denotes its unique

numerical identifier. The-seven-sensors-are-thus-named-Fig. 3 outlines the deployment patterns for the six sensors DD1, DM2,
DD3, MM5, MD6, and MD7. Fig—3-eutlines-the-deploymentpatterns—

2.4 Swap-outExperiment

Swap-out Experiment. As Fig. 3 indicates, SEHSOrs sites g
other-eity three sensors were swapped with the other site across the two deployments. Specifically, for the Oct deployment,
DM2 was shifted from Pethito-Mumbai-site D to M and MD6 and MD7 were shifted from Mumbai-to-Delhi-for-the-Oet
deployment-site M to D.

Sensor Malfunction. Our experiment actually involved a total of seven sensors being deployed. The seventh sensor, named
DM4, was supposed to be swapped from site D to site M. However, the onboard RH and temperature sensors for this sensor
were non-functional for the entire duration of the Jun deployment and frequently so for the Oct deployment as well. For this
reason, this sensor was excluded from our study altogether. To avoid confusion, in the rest of the manuscript (e.g. the abstract,
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Table 1. Samples of the raw data collected from the DM2(Jun) and MM5(Oct) datasets. The last column indicates whether data from that
time-stamp was used in the analysis or not. Note that DM2(Jun) data, coming from site D, has samples at 1 minute intervals whereas
MM5(Oct) data, coming from site M, has samples at 15 minute intervals. The raw voltage values (no2op1, no2op2, oxopl, oxop2) offered
by the LCAQ sensor are always integer valued, as indicated in the DM2(Jun) data. However, for site M deployments, due to averaging, the
effective voltage values used in the dataset may be fractional, as indicated in the MMS5(Oct) data. The symbol X indicates missing values. A

bold font indicates invalid values.

DM2(Jun)
Time-stamp 03 NO2 T RH no2opl no2op2 oxopl oxop2 no2diff o
29-06 04:21 19.82 20.49 32.7 54.6 212 231 242 209 -19

29-66-01-07 04:23-02 22742438 H8A4F14.73 0 =325 *09.7 X X X X X
MM5(Oct)

Time-stamp 03 NO2 T RH no2opl no2op2 oxopl oxop2

+7-46-19-10 05:45 FHTx 37:62-X_ 26-42-x 99:9-x  H927160.46 4529318831 42815831 +33:4-172,

+7-146-06:+5-20-10 10:45 X X 26:25-28.52 99.9 25671218 45443-154.0 129:2-119.3 +34:6-135

+7-16-6622-10 18:30 16:86-8.33 36951091  26:+4627.87 99.9 HO33-143.2  +5+41723 427271462 43+67155

3 Data Analysis Setup

Festheneh: All experiments were conducted on a commodity laptop with an Intel Core i7 CPU with 2.70GHz frequency,
8GB of system memory and running an Ubuntu 18.04.4 LTS operating system. Standard off-the-shelf machine learning and

statistical analysis packages such as numpy, sklearn, scipy and metric—learn were used to implement the calibration algorithms.
3.1 RawDatasets-and-Features

Raw Datasets and Features. The six sensors across the Jun and Oct deployments, gave us a total of 12 datasets. We refer to
each dataset by mentioning the sensor name and the deploymentrame. For example, the dataset DM2(Oct) contains data from
the October deployment fat site M )-of the sensor DM2. Each dataset is represented as a collection of eight time series for
which each time stamp is represented as an 8-tuple (O3, NO2, RH, T, no2op1, no20p2, oxopl, oxop2) giving us, respectively,
the reference values for O3 and NOs (in ppb), relative humidity (in %) and temperature (in °C) valuesat-each-time-stampin
addition-to-, and voltage readings (in mV) from the two electrodes present in each of the two gas sensors. These readings are
named-noZoplnoZopZoxopland-oxeopZand-theyrepresent working (no2opl and oxopl) and auxiliary (no2op2 and oxop2)

electrode potentials for these sensors. We note that RH and T values in all our experiments were obtained from DHT22 sensors
in the LCAQ sensors and not from the reference monitors. This was done to ensure that the calibration models, once trained

10
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could perform predictions using data available from the LCAQ sensor alone and not rely on data from a reference monitor. For
site D, both the LCAQ sensor as well as the reference monitor data was available at 1 minute intervals. However for site M
since reference monitor data was only available at 15 minute intervals, CAQ sensor data was averaged over 15 minute intervals.

3.1 Data-Cleanup

Data Cleanup. Time-stamps from each-efthe LCAQ sensors were aligned to those from the reference monitors. We-coensidered
only-these-datapeint-that-were-temperally-aligned—For several time-stamps, we found that either the sensor or reference moni-

tors presented with one or more missing or spurious values (see Table 1 for examples). Spurious values included a-the following
cases: a) a reference value for Oz or NO2 of > 200 ppb or < 0 ppb (the reference monitors sometimes offered negative readings
when powering up and under anomalous operating conditions e.g. condensation at the inlet), b) a sensor temperature reading
of >50 °Cor < 1 °C, an<) an sensor RH level of > 100 % or < 1 %, HM&%W@(MWW

(either of no2op1, no2op2, oxopl, oxop2) of >

>400 mV or < 1 mV. These errors are possibly due to electronic noise in the devices. All time-stamps with even one spurious

or missing value were considered invalid and removed. Across all 12 datasets, an average of 52% of the time-stamps were

removed as a result.

a-However, since site D (resp. site M
offered timestamps at 1 minute mewa%Hhefefefmeeﬂmﬁﬁef%—&EﬂaaHﬁe—wefe%eﬁeﬁfe\ﬁded%a—&k (resp. 15 minute-intervals:

Fhe-3-minute) intervals i.e. 60 (resp 4) timestamps every hour, at least one timestamp (frequently several) were found still

valid every hour in most cases. Thus, the valid timestamps could still accurately track diurnal changes in AQ parameters. The
datasets from Jun (resp. 4-frem-Oct) deployments at site D offered an average of 33753 (resp. 9548) valid time-stamps. The
3-datasets from Jun (resp. 2-from-Oct) deployments in site M offered an average of 2462 (resp. 1062) valid time-stamps. As
expected, site D Mm%ﬂmmm time-stamps than site M

ats-that had data
at 15 minute intervals. We-also-nete-that-for-For both sites, more data is available for the Jun deployment (that lasted longer)

than the Oct deployment.
3.1 Data Augmentation and Derived Dataset Creation

For each of the 12 datasets, apart from the six data features provided by the LCAQ sensors, namely RH-and-T-values-and-sensor
voltage-values(noZoplnoZep2-oxepl-oxep2);-we included two derived-augmented features, calculated as shown below

no2diff = no2opl — no2op2
oxdiff = oxopl — oxop2

11
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We found that having these derived-augmented features, albeit simple linear combinations of raw features, offered our cali-
bration models a predictive advantage. The augmented datasets created this way represented each time-stamp as a vector of 8

feature values (RH, T, no2op1, no2op2, oxopl, oxop2, no2diff, oxdiff), apart from the reference values of Oz and NO,.

3.1.1 Train-Test Splits

Each of the 12 datasets was split in a 70:30 ratio to obtain a train-test split, 10 such splits were independently generated for
each dataset, All calibration algorithms were offered the same train-test splits. For algorithms that required hyperparameter
tuning, a randomly chosen set of 30% of the training data points in that split were used as a held out validation set. All
features were normalized to improve the conditioning of the calibration problems. This was done by calculating the mean and
standard deviation for each of the 8 features on the training portion of a split, and then mean centering and dividing by the
standard deviation all time-stamps in both training and testing portion of that split. An exception was made for the Alphasense
calibration models, which required raw voltage values. However, reference values were never normalized in any way.

32 Derived Datasets

In order to study the effect of data frequency (how frequently do we record data e.g. 1 minute, 5-15 minute), data volume (total
number of time-stamps used for training), and data diversity (data collected across seasons or eitiessites) on the calibration

performance, we created several derived datasets as well. All these datasets contained the augmented features.

1. Temporally Averaged Datasets: We took the two datasets DD1(Jun) and DM2(Jun) and created four datasets out of
each of them by averaging the sensor and reference monitor values at 5 minute, 15 minute, 30 minute and 60 minute
intervals. These datasets were named by affixing the averaging interval size to the dataset name, for example DD1(Jun)-
AVGS for the dataset created out of DD1(Jun) with 5 minute averaging, DM2(Jun)-AVG30 for the dataset created out of
DM2(Jun) with 30 minute averaging, etc.

2. Sub-sampled Datasets: To view the effect of having less training data on calibration performance, we created sub-
sampled versions of both these datasets by sampling a random set of 2500 time-stamps from the training portion of the
DD1(Jun) and DM2(Jun) datasets to get the datasets DD1(Jun)-SMALL and DM2(Jun)-SMALL.

3. Aggregated Datasets: Next, we created new datasets by clubbing together data for a sensor across the two deployments.
This was done to the data from the sensors DD1, MMS5, DM2 and MD6. For example, if we consider the sensor DD1,
then the datasets DD1(Jun) and DD1(Oct) were combined to create the dataset DD 1(Jun-Oct). Fhis-was-done-in-orderto

more—divercein-termeo oeation nea  PMAand MDD
v C I c V cl Viil~o

12
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of Investigating Impact of Diversity in Data. The aggregated datasets are meant to help us study how calibration algorithms
perform under seasonally and spatially diverse data. For example, the aggregated datasets DD1(Jun-Oct) and MMS(Jun-Oct)
include data that is seasonally diverse but not spatially diverse (since these two sensors were located at the same site for both
deployments). On the other hand, the aggregated datasets DM2(Jun-Oct) and MD6(Jun-Oct) include data that is diverse both

seasonally as well as spatially (since these two sensors were a part of the

any-wayswapout experiment). At this point, it is tempting to ask whether aggregated datasets that are diverse spatially but not
seasonally diverse can be created as well. Although the prospect of investigating the effect of spatial diversity alone (without

bringing seasonal diversity into account) is interesting, this would require aggregating data from two distinct sensors since no

sensor was located at both sites during a deployment. This presents an issue since the various onboard sensors in these LCAQ
devices, e.g. RH and temperature sensors, do not present good agreement across devices. Thus, some form of cross-device
calibration would have been required which is an interesting but challenging task in itself. This is an encouraging direction for
future work but not considered in this study.

3.2.1 i isti i ingPerformance Evaluation

The performance of calibration algorithms was assessed using standard error metrics and statistical hypothesis testing.

Error Metrics: calibration performance was measured using four popular metrics;—; mean averaged error (MAE), mean

absolute percentage error (MAPE), root mean squared error (RMSE), and the coefficient of determination (2%)see-below)-

lease see the supplementary material

for detailed expressions of these metrics).

MAE =Sy -]

~n

MAPE =1y Iy”yj@” x 100%

RMSE = \/ Tyt =)

2 T
R =15

Statistical Hypothesis Tests: in order to compare the performance of different calibration algorithms on a given dataset

(e-g=-to find out the best performing algorithm), or compare the performance of the same algorithm on different datasets (e-g=

13



to find out the effect of data characteristics on calibration performance), we performed paired and unpaired two-sample tests,
345 respectively. Our null hypothesis in all such tests proposed that the absolute errors offered by-the-two-algorithms-on-the-same

the-same-distributienin the two cases considered are distributed identically. The test was applied and if the null hypothesis was
rejected with sufficient confidence (an o value of 0.05 was used as the standard to reject the null hypotheses), then a winner
was simultaneously identified.

350 Although the Student’s t-test is

more popular, it assumes that the
underlying distributions are normal. However, an application of the Shapiro-Wilk test (Shapiro and Wilk, 1965) rejected-the

nutkhypotheses-of the-errors being-normally distributed o our absolute error values rejected the normal hypothesis with high
confidence. As-aresultThus, we chose the non-parametric Wilcoxon signed-rank test (Wilcoxon, 1945) when comparing two
algorithms on the same dataset, and its unpaired variant, the Mann-Whitney U-test (Mann and Whitney, 1947) for comparing
355 the same algorithm on two different datasets. These tests do not make any assumption on the underlying distribution of the

errors and are well-suited for our data.

4 Baseline and Proposed Calibration Models

Our study used-considered a large number of beth-parametrie~-parametric and non-parametric calibration techniques —Sinee

360

algorithms, Table 2 provides a glossary of all the algorithms including their acronyms and brief descriptions. Detailed descriptions
of all these algorithms is provided in the supplementary material. Among parametric algorithms, we considered the Alphasense
models (AS1-AS4) supplied by the manufacturers of the gas sensors, linear models based on least-squares and-sparse-recovery;
as-weH-as—several-(LS and LS(MIN)) and sparse recovery (LASSO). Among non-parametric ealibration-atgerithmssuech-as
365 regression-trees-algorithms, we considered regression trees (RT), kernel-ridge regression s-and-(KRR), the Nystroem method -

for accelerating KRR, the Nadaraya Watson estimator (NW), and various local algorithms based on the k-nearest neighbors
rinciple (KNN, KNN-D). In this section we give a self-contained description of our proposed algorithms KNN(ML) and
KNN-D(ML).

370 Notation: For every time-stamp ¢, the vector 2! € R® denotes the 8-dimensional vector of signals recorded by the LCAQ
sensors for that time-stamp, namely (RH, T, no2op1, no2op2, oxopl, oxop2, no2diff, oxdiff), while the vector y* € R? will de-
note the 2-tuple of the reference values of Oz and NOg, for that time step. However, this notation is unnecessarily cuambersome
since we will build separate calibration models for O3 and NOs. Thus, to simplify the notation, we will instead use y* € R to
denote the reference value of the gas being considered (either O3 or NOs). The goal of calibration will then be to learn a real

375 valued function f : R® — R such that f(x!) ~ y for all time-stamps ¢ (the exact error being measured using metrics such as

MAE, MAPE, etc described in Sect. 3.2.1). Thus, we will learn two functions, say fyo, and fo, to calibrate for NO2 and O3

14
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Table 2. Glossary of baseline and proposed calibration algorithms used in our study with their acronyms and brief descriptions. The
KNN(ML) and KNN-D(ML) algorithms are proposed in this paper. Please see the supplementary material for details.

Parametric Algorithms Non-parametric Algorithms Non-parametric KNN-style Algorithms
AS1,AS2  Alphasense models (from RT Regression Tree KNN k-nearest Neighors
AS3,AS4. gas sensor manufacturer) KRR Kenel Ridge Regression KNN-D Distance weighted KNN
LASSO  Sparse Regression, _proposed in this paper

concentrations respectively. Since several of our calibration algorithms will involve the use of some statistical estimation or
machine learning algorithm, we will let N (resp. n) denote the number of training (resp. testing) points for a given dataset and

split thereof. Thus, we will let {(z?,3*)}¥, denote the training set for that dataset and split with =* € R® and y* € R.

4.1 J*—NN-RegressionVariantsProposed Method: Distance-weighed KNN with a Learnt Metric

The-k-nearest-neighbor-Our proposed algorithm is a feeat

amp oa oW d a o-Samp a O

these-variants—local, non-parametric algorithm that uses a learnt metric. Below we describe the design of this method and
reasons behind these design choices.

a non-parametric estimator is the KNN (k -nearest-algerithm—(KNN-)-nearest neighbors) algorithm that predicts on a test
samplepoint, the average reference value in the & nearest training samples—The-neighborhood-size-k-was-tuned-over-the-fine

oints. Other examples (please see

15



400

405

410

415

420

425

the supplementary material for details) include kernel ridge regression are-twe-pepularforms-of-kernelregression-algorithms-
loselvrelated e G . on.

well-studied and known to be asymptotically universal which guarantees their ability to accurately model complex patterns
which motivated their choice. These models can also be brittle Hagan et al. (2019) when used in unseen operating conditions
but Sec. 5.2 shows that our proposed algorithm performs comparably to parametric algorithms when generalizing to unseen
conditions, but offers far more improvements when given additional data.

Yo K(!,x)

As-Metric Learning for KNN Calibration. As mentioned above, the KNN algorithm uses the closest neighbors to compute
its output. To do this, it needs a notion of distance, specifically a metric, to compute closeness. The default and most common
choice for a metric is the Euclidean distance which gives equal importance to all 8 dimensions when calculating distances

between two points say ', 2> € R®, However, our experiments in Sect. 5 will show -the-inelusion-of that certain features, e.g.
RH and Tas-additienal-features-benefits-, seem to have a significant influence on calibration performance. HoweverThus, it is
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oxopl while calculatin
435 distances between two points. The technique of metric learning (Weinberger and Saul, 2009) offers a solution in this respect b
learning a customized Mahalanobis metric metric that can be used instead of the generic Euclidean metrictWeinberger-and-Saul;-2009)

- A Mahalanobis metric is

characterized by a positive semi-definite matrix 3 € R8*® and calculates the distance between any two points as follows

dMiha (gl g% 7)) = \/(ml —x2)TY(x! — x?)

440 Note that the Mahalanobis metric recovers the Euclidean metric when ¥ = I3 is the identity matrix. Now, whereas metric
learning for &-NN-is-very-KNN is popular for classification problems, it is uncommon for calibration and regression problems.

This is p

due to regression problems lacking of a

small number of “classes™.

To overcome this problem, we re

445 of-the KNN-D-algorithm—Given-thatnote that other non-parametric calibration algorithms such as NW and KRR also utilize

a metric indirectly (please see the supplementary material) and there does exist a technique Weinberger-and-Tesauro; 2007)-
to learn a Mahalanobis metric for-use-with—to be used alongwith the NW algorithm ;—we—(Weinberger and Tesauro, 2007).
This allows us to adopt a two-stage algorithm that first learns a Mahalanobis metric suited for the NW estimator-and-then

usmgﬁwﬁkrfh&KNNﬂﬂekal orithm and then uses it to perform KNN-style calibration. Algorithm 1 describes the resultin,
450

5 Results and Discussion

455 The goals of using low-cost AQ monitoring sensors vary w1dely This %Mﬁim%%ﬂywmm
assesses a wide variety of calibration modelsa

B

5.1 Analysis-ef RawData
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Algorithm 1 The proposed KNN-D(ML) algorithm for distance weighted KNN calibration with a learnt metric.

Require: training data points ~ 1, neighborhood size k
Ensure: a prediction from the KNN-D(ML) -

- o an-alternate kernelsiverd

KM (2! 2% 2) = exp(—(d"™ (2!, 2% %))%)

> < use training data points to learn a Mahalanobis metric using the technique from (Weinberger and Tesauro, 2007

Receive feature vector & € R® for a test data point

Find the k training data points (say %1,...,1% gMaba .

that are closest to & in terms of the learnt Mahalanobis distance

Foralll =1...k, leta! = (M (z,2": X)) !
o Zle al -y
=1

return Callbrated value g for the test data point

18



480

485

490

495

500

505

bimeodal-distribution—within a season. Next, we look at derived datasets (Sec 3.2) which look at the effect of data volume, data

averaging and data diversity on calibration performance.
510 i i i
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5.1 Effect of Calibration Model on Calibration Performance

We compare the ealibration-algerithms—diseussed-performance of calibration algorithms introduced in Sect. 4and-alse-these
in-the-SuppertingInformation-decument. Given the vast s : s—the sider; 3 : ithi i

tesnumber of algorithms, we execute a sort of
tournament where divide algorithms into small families, decide the winner within a family and then compare the winners
across families. The detailed per-family comparisons are available in the supplementary material and only summarized here.

We use the Wilcoxon paired two sample test (see Sect. 3.2.1) to compare two calibration algorithms on the same dataset.

However, for visual inspection, we also provide violin plots of the absolute errors offered by the algorithms. See-Fig—2?fora

brief-deseription-We refer the reader to the supplementary material for some pointers on how to interpret a-vielin-plot—violin
plots.

5.1.1 Interpreting the Two-sample Tests

We refer the reader to Table 2 for a glossary of algorithm names and abbreviations. As mentioned earlier, we used the paired

Wilcoxon signed ranked test to compare two algorithms on the same dataset. Given that there are 12 datasets and 10 splits for
each dataset, for ease of comprehension, we provide globally averaged statistics of wins scored by an algorithm over another.
For example, say we wish to compare RT and KRR as done in Tab 3. We perform the test for each individual dataset and split.
For each test, we either get a win for RT (in which case RT gets a +1 score and KRR gets 0), or a win for KRR (in which case
KRR gets a +1 score and RT gets 0) or else the null hypothesis is not refuted (in which case both get 0). The average of these
scores is then shown. For example, in Tab 3 (tepleft), row 3 column 2 records a value of 6-46-0.63 implying that in 4663 % of
these tests, KRR won over RT in case of O3 calibration, whereas row 2 column 3 records a value of 0:24-0.22 implying that
in 2422% of the tests, RT won over KRR. In the balance (1 - 6:46-0.63 - 6:24-0.22 = 6:30.15) i.e. 3015% of the tests, neither

algorithm could be declared a winner.
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5.1.2 Inter-family-Intra-family Comparison of Calibration Models

divide the calibration algorithms (see Table 2 for a glossary) into four families: 1) the Alphasense family (eeﬂfatmﬂgfhefeuf

modelsAtto-A4AS1, AS2, AS3, AS4), 2) linear parametric models (LS, LS(MIN) and LASSO), 3) kernel regression models

RRRAANRLO SRR

(KRRand-the Nystroem—method, NYS), and 4) fhe—kNN%&mﬂy—memdmgﬂ}geﬁfhm%&%ﬂ%&mefﬂe}e&mﬁxgw
algorithms (KNN, KNN-D, NW(ML),

winnertKNN(ML), KNN-D(ML)). We included the
Nadaraya-Watson (NW) algorithm in the fourth family since it was used alongwith metric learning, as well as because as
explained in the supplementary material, the NW aleorithm behaves like a “smoothed” version of KNN algorithm. The winners

within these families are described below.

1. Alphasense: All four Alphasense algorithms exhibit extremely poor performance across all metrics on all datasets,
offering extremely high MAE and low R2-R? values. This is corroborated by previous studies (Lewis and Edwards,
2016; Jiao et al., 2016; Simmbhan et al., 2019).

2. Linear Parametric: Among the linear parametric algorithms, LS was found to offer the best performance.

3. Kernel Regression: We-confirmed-theutility-of-the Nystroem-method-as-The Nystroem method NYS was confirmed
to be an accurate but accelerated approximation for KRR kernel-ridge-regression(lKRR)-and-that-the-accelerationis
generally-with the acceleration being higher for larger datasets.

4. £-NN-KNN and Metric Learning Models: Among the k-NN-KNN family of algorithms, the distance weighted k-ININ
KNN algorithm that uses a learnt metric i.e. KNN-D(ML) was found to offer the best accuracies across all datasets and

splits.

5.1.3 Global Comparison of Comparison Models
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Figure 4. The violin plots on the left and right depict the distribution of absolute errors incurred by various models on respectively, the

DD1(Oct) and MM5(Jun) datasets. KNN-D(ML) offers visibly superior performance than several other algorithms such as LS and RT.

21



Table 3. Results of the pairwise Wilcoxon signed rank tests across all model types (see Sect. 5.1.1 for a key). KNN-D(ML) beats every other

algorithm comprehensively and is scarcely ever beaten. (mostly1+00%-of-the-time-with the exception of NW(ML) which it still beats 58% of
the time }-on NOg and is-seareely-ever-beaten—62% on O3) The overall ranking of the algorithms is indicated to be KNN-D(ML) > NW(ML)

> KRR >RT > LS.
NO O3
LS RT KRR NW(ML) KNN-D(ML) LS RT KRR NWML) KNN-D(ML)

LS 0 0 0 0 0 LS 0 0.01 0 0 0

RT 0.97 0 0.38 0.16 0 RT 0.83 0 0.22 0 0

KRR 1 0.4 0 0 0 KRR 1 0.63 0 0.01 0

NW(ML) 1 0.75 1 0 0.07 NW(ML) 1 097 096 0 0.02

KNN-D(ML) 1 1 1 0.58 0 KNN-D(ML) 1 1 0.97 0.62 0

Table 4. A comparison of algorithms across families on the DD1 and MMS5 datasets across seasons with respect to the R? metric. All values
are averaged across 10 splits. Bold values indicate the best performing algorithm in terms of mean statistics.

O3 NO2
DD1 MMS5 DD1 MMS5
Jun Oct Jun Oct Jun Oct Jun Oct
LS 0.843+0.006  0.9694+0.002  0.334+0.035 0.846+0.019 LS 0.341£0.013  0.6234+0.005 0.375+0.049  0.321+£0.026
RT 0.8524+0.005 0.9714+0.003  0.488+0.071  0.393+0.224 RT 0.674£0.015  0.913+0.014  0.487+0.064  0.358+0.087
KRR 0.885+0.005 0.98740.002  0.719+0.037  0.935+0.02 KRR 0.608+0.019  0.9574+0.003  0.728+0.034  0.673+0.059

NW(ML) 0.89540.004  0.988+0.001  0.74 £0.038  0.943+0.026 NW(ML) 0.717£0.017  0.97 +0.003  0.7714+0.026  0.751+£0.039
KNN-D(ML)  0.9231+0.003  0.99 +0.001  0.7441+0.043  0.943+0.025 KNN-D(ML) 0.819£0.015 0.9774+0.002 0.759+0.022  0.751+0.043

We took the best algorithms from all

except Alphasense models that gave extremely poor performance) and regression trees (RT) and performed a head-to-head

comparison for-these-to assess the winner
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that KNN-D(ML) algorithm continues to emerge as the overall winner. Table 4 additionally establishes that KNN-D(ML)
teehmqﬂe—fe%can be upto 8 - 20 percentage points better than classical non-parametric algorithms such as KRR in terms of
oefﬁment The improvement is much more prominent for NO, eakh —i5-€S

mwwmmmmwmwmos calibration.
Fig. 5 presents two cases where the models-offered-by-metrietearning KNN-D(ML) models offer excellent agreement with the
reference monitors across significant spans of time.

itis interesting to note under what conditions do these algorithms incur high error. Non-parametric algorithms such as RT and
KNN-DML) are expected to do well in the presence of good amounts of diverse data. Fig 6 confirms this by classifying
timestamps into various bins according to weather conditions. KNN-D(ML) and RT do offer hi
where there were less training points. Fig 6 also confirms a positive correlation between high concentrations and higher error
although this effect is more pronounced for LS than KNN-D(ML).

h average error mostly in bins

5.2 Effect of Data Preparation on Calibration Performance

We now presentstadiescritically assess the robustness of these calibration models, as well as identify the effect of other factors,
such as temporal averaging of raw data, total amount of data available for training, and diversity in training data. We note that

some of these studies were made possible only because the experimental setup enabled us to have access to sensors that did not

change their deployment sites, as well as those that did change their deployment site due-to-during the swap-out experiment.
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Figure 5. Time series for a duration of 24 hours of the reference values and those predicted by the KNN-D(ML) algorithm for NO2 and

O3 concentration using data from the DD1 and MM5 sensors. The legend of each plot notes the gas for which calibration is being reported

the deployment season, as well as the sensor from which data was used to perform the calibration. Each plot also contains a scatter plot as

an inset showing the correlation between the reference and predicted values of the concentrations. For both deployments and both gases,

KNN-D(ML) can be seen to offer excellent calibration and agreement with the FRM-grade monitor.

Table 5. Results of the pairwise Mann-Whitney U tests on the performance of KNN-D(ML) across temporally averaged versions of the DD1
dataset (see Sect. 5.1.1 for a key). The dataset names have-been-are abbreviatedhere—Forexampte, e.g. DD1(Jun)-AVGS5 is referred to as
simply AVGS. Fheseresults-Results are reported over a single split. Fhe-performance-of KNN-DME)on-AVG5 wins over its-performance
with-any other level of averaging —ttis—efear-and clarifies that mild temporal averaging (e.g. over 5 minute windows) pesitively-impacts
boosts calibration performance—On-the-other-hand, the-performanee-with-extremely-whereas aggressive averaging e.g. on-AVG60-is-almost
abways-inferior than-any ether levelof 60 minute averaging in AVG60. degrades performance.

O3 NO2
DD1(Jun) AVGS5 AVGI5 AVG30 AVG60 DD1(Jun) AVG5 AVGI5 AVG30 AVG60
DD1(Jun) 0 0 0 0 0 DD1(Jun) 0 0 0 1 1
AVGS5 1 0 1 1 1 AVGS 1 0 1 1 1
AVGI15 1 0 0 1 1 AVGI5 0 0 0 1 1
AVG30 1 0 0 0 1 AVG30 0 0 0 0 1
AVG60 0 0 0 0 0 AVG60 0 0 0 0 0

5.2.1 Some Observations on Original Datasets
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Figure 6. Analyzing error distributions of LS, KNN-D(ML, RT.. Fig 6(a) shows the number of training data points in various weather
condition bins. Figs 6(b,c,d) show the MAE for NO- calibration offered by the algorithms in those same bins. Non-parametric algorithms

such as KNN-D(ML) and RT offer poor performance (high MAE) mostly in bins that had less training data. No such pattern is observable

for LS. Figs 6(e,f,g,h) show the diurnal variation of MAE for KNN-D(ML) and LS at various times of day. O3 errors exhibit a diurnal trend
of being higher (more so for LS than KNN-D(ML)) during daylight hours when Os3 levels are high. No such trend is visible for NO».
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Figure 7. Effect of temporal data averaging, and lack of data on the calibration performance of the KNN-D(ML) algorithm on temporally
averaged and sub-sampled versions of the DD1(Jun) and DM2(Jun) datasets. Notice the visible deterioration in the performance of the
algorithm when aggressive temporal averaging, e.g. across 30 minute windows, is performed. NO» calibration performance seems to be

impacted more adversely by lack of enough training data or aggressive averaging than Oz calibration.

The performance of KNN-D(ML) on the original datasets te-gain-seme-indications—on-the-effects—ofthese-itself gives us
indications on how various data preparation methods en—can affect calibration performance. We—will-then—confirm—these

shows us that in most cases, the calibration performance is better (with higher R?) for Oy ealibrationthan N02 . This is another
indication that NO, calibration is more challenging that O3 calibration. Moreover, for both gases and in both seasons, we see
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for Os. This indicates that paucity of data and aggressive-temporal averaging may be affecting calibration performance nega-

tively, and-more-direetly-than-seasonal-variations—The-above-observations-alse-indicate-as well as that O3 calibration might be

more-less sensitive to these factors than NO calibration.
5.3 Effeetof Temporal DataAveraging

5.2.1 Effect of Temporal Data Averagin,

Recall that data from sensors deployed at site M had to be averaged over 15 minute intervals to align them with the reference
monitor timestamps. To see what effect such averaging has on calibration performance, we use the temporally averaged datasets
(see Sect. 3.1). Fig. 7 presents the results of applying the KNN-D(ML) algorithm on data that is not averaged at all (i.e. 1
minute interval timestamps), as well as data that is averaged at 5, 15, 30 and 60 minute intervals. The performance for 30
and 60 minute averaged datasets is visibly inferior that that for the non-averaged dataset as indicated by the violin plots. This
leads us to conclude that excessive averaging can erode the diversity of data and hamper effective calibration. To distinguish
among the other temporally averaged datasets for which visual inspection is not satisfactory, we also performed the unpaired
Mann-Whitney U test, the results for which are shown in Tab 5. The results are striking in that they reveal that moderate
averaging, for example at 5 minute intervals, seems to benefit calibration performance. However, this benefit is quickly lost if

the averaging window is increased much further at which point, performance is-invariably-hurtalmost always suffers.

5.3 Effeetof DataPaueity

5.2.1 Effect of Data Paucit

Since temporal averaging also decreases the amount of data as a side-effect, in order to tease these two effects apart, we also
considered the sub-sampled versions of these datasets (see Sect. 3.1). Fig. 7 also shows that reducing the amount of training data

has an appreciable negative impact on calibration performance. However, NO; calibration performance seems to be impacted
more adversely by lack of enough training data or aggressive averaging than O3 calibration.

5.3 Effeetof Data-Volume-and Diversity

5.2.1 The Swapout Experiment: Effect of Data Diversit

Tab 6 describes an experiment wherein we took the KNN-D(ML) model trained on one dataset and used it to make predictions
on another dataset. To avoid bringing in too many variables such as cross-device calibration (see Sec 3.2), this was done only

in cases where both datasets belonged to the same sensor but for different deployments. Without exception, such transfers led
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Table 6. A demonstration of the impact of data diversity and data volume on calibration performance. All values are averaged across 10

splits. The results for LS diverged on some of the datasets on a few splits and those splits were removed while averaging to give LS an added
advantage. Bold values indicate the better performing algorithm, The first two rows present the performance of the fearnt-KNN-D(ML) and

LS calibration models when tested on data for a different season (deployment) but in the same site. This was done for the DD1 and MM5
sensors that did not participate in the swap-out experiment. The next two rows present the same, but for sensors DM2 and MD6 that did
participate in the swap-out experiment and thus, their performance is being tested not only for a different season, but also a different city.
The next four rows present the dramatic improvement in calibration performance once datasets are aggregated for these four sensors. Alse
notable-ts-the-factthat- N O calibration seems-is worse affected by these variations (average R2-R? in first four rows being -3-68-3.69) than
O3 calibration (average R2-R? in first four rows being -2:92-0.97).

KNN-D(ML) LS
O3 NO; O3 NO;

Train — Test MAE R? MAE R? MAE R?  MAE R?
DD1(Jun) — (Oct) ~ 28:9++721.82  -+63+6:390.19 33440942186  -0:87-+6:08-0.64 1288 073 1273 0.22
MMS5(Oct) — (Jun)  8:9++69833  -4-14-+2:4-3.75 1594291579 -9:6+29-12.28 1039 -483  17.06 -21.67
DM2(Jun) — (Oct) ~ +9:04++3-13.04  -842-++-5041 +744£6:979.05 -6:454+642-0.99 936 068 595 0.1
MD6(Jun) — (Oct) ~ 18:8+0:57-16.71 -0:83-£0:08-0.72 2964085309  -0:77-6:09-0.85 2112 -1.29 2567 -0.23

DD1(Jun-Oct) 33004433 H:935 - 0.006.0,956 271 0.06.2.6 0:958-+-6:003-0.924 117 029 130 038

MM5(Jun-Oct) 1804325 O H-0:050902 25104918 0:902-+-6-040.814 428 032 551 067

DM2(Jun-Oct) 3704337 H.909 - 0.009-0.916  3.010.022.8 0:7624+6.008-0.800  6.13 079 672 026

MD6(Jun-Oct) F8000719 0075100020989 1900218 0:9804+6.00060.975 701 071 636 091

to peer-a drop in performance. We confirmed that this was true not just for ealibration-medelstearnt-using-non-parametric
methods such as KNN-D(ML) but also parametric models like LSerEASSO-or RT-

individually-span-wide-, This is to be expected since the sites D and M experience largely non-overlapping ranges of RH and

in-ealibrationacross the two deployments. We refer the reader to the supplementary material for a plot of RH and T values
experienced at both sites in both deployments. Thus, it is not surprising that the models performed poorly when faced with
unseen RH and T ranges.

To verify that this is indeed the case, we ran the KNN-D(ML) algorithm on the aggregated datasets (see Sect. 3.1) which
combine training sets from the two deployments of these sensors. Tab 6 confirms that once trained on these more diverse

datasets, the algorithms resume offering exeellent-good calibration performance on the entire (broadened) range of RH and

T values. However, KNN-D(ML) is superior at exploiting the additional diversity in data than LS. We note that parametric
models are expected to generalize better on unseen conditions than non-parametric models and indeed we observe this in some
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cases in Tab 6 where on DD1 and DM?2 datasets, LS generalized better than KNN-D(ML). However, we also observe some
cases such as MM5 and MD6 where KNN-D(ML) generalizes comparable to or better than LS.

6 Conclusions and Future Work

In this study we presented results of a—diversefield-deployment-oftow-cost-AQ-menitoringfield deployments across two

seasons of LCAQ sensors across two sites having V&%ﬂy—drffefeﬁ{—dlverse geographical, meteorological, and air pollution

parameters . A unique feature of our

deployment was the swap-out experiment wherein four-of-the-seven-three of the six sensors were transported across sites in the
two deployments. To perform highly accurate calibration of these sensors, we experimented with a wide variety of algerithms

ba%eérefr%&ﬂdafd—%&“r&%&c—a}e%ﬁma&eﬂ%eehmque% standard algorithms but found a novel method based on metric learmng to

offer the strongest resultsfa

. A few key takeaways from our statistical analyses are:

1. Incorporating ambient RH and Ti

performanee—The-incluston-of the-augmented , as well as the emphaugmented features oxdiff and noxdiff we-deseribe-in
see Sect. 3 i i , into the calibration model improves calibration performance.
(see

2. Eeeal-Non-parametric methods such as A-NN-KNN offer the best performance on these calibration tasks. However,

they stand to gain significantly through the use of metric learning techniques, which automatically learn the relative
importance of each feature, as well as hyper-local variations such as distance-weighted #-NINKNN. These indicate that
these calibration tasks operate in high variability conditions where local methods offer the best chance at capturing subtle

trends.

3. Performing smoothing over raw time series data obtained from the sensors may help improve calibration performance

but only if this-smeeothingisnen-aggressive-e-g—done over short windows. Very aggressive smoothing done over long

windows is detrimental to ealibration-performance.

4. Calibration models are data-hungry as well as diversity hungry. This is especially true of local methods like #-ININ

KNN variants. Offering these techniques limited amounts of data or even data that is limited in diversity of RH, T or

concentration levels, may result in calibration models that generalize very poorly.

an-Although all calibration models
see a decline in performance when tested in unseen operating conditions, calibration models for O3 seem to be less

sensitive than those for NO; calibration.

Our results offer encouraging options for using }GW-%SPA&LQVVQ sensors to complement CAAQMS in creatmg dense

and portable monitoring networkswhi



atmospheric-chemistry-studies—Among-avenues-. Avenues for future work ;-an-espeetally-interesting-eneis-include the study of

long-term stability of electrochemical sensors and characterizing drift or deterioration patterns in these sensors and correcting
for the same—Anetherinteresting-challengeis—altra-, and rapid calibration of these sensors that requires minimal collocation

with a reference monitor.
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