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Abstract. Low-cost sensors offer an attractive solution to the challenge of establishing affordable and dense spatio-temporal
air quality monitoring networks with greater mobility and lower maintenance costs. These low-cost sensors offer reasonably
consistent measurements, but require in-field calibration to improve agreement with regulatory instruments. In this paper, we
report the results of a deployment and calibration study on a network of six air quality monitoring devices built using the
Alphasense O3 (OX-B431) and NO2 (NO2-B43F) electrochemical gas sensors. The sensors were deployed in two phases over
a period of three months at sites situated within two mega-cities with diverse geographical, meteorological and air quality
parameters. A unique feature of our deployment is a swap-out experiment wherein three of these sensors were relocated to
different sites in the two phases. This gives us a unique opportunity to study the effect of seasonal, as well as geographical
variations on calibration performance. We report an extensive study of more than a dozen parametric and non-parametric
calibration algorithms. We propose a novel local non-parametric calibration algorithm based on metric-learning that offers,
across deployment sites and phases, an R? coefficient of upto 0.923 with respect to reference values for O3 calibration and
0.819 for NO, calibration. This represents an 4 - 20 percentage point increase in terms of R? values offered by classical
non-parametric methods. We also offer a critical analysis of the effect of various data preparation and model design choices
on calibration performance. The key recommendations emerging out of this study include 1) incorporating ambient relative
humidity and temperature into calibration models, 2) assessing the relative importance of various features with respect to the
calibration task at hand, by using an appropriate feature weighing or metric learning technique, 3) using local calibration
techniques such as KNN, 4) performing temporal smoothing over raw time series data, but being careful to not do so too
aggressively, and 5) making all efforts at ensuring that data with enough diversity is demonstrated to the calibration algorithm
while training to ensure good generalization. These results offer insights into the strengths and limitations of these sensors, and

offer an encouraging opportunity at using them to supplement and densify compliance regulatory monitoring networks.
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1 Introduction

Elevated levels of air pollutants have a detrimental impact on human health as well as the economy (Chowdhury et al., 2018;
Landrigan et al., 2018). For instance, high levels of ground-level O3 has been linked to difficulty in breathing, increased fre-
quency of asthma attacks, and chronic obstructive pulmonary disease (COPD). The World Health Organization reported (WHO,
2018) that in 2016, 4.2 million premature deaths worldwide could be attributed to outdoor air pollution, 91% of which occurred
in low- and middle-income countries where air pollution levels often did not meet its guidelines. There is a need for accurately
real-time monitoring of air pollution levels with dense spatio-temporal coverage.

Existing regulatory techniques for assessing urban air quality (AQ) rely on a small network of Continuous Ambient Air
Quality Monitoring Stations (CAAQMS) that are instrumented with accurate air quality monitoring gas analyzers and Beta-
Attenuation Monitors and provide highly accurate measurements (Snyder et al., 2013; Malings et al., 2019). However, these
networks are established at a commensurately high setup cost and are cumbersome to maintain (Sahu et al., 2020), making
dense CAAQMS networks impractical. However, the AQ data offered by these sparse networks, however accurate, limits the
ability to formulate effective AQ strategies (Garaga et al., 2018; Fung, 2019).

In recent years, the availability of low-cost AQ (LCAQ) monitoring devices has provided exciting opportunities for finer
spatial resolution data (Rai et al., 2017; Baron and Saffell, 2017; Kumar et al., 2015; Schneider et al., 2017; Zheng et al.,
2019). The cost of a Federal Reference Method (FRM)-grade CAAQMS system is around USD 200,000, while that of an
LCAQ device running commodity sensors is under USD 500 (Jiao et al., 2016; Simmhan et al., 2019). In this manuscript,
we use the term “commodity” to refer to sensors or devices that are not custom built and instead sourced from commercially
available options. The increasing prevalance of the Internet of Things (IoT) infrastructure allows building large-scale networks
of LCAQ devices (Baron and Saffell, 2017; Castell et al., 2017; Arroyo et al., 2019).

Dense LCAQ networks can complement CAAQMS to help regulatory bodies identify sources of pollution and formulate
effective policies, allow scientists to model interactions between climate change and pollution (Hagan et al., 2019), allow citi-
zens to make informed decisions, e.g. on their commute (Apte et al., 2017; Rai et al., 2017), and encourage active participation

in citizen science initiatives (Gabrys et al., 2016; Commodore et al., 2017; Gillooly et al., 2019; Popoola et al., 2018).
1.1 Challenges in low-cost sensor calibration

Measuring ground-level O3 and NOs is challenging as they occur at parts per billion levels and intermix with other pol-
lutants (Spinelle et al., 2017). LCAQ sensors are not designed to meet rigid performance standards and may generate less
accurate data as compared to regulatory-grade CAAQMS (Mueller et al., 2017; Snyder et al., 2013; Miskell et al., 2018). Most
LCAQ gas sensors are based either on metal oxide (MOX) or electrochemical (EC) technologies (Pang et al., 2017; Hagan et al.,
2019). These present challenges in terms of sensitivity towards environmental conditions and cross-sensitivity (Zimmerman
et al., 2018; Lewis and Edwards, 2016). For example, O3 electrochemical sensors undergo redox reactions in the presence
of NOs. The sensors also exhibit loss of consistency or drift over time. For instance, in EC sensors, reagents are spent over

time and have a typical lifespan of one to two years (Masson et al., 2015; Jiao et al., 2016). Thus, there is need for reliable
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calibration of LCAQ sensors to satisfy performance demands of end-use applications (De Vito et al., 2018; Akasiadis et al.,
2019; Williams, 2019).

1.2 Related Works

Recent works have shown that LCAQ sensor calibration can be achieved by co-locating the sensors with regulatory-grade
reference monitors and using various calibration models (De Vito et al., 2018; Hagan et al., 2019; Morawska et al., 2018).
Zheng et al. (2019) considered the problem of dynamic PMs 5 sensor calibration within a sensor network. For the case of
SO sensor calibration, Hagan et al. (2019) observed that parametric models such as linear least squares regression (LS) could
extrapolate to wider concentration ranges, at which non-parametric regression model may struggle. However, LS does not
correct for dependence on temperature or relative humidity (RH), at which non-parametric models may be more effective.
Since electrochemical sensors are configured to have diffusion-limited responses, and the diffusion coefficients could get
affected by ambient temperature, Sharma et al. (2019); Hitchman et al. (1997); Masson et al. (2015) found that at RH exceeding
75% there is substantial error, possibly due to condensation on the potentiostat electronics. Simmhan et al. (2019) used non-
parametric approaches such as regression trees along with data aggregated from multiple co-located sensors to demonstrate the
effect of training dataset on calibration performance. Esposito et al. (2016) made use of neural networks and demonstrated good
calibration performance (with mean absolute error < 2 ppb) for the calibration of NO4 sensors. However, a similar performance
was not observed for O3 calibration. Notably, existing works mostly use a localized deployment of a small number of sensor,

e.g. Cross et al. (2017) who tested two devices, each containing one sensor per pollutant.
1.3 Our Contributions and the SATVAM initiative

The SATVAM initiative (Streaming Analytics over Temporal Variables from Air quality Monitoring) has been developing
low-cost air quality (LCAQ) sensor networks based on highly portable [oT software platforms. These LCAQ devices include
(see Fig. 2) PM, 5 as well as gas sensors. Details on the IoT software platform and SATVAM node cyber infra-structure are
available in (Simmhan et al., 2019). The focus of this paper is to build accurate and robust calibration models for the NO5 and

O3 gas sensors present in SATVAM devices. Our contributions are summarized below:

1. We report the results of a deployment and calibration study involving six sensors deployed at two sites over two phases

with vastly different meteorological, geographical and air quality parameters.

2. A unique feature of our deployment is a swap-out experiment wherein three of these sensors were relocated to different
sites in the two phases (see Sect. 2 for deployment details). This allows us to investigate the efficacy of calibration
models when applied to weather and air quality conditions vastly different from those present during calibration. Such

an investigation is missing from previous works which mostly consider only localized calibration.

3. We present an extensive study of parametric and non-parametric calibration models, and develop a novel local calibration

algorithm based on metric learning that offers stable (across gases, sites and seasons) and accurate calibration.
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Figure 1. A map showing the locations of the deployment sites. Fig. 1(b) and (c) on the right show a local-scale map of the vicinity of the
deployment sites — namely Site D at MRIU, Delhi NCR (Fig. 1(b)) and Site M at MPCB, Mumbai (Fig. 1(c)), with the sites themselves
pointed out using bright green dots. Fig. 1(a) shows the location of the sites on a map of India. Credit for Map Sources: Fig. 1(a) is taken
from the NASA Earth Observatory with the outlines of the Indian states in red taken from QGIS3.4 Madeira. Fig. 1(b) and (c) were obtained

from, and are, © Google Maps. The green markers for the sites in all figures were added separately.

4. We present an analysis of the effect of data preparation techniques such as volume of data, temporal averaging and data

diversity, on calibration performance. This yields several take-home messages that can boost calibration performance.

2 Deployment Setup

Our deployment employed a network of LCAQ sensors as well as reference grade monitors for measuring both NO4 and O3

concentrations, deployed at two sites across two phases.
2.1 Deployment Sites

SATVAM LCAQ sensor deployment and collocation with reference monitors was carried out at two sites. Fig. 1 presents the

geographical locations of these two sites.

1. Site D: located within the Delhi National Capital Region (NCR) of India at the Manav Rachna International Institute of
Research and Studies, Sector 43, Faridabad (28.45°N, 77.28°E, 209 m above mean sea level).

2. Site M (in Mumbeai): located within the city of Mumbai at the Maharashtra Pollution Control Board within the university
campus of IIT Bombay (19.13°N, 72.91°E, and 50 m above mean sea level).

We refer the reader to the supplementary material for additional details about the two deployment sites. Due to increasing
economic and industrial activities, a progressive worsening of ambient air pollution is witnessed at both sites. We considered

these two sites to cover a broader range of pollutant concentrations and weather patterns, so as to be able to test the reliability of
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Figure 2. Primary components of the SATVAM LCAQ (low-cost air-quality) sensor used in our experiments. The SATVAM device consists
of a Plantower PMS7003 PMs 5 sensor, Alphasense OX-B431 and NO2-B43F electrochemical sensors, and a DHT22 RH and temperature

sensor. Additional components (not shown here) include instrumentation to enable data collection and transmission.

LCAQ networks. It is notable that the two chosen sites present different geographical settings as well as different air pollution
levels with site D of particular interest in presenting significantly higher minimum Og levels than site M, illustrating the

influence of the geographical variability over the selected region.
2.2 Instrumentation

LCAQ Sensor Design: Each SATVAM LCAQ device contains two commodity electrochemical gas sensors (Alphasense OX-
B421 and NO2-B42F) for measuring O3 (ppb) and NO> (ppb) levels, a PM sensor (Plantower PMS7003) for measuring PM; 5
(ug m~3) levels, and a DHT?22 sensor for measuring ambient temperature in °C and RH in percentage points. Fig. 2 shows
the placement of these components. A notable feature of this device is its focus on frugality with use of the very low-power
ContikiOS platform and 6LoWPAN for providing wireless sensor network connectivity.

Detailed information on assembling these different components and the interfacing with an IoT network is described
in (Simmhan et al., 2019). These sensors form a highly portable IoT software platform to transmit 6LoWPAN packets at 5
minute intervals containing five time-series data points from individual sensors, namely NOs, O3, PMs 5 (not presented in this
study), temperature and RH. Given the large larger number of devices spread across two cities and seasons in this study, a single
border-router edge device was configured at both sites using a Raspberry Pi that acquired data, integrated it, and connected to
a cloud facility using a WiFi-link to the respective campus broadband networks. A Microsoft Azure Standard D4s v3 VM was
used to host the cloud service with 4 cores, 16 GB RAM and 100 GB SSD storage running an Ubuntu 16.04.1 LTS OS. The Pi
edge device was designed to ensure that data acquisition continues even in the event of cloud VM failure.

Reference Monitors: At both the deployment sites, O3 and NO, were measured simultaneously with data available at 1
minute intervals for site D deployments (both Jun and Oct) and 15 minute intervals for site M deployments. O3 and NO4 values
were measured at site D using an ultraviolet photometric O3 analyzer (Model 49i O3 analyzer, Thermo Scientific™, USA) and
a chemiluminescence oxide of nitrogen (NOXx) analyzer (Model 421 NOx analyzer, Thermo Scientific™, USA), respectively.
Regular maintenance and multi-point calibration, zero checks, and zero settings of the instruments were carried out following
the method described by (Gaur et al., 2014). The lowest detectable limits of reference monitors in measuring O3 and NO5 are

0.5 ppb and 0.40 ppb, respectively, and with a precision of £0.25 ppb and 4-0.2 ppb, respectively. Similarly, the deployments at
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Figure 3. A schematic showing the deployment of the six LCAQ sensors across site D and site M during the two deployments. The sensors
subjected to the swap-out experiment are presented in bold. The outlines of the Indian states in red was taken from QGIS3.4 Madeira with

other highlights (e.g. for oceans) and markers being added separately.

site M had Teledyne T200 and T400 reference-grade monitors installed. These also have a UV photometric analyzer to measure
O3 levels and use chemiluminescence to measure NO5 concentrations with lowest detectable limits for O3 and NOg of 0.4 ppb
and 0.2 ppb respectively and a precision of +0.2 ppb and £0.1 ppb respectively. For every deployment, the reference monitors
and the AQ sensors were time-synchronized, with the 1 minute interval data averaged across 15 minute intervals for all site M

deployments since the site M reference monitors gave data at 15 minute intervals.
2.3 Deployment Details

A total of four field co-location deployments, two each at sites D and M, were evaluated to characterize the calibration of the
low-cost sensors during two seasons of 2019. The two field deployments at site D were carried out from 27th Jun—6th Aug
2019 (7 weeks) and 4th Oct-27th Oct 2019 (3 weeks). The two field deployments at site M, on the other hand, were carried
out from 22nd Jun—21st Aug 2019 (10 weeks), and 4th Oct—27th Oct 2019 (3 weeks) respectively. For sake of convenience, we
will refer to both deployments that commenced in the month of June 2019 (resp. October 2019) as Jun (resp. Oct) deployments
even though the dates of both Jun deployments do not exactly coincide.

A total of six low-cost SATVAM LCAQ sensors were deployed at these two sites. We assign these sensors a unique numerical
identifier and a name that describes its deployment pattern. The name of a sensor is of the form XYn where X (resp Y) indicates
the site at which the sensor was deployed during the Jun (resp Oct) deployment and n denotes its unique numerical identifier.

Fig. 3 outlines the deployment patterns for the six sensors DD1, DM2, DD3, MMS5, MD6, and MD7.
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Table 1. Samples of the raw data collected from the DM2(Jun) and MM5(Oct) datasets. The last column indicates whether data from that
time-stamp was used in the analysis or not. Note that DM2(Jun) data, coming from site D, has samples at 1 minute intervals whereas
MM5(Oct) data, coming from site M, has samples at 15 minute intervals. The raw voltage values (no2op1, no2op2, oxopl, oxop2) offered
by the LCAQ sensor are always integer valued, as indicated in the DM2(Jun) data. However, for site M deployments, due to averaging, the
effective voltage values used in the dataset may be fractional, as indicated in the MM5(Oct) data. The symbol x indicates missing values. A

bold font indicates invalid values.

DM2(Jun)
Time-stamp 03 NO2 T RH no2opl no2op2 oxopl oxop2 | no2diff oxdiff | Valid?
29-06 04:21 19.82 2049 327 546 212 231 242 209 -19 33 Yes
30-06 08:02 | 46.363 -0.359 36.8 39.6 184 221 234 201 -37 33 No
01-07 04:02 | 24.38 1473 325 69.7 X X X X X X No
08-07 07:51 | -0.035 17.147 315 97.8 209 238 231 216 -29 15 No
MM5(Oct)
Time-stamp | O3 NO2 T RH no2opl no2op2 oxopl oxop2 | no2diff oxdiff | Valid?
19-10 05:45 X X X X 160.46 18831 15831 17238 | -27.85 -14.07 No
19-1007:15 | 555 11.52 41.47 999 170.4 197.2 167.6  181.93 -26.8  -14.33 Yes
20-10 10:45 X X 28.52 999 121.8 154.0 119.3 135.3 -32.2 -16.0 No
22-1018:30 | 8.33 1091 27.87 99.9 143.2 172.3 146.2  155.47 -29.1 -9.27 Yes

Swap-out Experiment. As Fig. 3 indicates, three sensors were swapped with the other site across the two deployments.
Specifically, for the Oct deployment, DM2 was shifted from site D to M and MD6 and MD7 were shifted from site M to D.

Sensor Malfunction. Our experiment actually involved a total of seven sensors being deployed. The seventh sensor, named
DM4, was supposed to be swapped from site D to site M. However, the onboard RH and temperature sensors for this sensor
were non-functional for the entire duration of the Jun deployment and frequently so for the Oct deployment as well. For this
reason, this sensor was excluded from our study altogether. To avoid confusion, in the rest of the manuscript (e.g. the abstract,

Fig. 3, etc) we report only six sensors of which three were a part of the swapout experiment.

3 Data Analysis Setup

All experiments were conducted on a commodity laptop with an Intel Core i7 CPU with 2.70GHz frequency, 8GB of system
memory and running an Ubuntu 18.04.4 LTS operating system. Standard off-the-shelf machine learning and statistical analysis
packages such as numpy, sklearn, scipy and metric—learn were used to implement the calibration algorithms.

Raw Datasets and Features. The six sensors across the Jun and Oct deployments, gave us a total of 12 datasets. We refer
to each dataset by mentioning the sensor name and the deployment. For example, the dataset DM2(Oct) contains data from
the October deployment at site M of the sensor DM2. Each dataset is represented as a collection of eight time series for which

each time stamp is represented as an 8-tuple (O3, NO2, RH, T, no2opl, no2op2, oxopl, oxop2) giving us, respectively, the
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reference values for O3 and NOs (in ppb), relative humidity (in %) and temperature (in °C) values, and voltage readings (in
mYV) from the two electrodes present in each of the two gas sensors. These readings represent working (no2opl and oxopl)
and auxiliary (no2op2 and oxop2) electrode potentials for these sensors. We note that RH and T values in all our experiments
were obtained from DHT22 sensors in the LCAQ sensors and not from the reference monitors. This was done to ensure that
the calibration models, once trained, could perform predictions using data available from the LCAQ sensor alone and not rely
on data from a reference monitor. For site D, both the LCAQ sensor as well as the reference monitor data was available at 1
minute intervals. However for site M, since reference monitor data was only available at 15 minute intervals, CAQ sensor data
was averaged over 15 minute intervals.

Data Cleanup. Time-stamps from the LCAQ sensors were aligned to those from the reference monitors. For several time-
stamps, we found that either the sensor or reference monitors presented with one or more missing or spurious values (see
Table 1 for examples). Spurious values included the following cases: a) a reference value for O3 or NO2 of > 200 ppb or < 0
ppb (the reference monitors sometimes offered negative readings when powering up and under anomalous operating conditions
e.g. condensation at the inlet), b) a sensor temperature reading of > 50 °C or < 1 °C, c) an sensor RH level of > 100 % or <
1 %, and d) a sensor voltage reading (either of no2opl, no2op2, oxopl, oxop2) of > 400 mV or < 1 mV. These errors are
possibly due to electronic noise in the devices. All time-stamps with even one spurious or missing value were considered
invalid and removed. Across all 12 datasets, an average of 52% of the time-stamps were removed as a result. However, since
site D (resp. site M) offered timestamps at 1 minute (resp. 15 minute) intervals i.e. 60 (resp 4) timestamps every hour, at
least one timestamp (frequently several) were found still valid every hour in most cases. Thus, the valid timestamps could still
accurately track diurnal changes in AQ parameters. The datasets from Jun (resp. Oct) deployments at site D offered an average
of 33753 (resp. 9548) valid time-stamps. The datasets from Jun (resp. Oct) deployments in site M offered an average of 2462
(resp. 1062) valid time-stamps. As expected, site D that had data at 1 minute intervals offered more time-stamps than site M
that had data at 15 minute intervals. For both sites, more data is available for the Jun deployment (that lasted longer) than the

Oct deployment.
3.1 Data Augmentation and Derived Dataset Creation

For each of the 12 datasets, apart from the six data features provided by the LCAQ sensors, we included two augmented

features, calculated as shown below

no2diff = no2opl — no2op2
oxdiff = oxopl — oxop2

We found that having these augmented features, albeit simple linear combinations of raw features, offered our calibration
models a predictive advantage. The augmented datasets created this way represented each time-stamp as a vector of 8 feature

values (RH, T, no2op1, no20p2, oxopl, oxop2, no2diff, oxdiff), apart from the reference values of O3 and NOs.
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3.1.1 Train-Test Splits

Each of the 12 datasets was split in a 70:30 ratio to obtain a train-test split. 10 such splits were independently generated for
each dataset. All calibration algorithms were offered the same train-test splits. For algorithms that required hyperparameter
tuning, a randomly chosen set of 30% of the training data points in that split were used as a held out validation set. All
features were normalized to improve the conditioning of the calibration problems. This was done by calculating the mean and
standard deviation for each of the 8 features on the training portion of a split, and then mean centering and dividing by the
standard deviation all time-stamps in both training and testing portion of that split. An exception was made for the Alphasense

calibration models, which required raw voltage values. However, reference values were never normalized in any way.
3.2 Derived Datasets

In order to study the effect of data frequency (how frequently do we record data e.g. 1 minute, 15 minute), data volume
(total number of time-stamps used for training), and data diversity (data collected across seasons or sites) on the calibration

performance, we created several derived datasets as well. All these datasets contained the augmented features.

1. Temporally Averaged Datasets: We took the two datasets DD1(Jun) and DM2(Jun) and created four datasets out of
each of them by averaging the sensor and reference monitor values at 5 minute, 15 minute, 30 minute and 60 minute
intervals. These datasets were named by affixing the averaging interval size to the dataset name, for example DD1(Jun)-
AVGS for the dataset created out of DD1(Jun) with 5 minute averaging, DM2(Jun)-AVG30 for the dataset created out of
DM2(Jun) with 30 minute averaging, etc.

2. Sub-sampled Datasets: To view the effect of having less training data on calibration performance, we created sub-
sampled versions of both these datasets by sampling a random set of 2500 time-stamps from the training portion of the
DD1(Jun) and DM2(Jun) datasets to get the datasets DD1(Jun)-SMALL and DM2(Jun)-SMALL.

3. Aggregated Datasets: Next, we created new datasets by clubbing together data for a sensor across the two deployments.
This was done to the data from the sensors DD1, MMS5, DM2 and MD6. For example, if we consider the sensor DD1,
then the datasets DD1(Jun) and DD1(Oct) were combined to create the dataset DD1(Jun-Oct).

Investigating Impact of Diversity in Data. The aggregated datasets are meant to help us study how calibration algorithms
perform under seasonally and spatially diverse data. For example, the aggregated datasets DD 1(Jun-Oct) and MM5(Jun-Oct)
include data that is seasonally diverse but not spatially diverse (since these two sensors were located at the same site for both
deployments). On the other hand, the aggregated datasets DM2(Jun-Oct) and MD6(Jun-Oct) include data that is diverse both
seasonally as well as spatially (since these two sensors were a part of the swapout experiment). At this point, it is tempting
to ask whether aggregated datasets that are diverse spatially but not seasonally diverse can be created as well. Although the
prospect of investigating the effect of spatial diversity alone (without bringing seasonal diversity into account) is interesting,

this would require aggregating data from two distinct sensors since no sensor was located at both sites during a deployment.
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This presents an issue since the various onboard sensors in these LCAQ devices, e.g. RH and temperature sensors, do not
present good agreement across devices. Thus, some form of cross-device calibration would have been required which is an

interesting but challenging task in itself. This is an encouraging direction for future work but not considered in this study.
3.2.1 Performance Evaluation

The performance of calibration algorithms was assessed using standard error metrics and statistical hypothesis testing.

Error Metrics: calibration performance was measured using four popular metrics: mean averaged error (MAE), mean
absolute percentage error (MAPE), root mean squared error (RMSE), and the coefficient of determination (R?) (please see the
supplementary material for detailed expressions of these metrics).

Statistical Hypothesis Tests: in order to compare the performance of different calibration algorithms on a given dataset (to
find out the best performing algorithm), or compare the performance of the same algorithm on different datasets (to find out
the effect of data characteristics on calibration performance), we performed paired and unpaired two-sample tests, respectively.
Our null hypothesis in all such tests proposed that the absolute errors offered in the two cases considered are distributed
identically. The test was applied and if the null hypothesis was rejected with sufficient confidence (an « value of 0.05 was
used as the standard to reject the null hypotheses), then a winner was simultaneously identified. Although the Student’s t-test
is more popular, it assumes that the underlying distributions are normal. However, an application of the Shapiro-Wilk test
(Shapiro and Wilk, 1965) to our absolute error values rejected the normal hypothesis with high confidence. Thus, we chose
the non-parametric Wilcoxon signed-rank test (Wilcoxon, 1945) when comparing two algorithms on the same dataset, and its
unpaired variant, the Mann-Whitney U-test (Mann and Whitney, 1947) for comparing the same algorithm on two different

datasets. These tests do not make any assumption on the underlying distribution of the errors and are well-suited for our data.

4 Baseline and Proposed Calibration Models

Our study considered a large number of parametric and non-parametric calibration techniques as baseline algorithms. Table 2
provides a glossary of all the algorithms including their acronyms and brief descriptions. Detailed descriptions of all these
algorithms is provided in the supplementary material. Among parametric algorithms, we considered the Alphasense models
(AS1-AS4) supplied by the manufacturers of the gas sensors, linear models based on least-squares (LS and LS(MIN)) and
sparse recovery (LASSO). Among non-parametric algorithms, we considered regression trees (RT), kernel-ridge regression
(KRR), the Nystroem method for accelerating KRR, the Nadaraya Watson estimator (NW), and various local algorithms based
on the k-nearest neighbors principle (KNN, KNN-D). In this section we give a self-contained description of our proposed
algorithms KNN(ML) and KNN-D(ML).

Notation: For every time-stamp ¢, the vector ' € R® denotes the 8-dimensional vector of signals recorded by the LCAQ
sensors for that time-stamp, namely (RH, T, no2op1, no20p2, oxopl, oxop2, no2diff, oxdiff), while the vector yt ¢ R? will de-
note the 2-tuple of the reference values of O3 and NOs for that time step. However, this notation is unnecessarily cumbersome

since we will build separate calibration models for O3 and NOs. Thus, to simplify the notation, we will instead use y* € R to

10
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Table 2. Glossary of baseline and proposed calibration algorithms used in our study with their acronyms and brief descriptions. The

KNN(ML) and KNN-D(ML) algorithms are proposed in this paper. Please see the supplementary material for details.

Parametric Algorithms Non-parametric Algorithms Non-parametric KNN-style Algorithms
AS1, AS2  Alphasense models (from RT Regression Tree KNN k-nearest Neighors
AS3, AS4 gas sensor manufacturer) KRR Kenel Ridge Regression KNN-D Distance weighted KNN
LS Least Squares Regression NYS Nystroem Method KNN(ML)* KNN (learnt metric)

LS(MIN) LS with reduced features NW(ML) Nadaraya Watson (learnt metricy ~KNN-D(ML)*  KNN-D (learnt metric)

LASSO Sparse Regression *proposed in this paper

denote the reference value of the gas being considered (either O3 or NO3). The goal of calibration will then be to learn a real
valued function f : R® — R such that f(x) ~ y' for all time-stamps # (the exact error being measured using metrics such as
MAE, MAPE, etc described in Sect. 3.2.1). Thus, we will learn two functions, say fxo, and fo, to calibrate for NOy and O3
concentrations respectively. Since several of our calibration algorithms will involve the use of some statistical estimation or
machine learning algorithm, we will let IV (resp. n) denote the number of training (resp. testing) points for a given dataset and

split thereof. Thus, we will let {(z?, ")}, denote the training set for that dataset and split with ' € R® and y* € R.
4.1 Proposed Method: Distance-weighed KNN with a Learnt Metric

Our proposed algorithm is a local, non-parametric algorithm that uses a learnt metric. Below we describe the design of this
method and reasons behind these design choices.

Non-parametric estimators for Calibration. The simplest example of a non-parametric estimator is the KNN (k nearest
neighbors) algorithm that predicts on a test point, the average reference value in the %k nearest training points. Other examples
(please see the supplementary material for details) include kernel ridge regression (KRR) and the Nadaraya-Watson (NW)
estimator. Non-parametric estimators are well-studied and known to be asymptotically universal which guarantees their ability
to accurately model complex patterns which motivated their choice. These models can also be brittle Hagan et al. (2019)
when used in unseen operating conditions but Sec. 5.2 shows that our proposed algorithm performs comparably to parametric
algorithms when generalizing to unseen conditions, but offers far more improvements when given additional data.

Metric Learning for KNN Calibration. As mentioned above, the KNN algorithm uses the closest neighbors to compute
its output. To do this, it needs a notion of distance, specifically a metric, to compute closeness. The default and most common
choice for a metric is the Euclidean distance which gives equal importance to all 8§ dimensions when calculating distances
between two points say !, z2 € R8. However, our experiments in Sect. 5 will show that certain features, e.g. RH and T, seem
to have a significant influence on calibration performance. Thus, it is unclear how much emphasis should RH and T receive,
as compared to other features such as voltage values e.g. oxopl while calculating distances between two points. The technique
of metric learning (Weinberger and Saul, 2009) offers a solution in this respect by learning a customized Mahalanobis metric

metric that can be used instead of the generic Euclidean metric. A Mahalanobis metric is characterized by a positive semi-
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Algorithm 1 The proposed KNN-D(ML) algorithm for distance weighted KNN calibration with a learnt metric.

Require: training data points {(«*,7")}1,, neighborhood size k

Ensure: a prediction from the KNN-D(ML) model
3} < use training data points to learn a Mahalanobis metric using the technique from (Weinberger and Tesauro, 2007)
Receive feature vector & € R® for a test data point
Find the k training data points (say 1,...,4s) that are closest to & in terms of the learnt Mahalanobis distance d™*"(,-; )
Foralll =1...k, let o' = (d™™(&,2%;%))™"
J= Zfﬂ al -yt

&
Dot

return Calibrated value g for the test data point

definite matrix X € R3*8 and calculates the distance between any two points as follows

dMaha(w17w2;2) — \/(wl _ wQ)TE(wl _ ZBQ)

Note that the Mahalanobis metric recovers the Euclidean metric when 3 = Iy is the identity matrix. Now, whereas metric
learning for KNN is popular for classification problems, it is uncommon for calibration and regression problems. This is due
to regression problems lacking of a small number of “classes”. To overcome this problem, we note that other non-parametric
calibration algorithms such as NW and KRR also utilize a metric indirectly (please see the supplementary material) and there
does exist a technique to learn a Mahalanobis metric to be used alongwith the NW algorithm (Weinberger and Tesauro, 2007).
This allows us to adopt a two-stage algorithm that first learns a Mahalanobis metric suited for the NW algorithm and then uses

it to perform KNN-style calibration. Algorithm 1 describes the resulting KNN-D(ML) algorithm.

5 Results and Discussion

The goals of using low-cost AQ monitoring sensors vary widely. This section critically assesses a wide variety of calibration
models. First we look at the performance of the algorithms on individual datasets i.e. when looking at data within a site and
within a season. Next, we look at derived datasets (Sec 3.2) which look at the effect of data volume, data averaging and data

diversity on calibration performance.
5.1 Effect of Calibration Model on Calibration Performance

We compare the performance of calibration algorithms introduced in Sect. 4. Given the vast number of algorithms, we execute a
sort of tournament where divide algorithms into small families, decide the winner within a family and then compare the winners
across families. The detailed per-family comparisons are available in the supplementary material and only summarized here.
We use the Wilcoxon paired two sample test (see Sect. 3.2.1) to compare two calibration algorithms on the same dataset.
However, for visual inspection, we also provide violin plots of the absolute errors offered by the algorithms. We refer the

reader to the supplementary material for some pointers on how to interpret violin plots.
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5.1.1 Interpreting the Two-sample Tests

We refer the reader to Table 2 for a glossary of algorithm names and abbreviations. As mentioned earlier, we used the paired
Wilcoxon signed ranked test to compare two algorithms on the same dataset. Given that there are 12 datasets and 10 splits for
each dataset, for ease of comprehension, we provide globally averaged statistics of wins scored by an algorithm over another.
For example, say we wish to compare RT and KRR as done in Tab 3. We perform the test for each individual dataset and split.
For each test, we either get a win for RT (in which case RT gets a +1 score and KRR gets 0), or a win for KRR (in which case
KRR gets a +1 score and RT gets 0) or else the null hypothesis is not refuted (in which case both get 0). The average of these
scores is then shown. For example, in Tab 3 (left), row 3 column 2 records a value of 0.63 implying that in 63% of these tests,
KRR won over RT in case of O3 calibration, whereas row 2 column 3 records a value of 0.22 implying that in 22% of the tests,

RT won over KRR. In the balance (1 - 0.63 - 0.22 = 0.15) i.e. 15% of the tests, neither algorithm could be declared a winner.
5.1.2 Intra-family Comparison of Calibration Models

We divide the calibration algorithms (see Table 2 for a glossary) into four families: 1) the Alphasense family (AS1, AS2, AS3,
AS4), 2) linear parametric models (LS, LS(MIN) and LASSO), 3) kernel regression models (KRR, NYS), and 4) KNN-style
algorithms (KNN, KNN-D, NW(ML), KNN(ML), KNN-D(ML)). We included the Nadaraya-Watson (NW) algorithm in the
fourth family since it was used alongwith metric learning, as well as because as explained in the supplementary material, the

NW algorithm behaves like a “smoothed” version of KNN algorithm. The winners within these families are described below.

1. Alphasense: All four Alphasense algorithms exhibit extremely poor performance across all metrics on all datasets,
offering extremely high MAE and low R? values. This is corroborated by previous studies (Lewis and Edwards, 2016;
Jiao et al., 2016; Simmbhan et al., 2019).

2. Linear Parametric: Among the linear parametric algorithms, LS was found to offer the best performance.

3. Kernel Regression: The Nystroem method NYS was confirmed to be an accurate but accelerated approximation for

KRR with the acceleration being higher for larger datasets.

4. KNN and Metric Learning Models: Among the KNN family of algorithms, the distance weighted KNN algorithm that

uses a learnt metric i.e. KNN-D(ML) was found to offer the best accuracies across all datasets and splits.
5.1.3 Global Comparison of Comparison Models

We took the best algorithms from all the families (except Alphasense models that gave extremely poor performance) and
regression trees (RT) and performed a head-to-head comparison to assess the winner. The two-sample tests (Table 3) as well
as violin plots (Fig. 4) indicate that KNN-D(ML) algorithm continues to emerge as the overall winner. Table 4 additionally
establishes that KNN-D(ML) can be upto 8 - 20 percentage points better than classical non-parametric algorithms such as KRR

in terms of R? coefficient. The improvement is much more prominent for NO, calibration which seems to be more challenging
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Table 3. Results of the pairwise Wilcoxon signed rank tests across all model types (see Sect. 5.1.1 for a key). KNN-D(ML) beats every other
algorithm comprehensively and is scarcely ever beaten. (with the exception of NW(ML) which it still beats 58% of the time on NO2 and
62% on O3) The overall ranking of the algorithms is indicated to be KNN-D(ML) > NW(ML) > KRR > RT > LS.

NO-2 O3
LS RT KRR NW(ML) KNN-D(ML) LS RT KRR NW(ML) KNN-D(ML)
LS 0 0 0 0 0 LS 0 0.01 0 0 0
RT 0.97 0 0.38 0.16 0 RT 0.83 0 0.22 0 0
KRR 1 0.4 0 0 0 KRR 1 0.63 0 0.01 0
NW(ML) 1 0.75 1 0 0.07 NW(ML) 1 0.97 0.96 0 0.02
KNN-D(ML) 1 1 1 0.58 0 KNN-D(ML) 1 1 0.97 0.62 0

Table 4. A comparison of algorithms across families on the DD1 and MMS5 datasets across seasons with respect to the R? metric. All values

are averaged across 10 splits. Bold values indicate the best performing algorithm in terms of mean statistics.

O3 NO2
DD1 MMS5 DD1 MMS5
Jun Oct Jun Oct Jun Oct Jun Oct
LS 0.843+0.006  0.969£0.002  0.3344+0.035  0.846+0.019 LS 0.3414+0.013  0.623+£0.005  0.3754+0.049  0.321+0.026
RT 0.8524+0.005 0.971£0.003  0.488+0.071  0.393+0.224 RT 0.674+0.015 0.913+£0.014  0.4874+0.064 0.358+0.087
KRR 0.8854+0.005 0.987+£0.002  0.7194+0.037  0.935+0.02 KRR 0.6084+0.019  0.957+£0.003  0.7284+0.034  0.673+0.059

NW(ML) 0.8954+0.004  0.988+0.001  0.74 £0.038  0.943+0.026 NW(ML) 0.7174+0.017  0.97 +0.003  0.7714+0.026  0.751+0.039
KNN-D(ML)  0.923£0.003  0.99 £0.001  0.74410.043  0.943+0.025 KNN-D(ML) 0.819+0.015 0.9774+0.002 0.759+0.022  0.751+£0.043

as compared to Og calibration. Fig. 5 presents two cases where the KNN-D(ML) models offer excellent agreement with the

325 reference monitors across significant spans of time.
Analyzing High Error Patterns. Having analyzed the calibration performance of various algorithms including KNN-
D(ML), it is interesting to note under what conditions do these algorithms incur high error. Non-parametric algorithms such as
RT and KNN-D(ML) are expected to do well in the presence of good amounts of diverse data. Fig 6 confirms this by classifying
timestamps into various bins according to weather conditions. KNN-D(ML) and RT do offer high average error mostly in bins
330 where there were less training points. Fig 6 also confirms a positive correlation between high concentrations and higher error

although this effect is more pronounced for LS than KNN-D(ML).
5.2 Effect of Data Preparation on Calibration Performance

We now critically assess the robustness of these calibration models, as well as identify the effect of other factors, such as
temporal averaging of raw data, total amount of data available for training, and diversity in training data. We note that some of
335 these studies were made possible only because the experimental setup enabled us to have access to sensors that did not change

their deployment sites, as well as those that did change their deployment site during the swap-out experiment.
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Figure 4. The violin plots on the left and right depict the distribution of absolute errors incurred by various models on respectively, the

DD1(Oct) and MM5(Jun) datasets. KNN-D(ML) offers visibly superior performance than several other algorithms such as LS and RT.
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Figure 5. Time series for a duration of 24 hours of the reference values and those predicted by the KNN-D(ML) algorithm for NO2 and
O3 concentration using data from the DD1 and MMS5 sensors. The legend of each plot notes the gas for which calibration is being reported,
the deployment season, as well as the sensor from which data was used to perform the calibration. Each plot also contains a scatter plot as
an inset showing the correlation between the reference and predicted values of the concentrations. For both deployments and both gases,

KNN-D(ML) can be seen to offer excellent calibration and agreement with the FRM-grade monitor.

5.2.1 Some Observations on Original Datasets

The performance of KNN-D(ML) on the original datasets itself gives us indications on how various data preparation methods
can affect calibration performance. Table 4 shows us that in most cases, the calibration performance is better (with higher R?)
for O3 than NOs. This is another indication that NO5 calibration is more challenging that O3 calibration. Moreover, for both

gases and in both seasons, we see site D offering a better performance than site M. This difference is more prominent for NOo
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Figure 6. Analyzing error distributions of LS, KNN-D(ML, RT.. Fig 6(a) shows the number of training data points in various weather
condition bins. Figs 6(b,c,d) show the MAE for NO3 calibration offered by the algorithms in those same bins. Non-parametric algorithms
such as KNN-D(ML) and RT offer poor performance (high MAE) mostly in bins that had less training data. No such pattern is observable
for LS. Figs 6(e,f,g,h) show the diurnal variation of MAE for KNN-D(ML) and LS at various times of day. Ogz errors exhibit a diurnal trend
of being higher (more so for LS than KNN-D(ML)) during daylight hours when O3 levels are high. No such trend is visible for NO3.
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Figure 7. Effect of temporal data averaging, and lack of data on the calibration performance of the KNN-D(ML) algorithm on temporally
averaged and sub-sampled versions of the DD1(Jun) and DM2(Jun) datasets. Notice the visible deterioration in the performance of the
algorithm when aggressive temporal averaging, e.g. across 30 minute windows, is performed. NOg calibration performance seems to be

impacted more adversely by lack of enough training data or aggressive averaging than O calibration.

than for O3. This indicates that paucity of data and temporal averaging may be affecting calibration performance negatively, as

well as that O3 calibration might be less sensitive to these factors than NOx calibration.
5.2.2 Effect of Temporal Data Averaging

Recall that data from sensors deployed at site M had to be averaged over 15 minute intervals to align them with the reference

monitor timestamps. To see what effect such averaging has on calibration performance, we use the temporally averaged datasets

16



350

355

360

365

Table 5. Results of the pairwise Mann-Whitney U tests on the performance of KNN-D(ML) across temporally averaged versions of the
DD1 dataset (see Sect. 5.1.1 for a key). The dataset names are abbreviated, e.g. DD1(Jun)-AVGS is referred to as simply AVGS. Results
are reported over a single split. AVGS wins over any other level of averaging and clarifies that mild temporal averaging (e.g. over 5 minute

windows) boosts calibration performance, whereas aggressive averaging e.g. 60 minute averaging in AVG60, degrades performance.

O3 NO2
DDI(Jun) AVG5 AVGI5 AVG30 AVG60 DDI(Jun) AVG5 AVGI5 AVG30 AVG60
DD1(Jun) 0 0 0 0 0  DDI(un) 0 0 0 1 1
AVGS5 1 0 1 1 1 AVGS5 1 0 1 1 1
AVG15 1 0 0 1 1 AVG15 0 0 0 1 1
AVG30 1 0 0 0 1 AVG30 0 0 0 0 1
AVG60 0 0 0 0 0 AVG60 0 0 0 0 0

(see Sect. 3.1). Fig. 7 presents the results of applying the KNN-D(ML) algorithm on data that is not averaged at all (i.e. 1
minute interval timestamps), as well as data that is averaged at 5, 15, 30 and 60 minute intervals. The performance for 30
and 60 minute averaged datasets is visibly inferior that that for the non-averaged dataset as indicated by the violin plots. This
leads us to conclude that excessive averaging can erode the diversity of data and hamper effective calibration. To distinguish
among the other temporally averaged datasets for which visual inspection is not satisfactory, we also performed the unpaired
Mann-Whitney U test, the results for which are shown in Tab 5. The results are striking in that they reveal that moderate
averaging, for example at 5 minute intervals, seems to benefit calibration performance. However, this benefit is quickly lost if

the averaging window is increased much further at which point, performance almost always suffers.
5.2.3 Effect of Data Paucity

Since temporal averaging also decreases the amount of data as a side-effect, in order to tease these two effects apart, we also
considered the sub-sampled versions of these datasets (see Sect. 3.1). Fig. 7 also shows that reducing the amount of training data
has an appreciable negative impact on calibration performance. However, NOs calibration performance seems to be impacted

more adversely by lack of enough training data or aggressive averaging than Og calibration.
5.2.4 The Swapout Experiment: Effect of Data Diversity

Tab 6 describes an experiment wherein we took the KNN-D(ML) model trained on one dataset and used it to make predictions
on another dataset. To avoid bringing in too many variables such as cross-device calibration (see Sec 3.2), this was done only
in cases where both datasets belonged to the same sensor but for different deployments. Without exception, such transfers led
to a drop in performance. We confirmed that this was true not just for non-parametric methods such as KNN-D(ML) but also
parametric models like LS. This is to be expected since the sites D and M experience largely non-overlapping ranges of RH
and T across the two deployments. We refer the reader to the supplementary material for a plot of RH and T values experienced

at both sites in both deployments. Thus, it is not surprising that the models performed poorly when faced with unseen RH and
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Table 6. A demonstration of the impact of data diversity and data volume on calibration performance. All values are averaged across 10
splits. The results for LS diverged on some of the datasets on a few splits and those splits were removed while averaging to give LS an added
advantage. Bold values indicate the better performing algorithm. The first two rows present the performance of the KNN-D(ML) and LS
calibration models when tested on data for a different season (deployment) but in the same site. This was done for the DD1 and MMS5 sensors
that did not participate in the swap-out experiment. The next two rows present the same, but for sensors DM2 and MD6 that did participate
in the swap-out experiment and thus, their performance is being tested not only for a different season, but also a different city. The next four
rows present the dramatic improvement in calibration performance once datasets are aggregated for these four sensors. NO» calibration is

worse affected by these variations (average R? in first four rows being -3.69) than O3 calibration (average R? in first four rows being -0.97).

KNN-D(ML) LS
O3 NO, O3 NO,
Train — Test MAE R? MAE R? MAE R? MAE R?2

DDI(Jun) — (Oct)  21.82 0.19 2186 -0.64 1288 0.73 1273 022
MM5(Oct) — (Jun) 833  -375 1579 -1228 1039 -483 17.06 -21.67
DM2(Jun) — (Oct)  13.04 041 905 -099 936 0.68 595 0.1
MD6(Jun) — (Oct) 1671 -0.72 309 -0.85 2112 -129 2567 -0.23

DD1(Jun-Oct) 33 0956 2.6 0924 117 029 13.0 038
MM5(Jun-Oct) 2.5 0902 1.8 0.814 428 032 551 0.67
DM2(Jun-Oct) 3.7 0916 2.8 0.800 6.13 079 672 026
MD6(Jun-Oct) 1.9 0989 1.8 0975 7.01 071 636 091

T ranges. To verify that this is indeed the case, we ran the KNN-D(ML) algorithm on the aggregated datasets (see Sect. 3.1)
which combine training sets from the two deployments of these sensors. Tab 6 confirms that once trained on these more diverse
datasets, the algorithms resume offering good calibration performance on the entire (broadened) range of RH and T values.
However, KNN-D(ML) is superior at exploiting the additional diversity in data than LS. We note that parametric models are
expected to generalize better on unseen conditions than non-parametric models and indeed we observe this in some cases in
Tab 6 where on DD1 and DM2 datasets, LS generalized better than KNN-D(ML). However, we also observe some cases such
as MM5 and MD6 where KNN-D(ML) generalizes comparable to or better than LS.

6 Conclusions and Future Work

In this study we presented results of field deployments across two seasons of LCAQ sensors across two sites having diverse
geographical, meteorological, and air pollution parameters. A unique feature of our deployment was the swap-out experiment
wherein three of the six sensors were transported across sites in the two deployments. To perform highly accurate calibration of
these sensors, we experimented with a wide variety of standard algorithms but found a novel method based on metric learning

to offer the strongest results. A few key takeaways from our statistical analyses are:
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1. Incorporating ambient RH and T, as well as the emphaugmented features oxdiff and noxdiff (see Sect. 3), into the

calibration model improves calibration performance.

2. Non-parametric methods such as KNN offer the best performance on these calibration tasks. However, they stand to gain
significantly through the use of metric learning techniques, which automatically learn the relative importance of each
feature, as well as hyper-local variations such as distance-weighted KNN. These indicate that these calibration tasks

operate in high variability conditions where local methods offer the best chance at capturing subtle trends.

3. Performing smoothing over raw time series data obtained from the sensors may help improve calibration performance

but only if done over short windows. Very aggressive smoothing done over long windows is detrimental to performance.

4. Calibration models are data-hungry as well as diversity hungry. This is especially true of local methods like KNN vari-
ants. Offering these techniques limited amounts of data or even data that is limited in diversity of RH, T or concentration

levels, may result in calibration models that generalize very poorly.

5. Although all calibration models see a decline in performance when tested in unseen operating conditions, calibration

models for O3 seem to be less sensitive than those for NO, calibration.

Our results offer encouraging options for using LCAQ sensors to complement CAAQMS in creating dense and portable
monitoring networks. Avenues for future work include the study of long-term stability of electrochemical sensors and charac-
terizing drift or deterioration patterns in these sensors and correcting for the same, and rapid calibration of these sensors that

requires minimal collocation with a reference monitor.

Code and data availability. The code and data used in this study are available upon request to author Purushottam Kar (purushot@cse.iitk.ac.in).

Competing interests. Author Ronak Sutaria is the CEO of Respirer Living Sciences Pvt. Ltd. which builds and deploys low-cost sensor
based air quality monitors with trade-name ’Atmos - Realtime Air Quality’ monitoring sensor networks. Ronak Sutaria’s involvement was
primarily in the development of the air quality sensor monitors and the big data enabled application programming interfaces to access the
temporal data but not in the data analysis. Author Brijesh Mishra, subsequent to the work presented in this paper, has joined the Respirer

Living Sciences team. The authors declare no other competing interests.

Acknowledgements. This research has been supported under the Research Initiative for Real-time River Water and Air Quality Monitoring
program funded by the Department of Science and Technology, Government of India, and Intel® and administered by the Indo-United States

Science and Technology Forum (IUSSTF).

19



410

415

420

425

430

435

440

References

Akasiadis, C., Pitsilis, V., and Spyropoulos, C. D.: A multi-protocol IoT platform based on open-source frameworks, Sensors, 19, 4217,
2019.

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J., Vermeulen, R. C.,
and Hamburg, S. P.: High-resolution air pollution mapping with Google street view cars: exploiting big data, Environmental Science &
Technology, 51, 6999-7008, 2017.

Arroyo, P., Herrero, J. L., Sudrez, J. 1., and Lozano, J.: Wireless sensor network combined with cloud computing for air quality monitoring,
Sensors, 19, 691, 2019.

Baron, R. and Saffell, J.: Amperometric gas sensors as a low cost emerging technology platform for air quality monitoring applications: A
review, ACS Sensors, 2, 1553-1566, 2017.

Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor
platforms contribute to air quality monitoring and exposure estimates?, Environment International, 99, 293-302, 2017.

Chowdhury, S., Dey, S., and Smith, K. R.: Ambient PM> 5 exposure and expected premature mortality to 2100 in India under climate change
scenarios, Nature Communications, 9, 1-10, 2018.

Commodore, A., Wilson, S., Muhammad, O., Svendsen, E., and Pearce, J.: Community-based participatory research for the study of air
pollution: a review of motivations, approaches, and outcomes, Environmental Monitoring and Assessment, 189, 378, 2017.

Cross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R., and Jayne, J. T.: Use of
electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements, Atmospheric
Measurement Techniques, 10, 3575, 2017.

De Vito, S., Esposito, E., Salvato, M., Popoola, O., Formisano, F., Jones, R., and Di Francia, G.: Calibrating chemical multisensory devices
for real world applications: An in-depth comparison of quantitative machine learning approaches, Sensors and Actuators B: Chemical,
255, 1191-1210, 2018.

Esposito, E., De Vito, S., Salvato, M., Bright, V., Jones, R., and Popoola, O.: Dynamic neural network architectures for on field stochastic
calibration of indicative low cost air quality sensing systems, Sensors and Actuators B: Chemical, 231, 701-713, 2016.

Fung, P. L.: Calibration of Atmospheric Measurements in Low-cost Sensors, in: Data Science for Natural Sciences Seminar (DSNS 2019),
2019.

Gabrys, J., Pritchard, H., and Barratt, B.: Just good enough data: Figuring data citizenships through air pollution sensing and data stories,
Big Data & Society, 3, 1-14, 2016.

Garaga, R., Sahu, S. K., and Kota, S. H.: A review of air quality modeling studies in India: local and regional scale, Current Pollution Reports,
4,59-73,2018.

Gaur, A., Tripathi, S., Kanawade, V., Tare, V., and Shukla, S.: Four-year measurements of trace gases (SO 2, NO x, CO, and O 3) at an urban
location, Kanpur, in northern India, Journal of Atmospheric Chemistry, 71, 283-301, 2014.

Gillooly, S. E., Zhou, Y., Vallarino, J., Chu, M. T., Michanowicz, D. R., Levy, J. 1., and Adamkiewicz, G.: Development of an in-home,
real-time air pollutant sensor platform and implications for community use, Environmental Pollution, 244, 440-450, 2019.

Hagan, D. H., Gani, S., Bhandari, S., Patel, K., Habib, G., Apte, J. S., Hildebrandt Ruiz, L., and Kroll, J. H.: Inferring Aerosol Sources from
Low-Cost Air Quality Sensor Measurements: A Case Study in Delhi, India, Environmental Science & Technology Letters, 6, 467472,
2019.

20



445

450

455

460

465

470

475

480

Hitchman, M., Cade, N., 4Kim Gibbs, T., and Hedley, N. M.: Study of the factors affecting mass transport in electrochemical gas sensors,
Analyst, 122, 1411-1418, 1997.

Jiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver, D., Judge, R., Caudill, M., Rickard, J., Davis, M., et al.: Community Air
Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United
States, Atmospheric Measurement Techniques, 9, 5281-5292, 2016.

Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., Norford, L., and Britter, R.: The rise of low-cost
sensing for managing air pollution in cities, Environment International, 75, 199-205, 2015.

Landrigan, P. J., Fuller, R., Acosta, N. J., Adeyi, O., Arnold, R., Baldé, A. B., Bertollini, R., Bose-O’Reilly, S., Boufford, J. I., Breysse, P. N.,
et al.: The Lancet Commission on pollution and health, The Lancet, 391, 462-512, 2018.

Lewis, A. and Edwards, P.: Validate personal air-pollution sensors, Nature, 535, 29-31, 2016.

Malings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P., Zimmerman, N., Kara, L. B., Presto, A. A., and Subramanian, R.: Development of
a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring, Atmospheric
Measurement Techniques, 12, 903-920, 2019.

Mann, H. B. and Whitney, D. R.: On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other, Annals of
Mathematical Statistics, 18, 50-60, 1947.

Masson, N., Piedrahita, R., and Hannigan, M.: Quantification method for electrolytic sensors in long-term monitoring of ambient air quality,
Sensors, 15,27 283-27 302, 2015.

Miskell, G., Salmond, J. A., and Williams, D. E.: Solution to the problem of calibration of low-cost air quality measurement sensors in
networks, ACS Sensors, 3, 832-843, 2018.

Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., et al.:
Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?, Environment
International, 116, 286-299, 2018.

Mueller, M., Meyer, J., and Hueglin, C.: Design of an ozone and nitrogen dioxide sensor unit and its long-term operation within a sensor
network in the city of Zurich, Atmospheric Measurement Techniques, 10, 3783, 2017.

Pang, X., Shaw, M. D., Lewis, A. C., Carpenter, L. J., and Batchellier, T.: Electrochemical ozone sensors: A miniaturised alternative for
ozone measurements in laboratory experiments and air-quality monitoring, Sensors and Actuators B: Chemical, 240, 829-837, 2017.

Popoola, O. A., Carruthers, D., Lad, C., Bright, V. B., Mead, M. L, Stettler, M. E., Saffell, J. R., and Jones, R. L.: Use of networks of low
cost air quality sensors to quantify air quality in urban settings, Atmospheric Environment, 194, 58-70, 2018.

Rai, A. C., Kumar, P, Pilla, F., Skouloudis, A. N., Di Sabatino, S., Ratti, C., Yasar, A., and Rickerby, D.: End-user perspective of low-cost
sensors for outdoor air pollution monitoring, Science of The Total Environment, 607, 691-705, 2017.

Sahu, R., Dixit, K. K., Mishra, S., Kumar, P., Shukla, A. K., Sutaria, R., Tiwari, S., and Tripathi, S. N.: Validation of Low-Cost Sensors in
Measuring Real-Time PM ;o Concentrations at Two Sites in Delhi National Capital Region, Sensors, 20, 1347, 2020.

Schneider, P., Castell, N., Vogt, M., Dauge, F. R., Lahoz, W. A., and Bartonova, A.: Mapping urban air quality in near real-time using
observations from low-cost sensors and model information, Environment International, 106, 234-247, 2017.

Shapiro, S. S. and Wilk, M.: An analysis of variance test for normality (complete samples), Biometrika, 52, 591-611, 1965.

Sharma, A., Mishra, B., Sutaria, R., and Zele, R.: Design and Development of Low-cost Wireless Sensor Device for Air Quality Networks,

in: [EEE Region 10 Conference (TENCON), 2019.

21



485

490

495

500

Simmbhan, Y., Nair, S., Monga, S., Sahu, R., Dixit, K., Sutaria, R., Mishra, B., Sharma, A., SVR, A., Hegde, M., Zele, R., and Tripathi, S. N.:
SATVAM: Toward an IoT Cyber-infrastructure for Low-cost Urban Air Quality Monitoring, in: 15th IEEE International Conference on
e-Science (eScience 2019), 2019.

Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S., Shelow, D., Hindin, D. A., Kilaru, V. J., and
Preuss, P. W.: The Changing Paradigm of Air Pollution Monitoring, Environ. Sci. Technol., 47, 11 369-11 377, 2013.

Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola, F.: Field calibration of a cluster of low-cost commercially
available sensors for air quality monitoring. Part B: NO, CO and CO2, Sensors and Actuators B: Chemical, 238, 706-715, 2017.

Weinberger, K. Q. and Saul, L. K.: Distance Metric Learning for Large Margin Nearest Neighbor Classification, Journal of Machine Learning
Research, 10, 207-244, 2009.

Weinberger, K. Q. and Tesauro, G.: Metric Learning for Kernel Regression, in: 11th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2007.

WHO: Ambient (outdoor) air pollution, WHO Fact Sheet, https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)
-air-quality-and-health. Accessed on 11 November 2019., 2018.

Wilcoxon, F.: Individual Comparisons by Ranking Methods, Biometrics Bulletin, 1, 80-83, 1945.

Williams, D. E.: Low Cost Sensor Networks: How Do We Know the Data Are Reliable?, ACS Sensors, 4, 2558-2565, 2019.

Zheng, T., Bergin, M. H., Sutaria, R., Tripathi, S. N., Caldow, R., and Carlson, D. E.: Gaussian process regression model for dynamically
calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi., Atmospheric Measurement Techniques, 12,
2019.

Zimmerman, N., Presto, A. A., Kumar, S. P, Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., and Subramanian, R.: A machine
learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring., Atmospheric

Measurement Techniques, 11, 2018.

22


https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

