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Abstract. Low-cost sensors offer an attractive solution to the challenge of establishing affordable and dense spatio-temporal

air quality monitoring networks with greater mobility and lower maintenance costs. These low-cost sensors offer reasonably

consistent measurements, but require in-field calibration to improve agreement with regulatory instruments. In this paper, we

report the results of a deployment and calibration study on a network of six air quality monitoring devices built using the

Alphasense O3 (OX-B431) and NO2 (NO2-B43F) electrochemical gas sensors. The sensors were deployed in two phases over5

a period of three months at sites situated within two mega-cities with diverse geographical, meteorological and air quality

parameters. A unique feature of our deployment is a swap-out experiment wherein three of these sensors were relocated to

different sites in the two phases. This gives us a unique opportunity to study the effect of seasonal, as well as geographical

variations on calibration performance. We report an extensive study of more than a dozen parametric and non-parametric

calibration algorithms. We propose a novel local non-parametric calibration algorithm based on metric-learning that offers,10

across deployment sites and phases, an R2 coefficient of upto 0.923 with respect to reference values for O3 calibration and

0.819 for NO2 calibration. This represents an 4 - 20 percentage point increase in terms of R2 values offered by classical

non-parametric methods. We also offer a critical analysis of the effect of various data preparation and model design choices

on calibration performance. The key recommendations emerging out of this study include 1) incorporating ambient relative

humidity and temperature into calibration models, 2) assessing the relative importance of various features with respect to the15

calibration task at hand, by using an appropriate feature weighing or metric learning technique, 3) using local calibration

techniques such as KNN, 4) performing temporal smoothing over raw time series data, but being careful to not do so too

aggressively, and 5) making all efforts at ensuring that data with enough diversity is demonstrated to the calibration algorithm

while training to ensure good generalization. These results offer insights into the strengths and limitations of these sensors, and

offer an encouraging opportunity at using them to supplement and densify compliance regulatory monitoring networks.20
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1 Introduction

Elevated levels of air pollutants have a detrimental impact on human health as well as the economy (Chowdhury et al., 2018;

Landrigan et al., 2018). For instance, high levels of ground-level O3 has been linked to difficulty in breathing, increased fre-

quency of asthma attacks, and chronic obstructive pulmonary disease (COPD). The World Health Organization reported (WHO,

2018) that in 2016, 4.2 million premature deaths worldwide could be attributed to outdoor air pollution, 91% of which occurred25

in low- and middle-income countries where air pollution levels often did not meet its guidelines. There is a need for accurately

real-time monitoring of air pollution levels with dense spatio-temporal coverage.

Existing regulatory techniques for assessing urban air quality (AQ) rely on a small network of Continuous Ambient Air

Quality Monitoring Stations (CAAQMS) that are instrumented with accurate air quality monitoring gas analyzers and Beta-

Attenuation Monitors and provide highly accurate measurements (Snyder et al., 2013; Malings et al., 2019). However, these30

networks are established at a commensurately high setup cost and are cumbersome to maintain (Sahu et al., 2020), making

dense CAAQMS networks impractical. However, the AQ data offered by these sparse networks, however accurate, limits the

ability to formulate effective AQ strategies (Garaga et al., 2018; Fung, 2019).

In recent years, the availability of low-cost AQ (LCAQ) monitoring devices has provided exciting opportunities for finer

spatial resolution data (Rai et al., 2017; Baron and Saffell, 2017; Kumar et al., 2015; Schneider et al., 2017; Zheng et al.,35

2019). The cost of a Federal Reference Method (FRM)-grade CAAQMS system is around USD 200,000, while that of an

LCAQ device running commodity sensors is under USD 500 (Jiao et al., 2016; Simmhan et al., 2019). In this manuscript,

we use the term “commodity” to refer to sensors or devices that are not custom built and instead sourced from commercially

available options. The increasing prevalance of the Internet of Things (IoT) infrastructure allows building large-scale networks

of LCAQ devices (Baron and Saffell, 2017; Castell et al., 2017; Arroyo et al., 2019).40

Dense LCAQ networks can complement CAAQMS to help regulatory bodies identify sources of pollution and formulate

effective policies, allow scientists to model interactions between climate change and pollution (Hagan et al., 2019), allow citi-

zens to make informed decisions, e.g. on their commute (Apte et al., 2017; Rai et al., 2017), and encourage active participation

in citizen science initiatives (Gabrys et al., 2016; Commodore et al., 2017; Gillooly et al., 2019; Popoola et al., 2018).

1.1 Challenges in low-cost sensor calibration45

Measuring ground-level O3 and NO2 is challenging as they occur at parts per billion levels and intermix with other pol-

lutants (Spinelle et al., 2017). LCAQ sensors are not designed to meet rigid performance standards and may generate less

accurate data as compared to regulatory-grade CAAQMS (Mueller et al., 2017; Snyder et al., 2013; Miskell et al., 2018). Most

LCAQ gas sensors are based either on metal oxide (MOx) or electrochemical (EC) technologies (Pang et al., 2017; Hagan et al.,

2019). These present challenges in terms of sensitivity towards environmental conditions and cross-sensitivity (Zimmerman50

et al., 2018; Lewis and Edwards, 2016). For example, O3 electrochemical sensors undergo redox reactions in the presence

of NO2. The sensors also exhibit loss of consistency or drift over time. For instance, in EC sensors, reagents are spent over

time and have a typical lifespan of one to two years (Masson et al., 2015; Jiao et al., 2016). Thus, there is need for reliable
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calibration of LCAQ sensors to satisfy performance demands of end-use applications (De Vito et al., 2018; Akasiadis et al.,

2019; Williams, 2019).55

1.2 Related Works

Recent works have shown that LCAQ sensor calibration can be achieved by co-locating the sensors with regulatory-grade

reference monitors and using various calibration models (De Vito et al., 2018; Hagan et al., 2019; Morawska et al., 2018).

Zheng et al. (2019) considered the problem of dynamic PM2.5 sensor calibration within a sensor network. For the case of

SO2 sensor calibration, Hagan et al. (2019) observed that parametric models such as linear least squares regression (LS) could60

extrapolate to wider concentration ranges, at which non-parametric regression model may struggle. However, LS does not

correct for dependence on temperature or relative humidity (RH), at which non-parametric models may be more effective.

Since electrochemical sensors are configured to have diffusion-limited responses, and the diffusion coefficients could get

affected by ambient temperature, Sharma et al. (2019); Hitchman et al. (1997); Masson et al. (2015) found that at RH exceeding

75% there is substantial error, possibly due to condensation on the potentiostat electronics. Simmhan et al. (2019) used non-65

parametric approaches such as regression trees along with data aggregated from multiple co-located sensors to demonstrate the

effect of training dataset on calibration performance. Esposito et al. (2016) made use of neural networks and demonstrated good

calibration performance (with mean absolute error < 2 ppb) for the calibration of NO2 sensors. However, a similar performance

was not observed for O3 calibration. Notably, existing works mostly use a localized deployment of a small number of sensor,

e.g. Cross et al. (2017) who tested two devices, each containing one sensor per pollutant.70

1.3 Our Contributions and the SATVAM initiative

The SATVAM initiative (Streaming Analytics over Temporal Variables from Air quality Monitoring) has been developing

low-cost air quality (LCAQ) sensor networks based on highly portable IoT software platforms. These LCAQ devices include

(see Fig. 2) PM2.5 as well as gas sensors. Details on the IoT software platform and SATVAM node cyber infra-structure are

available in (Simmhan et al., 2019). The focus of this paper is to build accurate and robust calibration models for the NO2 and75

O3 gas sensors present in SATVAM devices. Our contributions are summarized below:

1. We report the results of a deployment and calibration study involving six sensors deployed at two sites over two phases

with vastly different meteorological, geographical and air quality parameters.

2. A unique feature of our deployment is a swap-out experiment wherein three of these sensors were relocated to different

sites in the two phases (see Sect. 2 for deployment details). This allows us to investigate the efficacy of calibration80

models when applied to weather and air quality conditions vastly different from those present during calibration. Such

an investigation is missing from previous works which mostly consider only localized calibration.

3. We present an extensive study of parametric and non-parametric calibration models, and develop a novel local calibration

algorithm based on metric learning that offers stable (across gases, sites and seasons) and accurate calibration.
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Figure 1. A map showing the locations of the deployment sites. Fig. 1(b) and (c) on the right show a local-scale map of the vicinity of the

deployment sites – namely Site D at MRIU, Delhi NCR (Fig. 1(b)) and Site M at MPCB, Mumbai (Fig. 1(c)), with the sites themselves

pointed out using bright green dots. Fig. 1(a) shows the location of the sites on a map of India. Credit for Map Sources: Fig. 1(a) is taken

from the NASA Earth Observatory with the outlines of the Indian states in red taken from QGIS3.4 Madeira. Fig. 1(b) and (c) were obtained

from, and are, © Google Maps. The green markers for the sites in all figures were added separately.

4. We present an analysis of the effect of data preparation techniques such as volume of data, temporal averaging and data85

diversity, on calibration performance. This yields several take-home messages that can boost calibration performance.

2 Deployment Setup

Our deployment employed a network of LCAQ sensors as well as reference grade monitors for measuring both NO2 and O3

concentrations, deployed at two sites across two phases.

2.1 Deployment Sites90

SATVAM LCAQ sensor deployment and collocation with reference monitors was carried out at two sites. Fig. 1 presents the

geographical locations of these two sites.

1. Site D: located within the Delhi National Capital Region (NCR) of India at the Manav Rachna International Institute of

Research and Studies, Sector 43, Faridabad (28.45◦N, 77.28◦E, 209 m above mean sea level).

2. Site M (in Mumbai): located within the city of Mumbai at the Maharashtra Pollution Control Board within the university95

campus of IIT Bombay (19.13◦N, 72.91◦E, and 50 m above mean sea level).

We refer the reader to the supplementary material for additional details about the two deployment sites. Due to increasing

economic and industrial activities, a progressive worsening of ambient air pollution is witnessed at both sites. We considered

these two sites to cover a broader range of pollutant concentrations and weather patterns, so as to be able to test the reliability of
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Figure 2. Primary components of the SATVAM LCAQ (low-cost air-quality) sensor used in our experiments. The SATVAM device consists

of a Plantower PMS7003 PM2.5 sensor, Alphasense OX-B431 and NO2-B43F electrochemical sensors, and a DHT22 RH and temperature

sensor. Additional components (not shown here) include instrumentation to enable data collection and transmission.

LCAQ networks. It is notable that the two chosen sites present different geographical settings as well as different air pollution100

levels with site D of particular interest in presenting significantly higher minimum O3 levels than site M, illustrating the

influence of the geographical variability over the selected region.

2.2 Instrumentation

LCAQ Sensor Design: Each SATVAM LCAQ device contains two commodity electrochemical gas sensors (Alphasense OX-

B421 and NO2-B42F) for measuring O3 (ppb) and NO2 (ppb) levels, a PM sensor (Plantower PMS7003) for measuring PM2.5105

(µg m−3) levels, and a DHT22 sensor for measuring ambient temperature in ◦C and RH in percentage points. Fig. 2 shows

the placement of these components. A notable feature of this device is its focus on frugality with use of the very low-power

ContikiOS platform and 6LoWPAN for providing wireless sensor network connectivity.

Detailed information on assembling these different components and the interfacing with an IoT network is described

in (Simmhan et al., 2019). These sensors form a highly portable IoT software platform to transmit 6LoWPAN packets at 5110

minute intervals containing five time-series data points from individual sensors, namely NO2, O3, PM2.5 (not presented in this

study), temperature and RH. Given the large larger number of devices spread across two cities and seasons in this study, a single

border-router edge device was configured at both sites using a Raspberry Pi that acquired data, integrated it, and connected to

a cloud facility using a WiFi-link to the respective campus broadband networks. A Microsoft Azure Standard D4s v3 VM was

used to host the cloud service with 4 cores, 16 GB RAM and 100 GB SSD storage running an Ubuntu 16.04.1 LTS OS. The Pi115

edge device was designed to ensure that data acquisition continues even in the event of cloud VM failure.

Reference Monitors: At both the deployment sites, O3 and NO2 were measured simultaneously with data available at 1

minute intervals for site D deployments (both Jun and Oct) and 15 minute intervals for site M deployments. O3 and NO2 values

were measured at site D using an ultraviolet photometric O3 analyzer (Model 49i O3 analyzer, Thermo ScientificTM, USA) and

a chemiluminescence oxide of nitrogen (NOx) analyzer (Model 42i NOx analyzer, Thermo ScientificTM, USA), respectively.120

Regular maintenance and multi-point calibration, zero checks, and zero settings of the instruments were carried out following

the method described by (Gaur et al., 2014). The lowest detectable limits of reference monitors in measuring O3 and NO2 are

0.5 ppb and 0.40 ppb, respectively, and with a precision of±0.25 ppb and±0.2 ppb, respectively. Similarly, the deployments at
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Sensors

DD1 DM2 DD3 MM5 MD6 MD7

Jun D D D M M M

Oct D M D M D D

Figure 3. A schematic showing the deployment of the six LCAQ sensors across site D and site M during the two deployments. The sensors

subjected to the swap-out experiment are presented in bold. The outlines of the Indian states in red was taken from QGIS3.4 Madeira with

other highlights (e.g. for oceans) and markers being added separately.

site M had Teledyne T200 and T400 reference-grade monitors installed. These also have a UV photometric analyzer to measure

O3 levels and use chemiluminescence to measure NO2 concentrations with lowest detectable limits for O3 and NO2 of 0.4 ppb125

and 0.2 ppb respectively and a precision of ±0.2 ppb and ±0.1 ppb respectively. For every deployment, the reference monitors

and the AQ sensors were time-synchronized, with the 1 minute interval data averaged across 15 minute intervals for all site M

deployments since the site M reference monitors gave data at 15 minute intervals.

2.3 Deployment Details

A total of four field co-location deployments, two each at sites D and M, were evaluated to characterize the calibration of the130

low-cost sensors during two seasons of 2019. The two field deployments at site D were carried out from 27th Jun–6th Aug

2019 (7 weeks) and 4th Oct–27th Oct 2019 (3 weeks). The two field deployments at site M, on the other hand, were carried

out from 22nd Jun–21st Aug 2019 (10 weeks), and 4th Oct–27th Oct 2019 (3 weeks) respectively. For sake of convenience, we

will refer to both deployments that commenced in the month of June 2019 (resp. October 2019) as Jun (resp. Oct) deployments

even though the dates of both Jun deployments do not exactly coincide.135

A total of six low-cost SATVAM LCAQ sensors were deployed at these two sites. We assign these sensors a unique numerical

identifier and a name that describes its deployment pattern. The name of a sensor is of the form XYn where X (resp Y) indicates

the site at which the sensor was deployed during the Jun (resp Oct) deployment and n denotes its unique numerical identifier.

Fig. 3 outlines the deployment patterns for the six sensors DD1, DM2, DD3, MM5, MD6, and MD7.
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Table 1. Samples of the raw data collected from the DM2(Jun) and MM5(Oct) datasets. The last column indicates whether data from that

time-stamp was used in the analysis or not. Note that DM2(Jun) data, coming from site D, has samples at 1 minute intervals whereas

MM5(Oct) data, coming from site M, has samples at 15 minute intervals. The raw voltage values (no2op1, no2op2, oxop1, oxop2) offered

by the LCAQ sensor are always integer valued, as indicated in the DM2(Jun) data. However, for site M deployments, due to averaging, the

effective voltage values used in the dataset may be fractional, as indicated in the MM5(Oct) data. The symbol × indicates missing values. A

bold font indicates invalid values.

DM2(Jun)

Time-stamp O3 NO2 T RH no2op1 no2op2 oxop1 oxop2 no2diff oxdiff Valid?

29-06 04:21 19.82 20.49 32.7 54.6 212 231 242 209 -19 33 Yes

30-06 08:02 46.363 -0.359 36.8 39.6 184 221 234 201 -37 33 No

01-07 04:02 24.38 14.73 32.5 69.7 × × × × × × No

08-07 07:51 -0.035 17.147 31.5 97.8 209 238 231 216 -29 15 No

MM5(Oct)

Time-stamp O3 NO2 T RH no2op1 no2op2 oxop1 oxop2 no2diff oxdiff Valid?

19-10 05:45 × × × × 160.46 188.31 158.31 172.38 -27.85 -14.07 No

19-10 07:15 5.55 11.52 41.47 99.9 170.4 197.2 167.6 181.93 -26.8 -14.33 Yes

20-10 10:45 × × 28.52 99.9 121.8 154.0 119.3 135.3 -32.2 -16.0 No

22-10 18:30 8.33 10.91 27.87 99.9 143.2 172.3 146.2 155.47 -29.1 -9.27 Yes

Swap-out Experiment. As Fig. 3 indicates, three sensors were swapped with the other site across the two deployments.140

Specifically, for the Oct deployment, DM2 was shifted from site D to M and MD6 and MD7 were shifted from site M to D.

Sensor Malfunction. Our experiment actually involved a total of seven sensors being deployed. The seventh sensor, named

DM4, was supposed to be swapped from site D to site M. However, the onboard RH and temperature sensors for this sensor

were non-functional for the entire duration of the Jun deployment and frequently so for the Oct deployment as well. For this

reason, this sensor was excluded from our study altogether. To avoid confusion, in the rest of the manuscript (e.g. the abstract,145

Fig. 3, etc) we report only six sensors of which three were a part of the swapout experiment.

3 Data Analysis Setup

All experiments were conducted on a commodity laptop with an Intel Core i7 CPU with 2.70GHz frequency, 8GB of system

memory and running an Ubuntu 18.04.4 LTS operating system. Standard off-the-shelf machine learning and statistical analysis

packages such as numpy, sklearn, scipy and metric–learn were used to implement the calibration algorithms.150

Raw Datasets and Features. The six sensors across the Jun and Oct deployments, gave us a total of 12 datasets. We refer

to each dataset by mentioning the sensor name and the deployment. For example, the dataset DM2(Oct) contains data from

the October deployment at site M of the sensor DM2. Each dataset is represented as a collection of eight time series for which

each time stamp is represented as an 8-tuple (O3, NO2, RH, T, no2op1, no2op2, oxop1, oxop2) giving us, respectively, the
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reference values for O3 and NO2 (in ppb), relative humidity (in %) and temperature (in ◦C) values, and voltage readings (in155

mV) from the two electrodes present in each of the two gas sensors. These readings represent working (no2op1 and oxop1)

and auxiliary (no2op2 and oxop2) electrode potentials for these sensors. We note that RH and T values in all our experiments

were obtained from DHT22 sensors in the LCAQ sensors and not from the reference monitors. This was done to ensure that

the calibration models, once trained, could perform predictions using data available from the LCAQ sensor alone and not rely

on data from a reference monitor. For site D, both the LCAQ sensor as well as the reference monitor data was available at 1160

minute intervals. However for site M, since reference monitor data was only available at 15 minute intervals, CAQ sensor data

was averaged over 15 minute intervals.

Data Cleanup. Time-stamps from the LCAQ sensors were aligned to those from the reference monitors. For several time-

stamps, we found that either the sensor or reference monitors presented with one or more missing or spurious values (see

Table 1 for examples). Spurious values included the following cases: a) a reference value for O3 or NO2 of > 200 ppb or < 0165

ppb (the reference monitors sometimes offered negative readings when powering up and under anomalous operating conditions

e.g. condensation at the inlet), b) a sensor temperature reading of > 50 ◦C or < 1 ◦C, c) an sensor RH level of > 100 % or <

1 %, and d) a sensor voltage reading (either of no2op1, no2op2, oxop1, oxop2) of > 400 mV or < 1 mV. These errors are

possibly due to electronic noise in the devices. All time-stamps with even one spurious or missing value were considered

invalid and removed. Across all 12 datasets, an average of 52% of the time-stamps were removed as a result. However, since170

site D (resp. site M) offered timestamps at 1 minute (resp. 15 minute) intervals i.e. 60 (resp 4) timestamps every hour, at

least one timestamp (frequently several) were found still valid every hour in most cases. Thus, the valid timestamps could still

accurately track diurnal changes in AQ parameters. The datasets from Jun (resp. Oct) deployments at site D offered an average

of 33753 (resp. 9548) valid time-stamps. The datasets from Jun (resp. Oct) deployments in site M offered an average of 2462

(resp. 1062) valid time-stamps. As expected, site D that had data at 1 minute intervals offered more time-stamps than site M175

that had data at 15 minute intervals. For both sites, more data is available for the Jun deployment (that lasted longer) than the

Oct deployment.

3.1 Data Augmentation and Derived Dataset Creation

For each of the 12 datasets, apart from the six data features provided by the LCAQ sensors, we included two augmented

features, calculated as shown below180

no2diff = no2op1− no2op2

oxdiff = oxop1− oxop2

We found that having these augmented features, albeit simple linear combinations of raw features, offered our calibration

models a predictive advantage. The augmented datasets created this way represented each time-stamp as a vector of 8 feature

values (RH, T, no2op1, no2op2, oxop1, oxop2, no2diff, oxdiff), apart from the reference values of O3 and NO2.185
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3.1.1 Train–Test Splits

Each of the 12 datasets was split in a 70:30 ratio to obtain a train-test split. 10 such splits were independently generated for

each dataset. All calibration algorithms were offered the same train-test splits. For algorithms that required hyperparameter

tuning, a randomly chosen set of 30% of the training data points in that split were used as a held out validation set. All

features were normalized to improve the conditioning of the calibration problems. This was done by calculating the mean and190

standard deviation for each of the 8 features on the training portion of a split, and then mean centering and dividing by the

standard deviation all time-stamps in both training and testing portion of that split. An exception was made for the Alphasense

calibration models, which required raw voltage values. However, reference values were never normalized in any way.

3.2 Derived Datasets

In order to study the effect of data frequency (how frequently do we record data e.g. 1 minute, 15 minute), data volume195

(total number of time-stamps used for training), and data diversity (data collected across seasons or sites) on the calibration

performance, we created several derived datasets as well. All these datasets contained the augmented features.

1. Temporally Averaged Datasets: We took the two datasets DD1(Jun) and DM2(Jun) and created four datasets out of

each of them by averaging the sensor and reference monitor values at 5 minute, 15 minute, 30 minute and 60 minute

intervals. These datasets were named by affixing the averaging interval size to the dataset name, for example DD1(Jun)-200

AVG5 for the dataset created out of DD1(Jun) with 5 minute averaging, DM2(Jun)-AVG30 for the dataset created out of

DM2(Jun) with 30 minute averaging, etc.

2. Sub-sampled Datasets: To view the effect of having less training data on calibration performance, we created sub-

sampled versions of both these datasets by sampling a random set of 2500 time-stamps from the training portion of the

DD1(Jun) and DM2(Jun) datasets to get the datasets DD1(Jun)-SMALL and DM2(Jun)-SMALL.205

3. Aggregated Datasets: Next, we created new datasets by clubbing together data for a sensor across the two deployments.

This was done to the data from the sensors DD1, MM5, DM2 and MD6. For example, if we consider the sensor DD1,

then the datasets DD1(Jun) and DD1(Oct) were combined to create the dataset DD1(Jun-Oct).

Investigating Impact of Diversity in Data. The aggregated datasets are meant to help us study how calibration algorithms

perform under seasonally and spatially diverse data. For example, the aggregated datasets DD1(Jun-Oct) and MM5(Jun-Oct)210

include data that is seasonally diverse but not spatially diverse (since these two sensors were located at the same site for both

deployments). On the other hand, the aggregated datasets DM2(Jun-Oct) and MD6(Jun-Oct) include data that is diverse both

seasonally as well as spatially (since these two sensors were a part of the swapout experiment). At this point, it is tempting

to ask whether aggregated datasets that are diverse spatially but not seasonally diverse can be created as well. Although the

prospect of investigating the effect of spatial diversity alone (without bringing seasonal diversity into account) is interesting,215

this would require aggregating data from two distinct sensors since no sensor was located at both sites during a deployment.
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This presents an issue since the various onboard sensors in these LCAQ devices, e.g. RH and temperature sensors, do not

present good agreement across devices. Thus, some form of cross-device calibration would have been required which is an

interesting but challenging task in itself. This is an encouraging direction for future work but not considered in this study.

3.2.1 Performance Evaluation220

The performance of calibration algorithms was assessed using standard error metrics and statistical hypothesis testing.

Error Metrics: calibration performance was measured using four popular metrics: mean averaged error (MAE), mean

absolute percentage error (MAPE), root mean squared error (RMSE), and the coefficient of determination (R2) (please see the

supplementary material for detailed expressions of these metrics).

Statistical Hypothesis Tests: in order to compare the performance of different calibration algorithms on a given dataset (to225

find out the best performing algorithm), or compare the performance of the same algorithm on different datasets (to find out

the effect of data characteristics on calibration performance), we performed paired and unpaired two-sample tests, respectively.

Our null hypothesis in all such tests proposed that the absolute errors offered in the two cases considered are distributed

identically. The test was applied and if the null hypothesis was rejected with sufficient confidence (an α value of 0.05 was

used as the standard to reject the null hypotheses), then a winner was simultaneously identified. Although the Student’s t-test230

is more popular, it assumes that the underlying distributions are normal. However, an application of the Shapiro-Wilk test

(Shapiro and Wilk, 1965) to our absolute error values rejected the normal hypothesis with high confidence. Thus, we chose

the non-parametric Wilcoxon signed-rank test (Wilcoxon, 1945) when comparing two algorithms on the same dataset, and its

unpaired variant, the Mann-Whitney U -test (Mann and Whitney, 1947) for comparing the same algorithm on two different

datasets. These tests do not make any assumption on the underlying distribution of the errors and are well-suited for our data.235

4 Baseline and Proposed Calibration Models

Our study considered a large number of parametric and non-parametric calibration techniques as baseline algorithms. Table 2

provides a glossary of all the algorithms including their acronyms and brief descriptions. Detailed descriptions of all these

algorithms is provided in the supplementary material. Among parametric algorithms, we considered the Alphasense models

(AS1-AS4) supplied by the manufacturers of the gas sensors, linear models based on least-squares (LS and LS(MIN)) and240

sparse recovery (LASSO). Among non-parametric algorithms, we considered regression trees (RT), kernel-ridge regression

(KRR), the Nystroem method for accelerating KRR, the Nadaraya Watson estimator (NW), and various local algorithms based

on the k-nearest neighbors principle (KNN, KNN-D). In this section we give a self-contained description of our proposed

algorithms KNN(ML) and KNN-D(ML).

Notation: For every time-stamp t, the vector xt ∈ R8 denotes the 8-dimensional vector of signals recorded by the LCAQ245

sensors for that time-stamp, namely (RH, T, no2op1, no2op2, oxop1, oxop2, no2diff, oxdiff), while the vector yt ∈ R2 will de-

note the 2-tuple of the reference values of O3 and NO2 for that time step. However, this notation is unnecessarily cumbersome

since we will build separate calibration models for O3 and NO2. Thus, to simplify the notation, we will instead use yt ∈ R to
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Table 2. Glossary of baseline and proposed calibration algorithms used in our study with their acronyms and brief descriptions. The

KNN(ML) and KNN-D(ML) algorithms are proposed in this paper. Please see the supplementary material for details.

Parametric Algorithms Non-parametric Algorithms Non-parametric KNN-style Algorithms

AS1, AS2 Alphasense models (from

gas sensor manufacturer)

RT Regression Tree KNN k-nearest Neighors

AS3, AS4 KRR Kenel Ridge Regression KNN-D Distance weighted KNN

LS Least Squares Regression NYS Nystroem Method KNN(ML)∗ KNN (learnt metric)

LS(MIN) LS with reduced features NW(ML) Nadaraya Watson (learnt metric) KNN-D(ML)∗ KNN-D (learnt metric)

LASSO Sparse Regression ∗proposed in this paper

denote the reference value of the gas being considered (either O3 or NO2). The goal of calibration will then be to learn a real

valued function f : R8→ R such that f(xt)≈ yt for all time-stamps t (the exact error being measured using metrics such as250

MAE, MAPE, etc described in Sect. 3.2.1). Thus, we will learn two functions, say fNO2
and fO3

to calibrate for NO2 and O3

concentrations respectively. Since several of our calibration algorithms will involve the use of some statistical estimation or

machine learning algorithm, we will let N (resp. n) denote the number of training (resp. testing) points for a given dataset and

split thereof. Thus, we will let {(xt,yt)}Nt=1 denote the training set for that dataset and split with xt ∈ R8 and yt ∈ R.

4.1 Proposed Method: Distance-weighed KNN with a Learnt Metric255

Our proposed algorithm is a local, non-parametric algorithm that uses a learnt metric. Below we describe the design of this

method and reasons behind these design choices.

Non-parametric estimators for Calibration. The simplest example of a non-parametric estimator is the KNN (k nearest

neighbors) algorithm that predicts on a test point, the average reference value in the k nearest training points. Other examples

(please see the supplementary material for details) include kernel ridge regression (KRR) and the Nadaraya-Watson (NW)260

estimator. Non-parametric estimators are well-studied and known to be asymptotically universal which guarantees their ability

to accurately model complex patterns which motivated their choice. These models can also be brittle Hagan et al. (2019)

when used in unseen operating conditions but Sec. 5.2 shows that our proposed algorithm performs comparably to parametric

algorithms when generalizing to unseen conditions, but offers far more improvements when given additional data.

Metric Learning for KNN Calibration. As mentioned above, the KNN algorithm uses the closest neighbors to compute265

its output. To do this, it needs a notion of distance, specifically a metric, to compute closeness. The default and most common

choice for a metric is the Euclidean distance which gives equal importance to all 8 dimensions when calculating distances

between two points say x1,x2 ∈ R8. However, our experiments in Sect. 5 will show that certain features, e.g. RH and T, seem

to have a significant influence on calibration performance. Thus, it is unclear how much emphasis should RH and T receive,

as compared to other features such as voltage values e.g. oxop1 while calculating distances between two points. The technique270

of metric learning (Weinberger and Saul, 2009) offers a solution in this respect by learning a customized Mahalanobis metric

metric that can be used instead of the generic Euclidean metric. A Mahalanobis metric is characterized by a positive semi-
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Algorithm 1 The proposed KNN-D(ML) algorithm for distance weighted KNN calibration with a learnt metric.

Require: training data points {(xt,yt)}Nt=1, neighborhood size k

Ensure: a prediction from the KNN-D(ML) model

Σ← use training data points to learn a Mahalanobis metric using the technique from (Weinberger and Tesauro, 2007)

Receive feature vector x̃ ∈ R8 for a test data point

Find the k training data points (say i1, . . . , ik) that are closest to x̃ in terms of the learnt Mahalanobis distance dMaha(·, ·;Σ)

For all l = 1 . . .k, let αl = (dMaha(x̃,xil ;Σ))−1

ŷ =

∑k
l=1α

l · ytl∑k
l=1α

l

return Calibrated value ŷ for the test data point

definite matrix Σ ∈ R8×8 and calculates the distance between any two points as follows

dMaha(x1,x2;Σ) =
√
(x1−x2)>Σ(x1−x2)

Note that the Mahalanobis metric recovers the Euclidean metric when Σ= I8 is the identity matrix. Now, whereas metric275

learning for KNN is popular for classification problems, it is uncommon for calibration and regression problems. This is due

to regression problems lacking of a small number of “classes”. To overcome this problem, we note that other non-parametric

calibration algorithms such as NW and KRR also utilize a metric indirectly (please see the supplementary material) and there

does exist a technique to learn a Mahalanobis metric to be used alongwith the NW algorithm (Weinberger and Tesauro, 2007).

This allows us to adopt a two-stage algorithm that first learns a Mahalanobis metric suited for the NW algorithm and then uses280

it to perform KNN-style calibration. Algorithm 1 describes the resulting KNN-D(ML) algorithm.

5 Results and Discussion

The goals of using low-cost AQ monitoring sensors vary widely. This section critically assesses a wide variety of calibration

models. First we look at the performance of the algorithms on individual datasets i.e. when looking at data within a site and

within a season. Next, we look at derived datasets (Sec 3.2) which look at the effect of data volume, data averaging and data285

diversity on calibration performance.

5.1 Effect of Calibration Model on Calibration Performance

We compare the performance of calibration algorithms introduced in Sect. 4. Given the vast number of algorithms, we execute a

sort of tournament where divide algorithms into small families, decide the winner within a family and then compare the winners

across families. The detailed per-family comparisons are available in the supplementary material and only summarized here.290

We use the Wilcoxon paired two sample test (see Sect. 3.2.1) to compare two calibration algorithms on the same dataset.

However, for visual inspection, we also provide violin plots of the absolute errors offered by the algorithms. We refer the

reader to the supplementary material for some pointers on how to interpret violin plots.
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5.1.1 Interpreting the Two-sample Tests

We refer the reader to Table 2 for a glossary of algorithm names and abbreviations. As mentioned earlier, we used the paired295

Wilcoxon signed ranked test to compare two algorithms on the same dataset. Given that there are 12 datasets and 10 splits for

each dataset, for ease of comprehension, we provide globally averaged statistics of wins scored by an algorithm over another.

For example, say we wish to compare RT and KRR as done in Tab 3. We perform the test for each individual dataset and split.

For each test, we either get a win for RT (in which case RT gets a +1 score and KRR gets 0), or a win for KRR (in which case

KRR gets a +1 score and RT gets 0) or else the null hypothesis is not refuted (in which case both get 0). The average of these300

scores is then shown. For example, in Tab 3 (left), row 3 column 2 records a value of 0.63 implying that in 63% of these tests,

KRR won over RT in case of O3 calibration, whereas row 2 column 3 records a value of 0.22 implying that in 22% of the tests,

RT won over KRR. In the balance (1 - 0.63 - 0.22 = 0.15) i.e. 15% of the tests, neither algorithm could be declared a winner.

5.1.2 Intra-family Comparison of Calibration Models

We divide the calibration algorithms (see Table 2 for a glossary) into four families: 1) the Alphasense family (AS1, AS2, AS3,305

AS4), 2) linear parametric models (LS, LS(MIN) and LASSO), 3) kernel regression models (KRR, NYS), and 4) KNN-style

algorithms (KNN, KNN-D, NW(ML), KNN(ML), KNN-D(ML)). We included the Nadaraya-Watson (NW) algorithm in the

fourth family since it was used alongwith metric learning, as well as because as explained in the supplementary material, the

NW algorithm behaves like a “smoothed” version of KNN algorithm. The winners within these families are described below.

1. Alphasense: All four Alphasense algorithms exhibit extremely poor performance across all metrics on all datasets,310

offering extremely high MAE and low R2 values. This is corroborated by previous studies (Lewis and Edwards, 2016;

Jiao et al., 2016; Simmhan et al., 2019).

2. Linear Parametric: Among the linear parametric algorithms, LS was found to offer the best performance.

3. Kernel Regression: The Nystroem method NYS was confirmed to be an accurate but accelerated approximation for

KRR with the acceleration being higher for larger datasets.315

4. KNN and Metric Learning Models: Among the KNN family of algorithms, the distance weighted KNN algorithm that

uses a learnt metric i.e. KNN-D(ML) was found to offer the best accuracies across all datasets and splits.

5.1.3 Global Comparison of Comparison Models

We took the best algorithms from all the families (except Alphasense models that gave extremely poor performance) and

regression trees (RT) and performed a head-to-head comparison to assess the winner. The two-sample tests (Table 3) as well320

as violin plots (Fig. 4) indicate that KNN-D(ML) algorithm continues to emerge as the overall winner. Table 4 additionally

establishes that KNN-D(ML) can be upto 8 - 20 percentage points better than classical non-parametric algorithms such as KRR

in terms of R2 coefficient. The improvement is much more prominent for NO2 calibration which seems to be more challenging
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Table 3. Results of the pairwise Wilcoxon signed rank tests across all model types (see Sect. 5.1.1 for a key). KNN-D(ML) beats every other

algorithm comprehensively and is scarcely ever beaten. (with the exception of NW(ML) which it still beats 58% of the time on NO2 and

62% on O3) The overall ranking of the algorithms is indicated to be KNN-D(ML) > NW(ML) > KRR > RT > LS.

NO2

LS RT KRR NW(ML) KNN-D(ML)

LS 0 0 0 0 0

RT 0.97 0 0.38 0.16 0

KRR 1 0.4 0 0 0

NW(ML) 1 0.75 1 0 0.07

KNN-D(ML) 1 1 1 0.58 0

O3

LS RT KRR NW(ML) KNN-D(ML)

LS 0 0.01 0 0 0

RT 0.83 0 0.22 0 0

KRR 1 0.63 0 0.01 0

NW(ML) 1 0.97 0.96 0 0.02

KNN-D(ML) 1 1 0.97 0.62 0

Table 4. A comparison of algorithms across families on the DD1 and MM5 datasets across seasons with respect to the R2 metric. All values

are averaged across 10 splits. Bold values indicate the best performing algorithm in terms of mean statistics.

O3

DD1 MM5

Jun Oct Jun Oct

LS 0.843±0.006 0.969±0.002 0.334±0.035 0.846±0.019

RT 0.852±0.005 0.971±0.003 0.488±0.071 0.393±0.224

KRR 0.885±0.005 0.987±0.002 0.719±0.037 0.935±0.02

NW(ML) 0.895±0.004 0.988±0.001 0.74 ±0.038 0.943±0.026

KNN-D(ML) 0.923±0.003 0.99 ±0.001 0.744±0.043 0.943±0.025

NO2

DD1 MM5

Jun Oct Jun Oct

LS 0.341±0.013 0.623±0.005 0.375±0.049 0.321±0.026

RT 0.674±0.015 0.913±0.014 0.487±0.064 0.358±0.087

KRR 0.608±0.019 0.957±0.003 0.728±0.034 0.673±0.059

NW(ML) 0.717±0.017 0.97 ±0.003 0.771±0.026 0.751±0.039

KNN-D(ML) 0.819±0.015 0.977±0.002 0.759±0.022 0.751±0.043

as compared to O3 calibration. Fig. 5 presents two cases where the KNN-D(ML) models offer excellent agreement with the

reference monitors across significant spans of time.325

Analyzing High Error Patterns. Having analyzed the calibration performance of various algorithms including KNN-

D(ML), it is interesting to note under what conditions do these algorithms incur high error. Non-parametric algorithms such as

RT and KNN-D(ML) are expected to do well in the presence of good amounts of diverse data. Fig 6 confirms this by classifying

timestamps into various bins according to weather conditions. KNN-D(ML) and RT do offer high average error mostly in bins

where there were less training points. Fig 6 also confirms a positive correlation between high concentrations and higher error330

although this effect is more pronounced for LS than KNN-D(ML).

5.2 Effect of Data Preparation on Calibration Performance

We now critically assess the robustness of these calibration models, as well as identify the effect of other factors, such as

temporal averaging of raw data, total amount of data available for training, and diversity in training data. We note that some of

these studies were made possible only because the experimental setup enabled us to have access to sensors that did not change335

their deployment sites, as well as those that did change their deployment site during the swap-out experiment.
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Figure 4. The violin plots on the left and right depict the distribution of absolute errors incurred by various models on respectively, the

DD1(Oct) and MM5(Jun) datasets. KNN-D(ML) offers visibly superior performance than several other algorithms such as LS and RT.
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Figure 5. Time series for a duration of 24 hours of the reference values and those predicted by the KNN-D(ML) algorithm for NO2 and

O3 concentration using data from the DD1 and MM5 sensors. The legend of each plot notes the gas for which calibration is being reported,

the deployment season, as well as the sensor from which data was used to perform the calibration. Each plot also contains a scatter plot as

an inset showing the correlation between the reference and predicted values of the concentrations. For both deployments and both gases,

KNN-D(ML) can be seen to offer excellent calibration and agreement with the FRM-grade monitor.

5.2.1 Some Observations on Original Datasets

The performance of KNN-D(ML) on the original datasets itself gives us indications on how various data preparation methods

can affect calibration performance. Table 4 shows us that in most cases, the calibration performance is better (with higher R2)

for O3 than NO2. This is another indication that NO2 calibration is more challenging that O3 calibration. Moreover, for both340

gases and in both seasons, we see site D offering a better performance than site M. This difference is more prominent for NO2
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Figure 6. Analyzing error distributions of LS, KNN-D(ML, RT.. Fig 6(a) shows the number of training data points in various weather

condition bins. Figs 6(b,c,d) show the MAE for NO2 calibration offered by the algorithms in those same bins. Non-parametric algorithms

such as KNN-D(ML) and RT offer poor performance (high MAE) mostly in bins that had less training data. No such pattern is observable

for LS. Figs 6(e,f,g,h) show the diurnal variation of MAE for KNN-D(ML) and LS at various times of day. O3 errors exhibit a diurnal trend

of being higher (more so for LS than KNN-D(ML)) during daylight hours when O3 levels are high. No such trend is visible for NO2.
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Figure 7. Effect of temporal data averaging, and lack of data on the calibration performance of the KNN-D(ML) algorithm on temporally

averaged and sub-sampled versions of the DD1(Jun) and DM2(Jun) datasets. Notice the visible deterioration in the performance of the

algorithm when aggressive temporal averaging, e.g. across 30 minute windows, is performed. NO2 calibration performance seems to be

impacted more adversely by lack of enough training data or aggressive averaging than O3 calibration.

than for O3. This indicates that paucity of data and temporal averaging may be affecting calibration performance negatively, as

well as that O3 calibration might be less sensitive to these factors than NO2 calibration.

5.2.2 Effect of Temporal Data Averaging

Recall that data from sensors deployed at site M had to be averaged over 15 minute intervals to align them with the reference345

monitor timestamps. To see what effect such averaging has on calibration performance, we use the temporally averaged datasets
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Table 5. Results of the pairwise Mann-Whitney U tests on the performance of KNN-D(ML) across temporally averaged versions of the

DD1 dataset (see Sect. 5.1.1 for a key). The dataset names are abbreviated, e.g. DD1(Jun)-AVG5 is referred to as simply AVG5. Results

are reported over a single split. AVG5 wins over any other level of averaging and clarifies that mild temporal averaging (e.g. over 5 minute

windows) boosts calibration performance, whereas aggressive averaging e.g. 60 minute averaging in AVG60, degrades performance.

O3

DD1(Jun) AVG5 AVG15 AVG30 AVG60

DD1(Jun) 0 0 0 0 0

AVG5 1 0 1 1 1

AVG15 1 0 0 1 1

AVG30 1 0 0 0 1

AVG60 0 0 0 0 0

NO2

DD1(Jun) AVG5 AVG15 AVG30 AVG60

DD1(Jun) 0 0 0 1 1

AVG5 1 0 1 1 1

AVG15 0 0 0 1 1

AVG30 0 0 0 0 1

AVG60 0 0 0 0 0

(see Sect. 3.1). Fig. 7 presents the results of applying the KNN-D(ML) algorithm on data that is not averaged at all (i.e. 1

minute interval timestamps), as well as data that is averaged at 5, 15, 30 and 60 minute intervals. The performance for 30

and 60 minute averaged datasets is visibly inferior that that for the non-averaged dataset as indicated by the violin plots. This

leads us to conclude that excessive averaging can erode the diversity of data and hamper effective calibration. To distinguish350

among the other temporally averaged datasets for which visual inspection is not satisfactory, we also performed the unpaired

Mann-Whitney U test, the results for which are shown in Tab 5. The results are striking in that they reveal that moderate

averaging, for example at 5 minute intervals, seems to benefit calibration performance. However, this benefit is quickly lost if

the averaging window is increased much further at which point, performance almost always suffers.

5.2.3 Effect of Data Paucity355

Since temporal averaging also decreases the amount of data as a side-effect, in order to tease these two effects apart, we also

considered the sub-sampled versions of these datasets (see Sect. 3.1). Fig. 7 also shows that reducing the amount of training data

has an appreciable negative impact on calibration performance. However, NO2 calibration performance seems to be impacted

more adversely by lack of enough training data or aggressive averaging than O3 calibration.

5.2.4 The Swapout Experiment: Effect of Data Diversity360

Tab 6 describes an experiment wherein we took the KNN-D(ML) model trained on one dataset and used it to make predictions

on another dataset. To avoid bringing in too many variables such as cross-device calibration (see Sec 3.2), this was done only

in cases where both datasets belonged to the same sensor but for different deployments. Without exception, such transfers led

to a drop in performance. We confirmed that this was true not just for non-parametric methods such as KNN-D(ML) but also

parametric models like LS. This is to be expected since the sites D and M experience largely non-overlapping ranges of RH365

and T across the two deployments. We refer the reader to the supplementary material for a plot of RH and T values experienced

at both sites in both deployments. Thus, it is not surprising that the models performed poorly when faced with unseen RH and
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Table 6. A demonstration of the impact of data diversity and data volume on calibration performance. All values are averaged across 10

splits. The results for LS diverged on some of the datasets on a few splits and those splits were removed while averaging to give LS an added

advantage. Bold values indicate the better performing algorithm. The first two rows present the performance of the KNN-D(ML) and LS

calibration models when tested on data for a different season (deployment) but in the same site. This was done for the DD1 and MM5 sensors

that did not participate in the swap-out experiment. The next two rows present the same, but for sensors DM2 and MD6 that did participate

in the swap-out experiment and thus, their performance is being tested not only for a different season, but also a different city. The next four

rows present the dramatic improvement in calibration performance once datasets are aggregated for these four sensors. NO2 calibration is

worse affected by these variations (average R2 in first four rows being -3.69) than O3 calibration (average R2 in first four rows being -0.97).

KNN-D(ML) LS

O3 NO2 O3 NO2

Train→ Test MAE R2 MAE R2 MAE R2 MAE R2

DD1(Jun)→ (Oct) 21.82 0.19 21.86 -0.64 12.88 0.73 12.73 0.22

MM5(Oct)→ (Jun) 8.33 -3.75 15.79 -12.28 10.39 -4.83 17.06 -21.67

DM2(Jun)→ (Oct) 13.04 0.41 9.05 -0.99 9.36 0.68 5.95 0.1

MD6(Jun)→ (Oct) 16.71 -0.72 30.9 -0.85 21.12 -1.29 25.67 -0.23

DD1(Jun-Oct) 3.3 0.956 2.6 0.924 11.7 0.29 13.0 0.38

MM5(Jun-Oct) 2.5 0.902 1.8 0.814 4.28 0.32 5.51 0.67

DM2(Jun-Oct) 3.7 0.916 2.8 0.800 6.13 0.79 6.72 0.26

MD6(Jun-Oct) 1.9 0.989 1.8 0.975 7.01 0.71 6.36 0.91

T ranges. To verify that this is indeed the case, we ran the KNN-D(ML) algorithm on the aggregated datasets (see Sect. 3.1)

which combine training sets from the two deployments of these sensors. Tab 6 confirms that once trained on these more diverse

datasets, the algorithms resume offering good calibration performance on the entire (broadened) range of RH and T values.370

However, KNN-D(ML) is superior at exploiting the additional diversity in data than LS. We note that parametric models are

expected to generalize better on unseen conditions than non-parametric models and indeed we observe this in some cases in

Tab 6 where on DD1 and DM2 datasets, LS generalized better than KNN-D(ML). However, we also observe some cases such

as MM5 and MD6 where KNN-D(ML) generalizes comparable to or better than LS.

6 Conclusions and Future Work375

In this study we presented results of field deployments across two seasons of LCAQ sensors across two sites having diverse

geographical, meteorological, and air pollution parameters. A unique feature of our deployment was the swap-out experiment

wherein three of the six sensors were transported across sites in the two deployments. To perform highly accurate calibration of

these sensors, we experimented with a wide variety of standard algorithms but found a novel method based on metric learning

to offer the strongest results. A few key takeaways from our statistical analyses are:380
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1. Incorporating ambient RH and T, as well as the emphaugmented features oxdiff and noxdiff (see Sect. 3), into the

calibration model improves calibration performance.

2. Non-parametric methods such as KNN offer the best performance on these calibration tasks. However, they stand to gain

significantly through the use of metric learning techniques, which automatically learn the relative importance of each

feature, as well as hyper-local variations such as distance-weighted KNN. These indicate that these calibration tasks385

operate in high variability conditions where local methods offer the best chance at capturing subtle trends.

3. Performing smoothing over raw time series data obtained from the sensors may help improve calibration performance

but only if done over short windows. Very aggressive smoothing done over long windows is detrimental to performance.

4. Calibration models are data-hungry as well as diversity hungry. This is especially true of local methods like KNN vari-

ants. Offering these techniques limited amounts of data or even data that is limited in diversity of RH, T or concentration390

levels, may result in calibration models that generalize very poorly.

5. Although all calibration models see a decline in performance when tested in unseen operating conditions, calibration

models for O3 seem to be less sensitive than those for NO2 calibration.

Our results offer encouraging options for using LCAQ sensors to complement CAAQMS in creating dense and portable

monitoring networks. Avenues for future work include the study of long-term stability of electrochemical sensors and charac-395

terizing drift or deterioration patterns in these sensors and correcting for the same, and rapid calibration of these sensors that

requires minimal collocation with a reference monitor.
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