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Abstract. Low-cost sensors offer an attractive solution to
the challenge of establishing affordable and dense spatio-
temporal air quality monitoring networks with greater mo-
bility and lower maintenance costs. These low-cost sensors
offer reasonably consistent measurements, but require in-
field calibration to improve agreement with regulatory instru-
ments. In this paper, we report the results of a deployment
and calibration study on a network of six air quality moni-
toring devices built using the Alphasense O3 (OX-B431) and
NO3 (NO2-B43F) electrochemical gas sensors. The sensors
were deployed in two phases over a period of three months at
sites situated within two mega-cities with diverse geographi-
cal, meteorological and air quality parameters. A unique fea-
ture of our deployment is a swap-out experiment wherein
three of these sensors were relocated to different sites in the
two phases. This gives us a unique opportunity to study the
effect of seasonal, as well as geographical variations on cal-
ibration performance. We report an extensive study of more
than a dozen parametric and non-parametric calibration al-
gorithms. We propose a novel local non-parametric calibra-
tion algorithm based on metric-learning that offers, across
deployment sites and phases, an R? coefficient of upto 0.923
with respect to reference values for Og calibration and upto
0.819 for NO;, calibration. This represents a 4 — 20 percent-
age point increase in terms of R? values offered by classi-
cal non-parametric methods. We also offer a critical analysis
of the effect of various data preparation and model design
choices on calibration performance. The key recommenda-

tions emerging out of this study include 1) incorporating am-
bient relative humidity and temperature into calibration mod-
els, 2) assessing the relative importance of various features
with respect to the calibration task at hand, by using an ap-
propriate feature weighing or metric learning technique, 3)
using local calibration techniques such as KNN, 4) perform-
ing temporal smoothing over raw time series data, but being
careful to not do so too aggressively, and 5) making all efforts
at ensuring that data with enough diversity is demonstrated to
the calibration algorithm while training to ensure good gen-
eralization. These results offer insights into the strengths and
limitations of these sensors, and offer an encouraging oppor-
tunity at using them to supplement and densify compliance
regulatory monitoring networks.

1 Introduction

Elevated levels of air pollutants have a detrimental impact
on human health as well as the economy (Chowdhury et al.,
2018; Landrigan et al., 2018). For instance, high levels of
ground-level O3 has been linked to difficulty in breathing, in-
creased frequency of asthma attacks, and chronic obstructive
pulmonary disease (COPD). The World Health Organization
reported (WHO, 2018) that in 2016, 4.2 million premature
deaths worldwide could be attributed to outdoor air pollution,
91% of which occurred in low- and middle-income countries
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2 Sahu et. al.: Robust statistical calibration and characterization of low-cost air quality sensors

where air pollution levels often did not meet its guidelines.
There is a need for accurately real-time monitoring of air pol-
lution levels with dense spatio-temporal coverage.

Existing regulatory techniques for assessing urban air
quality (AQ) rely on a small network of Continuous Ambient
Air Quality Monitoring Stations (CAAQMYS) that are instru-
mented with accurate air quality monitoring gas analyzers
and Beta-Attenuation Monitors and provide highly accurate
measurements (Snyder et al., 2013; Malings et al., 2019).
However, these networks are established at a commensu-
rately high setup cost and are cumbersome to maintain (Sahu
et al., 2020), making dense CAAQMS networks impractical.
Consequently, the AQ data offered by these sparse networks,
however accurate, limits the ability to formulate effective AQ
strategies (Garaga et al., 2018; Fung, 2019).

In recent years, the availability of low-cost AQ (LCAQ)
monitoring devices has provided exciting opportunities for
finer spatial resolution data (Rai et al., 2017; Baron and Saf-
fell, 2017; Kumar et al., 2015; Schneider et al., 2017; Zheng
etal., 2019). The cost of a Federal Reference Method (FRM)-
grade CAAQMS system is around USD 200,000, while that
of an LCAQ device running commodity sensors is under
USD 500 (Jiao et al., 2016; Simmhan et al., 2019). In this
manuscript, we use the term “commodity” to refer to sensors
or devices that are not custom built and instead sourced from
commercially available options. The increasing prevalance
of the Internet of Things (IoT) infrastructure allows building
large-scale networks of LCAQ devices (Baron and Saffell,
2017; Castell et al., 2017; Arroyo et al., 2019).

Dense LCAQ networks can complement CAAQMS to
help regulatory bodies identify sources of pollution and
formulate effective policies, allow scientists to model in-
teractions between climate change and pollution (Hagan
et al., 2019), allow citizens to make informed decisions,
e.g. on their commute (Apte et al., 2017; Rai et al., 2017),
and encourage active participation in citizen science initia-
tives (Gabrys et al., 2016; Commodore et al., 2017; Gillooly
et al., 2019; Popoola et al., 2018).

1.1 Challenges in low-cost sensor calibration

Measuring ground-level O3 and NOs is challenging as they
occur at parts per billion levels and intermix with other pol-
lutants (Spinelle et al., 2017). LCAQ sensors are not de-
signed to meet rigid performance standards and may gen-
erate less accurate data as compared to regulatory-grade
CAAQMS (Mueller et al., 2017; Snyder et al., 2013; Miskell
et al., 2018). Most LCAQ gas sensors are based either
on metal oxide (MOx) or electrochemical (EC) technolo-
gies (Pang et al., 2017; Hagan et al., 2019). These present
challenges in terms of sensitivity towards environmental con-
ditions and cross-sensitivity (Zimmerman et al., 2018; Lewis
and Edwards, 2016). For example, O3 electrochemical sen-
sors undergo redox reactions in the presence of NOs. The
sensors also exhibit loss of consistency or drift over time.

For instance, in EC sensors, reagents are spent over time and
have a typical lifespan of one to two years (Masson et al.,
2015; Jiao et al., 2016). Thus, there is need for reliable cali-
bration of LCAQ sensors to satisfy performance demands of
end-use applications (De Vito et al., 2018; Akasiadis et al.,
2019; Williams, 2019).

1.2 Related Works

Recent works have shown that LCAQ sensor calibration
can be achieved by co-locating the sensors with regulatory-
grade reference monitors and using various calibration mod-
els (De Vito et al., 2018; Hagan et al., 2019; Morawska
et al., 2018). Zheng et al. (2019) considered the problem
of dynamic PMs 5 sensor calibration within a sensor net-
work. For the case of SO5 sensor calibration, Hagan et al.
(2019) observed that parametric models such as linear least
squares regression (LS) could extrapolate to wider concentra-
tion ranges, at which non-parametric regression model may
struggle. However, LS does not correct for (non-linear) de-
pendence on temperature (T) or relative humidity (RH), at
which non-parametric models may be more effective.

Since electrochemical sensors are configured to have
diffusion-limited responses, and the diffusion coefficients
could get affected by ambient temperature, Sharma et al.
(2019); Hitchman et al. (1997); Masson et al. (2015) found
that at RH exceeding 75% there is substantial error, possibly
due to condensation on the potentiostat electronics. Simmhan
et al. (2019) used non-parametric approaches such as re-
gression trees along with data aggregated from multiple co-
located sensors to demonstrate the effect of training dataset
on calibration performance. Esposito et al. (2016) made use
of neural networks and demonstrated good calibration per-
formance (with mean absolute error < 2 ppb) for the calibra-
tion of NOs sensors. However, a similar performance was not
observed for O3 calibration. Notably, existing works mostly
use a localized deployment of a small number of sensor, e.g.
Cross et al. (2017) who tested two devices, each containing
one sensor per pollutant.

1.3 Our Contributions and the SATVAM initiative

The SATVAM initiative (Streaming Analytics over Tempo-
ral Variables from Air quality Monitoring) has been devel-
oping low-cost air quality (LCAQ) sensor networks based on
highly portable IoT software platforms. These LCAQ devices
include (see Fig. 3) PMs 5 as well as gas sensors. Details on
the IoT software platform and SATVAM node cyber infra-
structure are available in (Simmhan et al., 2019). The focus
of this paper is to build accurate and robust calibration mod-
els for the NO5 and O3 gas sensors present in SATVAM de-
vices. Our contributions are summarized below:

1. We report the results of a deployment and calibration
study involving six sensors deployed at two sites over
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Sahu et. al.: Robust statistical calibration and characterization of low-cost air quality sensors 3

Figure 1. A map showing the locations of the deployment sites.
Figure 1(b) and (c) show a local-scale map of the vicinity of the
deployment sites — namely Site D at MRIU, Delhi NCR (Fig. 1(b))
and Site M at MPCB, Mumbai (Fig. 1(c)), with the sites themselves
pointed out using bright green dots. Figure 1(a) shows the location
of the sites on a map of India. Credit for Map Sources: Fig. 1(a)
is taken from the NASA Earth Observatory with the outlines of the
Indian states in red taken from QGIS3.4 Madeira. Figure 1(b) and
(c) were obtained from, and are, © Google Maps. The green markers
for the sites in all figures were added separately.

two phases with vastly different meteorological, geo-
graphical and air quality parameters.

2. A unique feature of our deployment is a swap-out exper-

iment wherein three of these sensors were relocated to

5 different sites in the two phases (see Sec. 2 for deploy-

ment details). This allowed us to investigate the efficacy

of calibration models when applied to weather and air

quality conditions vastly different from those present

during calibration. Such an investigation is missing

10 from previous works which mostly consider only local-
ized calibration.

3. We present an extensive study of parametric and non-
parametric calibration models, and develop a novel lo-
cal calibration algorithm based on metric learning that

15 offers stable (across gases, sites and seasons) and accu-
rate calibration.

4. We present an analysis of the effect of data prepara-
tion techniques such as volume of data, temporal av-
eraging and data diversity, on calibration performance.

20 This yields several take-home messages that can boost
calibration performance.

2 Deployment Setup

Our deployment employed a network of LCAQ sensors and
reference grade monitors for measuring NOy and Og con-
25 centrations, deployed at two sites across two phases.

2.1 Deployment Sites

SATVAM LCAQ sensor deployment and collocation with
reference monitors was carried out at two sites. Figure 1
presents the geographical locations of these two sites.

1. Site D: located within the Delhi National Capital Re-
gion (NCR) of India at the Manav Rachna International
Institute of Research and Studies, Sector 43, Faridabad
(28.45°N, 77.28°E, 209 m above mean sea level).

2. Site M: located within the city of Mumbai at the Ma-
harashtra Pollution Control Board within the university
campus of IIT Bombay (19.13°N, 72.91°E, and 50 m
above mean sea level).

Figure 2 presents a snapshot of raw parameter values pre-
sented by the two sites. We refer to the supplementary ma-
terial for additional details about the two deployment sites.
Due to increasing economic and industrial activities, a pro-
gressive worsening of ambient air pollution is witnessed at
both sites. We considered these two sites to cover a broader
range of pollutant concentrations and weather patterns, so as
to be able to test the reliability of LCAQ networks. It is no-
table that the two chosen sites present different geographical
settings as well as different air pollution levels with site D
of particular interest in presenting significantly higher mini-
mum Og levels than site M, illustrating the influence of the
geographical variability over the selected region.

2.2 Instrumentation

LCAQ Sensor Design: Each SATVAM LCAQ device con-
tains two commodity electrochemical gas sensors (Al-
phasense OX-B421 and NO2-B42F) for measuring O3 (ppb)
and NOs (ppb) levels, a PM sensor (Plantower PMS7003)
for measuring PM, 5 (g m~3) levels, and a DHT22 sensor
for measuring ambient temperature (°C) and relative humid-
ity RH (%). Figure 3 shows the placement of these compo-
nents. A notable feature of this device is its focus on frugality
and use of the low-power ContikiOS platform and 6LoW-
PAN for providing wireless sensor network connectivity.
Detailed information on assembling these different com-
ponents and the interfacing with an IoT network is described
in (Simmhan et al., 2019). These sensors form a highly
portable IoT software platform to transmit 6LoWPAN pack-
ets at 5 minute intervals containing five time-series data
points from individual sensors, namely NOs, O3, PMs 5 (not
considered in this study), temperature and RH. Given the
large larger number of devices spread across two cities and
seasons in this study, a single border-router edge device was
configured at both sites using a Raspberry Pi that acquired
data, integrated it, and connected to a cloud facility using a
WiFi-link to the respective campus broadband networks. A
Microsoft Azure Standard D4s v3 VM was used to host the
cloud service with 4 cores, 16 GB RAM and 100 GB SSD
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Figure 2. Figures 2(a,b) present time series for raw parameters measured using the reference monitors (NO2 and O3 concentrations) as well
as those measured using the SATVAM LCAQ sensors (RH, T, no2op1, no2op2, oxopl, oxop2). Figure 2(a) considers a 48 hour period during
the Jun deployment (01-02 July 2019) at site D with signal measurements taken from the sensor DD1 whereas Fig. 2(b) considers a 48 hour
period during the Oct deployment (20-21 October 2019) at site M with signal measurements taken from the sensor MMS5 (see Sec. 2.3 for
conventions used in naming sensors e.g. DD1, MMS, etc.). Values for site D are available at 1 minute intervals while those for site M are
averaged over 15-min intervals. Thus, the left plot is more granular than the right plot. Site D experiences higher levels of both NO» and
O3 as compared to site M. Figure 2(c) presents a scatter plot showing variations in RH and T at the two sites across the two deployments.
The sites offer substantially diverse weather conditions. Site D exhibits wide variations in RH and T levels during both deployments. Site M
exhibits almost uniformly high RH levels during the Oct deployment which coincided with the retreating monsoons.

Figure 3. Primary components of the SATVAM LCAQ (low-cost
air-quality) sensor used in our experiments. The SATVAM device
consists of a Plantower PMS7003 PM3 5 sensor, Alphasense OX-
B431 and NO2-B43F electrochemical sensors, and a DHT22 RH
and temperature sensor. Additional components (not shown here)
include instrumentation to enable data collection and transmission.

storage running an Ubuntu 16.04.1 LTS OS. The Pi edge de-
vice was designed to ensure that data acquisition continues
even in the event of cloud VM failure.

Reference Monitors: At both the deployment sites, Og
and NO9 were measured simultaneously with data available
at 1 minute intervals for site D deployments (both Jun and
Oct) and 15 minute intervals for site M deployments. O3
and NO, values were measured at site D using an ultraviolet
photometric O3 analyzer (Model 49i O3 analyzer, Thermo
Scientific™, USA) and a chemiluminescence oxide of ni-
trogen (NOx) analyzer (Model 42i NOx analyzer, Thermo
Scientific™, USA), respectively. Regular maintenance and
multi-point calibration, zero checks, and zero settings of the
instruments were carried out following the method described
by Gaur et al. (2014). The lowest detectable limits of refer-
ence monitors in measuring O3 and NOs were 0.5 ppb and
0.40 ppb, respectively, and with a precision of +0.25 ppb
and +0.2 ppb, respectively. Similarly, the deployments at

site M had Teledyne T200 and T400 reference-grade mon-
itors installed. These also have a UV photometric analyzer
to measure Oj3 levels and use chemiluminescence to measure
NOs concentrations with lowest detectable limits for O3 and
NO; of 0.4 ppb and 0.2 ppb respectively and a precision
of +0.2 ppb and 0.1 ppb respectively. For every deploy-
ment, the reference monitors and the AQ sensors were time-
synchronized, with the 1 minute interval data averaged across
15 minute intervals for all site M deployments since the site
M reference monitors gave data at 15 minute intervals.

2.3 Deployment Details

A total of four field co-location deployments, two each at
sites D and M, were evaluated to characterize the calibra-
tion of the low-cost sensors during two seasons of 2019. The
two field deployments at site D were carried out from 27th
Jun—6th Aug 2019 (7 weeks) and 4th Oct-27th Oct 2019 (3
weeks). The two field deployments at site M, on the other
hand, were carried out from 22nd Jun-21st Aug 2019 (10
weeks), and 4th Oct—27th Oct 2019 (3 weeks) respectively.
For sake of convenience, we will refer to both deployments
that commenced in the month of June 2019 (resp. October
2019) as Jun (resp. Oct) deployments even though the dates
of both Jun deployments do not exactly coincide.

A total of six low-cost SATVAM LCAQ sensors were de-
ployed at these two sites. We assign these sensors a unique
numerical identifier and a name that describes its deployment
pattern. The name of a sensor is of the form XYn where
X (resp Y) indicates the site at which the sensor was de-
ployed during the Jun (resp Oct) deployment and n denotes
its unique numerical identifier. Figure 4 outlines the deploy-

20

25

30

35

40

45



Sahu et. al.: Robust statistical calibration and characterization of low-cost air quality sensors 5

Sensors
DDl DM2 DD3 MM5 MD6 MD7
Jun D D D M M M
Oct D M D M D D

DD1, DM2 DD1, DD3
DD3 % MD6, MD7 £
\ MMS5, MD6 \ DM2, MM5

/

Jun deployment Oct deployment

Figure 4. A schematic showing the deployment of the six LCAQ
sensors across site D and site M during the two deployments. The
sensors subjected to the swap-out experiment are presented in bold.
Credit for Map Sources: the outlines of the Indian states in red was
taken from QGIS3.4 Madeira with other highlights (e.g. for oceans)
and markers being added separately.

ment patterns for the six sensors DD1, DM2, DD3, MMS5,
MD6, and MD7.

Swap-out Experiment. As Fig. 4 indicates, three sensors

were swapped with the other site across the two deployments.
s Specifically, for the Oct deployment, DM2 was shifted from
site D to M, and MD6 and MD?7 from site M to D.

Sensor Malfunction. We actually deployed a total of
seven sensors in our experiments. The seventh sensor, named
DM4, was supposed to be swapped from site D to site M.

10 However, the onboard RH and temperature sensors for this
sensor were non-functional for the entire duration of the Jun
deployment and frequently so for the Oct deployment as
well. For this reason, this sensor was excluded from our study
altogether. To avoid confusion, in the rest of the manuscript

15 (e.g. the abstract, Fig. 4, etc) we report only six sensors of
which three were a part of the swapout experiment.

3 Data Analysis Setup

All experiments were conducted on a commodity laptop with
an Intel Core i7 CPU (2.70GHz, 8GB RAM) and running
20 an Ubuntu 18.04.4 LTS operating system. Standard off-the-
shelf machine learning and statistical analysis packages such
as numpy, sklearn, scipy and metric-learn were used to im-
plement the calibration algorithms.
Raw Datasets and Features. The six sensors across the
»s Jun and Oct deployments, gave us a total of 12 datasets.
We refer to each dataset by mentioning the sensor name and
the deployment. For example, the dataset DM?2(Oct) contains
data from the October deployment at site M of the sensor

DM2. Each dataset is represented as a collection of eight time
series for which each time stamp is represented as an 8-tuple
(03, NO2, RH, T, no2op1, no20p2, oxopl, oxop2) giving us,
respectively, the reference values for O3 and NOy (in ppb),
relative humidity RH (in %) and temperature T (in °C) val-
ues, and voltage readings (in mV) from the two electrodes
present in each of the two gas sensors. These readings repre-
sent working (no2op!l and oxopl) and auxiliary (no2op2 and
oxop2) electrode potentials for these sensors. We note that
RH and T values in all our experiments were obtained from
DHT?22 sensors in the LCAQ sensors and not from the refer-
ence monitors. This was done to ensure that the calibration
models, once trained, could perform predictions using data
available from the LCAQ sensor alone and not rely on data
from a reference monitor. For site D, both the LCAQ sen-
sor as well as the reference monitor data was available at 1
minute intervals. However for site M, since reference mon-
itor data was only available at 15 minute intervals, LCAQ
sensor data was averaged over 15 minute intervals.

Data Cleanup. Time-stamps from the LCAQ sensors were
aligned to those from the reference monitors. For several
time-stamps, we found that either the sensor or reference
monitors presented with one or more missing or spurious val-
ues (see Table 1 for examples). Spurious values included the
following cases: a) a reference value for O3 or NO5 of > 200
ppb or < 0 ppb (the reference monitors sometimes offered
negative readings when powering up and under anomalous
operating conditions e.g. condensation at the inlet), b) a sen-
sor temperature reading of > 50 °C or < 1 °C, ¢) a sensor
RH level of > 100 % or < 1 %, and d) a sensor voltage read-
ing (either of no2opl, no2op2, oxopl, oxop2) of > 400 mV
or < 1 mV. These errors are possibly due to electronic noise
in the devices. All time-stamps with even one spurious or
missing value were considered invalid and removed. Across
all 12 datasets, an average of 52% of the time-stamps were
removed as a result. However, since site D (resp. site M)
offered timestamps at 1 minute (resp. 15 minute) intervals
i.e. 60 (resp 4) timestamps every hour, at least one times-
tamp (frequently several) were found still valid every hour in
most cases. Thus, the valid timestamps could still accurately
track diurnal changes in AQ parameters. The datasets from
Jun (resp. Oct) deployments at site D offered an average of
33753 (resp. 9548) valid time-stamps. The datasets from Jun
(resp. Oct) deployments in site M offered an average of 2462
(resp. 1062) valid time-stamps. As expected, site D that had
data at 1 minute intervals offered more time-stamps than site
M that had data at 15 minute intervals. For both sites, more
data is available for the Jun deployment (that lasted longer)
than the Oct deployment.

3.1 Data Augmentation and Derived Dataset Creation
For each of the 12 datasets, apart from the six data features

provided by the LCAQ sensors, we included two augmented
features, calculated as follows: no2diff = no2op1 — no2op2,
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6 Sahu et. al.: Robust statistical calibration and characterization of low-cost air quality sensors

Table 1. Samples of the raw data collected from the DM2(Jun) and MM5(Oct) datasets. The last column indicates whether data from that
time-stamp was used in the analysis or not. Note that DM2(Jun) data, coming from site D, has samples at 1 minute intervals whereas
MM5(Oct) data, coming from site M, has samples at 15 minute intervals. The raw voltage values (no2op1, no2op2, oxopl, oxop2) offered
by the LCAQ sensor are always integer valued, as indicated in the DM2(Jun) data. However, for site M deployments, due to averaging, the
effective voltage values used in the dataset may be fractional, as indicated in the MM5(Oct) data. The symbol x indicates missing values. A

bold font indicates invalid values.

DM2(Jun)
Time-stamp 03 NO2 T RH no2opl no2op2 oxopl oxop2 | no2diff oxdiff | Valid?
29-06 04:21 19.82 20.49 3277 546 212 231 242 209 -19 33 Yes
30-06 08:02 | 46.363 -0.359 36.8 39.6 184 221 234 201 -37 33 No
01-07 04:02 | 24.38 1473 325 69.7 X X X X X X No
08-07 07:51 | -0.035 17.147 31.5 97.8 209 238 231 216 -29 15 No
MMS5(Oct)
Time-stamp 03 NO2 T RH no2opl no2op2 oxopl oxop2 ‘ no2diff  oxdiff | Valid?
19-10 05:45 X X X X 16046  188.31 158.31 17238 | -27.85 -14.07 No
19-1007:15 | 555 11.52 4147 999 170.4 197.2 167.6  181.93 -26.8 -14.33 Yes
20-10 10:45 X X 28.52 999 121.8 154.0 119.3 135.3 -32.2 -16.0 No
22-1018:30 | 8.33 1091 27.87 99.9 143.2 172.3 146.2  155.47 -29.1 -9.27 Yes

and oxdiff = oxopl —oxop2. We found that having these aug-
mented features, albeit simple linear combinations of raw
features, offered our calibration models a predictive advan-
tage. The augmented datasets created this way represented
each time-stamp as a vector of 8 feature values (RH, T,
no2opl, no2op2, oxopl, oxop2, no2diff, oxdiff), apart from
the reference values of O3 and NO,.

3.1.1 Train-Test Splits

Each of the 12 datasets was split in a 70:30 ratio to obtain a
train-test split. 10 such splits were independently generated
for each dataset. All calibration algorithms were offered the
same train-test splits. For algorithms that required hyperpa-
rameter tuning, a randomly chosen set of 30% of the training
data points in each split was used as a held out validation set.
All features were normalized to improve the conditioning of
the calibration problems. This was done by calculating the
mean and standard deviation for each of the 8 features on the
training portion of a split, and then mean centering and divid-
ing by the standard deviation all time-stamps in both training
and testing portion of that split. An exception was made for
the Alphasense calibration models, which required raw volt-
age values. However, reference values were not normalized.

3.2 Derived Datasets

In order to study the effect of data frequency (how frequently
do we record data e.g. 1 minute, 15 minute), data volume (to-
tal number of time-stamps used for training), and data diver-
sity (data collected across seasons or sites) on the calibration
performance, we created several derived datasets as well. All
these datasets contained the augmented features.

1. Temporally Averaged Datasets: We took the two
datasets DD1(Jun) and DM2(Jun) and created four
datasets out of each of them by averaging the sensor
and reference monitor values at 5 minute, 15 minute,
30 minute and 60 minute intervals. These datasets were
named by affixing the averaging interval size to the
dataset name. For example, DD1(Jun)-AVG5 was cre-
ated out of DD1(Jun) by performing 5 minute averag-
ing, DM2(Jun)-AVG30 was created out of DM2(Jun)
using 30 minute averaging, etc.

2. Sub-sampled Datasets: To study the effect of hav-
ing less training data on calibration performance, we
created sub-sampled versions of both these datasets
by sampling a random set of 2500 time-stamps from
the training portion of the DDI1(Jun) and DM2(Jun)
datasets to get the datasets named DD1(Jun)-SMALL
and DM2(Jun)-SMALL.

3. Aggregated Datasets: Next, we created new datasets
by clubbing together data for a sensor across the two
deployments. This was done to the data from the sen-
sors DD1, MMS5, DM2 and MD6. For example, if we
consider the sensor DDI1, then the datasets DD1(Jun)
and DD1(Oct) were combined to create the dataset
DD1(Jun-Oct).

Investigating Impact of Diversity in Data. The aggre-
gated datasets are meant to help us study how calibration
algorithms perform under seasonally and spatially diverse
data. For example, the datasets DD 1(Jun-Oct) and MM5(Jun-
Oct) include data that is seasonally diverse but not spatially
diverse (since these two sensors were located at the same
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site for both deployments). On the other hand, the datasets
DM2(Jun-Oct) and MD6(Jun-Oct) include data that is di-
verse both seasonally as well as spatially (since these two
sensors were a part of the swapout experiment). At this point,
it is natural to wonder about studying the effect of spatial di-
versity alone (without seasonal effects). This can be done by
aggregating data from two distinct sensors since no sensor
was located at both sites during a deployment. However, this
turns out to be challenging since the onboard sensors in the
LCAQ devices, e.g. RH and T sensors, do not present good
agreement across devices, and some form of cross-device
calibration is needed. This is an encouraging direction for
future work but not considered in this study.

3.2.1 Performance Evaluation

The performance of calibration algorithms was assessed us-
ing standard error metrics and statistical hypothesis testing.

Error Metrics: calibration performance was measured us-
ing four popular metrics: mean averaged error (MAE), mean
absolute percentage error (MAPE), root mean squared error
(RMSE), and the coefficient of determination (R?) (please
see the supplementary material for detailed expressions of
these metrics).

Statistical Hypothesis Tests: in order to compare the
performance of different calibration algorithms on a given
dataset (to find out the best performing algorithm), or com-
pare the performance of the same algorithm on different
datasets (to find out the effect of data characteristics on cal-
ibration performance), we performed paired and unpaired
two-sample tests, respectively. Our null hypothesis in all such
tests proposed that the absolute errors offered in the two
cases considered are distributed identically. The test was ap-
plied and if the null hypothesis was rejected with sufficient
confidence (an « value of 0.05 was used as the standard to re-
ject the null hypotheses), then a winner was simultaneously
identified. Although the Student’s t-test is more popular, it as-
sumes that the underlying distributions are normal and an ap-
plication of the Shapiro-Wilk test (Shapiro and Wilk, 1965)
to our absolute error values rejected the normal hypothesis
with high confidence. Thus, we chose the non-parametric
Wilcoxon signed-rank test (Wilcoxon, 1945) when compar-
ing two algorithms on the same dataset, and its unpaired vari-
ant, the Mann-Whitney U-test (Mann and Whitney, 1947)
for comparing the same algorithm on two different datasets.
These tests do not make any assumption on the underlying
distribution of the errors and are well-suited for our data.

4 Baseline and Proposed Calibration Models

Our study considered a large number of parametric and non-
parametric calibration techniques as baseline algorithms. Ta-
ble 2 provides a glossary of all the algorithms including
their acronyms and brief descriptions. Detailed descriptions

of all these algorithms is provided in the supplementary ma-
terial. Among parametric algorithms, we considered the Al-
phasense models (AS1-AS4) supplied by the manufacturers
of the gas sensors, linear models based on least-squares (LS
and LS(MIN)) and sparse recovery (LASSO). Among non-
parametric algorithms, we considered regression trees (RT),
kernel-ridge regression (KRR), the Nystroem method for ac-
celerating KRR, the Nadaraya Watson estimator (NW), and
various local algorithms based on the k-nearest neighbors
principle (KNN, KNN-D). In this section we give a self-
contained description of our proposed algorithms KNN(ML)
and KNN-D(ML).

Notation: For every time-stamp ¢, the vector ! € R® de-
notes the 8-dimensional vector of signals recorded by the
LCAQ sensors for that time-stamp, namely (RH, T, no2opl,
no2op2, oxopl, oxop2, no2diff, oxdiff), while the vector
y' € R? will denote the 2-tuple of the reference values of O3
and NO,, for that time step. However, this notation is unnec-
essarily cumbersome since we will build separate calibration
models for O3 and NOs. Thus, to simplify the notation, we
will instead use 3° € R to denote the reference value of the
gas being considered (either O3 or NO3). The goal of calibra-
tion will then be to learn a real valued function f : R® = R
such that f(z') ~ y* for all time-stamps ¢ (the exact error
being measured using metrics such as MAE, MAPE, etc.).
Thus, we will learn two functions, say fxo, and fo,, to cali-
brate for NOy and O3 concentrations respectively. Since our
calibration algorithms use statistical estimation or machine
learning algorithms, we will let N (resp. n) denote the num-
ber of training (resp. testing) points for a given dataset and
split thereof. Thus, {(z!,y*)}¥, will denote the training set
for a given dataset and split with ! € R® and 3 € R.

4.1 Proposed Method: Distance-weighed KNN with a
Learnt Metric

Our proposed algorithm is a local, non-parametric algorithm
that uses a learnt metric. Below we describe the design of this
method and reasons behind these design choices.

Non-parametric estimators for Calibration. The sim-
plest example of a non-parametric estimator is the KNN (k
nearest neighbors) algorithm that predicts for a test point,
the average reference value in the k£ most similar training
points also known as “neighbors”. Other examples of non-
parametric algorithms include kernel ridge regression (KRR)
and the Nadaraya-Watson (NW) estimator (please see the
supplementary material for details). Non-parametric estima-
tors are well-studied and known to be asymptotically univer-
sal which guarantees their ability to accurately model com-
plex patterns which motivated their choice. These models can
also be brittle Hagan et al. (2019) when used in unseen oper-
ating conditions but Sec. 5.2 shows that our proposed algo-
rithm performs comparably to parametric algorithms when
generalizing to unseen conditions, but offers far more im-
provements when given additional data.
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8 Sahu et. al.: Robust statistical calibration and characterization of low-cost air quality sensors

Table 2. Glossary of baseline and proposed calibration algorithms used in our study with their acronyms and brief descriptions. The
KNN(ML) and KNN-D(ML) algorithms are proposed in this paper. Please see the supplementary material for details.

Parametric Algorithms

Non-parametric Algorithms

Non-parametric KNN-style Algorithms

AS1, AS2  Alphasense models (from RT Regression Tree KNN k-nearest Neighors
AS3, Ag4 84S semsor manufacturer) KRR Kenel Ridge Regression KNN-D Distance weighted KNN
LS Least Squares Regression NYS Nystroem Method KNNML)* KNN (learnt metric)
LS(MIN) LS with reduced features NW(ML) Nadaraya Watson (learnt metricy ~KNN-D(ML)*  KNN-D (learnt metric)
LASSO Sparse Regression *proposed in this paper

Metric Learning for KNN Calibration. As mentioned
above, the KNN algorithm uses neighboring points to per-
form prediction. A notion of distance, specifically a metric,
is required to identify neighbors. The default and most com-

s mon choice for a metric is the Euclidean distance which gives
equal importance to all 8 dimensions when calculating dis-
tances between two points say x*,x? € R®. However, our
experiments in Sec. 5 will show that certain features, e.g. RH
and T, seem to have a significant influence on calibration per-

10 formance. Thus, it is unclear how much emphasis should RH
and T receive, as compared to other features such as volt-
age values e.g. oxopl, while calculating distances between
two points. The technique of metric learning (Weinberger
and Saul, 2009) offers a solution in this respect by learning a
1s customized Mahalanobis metric metric that can be used in-
stead of the generic Euclidean metric. A Mahalanobis metric
is characterized by a positive semi-definite matrix X € R8*8
and calculates the distance between any two points as follows

dMaha(:L'l,:L'Q;E) — \/(1& _ :EQ)TE(iL'l _ 1:2)

20 Note that the Mahalanobis metric recovers the Euclidean
metric if we choose 3 = Iy i.e. the identity matrix. Now,
whereas metric learning for KNN is popular for classifica-
tion problems, it is uncommon for calibration and regression
problems. This is due to regression problems lacking a small

2s number of “classes”. To overcome this problem, we note that
other non-parametric calibration algorithms such as NW and
KRR also utilize a metric indirectly (please see the supple-
mentary material) and there do exist techniques to learn a
Mahalanobis metric to be used along with these algorithms

a0 (Weinberger and Tesauro, 2007). This allows us to adopt a
two-stage algorithm that first learns a Mahalanobis metric
well-suited for use with the NW algorithm and then uses it
to perform KNN-style calibration. Algorithm 1 describes the
resulting KNN-D(ML) algorithm.

s 5 Results and Discussion

The goals of using low-cost AQ monitoring sensors vary
widely. This section critically assesses a wide variety of cali-

Algorithm 1 The proposed KNN-D(ML) algorithm for dis-
tance weighted KNN calibration with a learnt metric.

Require: training data points {(a,y")}i_,, neighborhood size k
Ensure: a prediction from the KNN-D(ML) model
3% < use training data points to learn a Mahalanobis metric using
the technique from (Weinberger and Tesauro, 2007)
Receive feature vector & € R® for a test data point
Find the k training data points (say =1 ,...,2"*) that are closest
to & in terms of the learnt Mahalanobis distance @™ (-, -; 3)
Foralll=1...k, leta! = (@™ (&,z"; X)) ™"
N Zf:l al -yt
Zf: 1 ol

return Calibrated value g for the test data point

bration models. First we look at the performance of the algo-
rithms on individual datasets i.e. when looking at data within
a site and within a season. Next, we look at derived datasets
(see Sec. 3.2) which consider the effect of data volume, data
averaging and data diversity on calibration performance.

5.1 Effect of Model on Calibration Performance

We compare the performance of calibration algorithms intro-
duced in Sec. 4. Given the vast number of algorithms, we exe-
cuted a tournament where algorithms were divided into small
families, decided the winner within each family, and then
compared winners across families. The detailed per-family
comparisons are available in the supplementary material and
summarized here. The Wilcoxon paired two sample test (see
Sec. 3.2.1) was used to compare two calibration algorithms
on the same dataset. However, for visual inspection, we also
provide violin plots of the absolute errors offered by the al-
gorithms. We refer the reader to the supplementary material
for pointers on how to interpret violin plots.

5.1.1 Interpreting the Two-sample Tests

We refer the reader to Table 2 for a glossary of algorithm
names and abbreviations. As mentioned earlier, we used the
paired Wilcoxon signed ranked test to compare two algo-
rithms on the same dataset. Given that there are 12 datasets
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Sahu et. al.: Robust statistical calibration and characterization of low-cost air quality sensors 9

and 10 splits for each dataset, for ease of comprehension, we
provide globally averaged statistics of wins scored by an al-
gorithm over another. For example, say we wish to compare
RT and KRR as done in Table 3. We perform the test for each
individual dataset and split. For each test, we either get a win
for RT (in which case RT gets a +1 score and KRR gets 0),
or a win for KRR (in which case KRR gets a +1 score and
RT gets 0) or else the null hypothesis is not refuted (in which
case both get 0). The average of these scores is then shown.
10 For example, in Table 3 (left), row 3 column 2 records a value
of 0.63 implying that in 63% of these tests, KRR won over
RT in case of O3 calibration, whereas row 2 column 3 records
a value of 0.22 implying that in 22% of the tests, RT won over
KRR. In the balance (1 - 0.63 - 0.22 = 0.15) i.e. 15% of the
15 tests, neither algorithm could be declared a winner.

o

5.1.2 Intra-family Comparison of Calibration Models

We divided the calibration algorithms (see Table 2 for
a glossary) into four families: 1) the Alphasense fam-
ily (AS1, AS2, AS3, AS4), 2) linear parametric models
(LS, LS(MIN) and LASSO), 3) kernel regression models
(KRR, NYS), and 4) KNN-style algorithms (KNN, KNN-
D, NW(ML), KNN(ML), KNN-D(ML)). We included the
Nadaraya-Watson (NW) algorithm in the fourth family since
it was used alongwith metric learning, as well as because as
25 explained in the supplementary material, the NW algorithm
behaves like a “smoothed” version of the KNN algorithm.
The winners within these families are described below.

2

15}

1. Alphasense: All four Alphasense algorithms exhibit
extremely poor performance across all metrics on all

3 datasets, offering extremely high MAE and low R? val-
ues. This is corroborated by previous studies (Lewis and
Edwards, 2016; Jiao et al., 2016; Simmbhan et al., 2019).

2. Linear Parametric: Among the linear parametric algo-
rithms, LS was found to offer the best performance.

ss 3. Kernel Regression: The Nystroem method NYS was
confirmed to be an accurate but accelerated approxi-
mation for KRR with the acceleration being higher for

larger datasets.

4. KNN and Metric Learning Models: Among the
40 KNN family of algorithms, KNN-D(ML) i.e. distance
weighted KNN with a learnt metric, was found to offer

the best accuracies across all datasets and splits.

5.1.3 Global Comparison of Comparison Models

We took the best algorithms from all the families (except Al-
45 phasense models that gave extremely poor performance) and
regression trees (RT) and performed a head-to-head compar-
ison to assess the winner. The two-sample tests (Table 3) as
well as violin plots (Fig. 5) indicate that the KNN-D(ML) al-
gorithm continues to emerge as the overall winner. Table 4

25 25
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Figure 5. The violin plots on the left (resp. right) show the distribu-
tion of absolute errors incurred by various models on the DD1(Oct)
(resp MMS5(Jun)) datasets. KNN-D(ML) offers visibly superior per-
formance as compared to other algorithms such as LS and RT.
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Figure 6. Time series plotting reference values and those predicted
by the KNN-D(ML) algorithm for NO2 and O3 concentration for
48 hour durations using data from the DD1 and MMS5 sensors. The
legend of each plot notes the gas for which calibration is being re-
ported, the deployment season, as well as the sensor from which
data was used to perform the calibration. Each plot also contains a
scatter plot as an inset showing the correlation between the refer-
ence and predicted values of the concentrations. For both deploy-
ments and both gases, KNN-D(ML) can be seen to offer excellent
calibration and agreement with the FRM-grade monitor.

additionally establishes that KNN-D(ML) can be upto 4 — 20
percentage points better than classical non-parametric algo-
rithms such as KRR in terms of R? coefficient. The improve-
ment is much more prominent for NOg calibration which
seems to be more challenging as compared to O3 calibra-
tion. Figure 6 presents cases where the KNN-D(ML) models
offer excellent agreement with the reference monitors across
significant spans of time.

Analyzing High Error Patterns. Having analyzed the
calibration performance of various algorithms including
KNN-D(ML), it is interesting to note under what conditions
do these algorithms incur high error. Non-parametric algo-
rithms such as RT and KNN-D(ML) are expected to do well
in the presence of good amounts of diverse data. Figure 7
confirms this by classifying timestamps into various bins ac-
cording to weather conditions. KNN-D(ML) and RT do offer
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10 Sahu et. al.: Robust statistical calibration and characterization of low-cost air quality sensors

Table 3. Results of the pairwise Wilcoxon signed rank tests across all model types. We refer the reader to Sec. 5.1.1 for a discussion on
how to interpret this table. KNN-D(ML) beats every other algorithm comprehensively and is scarcely ever beaten (with the exception of
NW(ML) which KNN-D(ML) still beats 58% of the time on NOz and 62% on Os). The overall ranking of the algorithms is indicated to be
KNN-D(ML) > NW(ML) > KRR > RT > LS.

NOq O3
| LS RT KRR NW(ML) KNN-D(ML) LS RT KRR NWML) KNN-D(ML)
LS 0 0 0 0 0 LS 0 0.01 0 0 0
RT 0.97 0 0.38 0.16 0 RT 0.83 0 0.22 0 0
KRR 1 0.4 0 0 0 KRR 1 0.63 0 0.01 0
NW(ML) 1 0.75 1 0 0.07 NW(ML) 1 0.97 0.96 0 0.02
KNN-D(ML) 1 1 1 0.58 0 KNN-D(ML) 1 1 0.97 0.62 0

Table 4. A comparison of algorithms across families on the DD1 and MMS5 datasets across seasons with respect to the R? metric. All values
are averaged across 10 splits. Bold values indicate the best performing algorithm in terms of mean statistics.

O3 NO-2
\ DDI1 MM5 \ DDI1 MM5

‘ Jun Oct Jun Oct ‘ Jun Oct Jun Oct
LS 0.843+£0.006  0.969+£0.002  0.334+£0.035 0.846£0.019 LS 0.341£0.013  0.623£0.005  0.375+£0.049  0.321+£0.026
RT 0.852+0.005 0.971+0.003  0.488+0.071  0.393+0.224 RT 0.674+0.015 0.913+0.014 0.48740.064 0.35840.087
KRR 0.885+0.005 0.987+0.002  0.719+0.037  0.935+0.02 KRR 0.608+0.019  0.957+0.003  0.728+0.034  0.673+0.059
NW(ML) 0.895+£0.004  0.988+£0.001  0.74 +0.038  0.943£0.026 NW(ML) 0.717£0.017  0.97 £0.003  0.771+£0.026  0.751-£0.039
KNN-D(ML) | 0.923+£0.003 0.99 +0.001  0.744+0.043  0.943+£0.025 KNN-D(ML) | 0.819+0.015 0.977+0.002 0.759+0.022  0.751+0.043

high average error mostly in those bins where there were less
training points. Figure 7 also confirms a positive correlation
between high concentrations and higher error although this
effect is more pronounced for LS than KNN-D(ML).

5 5.2 Effect of Data Preparation on Calibration
Performance

We critically assessed the robustness of these calibration
models, and identified the effect of other factors, such as tem-
poral averaging of raw data, total amount of data available

10 for training, and diversity in training data. We note that some
of these studies were made possible only because the swap-
out experiment enabled us to have access to sensors that did
not change their deployment sites, as well as those that did
change their deployment site.

15 5.2.1 Some Observations on Original Datasets

The performance of KNN-D(ML) on the original datasets
itself gives us indications on how various data preparation
methods can affect calibration performance. Table 4 shows
us that in most cases, the calibration performance is better
20 (with higher R?) for O3 than NO,. This is another indication
that NO,, calibration is more challenging that O3 calibration.
Moreover, for both gases and in both seasons, we see site
D offering a better performance than site M. This difference
is more prominent for NO2 than for O3. This indicates that
25 paucity of data and temporal averaging may be affecting cali-

bration performance negatively, as well as that O3 calibration
might be less sensitive to these factors than NO;, calibration.

5.2.2 Effect of Temporal Data Averaging

Recall that data from sensors deployed at site M had to be
averaged over 15 minute intervals to align them with the ref-
erence monitor timestamps. To see what effect such averag-
ing has on calibration performance, we use the temporally
averaged datasets (see Sec. 3.1). Figure 8 presents the results
of applying the KNN-D(ML) algorithm on data that is not
averaged at all (i.e. 1 minute interval timestamps), as well
as data that is averaged at 5, 15, 30 and 60 minute intervals.
The performance for 30 and 60 minute averaged datasets is
visibly inferior that that for the non-averaged dataset as in-
dicated by the violin plots. This leads us to conclude that
excessive averaging can erode the diversity of data and ham-
per effective calibration. To distinguish among the other tem-
porally averaged datasets for which visual inspection is not
satisfactory, we also performed the unpaired Mann-Whitney
U test, the results for which are shown in Table 5. The re-
sults are striking in that they reveal that moderate averaging,
for example at 5 minute intervals, seems to benefit calibra-
tion performance. However, this benefit is quickly lost if the
averaging window is increased much further at which point,
performance almost always suffers. NOy calibration perfor-
mance seems to be impacted more adversely by aggressive
averaging than Oj calibration.
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Figure 7. Analyzing error distributions of LS, KNN-D(ML), and RT. Figure 7(a) shows the number of training data points in various weather
condition bins. Figures 7(b,c,d) show the MAE for NO, calibration offered by the algorithms in those same bins. Non-parametric algorithms
such as KNN-D(ML) and RT offer poor performance (high MAE) mostly in bins that had less training data. No such pattern is observable
for LS. Figures 7(e.f,g,h) show the diurnal variation of MAE for KNN-D(ML) and LS at various times of day. Oz errors exhibit a diurnal
trend of being higher (more so for LS than KNN-D(ML)) during daylight hours when Os levels are high. No such trend is visible for NO2.

Table 5. Results of the pairwise Mann-Whitney U tests on the performance of KNN-D(ML) across temporally averaged versions of the DD1
dataset. We refer the reader to Sec. 5.1.1 for a discussion on how to interpret this table. The dataset names are abbreviated, e.g. DD1(Jun)-
AVGS is referred to as simply AVGS. Results are reported over a single split. AVG5 wins over any other level of averaging and clarifies
that mild temporal averaging (e.g. over 5 minute windows) boosts calibration performance, whereas aggressive averaging e.g. 60 minute
averaging in AVG60, degrades performance.

O3 NO,
DD1(Jun) AVG5 AVGI5 AVG30 AVG60 DDI(Jun) AVG5 AVGI5 AVG30 AVG60
DDI1(Jun) 0 0 0 0 0 DDI1(Jun) 0 0 0 1 1
AVG5 1 0 1 1 1 AVG5 1 0 1 1 1
AVG15 1 0 0 1 1 AVGI5 0 0 0 1 1
AVG30 1 0 0 0 1 AVG30 0 0 0 0 1
AVG60 0 0 0 0 0 AVG60 0 0 0 0 0
5.2.3 Effect of Data Paucity was done only in cases where both datasets belonged to the
same sensor but for different deployments. Without excep-
Since temporal averaging decreases the amount of data as tion, such “transfers” led to a drop in performance. We con-
a side-effect, in order to tease these two effects apart, we firmed that this was true not just for non-parametric methods
also considered the sub-sampled versions of these datasets such as KNN-D(ML) but also parametric models like LS.
(see Sec. 3.1). Figure 8 also shows that reducing the amount This is to be expected since the sites D and M experience
of training data has an appreciable negative impact on cali- largely non-overlapping ranges of RH and T across the two
bration performance. NOs calibration performance seems to deployments (see Fig. 2(c) for a plot of RH and T values ex-
be impacted more adversely by lack of enough training data perienced at both sites in both deployments). Thus, it is not
than O3 calibration. surprising that the models performed poorly when faced with

unseen RH and T ranges. To verify that this is indeed the
case, we ran the KNN-D(ML) algorithm on the aggregated
datasets (see Sec. 3.1) which combine training sets from the
two deployments of these sensors. Table 6 confirms that once
trained on these more diverse datasets, the algorithms resume
offering good calibration performance on the entire (broad-
ened) range of RH and T values. However, KNN-D(ML) is

5.2.4 The Swapout Experiment: Effect of Data
Diversity

Table 6 describes an experiment wherein we took the KNN-
D(ML) model trained on one dataset and used it to make pre-
dictions on another dataset. To avoid bringing in too many
variables such as cross-device calibration (see Sec. 3.2), this
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12 Sahu et. al.: Robust statistical calibration and characterization of low-cost air quality sensors

Table 6. A demonstration of the impact of data diversity and data volume on calibration performance. All values are averaged across 10
splits. The results for LS diverged on some of the datasets on a few splits and those splits were removed while averaging to give LS an added
advantage. Bold values indicate the better performing algorithm. The first two rows present the performance of the KNN-D(ML) and LS
calibration models when tested on data for a different season (deployment) but in the same site. This was done for the DD1 and MMS sensors
that did not participate in the swap-out experiment. The next two rows present the same, but for sensors DM2 and MD6 that did participate
in the swap-out experiment and thus, their performance is being tested not only for a different season, but also a different site. The next four
rows present the dramatic improvement in calibration performance once datasets are aggregated for these four sensors. NO» calibration is
worse affected by these variations (average R? in first four rows being -3.69) than O3 calibration (average R? in first four rows being -0.97).

KNN-D(ML) LS
Os NO, Os NO2
Train — Test MAE R* MAE R* MAE R’ MAE R’
DD1(Jun) — (Oct)  21.82 0.19 21.86 -0.64 12.88 0.73 12.73 0.22
MMS5(Oct) = (Jun)  8.33 -3.75 1579 -12.28 1039 483 17.06 -21.67
DM2(Jun) — (Oct)  13.04 041 905 -099 936 0.68 595 0.1
MD6(Jun) — (Oct)  16.71 -0.72  30.9 -0.85 2112 -1.29 25.67 -0.23
DD1(Jun-Oct) 33 0.956 2.6 0924 117 0.29 13.0 0.38
MMS5(Jun-Oct) 2.5 0902 1.8 0.814 428 032 551 0.67
DM2(Jun-Oct) 37 0916 28 0800 613 079 672 026
MD6(Jun-Oct) 1.9 0989 1.8 0975 7.01 0.71 6.36 0.91
2 e e verse geographical, meteorological, and air pollution param-
0 EmNez = o3 eters. A unique feature of our deployment was the swap-out
£, & s experiment wherein three of the six sensors were transported
f(::m 3, across sites in the two deployments. To perform highly ac-
3 . g s curate calibration of these sensors, we experimented with a
. wide variety of standard algorithms but found a novel method
’ S & @& & & RO A based on metric learning to offer the strongest results. A few
o & S8 & & & &S & 1sti
° & & &0 key takeaways from our statistical analyses are:

Figure 8. Effect of temporal data averaging, and lack of data on
the calibration performance of the KNN-D(ML) algorithm on tem-
porally averaged and sub-sampled versions of the DD1(Jun) and
DM2(Jun) datasets. Notice the visible deterioration in the perfor-
mance of the algorithm when aggressive temporal averaging, e.g.
across 30 minute windows, is performed. NO2 calibration perfor-
mance seems to be impacted more adversely by lack of enough
training data or aggressive averaging than O3 calibration.

superior at exploiting the additional diversity in data than LS.
We note that parametric models are expected to generalize
better on unseen conditions than non-parametric models and
indeed we observe this in some cases in Table 6 where on
DDI1 and DM2 datasets, LS generalized better than KNN-
D(ML). However, we also observe some cases such as MM5
and MD6 where KNN-D(ML) generalizes comparable to or
better than LS.

o

6 Conclusions and Future Work

10 In this study we presented results of field deployments of
LCAQ sensors across two seasons and two sites having di-

1. Incorporating ambient RH and T, as well as the aug-
mented features oxdiff and noxdiff (see Sec. 3), into the
calibration model improves calibration performance.

2. Non-parametric methods such as KNN offer the best
performance but stand to gain significantly through the
use of metric learning techniques, which automatically
learn the relative importance of each feature, as well as
hyper-local variations such as distance-weighted KNN.
These indicate that these calibration tasks operate in
high variability conditions where local methods offer
the best chance at capturing subtle trends.

3. Performing smoothing over raw time series data ob-
tained from the sensors may help improve calibration
performance but only if done over short windows. Very
aggressive smoothing done over long windows is detri-
mental to performance.

4. Calibration models are data-hungry as well as diversity
hungry. This is especially true of local methods, for in-
stance KNN variants. Offering these techniques limited
amounts of data or data that is limited in diversity in
terms of RH, T or concentration levels, may result in
calibration models that generalize poorly.
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5. Although all calibration models see a decline in perfor-
mance when tested in unseen operating conditions, cal-
ibration models for O3 seem to be less sensitive than
those for NO; calibration.

s Our results offer encouraging options for using LCAQ sen-
sors to complement CAAQMS in creating dense and portable
monitoring networks. Avenues for future work include the
study of long-term stability of electrochemical sensors and
characterizing drift or deterioration patterns in these sensors

10 and correcting for the same, and rapid calibration of these
sensors that requires minimal collocation with a reference
monitor.

Code availability. The code used in this study is available at the fol-
lowing repository https://github.com/purushottamkar/aqi-satvam.
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