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Abstract. Rising awareness of the health risks posed by elevated levels of ground-level O3 and NO2 have led to an increased

demand for affordable and dense spatio-temporal air quality monitoring networks. Low-cost sensors used as a part of Internet

of Things (IoT) platforms offer an attractive solution with greater mobility and lower maintenance costs, and can supplement

compliance regulatory monitoring stations. These commodity low-cost sensors have reasonably high accuracy but require in-

field calibration to improve precision. In this paper, we report the results of a deployment and calibration study on a network5

of seven air quality monitoring devices built using the Alphasense O3 (OX-B431) and NO2 (NO2-B43F) electrochemical gas

sensors. The sensors were deployed at sites situated within two mega-cities with diverse geographical, meteorological and air

quality parameters – Faridabad (Delhi National Capital Region) and Mumbai, India. The deployment was done in two phases

over a period of three months. A unique feature of our deployment is a swap-out experiment wherein four of these sensors

were relocated to different sites in the two deployment phases. Such a diverse deployment with sensors switching places gives10

us a unique opportunity to study the effect of seasonal, as well as geographical variations on calibration performance. We

perform an extensive study of more than a dozen parametric as well as non-parametric calibration algorithms and find local

calibration methods to offer the best performance. We propose a novel local calibration algorithm based on metric-learning

that offers, across deployment sites and phases, an average R2 coefficient of 0.873 with respect to reference values for O3

calibration and 0.886 for NO2 calibration. This represents an upto 9% increase in terms of R2 values offered by classical15

local calibration methods. In particular, our proposed model far outperforms the default calibration models offered by the

gas sensor manufacturer. We also offer a critical analysis of the effect of various data preparation and model design choices

on calibration performance. The key recommendations emerging out of this study include 1) incorporating ambient relative

humidity and temperature as free parameters (or features) into all calibration models, 2) assessing the relative importance

of various features with respect to the calibration task at hand, by using an appropriate feature weighing or metric learning20
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technique, 3) the use of local (or even hyper-local) calibration techniques such as k-NN that seem to offer the best performance

in high variability conditions such as those encountered in field deployments, 4) performing temporal smoothing over raw time

series data, say by averaging sensor signals over small windows, but being careful to not do so too aggressively, and 5) making

all efforts at ensuring that data with enough diversity is demonstrated to the calibration algorithm while training to ensure

good generalization. These results offer insights into the strengths and limitations of these sensors, and offer an encouraging25

opportunity at using them to supplement and densify compliance regulatory monitoring networks.

1 Introduction and Related Works

Adverse effects of air pollution have a detrimental impact on the health of human populations as well as the economy (Chowd-

hury et al., 2018; Landrigan et al., 2018). For instance, high levels of ground-level ozone can cause severe health risks, including

but not limited to, difficulty in breathing, increased frequency of asthma attacks, and chronic obstructive pulmonary disease30

(COPD). The World Health Organization reported (WHO, 2018) that in 2016, 4.2 million premature deaths worldwide could

be attributed to outdoor air pollution, 91% of which occurred in low- and middle-income countries where air pollution levels

often did not meet its guidelines. Decision-makers require real-time information on air pollution to formulate effective policies

which presents a need for monitoring air pollution levels accurately with dense spatio-temporal coverage.

Existing regulatory techniques for assessing urban air quality (AQ) rely on a small network of monitoring stations providing35

highly precise measurements of the pollutants (Snyder et al., 2013; Malings et al., 2019). In developing countries like India,

existing city-level air quality monitoring networks are comprised of a proportionally small number of Continuous Ambient Air

Quality Monitoring Stations (CAAQMS). These stations are instrumented with accurate air quality monitoring gas analyzers

and Beta-Attenuation Monitors at a commensurately high setup and operating cost. The AQ data offered by a small number

of these monitors across a city, however accurate, limit the ability to formulate AQ improvement strategies (Garaga et al.,40

2018; Fung, 2019). Moreover, CAAQMS with traditional gas analyzers and filter based monitoring facilities are cumbersome

and expensive to install, operate and maintain (Sahu et al., 2020). Consequently, real-time actionable data at the citizen level

are currently available at very few locations in a city. There is a need for dense air quality monitoring coverage across cities

that can complement the limited spatial resolution of existing air pollution maps that are available for citizens (Kumar et al.,

2015; Schneider et al., 2017; Zheng et al., 2019). Adequate information on the real-time spatial and temporal distribution of45

pollutants would allow citizens to make informed decisions, for instance, on their commute (Apte et al., 2017; Rai et al., 2017).

However, the overall cost of operating a large number of reference-grade CAAQMS is not practical, especially in developing

countries like India.

In recent years, the availability of low-cost AQ monitoring sensors for measuring real-time air pollution concentrations

has provided exciting opportunities for finer spatial resolution data (Rai et al., 2017; Baron and Saffell, 2017). The cost of50

a Federal Reference Method (FRM)-grade monitoring system is around USD 200,000, while that of a low-powered device

running commodity AQ sensors is under USD 500 (Jiao et al., 2016; Simmhan et al., 2019). Several low-cost sensors can be

installed to complement a few reference monitors for better pollution mapping. In addition, the emergence of cloud computing

2

https://doi.org/10.5194/amt-2020-129
Preprint. Discussion started: 12 June 2020
c© Author(s) 2020. CC BY 4.0 License.



and the Internet of Things (IoT) cyber-infrastructure allows building large-scale networks of low-powered AQ monitoring

devices (Baron and Saffell, 2017; Castell et al., 2017; Arroyo et al., 2019). This paves a way for regulatory bodies to use AQ55

sensor data to identify patterns and sources of pollution and efficient policy formulation, for scientists to model the interactions

between climate change and pollution accurately (Hagan et al., 2019), and to facilitate the participation of the common public

in citizen science more actively (Gabrys et al., 2016; Commodore et al., 2017; Gillooly et al., 2019; Popoola et al., 2018).

However, the use of low-cost sensor data at a high temporal resolutions presents challenges as available sensors are not

designed to meet rigid performance standards and generate less accurate data than research-grade instruments (Mueller et al.,60

2017; Snyder et al., 2013; Miskell et al., 2018). Thus, there is need to evaluate data from real-time sensors and IoT networks

made available by manufacturers of AQ devices, for accuracy and precision (Akasiadis et al., 2019; Williams, 2019).

1.1 Challenges in low-cost sensor calibration

Measuring ground-level ozone (O3) and nitrogen dioxide (NO2) accurately using sensors is challenging as they occur at parts

per billion (ppb) micro-levels and intermix with other pollutants (Spinelle et al., 2017). Most commonly available low-cost sen-65

sors for these gas-phase compounds are based either on metal oxide (MOx) or electrochemical (EC) technologies (Pang et al.,

2017; Hagan et al., 2019). Field calibration remains one of the major challenges preventing extensive use of these technologies.

Often, sensor calibration is carried out in controlled conditions which differ substantially from real-world conditions.

In addition, these sensors at times have issues of consistency, stability and sensitivity towards environmental conditions,

and cross-sensitivity (Zimmerman et al., 2018; Lewis and Edwards, 2016). For example, O3 electrochemical sensors undergo70

redox reactions in the presence of NO2. Further, the constancy of low-cost sensors is recognized to reduce overtime. Moreover,

in electrochemical cells, reagents are spent over time and have a typical lifespan of one to two years (Masson et al., 2015;

Jiao et al., 2016). Thus, there is need for reliable calibration techniques that meet performance metrics required by end-use

applications even at low ambient concentrations (De Vito et al., 2018).

1.2 Related Works75

Recent works have demonstrated that valid sensor calibration can be achieved by co-locating them with highly accurate

regulatory-grade reference monitors and using various linear and non-linear calibration models (De Vito et al., 2018; Ha-

gan et al., 2019; Morawska et al., 2018). For the specific case of SO2 sensor calibration, Hagan et al. (2019) observed that

simple parametric models such as least squares (LS) regression could extrapolate to wider concentration ranges, at which non-

parametric regression model may fail. However, LS does not correct for the temperature or relative humidity (RH) dependence80

of the signal, at which non-parametric models may be more effective.

Since electrochemical sensors are configured such that the responses are diffusion-limited, and the diffusion coefficient could

get affected by varying temperature, Hitchman et al. (1997); Masson et al. (2015) found that at RH exceeding 75% there is

substantial error, possibly due to condensation on the potentiostat electronics. More recently, Simmhan et al. (2019) used non-

parametric approaches such as regression trees along with data aggregated from multiple co-located sensors to demonstrate the85

effect of training dataset on calibration performance. Esposito et al. (2016) made use of neural networks and demonstrated good
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calibration performance (with mean absolute error < 2 ppb) for calibration of NO2 sensors. However, a similarly impressive

performance was not observed for O3 calibration. Moreover, existing works have mostly been tested with localized deployment

of a small number of sensor, for instance Cross et al. (2017) who tested two sensor devices, each containing one sensor per

pollutant over 4 months with 35% training data.90

1.3 Our Contributions and the SATVAM initiative

The SATVAM initiative (Streaming Analytics over Temporal Variables from Air quality Monitoring) has focused on the de-

velopment and calibration of low-cost air quality (LCAQ) sensor networks based on highly portable IoT software platforms.

These sensors include (see Fig. 1) contain PM2.5 as well as gas sensors. Details on the IoT software platform and SATVAM

node cyber infra-structure are available in (Simmhan et al., 2019). The work of Zheng et al. (2019) considered the related95

problem of dynamic PM2.5 sensor calibration within a sensor network deployed in Delhi, India. The focus of this paper is to

build accurate and robust calibration models for the NO2 and O3 gas sensors present in SATVAM devices. Our contributions

are summarized below:

1. We report the results of a deployment and calibration study involving 6 sensors deployed at two sites with vastly different

meteorological, geographical and air quality parameters, over two phases. A unique feature of our deployment is a swap-100

out experiment wherein 4 of these sensors were relocated to different sites in the two phases (see Sect. 2 for deployment

details).

2. The swap-out experiment in particular is crucial in allowing us to investigate the efficacy of calibration models when

applied to weather and air quality conditions vastly different from those present during calibration. This is missing from

previous works which mostly consider only localized calibration of a couple of models.105

3. We present an extensive study of calibration models, both parametric and non-parametric and develop a novel local

calibration algorithm based on metric learning that offers both stable (across gases, sites and deployment phases), as

well as accurate calibration performance.

4. We present a critical analysis of the effect of data preparation techniques such as volume of data, temporal averaging

and data diversity, on calibration performance. This study yields several simple yet crucial take-home messages that110

significantly boost calibration performance.

2 Deployment Setup

Our deployment employed a network of LCAQ sensors as well as reference grade monitors for measuring both NO2 and O3

concentrations, deployed at two sites across two phases. Here we give details of the deployment setup.
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Figure 1. Primary components of the SATVAM LCAQ (low-cost air-quality) sensor used in our experiments. The SATVAM ensemble consists

of a Plantower PMS7003 PM2.5 sensor, Alphasense OX-B431 and NO2-B43F electrochemical sensors, and a DHT22 RH and temperature

sensor. Additional components (not shown here) include instrumentation to enable data collection and transmission.

2.1 Instrumentation115

Low-cost Sensor Design: Each SATVAM LCAQ device contains two commodity electrochemical gas sensors (Alphasense

OX-B421 and NO2-B42F) for measuring O3 (ppb) and NO2 (ppb) levels, a PM sensor (Plantower PMS7003) for measuring

PM2.5 (mg m−3) levels, and a DHT22 sensor for measuring ambient temperature in ◦C and RH in percent. Fig. 1 shows

the placement of these components. A notable feature of this device is its focus on resource frugality with use of the very

low-power ContikiOS platform and 6LoWPAN for providing wireless sensor network communications.120

Detailed information on assembling these different components and the cyber-infrastructure required to make a customized

sensor node capable of interfacing within an IoT network is available in other works (Simmhan et al., 2019). These works

also describe in detail the formation of a highly portable IoT software platform to transmit 6LoWPAN packets at 5 minute

intervals containing five time-series data points of the individual sensors, namely NO2, O3, PM2.5 (not presented in this

study), temperature and relative humidity (RH). In previous deployments which used only a couple of SATVAM devices, a125

Raspberry Pi unit was used at each device along with a mesh network to collect and push data to a cloud storage facility.

However, for the current deployment that considers a much larger number of devices spread across two cities and seasons,

a single border-router edge device was configured at both sites using a Raspberry Pi that acquired data, integrated it, and

connected to a cloud facility using a WiFi-link to the respective campus broadband networks. A Microsoft Azure Standard D4s

v3 VM was used to host the cloud service with 4 cores, 16 GB RAM and 100 GB SSD storage running an Ubuntu 16.04.1 LTS130

OS. The Pi edge device was designed to ensure that data acquisition continues even in the event of cloud VM failures.

Reference Monitors: At both the deployment sites, O3 and NO2 were measured simultaneously with data available at 1

minute intervals for site D deployments (both Jun and Oct) and 15 minute intervals for site M deployments. O3 and NO2

values were measured at site D using an ultraviolet photometric O3 analyzer (Model 49i O3 analyzer, Thermo ScientificTM,

USA) and a chemiluminescence oxide of nitrogen (NOx) analyzer (Model 42i NOx analyzer, Thermo ScientificTM, USA),135

respectively. Regular maintenance and multi-point calibration, zero checks, and zero settings of the instruments were carried

out following the method described by (Gaur et al., 2014). The lowest detectable limits of reference monitors in measuring O3

and NO2 are 0.5 ppb and 0.40 ppb, respectively, and with a precision of ±0.25 ppb and ±0.2 ppb, respectively. Similarly, the

deployments at site M had Teledyne T200 and T400 reference-grade monitors installed. These also have a UV photometric
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Figure 2. A map showing the locations of the deployment sites. Fig. 2(b) and (c) on the right show a local-scale map of the vicinity of the

deployment sites – namely Site D at MRIU, Delhi NCR (Fig. 2(b)) and Site M at MPCB, Mumbai (Fig. 2(c)), with the sites themselves

pointed out using bright green dots. Fig. 2(a) shows the location of the sites on a map of India. Credit for Map Sources: Fig. 2(a) is taken

from the NASA Earth Observatory with the outlines of the Indian states in red taken from QGIS3.4 Madeira. Fig. 2(b) and (c) were obtained

from, and are, © Google Maps. The green markers for the sites in all figures were added separately.

analyzer to measure O3 levels and use chemiluminescence to measure NO2 concentrations with lowest detectable limits for O3140

and NO2 of 0.4 ppb and 0.2 ppb respectively and a precision of ±0.2 ppb and ±0.1 ppb respectively. For every deployment,

the reference monitors and the AQ sensors were time-synchronized, with the 1 minute interval data averaged across 15 minute

intervals for all site M deployments. The DHT-22 sensor of the SATVAM devices was compared to Vaisala, a reference-grade

instrument for temperature and humidity kept alongside the AQ monitors at site D.

2.2 Deployment Sites145

SATVAM LCAQ sensor sensor deployment and collocation with reference monitors was carried out at two sites. Fig. 2 presents

the geographical locations of these two sites.

1. Site D: located within the Delhi National Capital Region (NCR) of India at the Manav Rachna International Institute of

Research and Studies, Sector 43, Faridabad (28.45◦N, 77.28◦E, 209 m above mean sea level).

2. Site M (in Mumbai): located within the city of Mumbai at the Maharashtra Pollution Control Board within the university150

campus of IIT Bombay (19.13◦N, 72.91◦E, and 50 m above mean sea level).

About Site D: According to Greenpeace India (Times, 2018) and the Niti Aayog, Govt. of India (Aggarwal, 2018), Faridabad

was the second most polluted city in India in 2018. Surrounded by the Aravalli Hills, this is a rapidly growing city and a leading

industrial center suffering from heavy air pollution that mask the city and its neighborhoods routinely during the fall and winter

seasons. The study site is 5 km away from Delhi and near Delhi-Surajkund Highway. It falls in the Indo-Gangetic Plain, which155

registered critical levels of ambient air pollution attributable to a combination of multiple ambient sources, the use of biomass
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Sensors

DD1 DM2 DD3 MM5 MD6 MD7

Jun D D D M M M

Oct D M D M D D

Figure 3. A schematic showing the deployment of the LCAQ sensors across site D and site M during the two deployments. The sensors

subjected to the swap-out experiment are presented in bold. The outlines of the Indian states in red was taken from QGIS3.4 Madeira with

other highlights (e.g. for oceans) and markers being added separately.

and coal for household cooking and heating needs, and the stubble or agricultural residue burning (Chowdhury et al., 2019).

The deployment site is affected by vehicular traffic which are likely a dominant source of precursors to O3 formation (NO2

and volatile organic compounds) and of nitric oxide that reacts with O3 to form the pollutant NO2. The reference monitors

were deployed in a laboratory on the first floor of the building with the low-cost AQ monitoring sensors next to its inlets.160

About Site M: This site presents relatively lower pollution levels as it is situated within the IIT Bombay campus between the

Vihar and Powai lakes, and it is adjacent to the Sanjay Gandhi National park. Less that 5 km to its west side passes the Thane

creek (an inlet in the shoreline of the Arabian Sea) that isolates the city of Mumbai from the Indian mainland while the Arabian

sea is at around 10 km to its west. The reference monitors were deployed on the rooftop of the building with the low-cost AQ

monitoring sensors next to its inlets. All AQ monitoring devices were in a Stevenson box to avoid damage to sensors.165

Due to ever-increasing economic and industrial activities across the city, a progressive worsening of ambient air pollution

is nearly inevitable at both study sites. We considered these two polluted sites situated within the Delhi-NCR and Mumbai to

cover a broader range of pollutant concentrations and weather patterns, so as to be able to test the reliability of low-cost sensor

networks in measuring O3 and NO2 levels. It is notable that the two chosen sites present different geographical settings as well

as different air pollution levels with site D of particular interest in presenting significantly higher minimum O3 levels than site170

M, illustrating the influence of the geographical variability over the selected region.
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2.3 Deployment Details

A total of four field co-location deployments, two each at sites D and M, were evaluated to characterize the calibration of the

low-cost sensors during two seasons of 2019. The two field deployments at site D were carried out from 27th Jun–6th Aug

2019 (7 weeks) and 4th Oct–27th Oct 2019 (3 weeks). The two field deployments at site M, on the other hand, were carried175

out from 22nd Jun–21st Aug 2019 (10 weeks), and 4th Oct–27th Oct 2019 (3 weeks) respectively. For sake of convenience, we

will refer to both deployments that commenced in the month of June 2019 (resp. October 2019) as Jun (resp. Oct) deployments

even though the dates of both Jun deployments do not exactly coincide.

A total of six low-cost SATVAM LCAQ sensors were deployed at these two sites. We assign these sensors a unique numerical

identifier and a name that clearly depicts its deployment pattern. The name of a sensor is of the form XYn where X (resp Y)180

indicates the site at which the sensor was deployed during the Jun (resp Oct) deployment and n denotes its unique numerical

identifier. The seven sensors are thus named DD1, DM2, DD3, MM5, MD6, and MD7. Fig. 3 outlines the deployment patterns.

2.4 Swap-out Experiment

As Fig. 3 indicates, two of the sensors from each of the sites were exchanged or swapped out to the other city across the two

deployments. DM2 was shifted from Delhi to Mumbai and MD6 and MD7 were shifted from Mumbai to Delhi for the Oct185

deployment.

3 Data Analysis Setup

Testbench: All experiments were conducted on a commodity laptop with an Intel Core i7 CPU with 2.70GHz frequency,

8GB of system memory and running an Ubuntu 18.04.4 LTS operating system. Standard off-the-shelf machine learning and

statistical analysis packages such as numpy, sklearn, scipy and metric–learn were used to implement the calibration algorithms.190

3.1 Raw Datasets and Features

The six sensors across the Jun and Oct deployments, gave us a total of 12 datasets. We refer to each dataset by mentioning the

sensor name and the deployment name. For example, the dataset DM2(Oct) contains data from the October deployment (at site

M) of the sensor DM2. Each dataset is represented as a collection of eight time series for which each time stamp is represented

as an 8-tuple (O3, NO2, RH, T, no2op1, no2op2, oxop1, oxop2) giving us, respectively, the reference values for O3 and NO2195

(in ppb), relative humidity (in %) and temperature (in ◦C) values at each time stamp, in addition to voltage readings (in mV)

from the two electrodes present in each of the two gas sensors. These readings are named no2op1, no2op2, oxop1, and oxop2

and they represent working (no2op1 and oxop1) and auxiliary (no2op2 and oxop2) electrode potentials for these sensors.
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Table 1. Samples of the raw data collected from the DM2(Jun) and MM5(Oct) datasets. The last column indicates whether data from that

time-stamp was used in the analysis or not. Note that DM2(Jun) data, coming from site D, has samples at 1 minute intervals whereas

MM5(Oct) data, coming from site M, has samples at 15 minute intervals. The raw voltage values (no2op1, no2op2, oxop1, oxop2) offered

by the LCAQ sensor are always integer valued, as indicated in the DM2(Jun) data. However, for site M deployments, due to averaging, the

effective voltage values used in the dataset may be fractional, as indicated in the MM5(Oct) data. The symbol × indicates missing values.

DM2(Jun)

Time-stamp O3 NO2 T RH no2op1 no2op2 oxop1 oxop2 no2diff oxdiff Valid?

29-06 04:21 19.82 20.49 32.7 54.6 212 231 242 209 -19 33 Yes

29-06 04:22 21.89 20.56 32.7 54.6 212 231 243 210 -19 33 Yes

29-06 04:23 22.71 18.17 × × × × × × × × No

29-06 04:24 24.82 14.60 32.5 53.3 × × × × × × No

MM5(Oct)

Time-stamp O3 NO2 T RH no2op1 no2op2 oxop1 oxop2 no2diff oxdiff Valid?

17-10 05:45 7.17 37.62 26.12 99.9 119.27 152.93 128 133.4 -33.67 -5.4 Yes

17-10 06:00 8.7 34.11 26.14 99.9 122.93 155.53 131.87 136.47 -32.6 -4.6 Yes

17-10 06:15 × × 26.25 99.9 121.67 154.13 129.2 134.6 -32.47 -5.4 No

17-10 06:30 10.86 30.95 26.16 99.9 119.33 151.4 127.27 131.67 -32.07 -4.4 Yes

3.2 Data Cleanup

Time-stamps from each of the LCAQ sensors were aligned to those from the reference monitors. We considered only those200

datapoint that were temporally aligned. For several time-stamps, we found that either the sensor or reference monitors presented

with one or more missing or spurious values (see Table 1 for examples). Spurious values included a temperature reading of

> 50 ◦C or < 1 ◦C, an RH level of > 100 % or < 1 %, a reference value for O3 or NO2 of > 200 ppb or < 1 ppb, or voltage

readings from the four sensors at values either > 400 mV or < 1 mV. These errors are possibly due to electronic noise in the

devices. All time-stamps with even one spurious or missing value were considered invalid and removed. Across all 12 datasets,205

an average of 52% of the time-stamps were removed as a result.

For site D deployments, both the LCAQ sensor as well as the reference monitor data was available at 1 minute intervals.

However for site M deployments, whereas the LCAQ sensors continued to provide data at 1 minute intervals, the reference

monitors at that site were set to provide data at 15 minute intervals. To align the two time series, LCAQ sensor data was

averaged over 15 minute intervals.210

The 3 datasets from Jun (resp. 4 from Oct) deployments at site D offered an average of 33753 (resp. 9548) valid time-stamps.

The 3 datasets from Jun (resp. 2 from Oct) deployments in site M offered an average of 2462 (resp. 1062) valid time-stamps.

As expected, site D deployments offered more valid time-stamps than site M deployments in any season given that the former

enjoyed 1 minute interval data whereas the latter deployments had data at 15 minute intervals. We also note that for both sites,

more data is available for the Jun deployment (that lasted longer) than the Oct deployment.215
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3.3 Data Augmentation and Derived Dataset Creation

For each of the 12 datasets, apart from the six data features provided by the LCAQ sensors, namely RH and T values and sensor

voltage values (no2op1, no2op2, oxop1, oxop2), we included two derived features, calculated as shown below

no2diff = no2op1− no2op2

oxdiff = oxop1− oxop2220

We found that having these derived features, albeit simple linear combinations of raw features, offered our calibration models

a predictive advantage. The augmented datasets created this way represented each time-stamp as a vector of 8 feature values

(RH, T, no2op1, no2op2, oxop1, oxop2, no2diff, oxdiff), apart from the reference values of O3 and NO2.

In order to study the effect of data frequency (how frequently do we record data e.g. 1 minute, 5 minute), data volume

(total number of time-stamps used for training), and data diversity (data collected across seasons or cities) on the calibration225

performance, we created several derived datasets as well. All these datasets contained the augmented features.

1. Temporally Averaged Datasets: We took the two datasets DD1(Jun) and DM2(Jun) and created four datasets out of

each of them by averaging the sensor and reference monitor values at 5 minute, 15 minute, 30 minute and 60 minute

intervals. These datasets were named by affixing the averaging interval size to the dataset name, for example DD1(Jun)-

AVG5 for the dataset created out of DD1(Jun) with 5 minute averaging, DM2(Jun)-AVG30 for the dataset created out of230

DM2(Jun) with 30 minute averaging, etc.

2. Sub-sampled Datasets: To view the effect of having less training data on calibration performance, we created sub-

sampled versions of both these datasets by sampling a random set of 2500 time-stamps to get the datasets DD1(Jun)-

SMALL and DM2(Jun)-SMALL.

3. Aggregated Datasets: Next, we created new datasets by clubbing together data for a sensor across the two deployments.235

This was done to the data from the sensors DD1, MM5, DM2 and MD6. For example, if we consider the sensor DD1,

then the datasets DD1(Jun) and DD1(Oct) were combined to create the dataset DD1(Jun-Oct). This was done in order to

study the effect of offering data to the calibration models that is more diverse in terms of location (since DM2 and MD6

moved across sites) and season (Jun vs Oct).

3.3.1 Train–Test Splits240

To create training and test data from each dataset (whether original or derived), we randomly split each dataset in a 70:30 ratio

to obtain a train-test split. 10 such splits were independently generated for each dataset. All calibration algorithms were offered

the same train-test splits. For algorithms that required hyperparameter tuning, a randomly chosen set of 30% of the training

samples in that split were used as a held out validation set. All features were normalized to improve the conditioning of the

calibration problems. This was done by calculating the mean and standard deviation for each of the 8 features on the training245

portion of a split, and then mean centering and dividing by the standard deviation all time-stamps in both training and testing
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portion of that split. An exception was made for the Alphasense calibration models, which required raw voltage values. Also,

the reference values were never normalized in any way.

3.3.2 Error Metrics and Statistical Hypothesis Testing

Error Metrics: calibration performance was measured using four popular metrics, mean averaged error (MAE), mean absolute250

percentage error (MAPE), root mean squared error (RMSE), and the coefficient of determination (R2) (see below). Here n

denotes the number of test points for a given dataset and split thereof, the variable t runs over all time-stamps in the testing set,

yt denotes the reference value (either O3 or NO2) at the t-th time-stamp, ŷt denotes the corresponding value predicted by the

calibration model, and ȳ denotes the mean reference value i.e. ȳ = 1
n

∑n
t=1 y

t.

MAE =
1
n

n∑

t=1

|yt− ŷt|255

MAPE =
1
n

n∑

t=1

|yt− ŷt|
yt

× 100%

RMSE =

√√√√ 1
n

n∑

t=1

(yt− ŷt)2

R2 = 1−
∑n

t=1(yt− ŷt)2∑n
t=1(yt− ȳ)2

Statistical Hypothesis Tests: in order to compare the performance of different calibration algorithms on a given dataset

(e.g., to find out the best performing algorithm), or compare the performance of the same algorithm on different datasets (e.g.,260

to find out the effect of data characteristics on calibration performance), we performed paired and unpaired two-sample tests,

respectively. Our null hypothesis in all such tests proposed that the absolute errors offered by the two algorithms on the same

dataset (in case of a paired test) or the same algorithm across different datasets (in case of an unpaired test) were sampled from

the same distribution. The test was applied and if the null hypothesis was rejected with sufficient confidence (an α value of

0.05 was used as the standard to reject the null hypotheses), then a winner was simultaneously identified.265

Although the Student’s t-test is most popularly used in such situations, it essentially assumes that the underlying distributions

are normal. However, an application of the Shapiro-Wilk test (Shapiro and Wilk, 1965) rejected the null hypotheses of the

errors being normally distributed with high confidence. As a result, we chose the non-parametric Wilcoxon signed-rank test

(Wilcoxon, 1945) when comparing two algorithms on the same dataset, and its unpaired variant, the Mann-Whitney U -test

(Mann and Whitney, 1947) for comparing the same algorithm on two different datasets. These tests do not make any assumption270

on the underlying distribution of the errors and are well-suited for our data.

4 Calibration Models

Our study used a large number of both parametric, and non-parametric calibration techniques. Since several of these techniques

are standard, we describe them in the Supporting Information document supplied with this paper. In particular, the Supporting
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Information document describes several parametric calibration algorithms including the Alphasense models supplied by the275

manufacturers of the gas sensors, linear models based on least-squares and sparse recovery, as well as several non-parametric

calibration algorithms such as regression trees, kernel-ridge regression, and the Nystroem method. We describe here in the

main paper, only those baseline calibration models upon which our proposed technique is developed.

Notation: For every time-stamp t, the vector xt ∈ R8 denotes the 8-dimensional vector of signals recorded by the LCAQ280

sensors for that time-stamp, namely (RH, T, no2op1, no2op2, oxop1, oxop2, no2diff, oxdiff), while the vector yt ∈ R2 will de-

note the 2-tuple of the reference values of O3 and NO2 for that time step. However, this notation is unnecessarily cumbersome

since we will build separate calibration models for O3 and NO2. Thus, to simplify the notation, we will instead use yt ∈ R to

denote the reference value of the gas being considered (either O3 or NO2). The goal of calibration will then be to learn a real

valued function f : R8→ R such that f(xt)≈ yt for all time-stamps t (the exact error being measured using metrics such as285

MAE, MAPE, etc described in Sect. 3.3.2). Thus, we will learn two functions, say fNO2 and fO3 to calibrate for NO2 and O3

concentrations respectively. Since several of our calibration algorithms will involve the use of some statistical estimation or

machine learning algorithm, we will let N (resp. n) denote the number of training (resp. testing) points for a given dataset and

split thereof. Thus, we will let {(xt,yt)}Nt=1 denote the training set for that dataset and split with xt ∈ R8 and yt ∈ R.

4.1 k−NN Regression Variants290

The k-nearest neighbor algorithm is a local proximity-based learning algorithm that makes predictions on test samples based

on which are the training samples that most resemble the test sample. Resemblance is usually calculated using a metric such

as the Euclidean metric. We implement several k-nearest neighbor variants. Algorithm 1 gives pseudo code for these variants.

k-NN with Euclidean Distance (KNN): The vanilla k-nearest algorithm (KNN) predicts on a test sample, the average295

reference value in the k nearest training samples. The neighborhood size k was tuned over the fine grid [2,4,6,8,10,15,20]

using held-out validation. Standard implementation of kd-trees were used to accelerate the process of discovering the nearest

neighbors for a test sample.

Distance weighted k-NN (KNN-D): We also implemented a distance-weighted version of this algorithm wherein closest300

neighbors for particular test sample are weighted according to their Euclidean distance to the test point with closer points

getting more weightage. We found this to favorably improve our accuracy.

4.2 Kernel Regression Variants

In statistics and machine learning, the notion of a kernel refers to a function that assigns a similarity value to two vectors (Mur-

phy, 2012). Thus, a kernel is of the form K : R8×R8→ R which, when given two vectors x1,x2 ∈ R8, assigns a value305

K(x1,x2) ∈ R denoting how similar are these vectors. A popularly used kernel is the Gaussian kernel (aka the RBF kernel)

that calculates this similarity as K(x1,x2) = exp(−γ · ‖x1−x2‖22) where ‖ · ‖2 denotes the Euclidean norm and γ is a band-
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width parameter that controls the scale at which similarity values go down. The Nadaraya-Watson estimator and kernel ridge

regression are two popular forms of kernel regression algorithms. A closely related cousin is Gaussian-process regression.

Below we describe the Nadaraya-Watson estimator as it is useful in the developement of our proposed technique. Kernel310

ridge regression is described in the Supporting Information document.

Nadaraya-Watson (NW): Given a training set {(xt,yt)}Nt=1, the NW estimator (Nadaraya, 1964; Watson, 1964) makes a

prediction on a new (testing) data point x ∈ R8 as follows

fNW(x) =
∑N

t=1 y
t ·K(xt,x)

∑N
t=1K(xt,x)

315

The intent of this estimator is clear – the final prediction is a weighted sum of reference values yt in the training set with the

weight of a training sample t ∈ [N ] being proportional to K(xt,x) i.e. how similar is that training sample to the test sample.

Notice also the similarity between NW and KNN-D in the way they make predictions. NW almost behaves like a “smoothed”

version of KNN-D by performing weighing using kernel values instead of inverse Euclidean distances and considering all

training samples instead of just the neighbors. This observation will be useful later.320

5 Proposed Calibration Model: k-NN variants with a learnt metric

Below we propose a novel application the metric learning technique to build non-parametric calibration models that offer

superior performance compared to other models.

5.1 Metric Learning

As Sect. 6 will show, the inclusion of RH and T as additional features benefits calibration performance. However, it is unclear325

how much importance should these features receive as opposed to the other features that are based on voltage readings (e.g.

no2op1, oxop2, no2diff etc). This is particularly true of k-NN and kernel regression, both of which find neighbors or calculate

kernel values by relying on the Euclidean distance which assigns equal importance to all 8 features.

It is well established that k-NN style algorithms stand to gain if used with a customized metric instead of the generic

Euclidean metric (Weinberger and Saul, 2009). It is most popular to replace the Euclidean metric with a learnt Mahalanobis330

metric. This metric is characterized by a positive semi-definite matrix Σ ∈ R8×8 and calculates the distance between any two

points as follows

dMaha(x1,x2;Σ) =
√

(x1−x2)>Σ(x1−x2)

Note that the Mahalanobis metric recovers the Euclidean metric when Σ = I8 is the identity matrix. Now, whereas metric

learning for k-NN is very popular for classification problems, it is uncommon for regression problems. This is partly because335

of technical problems posed by regression problems which lack of a small number of “classes”.
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Algorithm 1 Variants of k-NN based calibration

Require: feature vector for a test sample x̃, training samples {(xt,yt)}Nt=1, neighborhood size k, weighing rule, metric

Ensure: a prediction ŷ for the test sample using one of the KNN, KNN-D, KNN(ML) or KNN-D(ML) calibration model depending on the

weighing rule and metric arguments

if metric == Euclidean then

Σ← I8 {The 8× 8 Identity matrix}

else if metric == learnt then

Σ← use training samples to learn a Mahalanobis metric using the technique from (Weinberger and Tesauro, 2007)

end if

Find the k training samples (say i1, . . . , ik) that are closest to x̃ in terms of the learnt Mahalanobis distance dMaha(·, ·;Σ)

if weighing rule == uniform then

ŷ = 1
k

∑k
l=1 y

tl

else if weighing rule == distance weighted then

For all l = 1 . . .k, let αl = (dMaha(x,xtl ;Σ))−1

ŷ =
∑k

l=1α
l·ytl∑k

l=1α
l

end if

return ŷ

To overcome this problem, we recall our earlier observation that the NW algorithm almost behaves like a smoothed version

of the KNN-D algorithm. Given that there does exist a technique (Weinberger and Tesauro, 2007) to learn a Mahalanobis metric

for use with the NW algorithm, we adopt a two-stage algorithm that first learns a metric suited for the NW estimator and then

using it with the KNN and KNN-D algorithms. The method proposed by Weinberger and Tesauro (2007) learns the metric by340

attempting to minimize the leave-one-out RMSE over the training samples.

Metric learning with Nadaraya-Watson (NW(ML)) and k-NN algorithms (KNN(ML), KNN-D(ML)): We call the

variants of NW, KNN and KNN-D when used with a learnt metric, respectively NW(ML), KNN(ML) and KNN-D(ML). The

modification required to execute NW(ML) with a learnt metric is straightforward – we simply start using an alternate kernel345

given by

KMaha(x1,x2;Σ) = exp(−(dMaha(x1,x2;Σ))2)

We note that this alternate kernel does not require an explicit bandwidth parameter since any such parameter can be absorbed

into the matrix Σ itself. Algorithm 1 details pseudo-code for KNN(ML) and KNN-D(ML).
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Figure 4. A scatter plot showing variations in RH and T at the two sites across the two deployments. The sites offer substantially diverse

weather conditions. Site D exhibits wide variations in RH and T levels during both deployments. Site M exhibits almost uniformly high RH

levels during the Oct deployment which coincided with the retreating monsoons.

Figure 5. Time series showing the variation in the raw parameters measured using the reference monitors (NO2 and O3 concentrations)

as well as those measured using the SATVAM LCAQ sensors (RH, T, no2op1, no2op2, oxop1, oxop2). The left figure considers a 24 hour

periods during the Jun deployment (28 June 2019) at site D whereas the right figure considers the Oct deployment (12 October 2019) at site

M. Values for site D are available at 1 minute intervals while those for site M are averaged over 15-min intervals.

6 Results and Discussion350

The goals of using low-cost AQ monitoring sensors vary widely. This study focuses on critically assessing a wide variety of

calibration models and assessing the suitability of low-cost sensors for spatially dense AQ monitoring networks.

6.1 Analysis of Raw Data

Our deployment strategy, consisting of two sites at geographically diverse locations and experiencing varying air pollution

levels, two extended deployments during months experiencing significant variations in RH and T, as well as the swap-out355

experiment, were aimed at covering a wide range of real-world ambient working conditions (Cross et al., 2017). As we shall
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Figure 6. Normalized frequency distributions for various data series. Data from Jun deployments (resp Oct deployments) is shown in red

(black) in all plots. The plots in row 1 show, from left to right, variations in the reference values at site D by considering data from the DD1

sensor for NO2 (Fig. 6(a)) and O3 (Fig. 6(b)). Fig. 6(c) and (d) show the same for site M by considering data from the MM5 sensor. Recall

that both the DD1 and MM5 sensors did not participate in the swap-out experiment and remained at the same site for both deployments. The

figures in row 2 plot explore cross site variations in no2diff (Fig. 6(e) and (g)) and oxdiff (Fig. 6(f) and (h)) values by considering data from

the DM2 and MD6 sensors both of which participated in the swap-out experiment.

see, data from such diverse operating conditions is crucial for proper calibration of these sensors in order to not expect drastic

extrapolations from the models during actual deployment.

To illustrate this, refer to Fig. 4 which shows the RH and T ranges observed during the two deployments across the two sites.

It is clear that both sites offer extremely diverse meteorological conditions, with only site M offering somewhat uniformly high360

RH values during the Oct deployment. We also present in Fig. 5, time series over 24 hour periods from two deployments at the

two sites.

The reference data for the site D Jun deployment indicates that O3 levels exhibit a diurnal trend with a midday peak mainly

at around 1500 hrs, while NO2 levels tend to peak usually in the morning and in the evening to midnight, suggesting nearby

roadways could be a predominant source of pollution. Site M on the other hand presents far lower O3 levels. Ambient RH and365

T values were observed to vary inversely to each other at site D in both deployments and site M during the Jun deployment.

However, site M experienced a near continuous 100% RH level during the Oct deployment. The sensor voltages (no2op1,

no2op2, oxop1, oxop2) can be seen to have good correlation in the plots.

The two sites and deployments also exhibit significant diversity with respect to absolute concentrations. The reference NO2

levels from site M (available at 15 minute intervals) ranged from 0.01-44.13 ppb in the Jun deployment and from 0.01-58.44 ppb370

in the Oct deployment, respectively. At the same time, the reference NO2 levels from site D ranged from 0.70-65.49 ppb and

from 0.86-159.55 ppb during the Jun and Oct deployments, respectively. Similarly, reference O3 levels also differ significantly

across the sites with site M levels ranging from 0.70-65.49 ppb and 0.86-160.41 ppb during the Jun and Oct deployments
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respectively and those for site D ranging from 0.70-141.47 ppb and from 0.80-180.00 ppb for the same deployments. In

general, Site D experienced higher concentration levels, as well as peaks, than site M. Furthermore, concentration levels were375

found to go up for both sites during the Oct deployment as compared to the Jun deployment. Such diversity in concentration

levels are expected to empower calibration models to offer accurate predictions across wide ranges of operating conditions.

As deployments experienced several cloudy days, peaks of observed O3 levels are not consistent throughout the deployments.

Such influence of meteorological parameters on pollutant levels is well recognized in past literature (Gaur et al., 2014; Tiwari

et al., 2015; Simmhan et al., 2019) with effects such as scavenging of PM and gaseous pollutants that occur due to rain that may380

result in lower concentration peaks of PM2.5 levels (not considered in this study) and lower mixing ratio of NO2, or higher

range of concentrations of same pollutants during winter, being observed.

In order to better understand global trends in cross-site and cross-deployment variations, Fig. 6 plots histograms indicating

the statistical distribution of reference values as well as sensor voltage readings for various sites and deployments. It is notable

that both the reference values, as well as the sensor readings, seem to be statistically distributed across both sites and deploy-385

ments, with the possible exception of NO2 levels at site D during the Oct deployment (see Fig. 6 Row 1 left) which seems to

have a bimodal distribution.

These plots demonstrate that site D experiences appreciably greater levels for both NO2 and O3. This can be verified by

comparing rows 1 and 2 of Fig. 6. This is understandable since site M is located in a coastal city whereas site D is situated at

a more arid location. For both sites, in general the Oct deployment offers larger concentration levels as compared to the Jun390

deployment. This is reflected in the plots in rows 3 and 4 of Fig. 6 which show that the distribution of the voltage differentials

differs significantly when the same sensor is relocated to a different site during a different season.

6.2 Effect of Calibration Model on Calibration Performance

We compare the calibration algorithms discussed in Sect. 4 and also those in the Supporting Information document. Given the

vast set of models that we consider, we first compare within a family of algorithms (these comparisons are presented in detail395

in the Supporting Information document but summarized below as well) and present here, only comparisons across the winners

of those families. We use the Wilcoxon paired two sample test (see Sect. 3.3.2) to compare two calibration algorithms on the

same dataset. However, for visual inspection, we also provide violin plots of the absolute errors offered by the algorithms. See

Fig. 7 for a brief description on how to interpret a violin plot.

400

6.2.1 Interpreting the Two-sample Tests

As mentioned earlier, we used the paired Wilcoxon signed ranked test to compare two algorithms on the same dataset. Given

that there are 12 datasets and 10 splits for each dataset, for ease of comprehension, we provide globally averaged statistics of

wins scored by an algorithm over another. For example, say we wish to compare RT and KRR as done in Tab 2. We perform

the test for each individual dataset and split. For each test, we either get a win for RT (in which case RT gets a +1 score and405

KRR gets 0), or a win for KRR (in which case KRR gets a +1 score and RT gets 0) or else the null hypothesis is not refuted (in
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Figure 7. (Interpreting violin plots) Two violin plots based on synthetic error data (i.e. the data does not correspond to any actual model)

are shown above. Violin plots display numeric data by showing quartile/percentile information, as well as a rotated kernel density plot to

show the distribution of the data. The left figure offers a symmetric violin plot on a single data source (NO2 calibration in this synthetic

example). The thin vertical line in the middle represents the inter-percentile range between the 0.05 and 0.95 percentiles. The thicker and

shorter vertical line represents the inter-quartile range between the 0.25 and 0.75 quartiles. The white dot in middle represents the median.

The right figure offers a split violin plot that considers two data sources together for ease of comparison.

which case both get 0). The average of these scores is then shown. For example, in Tab 2 (top), row 3 column 2 records a value

of 0.46 implying that in 46% of these tests, KRR won over RT in case of O3 calibration, whereas row 2 column 3 records a

value of 0.24 implying that in 24% of the tests, RT won over KRR. In the balance (1 - 0.46 - 0.24 = 0.3) i.e. 30% of the tests,

neither algorithm could be declared a winner.410

6.2.2 Inter-family Comparison of Calibration Models

The calibration models described in Sect. 4 and in the Supporting Information document can be classified in to four broad

families: 1) the Alphasense family (containing the four models A1 to A4), 2) linear parametric models (LS, LS(MIN) and

LASSO), 3) kernel regression models (KRR and the Nystroem method), and 4) the kNN family including algorithms that

use metric learning (KNN, KNN-D(ML), etc) – please see the Supporting Information document for details of algorithms not415

described here in the main paper such as LS(MIN) etc.

A summary of the results of comparing models and algorithms within these families is given below. The next section will

compare the winners across these families to determine a global winner.

1. Alphasense: All four Alphasense algorithms exhibit extremely poor performance across all metrics on all datasets,

offering extremely high MAE and low R2 values. This is corroborated by previous studies (Lewis and Edwards, 2016;420

Jiao et al., 2016; Simmhan et al., 2019).

2. Linear Parametric: Among the linear parametric algorithms, LS was found to offer the best performance.

3. Kernel Regression: We confirmed the utility of the Nystroem method as an accurate but accelerated approximation for

KRR kernel ridge regression (KRR) and that the acceleration is generally higher for larger datasets.
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Table 2. Results of the pairwise Wilcoxon signed rank tests across all model types (see Sect. 6.2.1 for a key). KNN-D(ML) beats every other

algorithm comprehensively (mostly 100% of the time with the exception of NW(ML) which it still beats 58% of the time) and is scarcely

ever beaten. The overall ranking of the algorithms is indicated to be KNN-D(ML) > NW(ML) > KRR > RT > LS.

O3

LS RT KRR NW(ML) KNN-D(ML)

LS 0 0 0 0 0

RT 0.98 0 0.24 0 0

KRR 1 0.46 0 0 0

NW(ML) 1 1 1 0 0.07

KNN-D(ML) 1 1 1 0.58 0

NO2

LS RT KRR NW(ML) KNN-D(ML)

LS 0 0.01 0 0 0

RT 0.83 0 0.36 0.16 0

KRR 1 0.58 0 0.01 0

NW(ML) 1 0.73 0.96 0 0.03

KNN-D(ML) 1 1 0.97 0.62 0

4. k-NN and Metric Learning Models: Among the k-NN family of algorithms, the distance weighted k-NN algorithm425

that uses a learnt metric i.e. KNN-D(ML) was found to offer the best accuracies across all datasets and splits.

6.2.3 Global Comparison of Comparison Models
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Figure 8. The violin plots on the left and right depict the distribution of absolute errors incurred by various models on respectively, the

DD1(Oct) and MM5(Jun) datasets. KNN-D(ML) offers visibly superior performance than several other algorithms such as LS and RT.

We took the best algorithms from all families (parametric, kernel regression, k-NN) as well as regression trees and performed

a head-to-head comparison for these to assess the winner (Alphasense models were not considered given their extremely poor

performance). The KNN-D(ML) algorithm continued to emerge as the winner as indicated by the two-sample tests (Table 2)430

as well as the violin plots (Fig. 8).

6.3 The Effect of Metric Learning

Recall that in Sect. 5.1, we discussed the need for metric learning in order to place appropriate emphasis on various features,

such as RH and T that are known to hugely influence calibration. To assess whether metric learning is indeed discovering such

emphasis, Tab 3 shows the linear transformation corresponding to the Mahalanobis metric learnt by the NW(ML) technique435

for NO2 calibration on the DD1(Jun) dataset. This is essentially the matrix Σ
1
2 where Σ is the matrix corresponding to the

Mahalanobis metric. We point out the following aspects of the matrix by concentrating on the diagonal entries.
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Table 3. The linear transformation Σ
1
2 learnt for NO2 calibration on the dataset DD1(Jun). Note the large emphasis the transformation

places on RH and T, increasing their importance while calculating the Mahalanobis distance while placing comparatively less importance on

the oxop1, oxop2 and oxdiff features which is understandable since this metric was learnt for NO2 calibration.

T RH no2op1 no2op2 oxop1 oxop2 no2diff oxdiff

T 10.19 3.29 -1.95 -2.12 3.73 4.29 -0.66 -1.44

RH 3.52 13.22 1.43 1.46 -2.32 -2.60 -0.25 0.49

no2op1 -0.17 -0.69 6.92 6.20 -3.65 -3.93 0.27 -0.12

no2op2 -0.27 -0.81 5.66 6.96 -2.94 -3.20 0.51 0.11

oxop1 1.27 -0.19 1.94 2.11 1.51 0.50 0.74 0.27

oxop2 0.89 -0.81 3.34 3.58 -0.86 0.03 0.86 0.24

no2diff -0.74 -0.68 -4.01 -3.94 6.89 7.12 2.82 1.88

oxdiff 2.71 3.45 -7.03 -7.36 7.95 8.54 -0.32 1.32
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Figure 9. On the left hand side, the top (resp. bottom) figure exhibits a time series of the reference values and those predicted by the KNN-

D(ML) algorithm for O3 (resp. NO2) concentrations at site D (resp. site M) during the Jun (resp. Oct) deployment. On the right hand side are

scatter plots showing the correlation between the reference and predicted values of the concentrations. For both deployments, KNN-D(ML)

can be seen to offer excellent calibration and agreement with the FRM-grade monitor.

1. The diagonal entries corresponding to no2op1, no2op2 and no2diff have much higher values that those for oxop1, oxop2

and oxdiff. This makes sense since this metric was being learnt for NO2 calibration.

2. The diagonal entries corresponding to RH and T are by far the largest. This implies that the method did find it crucial to440

put more emphasis on these two features while calculating distances.

Fig. 9 presents two cases where the models offered by metric learning offer excellent agreement with the reference monitors

across significant spans of time.
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Figure 10. Effect of temporal data averaging, and lack of data on the calibration performance of the KNN-D(ML) algorithm on temporally

averaged and sub-sampled versions of the DD1(Jun) and DM2(Jun) datasets. Notice the visible deterioration in the performance of the

algorithm when aggressive temporal averaging, e.g. across 30 minute windows, is performed. NO2 calibration performance seems to be

impacted more adversely by lack of enough training data or aggressive averaging than O3 calibration.

Table 4. Results of the pairwise Mann-Whitney U tests on the performance of KNN-D(ML) across temporally averaged versions of the DD1

dataset (see Sect. 6.2.1 for a key). The dataset names have been abbreviated here. For example, DD1(Jun)-AVG5 is referred to as simply

AVG5. These results are reported over a single split. The performance of KNN-D(ML) on AVG5 wins over its performance with any other

level of averaging. It is clear that mild temporal averaging (e.g. over 5 minute windows) positively impacts calibration performance. On the

other hand, the performance with extremely aggressive averaging e.g. on AVG60 is almost always inferior than any other level of averaging.

O3

DD1(Jun) AVG5 AVG15 AVG30 AVG60

DD1(Jun) 0 0 0 0 0

AVG5 1 0 1 1 1

AVG15 1 0 0 1 1

AVG30 1 0 0 0 1

AVG60 0 0 0 0 0

NO2

DD1(Jun) AVG5 AVG15 AVG30 AVG60

DD1(Jun) 0 0 0 1 1

AVG5 1 0 1 1 1

AVG15 0 0 0 1 1

AVG30 0 0 0 0 1

AVG60 0 0 0 0 0

6.4 Effect of Data Preparation on Calibration Performance

We now present studies critically assess the robustness of these calibration models, as well as identify the effect of other factors,445

such as temporal averaging of raw data, total amount of data available for training, and diversity in training data. We note that

some of these studies were made possible only because the experimental setup enabled us to have access to sensors that did

not change their deployment sites, as well as those that did change their deployment site due to the swap-out experiment.

6.5 Some Observations on Original Datasets

Before we proceed to perform studies with the temporally averaged, sub-sampled and aggregated datasets (see!3.3), first we450

look at the performance of KNN-D(ML) on the original datasets to gain some indications on the effects of these data preparation

methods on calibration performance. We will then confirm these indications using the new datasets. If we consider only datasets
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obtained from site D deployments, then we find that on these datasets (irrespective of whether in Jun or Oct), KNN-D(ML)

offers an extremely high average R2 of 0.952 for O3 calibration. However, the same value for site M deployments (yet again

across Jun and Oct deployments) is much lower at 0.762. We observe a similar but less stark difference for NO2 calibration455

with site D deployments enjoying an average R2 of 0.915 with KNN-D(ML) whereas site M having only 0.846. This indicates

that paucity of data and aggressive temporal averaging may be affecting calibration performance negatively, and more directly

than seasonal variations. The above observations also indicate that O3 calibration might be more sensitive to these factors than

NO2 calibration.

6.6 Effect of Temporal Data Averaging460

Recall that data from sensors deployed at site M had to be averaged over 15 minute intervals to align them with the reference

monitor timestamps. To see what effect such averaging has on calibration performance, we use the temporally averaged datasets

(see Sect. 3.3). Fig. 10 presents the results of applying the KNN-D(ML) algorithm on data that is not averaged at all (i.e. 1

minute interval timestamps), as well as data that is averaged at 5, 15, 30 and 60 minute intervals. The performance for 30 and

60 minute averaged datasets is visibly inferior that that for the non-averaged dataset. This leads us to conclude that excessive465

averaging can erode the diversity of data and hamper effective calibration. To distinguish among the other temporally averaged

datasets for which visual inspection is not satisfactory, we also performed the unpaired Mann-Whitney U test, the results

for which are shown in Tab 4. The results are striking in that they reveal that moderate averaging, for example at 5 minute

intervals, seems to benefit calibration performance. However, this benefit is quickly lost if the averaging window is increased

much further at which point, performance is invariably hurt.470

6.7 Effect of Data Paucity

Since temporal averaging also decreases the amount of data as a side-effect, in order to tease these two effects apart, we also

considered the sub-sampled versions of these datasets (see Sect. 3.3). Fig. 10 also shows that reducing the amount of training

data has an appreciable negative impact on calibration performance.

6.8 Effect of Data Volume and Diversity475

Tab 5 describes an experiment wherein we took the KNN-D(ML) model trained on one dataset and used it to make predictions

on another dataset. To avoid bringing in too many variables, this was done only in cases where both datasets belonged to the

same sensor but for different deployments. Without exception, such transfers led to poor performance. We confirmed that this

was true not just for calibration models learnt using non-parametric methods such as KNN-D(ML) but also parametric models

like LS or LASSO or RT.480

This finding, although concerning at first, seems reasonable when we observe Fig. 4. Not only do the sites and deployments

individually span wide ranges of RH and T, but these ranges are not entirely overlapping either. Given our earlier confirmation
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Table 5. A demonstration of the impact of data diversity and data volume on calibration performance. The first two rows present the

performance of the learnt KNN-D(ML) calibration models when tested on data for a different season (deployment) but in the same site. This

was done for the DD1 and MM5 sensors that did not participate in the swap-out experiment. The next two rows present the same, but for

sensors DM2 and MD6 that did participate in the swap-out experiment and thus, their performance is being tested not only for a different

season, but also a different city. The next four rows present the dramatic improvement in calibration performance once datasets are aggregated

for these four sensors. Also notable is the fact that O3 calibration seems worse affected by these variations (average R2 in first four rows

being -3.68) than NO2 calibration (average R2 in first four rows being -2.92).

O3 NO2

Train→ Test MAE R2 MAE R2

DD1(Jun)→ (Oct) 28.9±1.7 -1.63±0.39 33.1±0.94 -0.87±0.08

MM5(Oct)→ (Jun) 8.9±1.69 -4.14±2.4 15.9±2.9 -9.6±2.9

DM2(Jun)→ (Oct) 19.0±1.3 -8.12±1.5 17.1±0.97 -0.45±0.12

MD6(Jun)→ (Oct) 18.8±0.57 -0.83±0.08 29.6±0.85 -0.77±0.09

DD1(Jun-Oct) 3.3±0.14 0.939±0.006 2.7±0.06 0.958±0.003

MM5(Jun-Oct) 1.8±0.13 0.814±0.05 2.5±0.19 0.902±0.04

DM2(Jun-Oct) 3.7±0.13 0.909±0.009 3.0±0.02 0.762±0.008

MD6(Jun-Oct) 1.8±0.007 0.975±0.002 1.9±0.02 0.989±0.0006

of the importance these parameters have in calibration, it is not surprising that the models performed poorly when faced with

unseen RH and T ranges.

To verify that this is indeed the case, we ran the KNN-D(ML) algorithm on the aggregated datasets (see Sect. 3.3) which485

combine training sets from the two deployments of these sensors. Tab 5 confirms that once trained on these more diverse

datasets, the algorithms resume offering excellent calibration performance on the entire (broadened) range of RH and T values.

7 Conclusions and Future Work

In this study we presented results of a diverse field deployment of low-cost AQ monitoring sensors across two sites having

vastly different geographical, meteorological, and air pollution parameters, as well as two deployments set in seasons offering490

diverse RH and temperature conditions. A unique feature of our deployment was the swap-out experiment wherein four of the

seven sensors were transported across sites in the two deployments. To perform highly accurate calibration of these sensors, we

experimented with a wide variety of algorithms based on standard statistical estimation techniques but found a novel method

based on metric learning to offer the strongest results (as verified by statistical two-sample tests) across sites and deployment

conditions at predicting both NO2 and O3 concentrations.495

A few key takeaways from our statistical analyses are:
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1. Incorporating ambient RH and T into the calibration model offers a definite advantage in achieving superior calibration

performance. The inclusion of the augmented features oxdiff and noxdiff we describe in Sect. 3 also positively impact

the performance.

2. Local methods such as k-NN offer the best performance on these calibration tasks. However, they stand to gain signifi-500

cantly through the use of metric learning techniques, which automatically learn the relative importance of each feature,

as well as hyper-local variations such as distance-weighted k-NN. These indicate that these calibration tasks operate in

high variability conditions where local methods offer the best chance at capturing subtle trends.

3. Performing smoothing over raw time series data obtained from the sensors may help improve calibration performance

but only if this smoothing is non-aggressive e.g. done over short windows. Very aggressive smoothing done over long505

windows is detrimental to calibration performance.

4. Calibration models are data-hungry as well as diversity hungry. This is especially true of local methods like k-NN vari-

ants. Offering these techniques limited amounts of data or even data that is limited in diversity of RH, T or concentration

levels, may result in calibration models that generalize very poorly.

5. O3 calibration seems to be more sensitive to unseen variations in operating conditions than NO2 calibration.510

Our results offer encouraging options for using low-cost AQ sensors to complement CAAQMS in creating dense and portable

monitoring networks which can enable a range of studies in AQ, source apportionment, human health impacts and atmospheric

chemistry studies. Among avenues for future work, an especially interesting one is the study of long-term stability of elec-

trochemical sensors and characterizing drift or deterioration patterns in these sensors and correcting for the same. Another

interesting challenge is ultra rapid calibration of these sensors that requires minimal collocation with a reference monitor.515
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