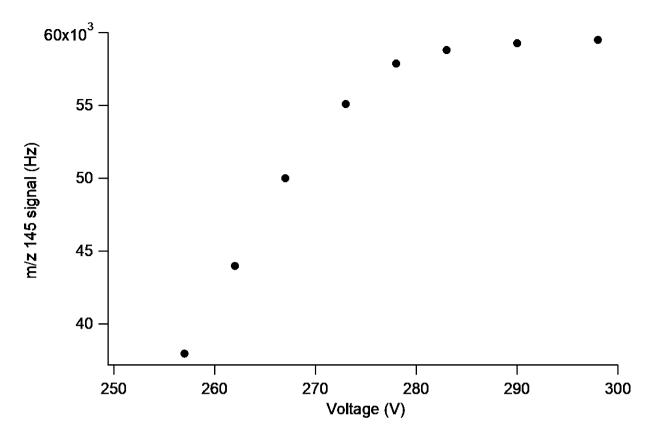
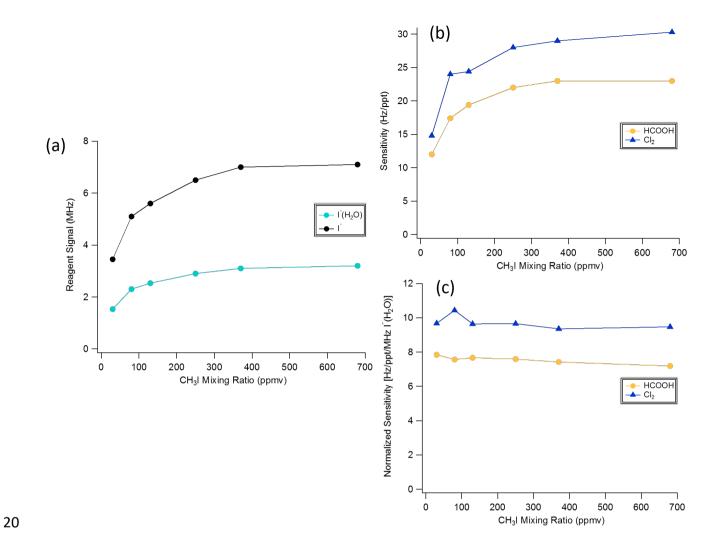
Supplement of


A Vacuum Ultraviolet Ion Source (VUV-IS) for Iodide-Chemical Ionization Mass Spectrometry: A Substitute for Radioactive Ion Sources

5 Yi Ji et al.


Correspondence to: L. Gregory Huey (greg.huey@eas.gatech.edu)

10

15

Figure S1. CIMS ion current at m/z 145 ($\Gamma(H_2O)$)as a function of voltage across the krypton lamp. Note that the lamp ignites at voltage of ~280 V.

Figure S2. TOF-CIMS (a) reagent signal levels (b) sensitivity (c) normalized sensitivity as a function of CH₃I at 30 torr.

25 Sample Calculation of Absorption of VUV light by CH₃I

To calculate how much of the VUV light is absorbed, the Beer-Lambert Law is applied,

$$\frac{I(\lambda)}{I_0(\lambda)} = \exp(-\sigma(\lambda)nL)$$

where $I(\lambda)$ is the intensity of light at wavelength λ after absorption, $I_0(\lambda)$ is the original light intensity at wavelength λ , $\sigma(\lambda)$ is the absorption cross section of the absorber molecule at wavelength λ , n is number concentration of the absorber molecule, and L is the path length over which the light can be absorbed.

Sample calculation:

35

For 86.5 ppmv of CH₃I at a pressure of 20 torr

 $n = 5.70 \times 10^{13}$ molecule cm⁻³

 $\sigma(\lambda) = 7 \times 10^{17} \text{ cm}^2 \text{ molecule}^{-1}$

L = 21 cm

$$\frac{I(\lambda)}{I_0(\lambda)} = \exp(-\sigma(\lambda)nL) = 0.92$$

Therefore, in this example ~8% of the light emitted from the VUV lamp is absorbed by the methyl iodide.