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Abstract. A new ion source (IS) utilizing vacuum ultraviolet (VUV) light is developed and characterized for use with iodide-
chemical ionization mass spectrometers (I-CIMS). The VUV-IS utilizes a compact krypton lamp that emits light in two
wavelength bands corresponding to energies of ~10.0 and 10.6 eV. The VUV light photoionizes either methyl iodide
(ionization potential, [P = 9.54 £ 0.02 eV) or benzene (IP = 9.24378 + 0.00007 eV) to form cations and photoelectrons. The
electrons react with methyl iodide to form I" which serves as the reagent ion for the CIMS. The VUV-IS is characterized by
measuring the sensitivity of a quadrupole CIMS (Q-CIMS) to formic acid, molecular chlorine, and nitryl chloride under a
variety of flow and pressure conditions. The sensitivity of the Q-CIMS, with the VUV-IS, reached up to ~700 Hz pptv-!, with
detection limits of less than 1 pptv for a one minute integration period. The reliability of the Q-CIMS with a VUV-IS is
demonstrated with data from a month long ground-based field campaign. The VUV-IS is further tested by operation on a high
resolution time-of-flight CIMS (TOF-CIMS). Sensitivities greater than 25 Hz pptv'! were obtained for formic acid and
molecular chlorine, which were similar to that obtained with a radioactive source. In addition, the mass spectra from sampling
ambient air was cleaner with the VUV-IS on the TOF-CIMS compared to measurements using a radioactive source. These
results demonstrate that the VUV lamp is a viable substitute for radioactive ion sources on I'-CIMS systems for most
applications. In addition, the VUV-IS can likely be extended to other reagent ions, such as SF¢” which are formed from high

IP electron attachers, by the use of absorbers such as benzene to serve as a source of photoelectrons.
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1 Introduction

Chemical ionization mass spectrometry (CIMS) has been widely used as a powerful tool to measure various atmospheric
compounds with high sensitivity and fast time response. CIMS measurements are based on selective ionization of compounds
in air by reagent ions via ion molecule reactions. CIMS using the iodide anion (I') and its water clusters as reagent ions (I"-
CIMS) has been widely used in the measurements of many atmospheric trace gases, e.g. bromine oxide (BrO) and peroxyacyl
nitric anhydride (PAN) (Slusher et al., 2004;Huey, 2007;Phillips et al., 2013;Lee et al., 2014;Liao et al., 2014;Neuman et al.,
2016;Liu et al., 2017;Priestley et al., 2018;Bertram et al., 2011;Thornton et al., 2010;Osthoff et al., 2008).

Typically, I-CIMS systems use a radioactive isotope, usually 2!°Po, as an ion source. 2'°Po emits o particles (with an energy
of ~5 MeV) that directly ionize the carrier gas in the ion source to produce secondary electrons. The secondary electrons are
thermalized by collisions and react with methyl iodide (CH;I) to form I" by dissociative electron attachment. The use of
radioactive ion sources with the I'-CIMS system is well-established and has several important advantages. For example,
radioactive sources are exceedingly reliable and are easy to use, as they require no external power. Radioactive sources often
produce relatively clean mass spectra with little interfering masses. However, radioactive sources have several disadvantages
as well. 2'°Po is toxic and is highly regulated which often makes it difficult to transport, store, and use in remote locations. We
have recently developed a lower activity 2'°Po ion source that is subject to fewer regulatory restrictions (Lee et al., 2019).
However, there remain applications where the use of any radioactivity is very difficult or prohibited. A more subtle
disadvantage is that radioactive ion sources emit continuously, which can lead to the build up of interfering species. For these
reasons, it is desirable to find a non-radioactive alternative to efficiently generate I" and other reagent ions. Electrical discharges
and x-ray ion sources have been used as ion sources in atmospheric pressure chemical ionization mass spectrometers (AP-
CIMS) (Jost et al., 2003;Skalny et al., 2007;Kurten et al., 2011;Wang et al., 2017). However, they have not been commonly
employed with I'-CIMS systems perhaps due to limited sensitivity and the generation of interfering ions. Recently Eger et al.
(2019) developed a promising ion source using a radio frequency (RF) discharge on an I-CIMS system, providing another
alternative to radioactive sources albeit with lower signal levels. However, the RF source also generated high levels of other

ions such as dicyanoiodate anion I(CN),", providing additional pathways for detecting species such as SO, and HCI.

In this work, we investigate the use of a small krypton (Kr) lamp as a substitute for a radioactive ion source on an I'-CIMS.
Similar lamps have been commonly used in atmospheric pressure photoionization-mass spectrometry (Kauppila et al., 2017).
The vacuum ultraviolet (VUV) light is generated from two emission lines centered at 117 (photon energy = 10.6 eV) and 124
nm (photon energy = 10 eV). CHsI has a large absorption cross section (7x10°'7 cm? molecule™) at these wavelengths and a
relatively low ionization potential (IP =9.54 + 0.02 ¢V) (Holmes and Lossing, 1991;0Olney et al., 1998). Absorption of the
VUV light by CHsl forms cations and relatively low energy photoelectrons which can then be attached by CH;sl to form I'.

Benzene (C¢Hs) can also serve as a VUV absorber to produce photoelectrons as it has a larger absorption cross section and an
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even lower IP (Nemeth et al., 1993;Capalbo et al., 2016). We explore the use of C¢Hs as a source of photoelectrons as we have
found that delivering even modest quantities of gas phase CHsl to our ion source can be problematic as it has a tendency to
polymerize to non-volatile species in compressed gas cylinders. Tests of CsHg as a photoelectron source in this work are
performed as it may enhance ion production when used in combination with lower levels of CH3l. CsHs may also be used as
an electron source for use with other electron attaching compounds with higher IPs, such as SFg, to form reagent ions such as

SF6'.

The performance of the VUV-IS was characterized by measuring the sensitivities on a quadrupole CIMS (Q-CIMS) to formic
acid, chlorine (Cly), and nitryl chloride (CINO,), under different flow conditions with varying levels of CHsl. Similar tests
were also performed using a flow of both C¢Hs and CH3I through the ion source. Potential interferences due to the VUV light
interacting with air or surfaces are investigated by comparing ambient mass spectra obtained with a VUV-IS and a standard
20 mCi 2!°Po ion source (NRD Static Control, P-2031) on both a commercial high resolution time-of-flight CIMS (TOF-CIMS)
and a Q-CIMS. The reliability of the VUV-IS is tested by performing field measurements for a six week time period at a

remote location.

2 Materials and Methods
2.1 Quadrupole I'-CIMS and experimental configurations

The Q-CIMS used here is very similar to the system that has measured a variety of species such as Cl,, BrO, and PAN, and
has been detailed in previous publications (Slusher et al., 2004;Liao et al., 2011;Liao et al., 2014;Lee et al., 2019). Details
specific to these experiments are described below. A diagram of the I'-CIMS system and the experimental layout is shown in
Figure 1. Varying levels of calibration standard were added to 4-10 standard liters per minute (slpm) of N> and delivered to
the sampling inlet of the CIMS through perfluoroalkoxy (PFA) Teflon tubing, with dimensions of 1.27 cm outer diameter, and
0.95 cm inner diameter. Approximately 1.6 slpm of this flow was sampled into the CIMS flow tube and the rest was exhausted
into the lab. The flow tube was humidified by adding 20 standard cubic centimeters per minute (sccm) of N, through a water
bubbler kept in an ice bath. The flow tube was operated at a pressure of either 20 or 40 Torr by using either a 0.91 mm or 0.635
mm orifice between the flow tube and the collisional dissociation chamber (CDC). The scroll pump flow was controlled to

maintain the flow tube at 20 or 40 Torr.

Mass spectra of ambient Atlanta air were obtained, in order to check for potential interferences due to the VUV-IS. For these
experiments air was sampled from the roof of the Environmental Science and Technology building on the Georgia Tech
campus. A PFA Teflon tube of 0.95 cm inner diameter and 8 m long was used as a sampling inlet. A total flow of ~7 slpm of
ambient air was drawn through the inlet, of which 1.7 slpm was sampled into the CIMS flow tube and the rest was exhausted

through a diaphragm pump. The flow tube was operated at 20 Torr.

3
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2.2 Calibration sources

Permeation tubes (KIN-TEK Laboratories, Inc.) were used as the sources of Cl, and formic acid for tests on the Q-CIMS. The
output of both tubes was measured by ion chromatography as detailed by Liao et al. (2011) and Nah et al. (2018). The
permeation rates were measured to be 104.7 ng min’! for formic acid and 14.8 ng min™! for Cl,. CINO, standard gas was
generated by passing a humidified flow of Cl, from the permeation tube in N, through a bed of sodium nitrite (NaNO,). The

yield of CINO; from Cl, was assumed to be 50% as we have consistently found in previous studies (Liu et al., 2017).

Sensitivity tests to formic acid and Cl, on a TOF-CIMS were performed by standard addition in laboratory air. The calibration
species were obtained from a calibrated formic acid permeation device (47 ng min™') and a 4 ppm Cl, in N, compressed gas
cylinder. The Cl; cylinder was calibrated by cavity ring-down spectroscopy (CRDS) at 405 nm. The permeation rate of formic

acid was measured by catalytic conversion to CO; followed by CO, detection as detailed by Veres et al (2010).

2.3 VUV ion source (VUV-IS)

In a typical I'-CIMS system, a flow of CH;l in N> is passed through a 2!°Po radioactive ion source, to form the reagent ion I".
In this study, the radioactive source was removed and replaced with a VUV lamp assembly. The Kr lamp is powered by a 4 W
DC power supply. Two configurations (a and b as shown in Figure 1) of the VUV lamp assembly were tested. In both
configurations a small Kr VUV lamp (Heraeus, Type No. PKS 106) (19.6 mm diameter x 53.5 mm length) was used to generate
ions. This lamp is commonly used in small commercial VOC detectors that utilize photoionization as a detection method. The
VUV lamp was operated at ~280 Volts DC and typically drew ~0.7 mA. In general, the ion current reaching the mass
spectrometer increased with increasing lamp voltage (see Figure S1). The VUV lamp was attached to a custom QF 40 centering
ring with vacuum epoxy. The centering ring has a thru hole (11.4 mm diameter) with a counterbore (41.1 mm diameter) in the
center. The lamp is sealed to the edge of the counterbore with vacuum epoxy. The thru hole allows light from the lamp to enter
the ion source region of the CIMS. The QF 40 centering ring is mated on the low pressure side to an inline tee with two QF
40 flanges on the ends and a 0.635 cm NPT fitting in the center. In lamp configuration (a), the inline tee is attached to a
standard short QF 40 nipple (126 mm length) which serves as a photoionization region and provides a direct path for the VUV
photons and generated ions into the flow tube. In configuration (b), a QF 40 90 degree elbow was attached between the QF 40
nipple and CIMS flow tube to prevent direct exposure of the flow tube to the VUV photons. The ambient pressure side of the
QF 40 centering ring, on which the VUV lamp attached, is mated to a QF 40 x QF 16 x QF 40 reducing tee housing for
protection of the VUV lamp. The QF 16 branch of the tee enables visual inspection of the lamp operation.
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The sensitivity of the VUV-IS for measuring formic acid, Cl, and CINO, was measured for varying CH;I concentrations and
at two flow tube pressures (Table 1 and 2). The impact of adding C¢Hs was investigated by varying the concentration of CsHg
at a lower level of CHsl. Compressed gas cylinders of ~700 ppmv of CHsl and ~0.1% of CsHg were used as CHsl and CsHg

sources. A variable flow of N, containing CH;I was delivered in the ion source to determine the optimal flow (Figure 2).

2.4 TOF-CIMS

The VUV-IS was also characterized by operation on a commercial TOF-CIMS (Aerodyne Research Incorporated) (Lee et al.,
2014). The ion molecule reactor (IMR) used here was constructed from a 150 mm long QF 40 adapter tee with a 9.5 mm fitting
in the center, to allow mounting of the VUV-IS. The VUV lamp mounted to the QF 40 inline tee (section 2.1) was attached
to a QF 40 x QF 16 conical adapter connected to a flange with a 9.5 mm stainless steel tube. This allowed the VUV-IS assembly
to be mated directly to the IMR using standard vacuum components. The IMR was maintained at a pressure of 30 torr and
operated at a total flow of 2.2 slpm. A 1 slpm N> flow with 30-400 ppmv CHsl passed through the VUV-IS into the IMR and
mixed with 1.2 slpm of ambient air. Water was dynamically added to the IMR to maintain a constant ratio of I" to I'(H,O). This
provided real-time compensation for changes in ambient humidity to minimize fluctuations in sensitivity. Mass spectra were

obtained with both a VUV-IS and a standard radioactive ion source, sampling ambient air in Boulder Colorado.

3 Results

The sensitivity of the VUV-IS on the Q-CIMS can reach 100s of Hz pptv'! (Table 1 and 2) similar to the best sensitivity
obtained with radioactive sources (e.g. Lee et al., 2019). Configuration (a) of the VUV-IS gives the highest signal levels (Figure
3) especially at lower flow rates through the ion source. However, configuration (a) also leads to significantly higher levels of
interfering masses than configuration (b) due to photoelectrons being generated on the illuminated surface of the flow tube
(Figure 4). Configuration (b) yields lower signals but significantly reduces background ion generation relative to configuration
(a). The VUV-IS requires significantly higher levels of CHsl than those used in radioactive sources (typically ~1 ppmv, Slusher
et al., 2004) (Figure 3 and 5), because the CH3l must also serve as a source of photoelectrons. C¢Hg can be used as a VUV
absorber to generate photoelectrons (Figure 3 and 5) without generating excessive interferences (Figure 4). Tests on the TOF-
CIMS demonstrated that the VUV-IS and a standard radioactive ion source produced the same reagent ion (I') abundance. In
addition, both sources generated similar mass spectra of ambient air, demonstrating that the VUV-IS source did not produce

significant interferences to the detection of most trace gases (Figure 6).

3.1 Q-CIMS Sensitivities using CHsl

The sensitivities and LODs for formic acid, Cl, and CINO, under different experimental conditions using lamp configuration

(b) are compiled in Table 1. With the flow tube at 20 Torr, sensitivities to formic acid, Cl, and CINO; reached up to 147, 161
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and 154 Hz pptv’!, respectively, using up to 86.5 ppmv of CH;l in the ion source flow. At 40 Torr, similar sensitivities (128,
149 and 148 Hz pptv'! for formic acid, Cl, and CINO,, respectively) were achieved with less CHsI (19.0 ppmv). Figure 5
shows the dependence of the CIMS sensitivities on CH;I level at 20 Torr (upper left) and 40 Torr (lower left) with no other
absorber added. In general, CIMS sensitivities increase with the CH3I mixing ratio. However, the response is less than linear
and appears to saturate at higher levels of absorber. With the maximum concentration of CH;I (86.5 ppmv, 5.70x10'3 molecule
cm®) used in this experiment, ~8% of photons emitted from the VUV lamp were absorbed (see SI for sample calculation).
This indicates that other factors such as ion recombination and wall loss could be limiting the ion abundance. The sensitivities
and LODs under similar experimental conditions using lamp configuration (a) are show in Table 2 and Figure 3. The
sensitivities to formic acid, Cl,, and CINO, approached ~700 Hz pptv™!, with limits of dectection of less than 1 pptv for a one
minute integration period. Limits of detection are defined at a signal-to-noise ratio of 3 where the noise is the variance of the
background measurements. In general, the sensitivities using lamp configuration (a) were about a factor of four larger than in
configuration (b). Note that all the Q-CIMS sensitivities reported in this work are not normalized to the reagent ion signal,
since the reagent ion signal is not known accurately. We estimate the reagent ion signals are ~100 MHz at the highest

sensitivities, but the Q-CIMS detector counts ions linearly only up to about 0.5 MHz.

3.2 Q-CIMS Sensitivities using CHsI and C¢Hs

In order to test the effectiveness of the addition of another absorber to generate photoelectrons, mixtures of CHsl and Cg¢Hg
were added to the ion source. Lower mixing ratios (8.8 ppmv at 20 Torr, 1.8 ppmv at 40 Torr) of CHsI were used in combination
with varying amounts of CsHs to assess the impact of the addition of CsHs to the generated ion current using lamp configuration
(b). The sensitivity dependence on C¢Hs mixing ratio is shown in Figure 5. At 20 Torr, up to 229.2 ppmv CsHg was added to
8.8 ppmv CH;l to achieve the equivalent sensitivity (158, 157, and 152 Hz pptv! for formic acid, Cl, and CINO,, respectively)
using 86.5 ppmv CHsl alone. At 40 Torr, up to 58.9 ppmv C¢Hs was added to 1.8 ppmv of CH3l to reach the maximum level
of sensitivities (157, 166, and 138 Hz pptv™! for formic acid, Cl, and CINO,, respectively) when using 19.0 ppmv of CHsl.
Similar trends for the addition of CsHg using lamp configuration (a) was observed and are shown in Table 2 and Figure 3. At
both 20 and 40 Torr sensitivities of more than 600 Hz pptv'! were obtained for all species in configuration (a). These results
demonstrate that addition of an absorber (e.g. benzene) enables high sensitivity with the VUV-IS while adding typical levels

(a few ppmv) of an electron attaching compound.

3.3 Q-CIMS Interference Tests

Representative mass spectra (m/z = 20 - 220 amu) taken with a 20 mCi 2!°Po standard radioactive source and the VUV-IS with
configuration (a) on an I'-CIMS sampling ambient air are shown in Figure 4. Note that the I" signal is saturated in all mass
spectra due to the very high signal levels. Clearly, the VUV-IS in configuration (a) generates many additional ions compared

to a radioactive source. Large signals (> 100,000 Hz) are observed at O, (m/z = 32 amu), NO;™ (m/z = 62 amu), and COs™ (m/z
6
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= 60 amu). This indicates that photoelectrons generated on the illuminated surface of the flow tube in the presence of the
sampled air leads to formation of O, by electron attachment to O,. This also leads to the formation of CO3; and NOs™ by
subsequent reactions with CO,, O3, and NO, (Mohler and Arnold, 1991). Consequently, the generation of O initiates

significant secondary chemistry that may lead to interfering signals at a large number of masses.

Using the VUV-IS in configuration (b) prevents direct illumination of the flow tube by the VUV lamp and produces similar
spectra to those obtained with a radioactive source (Figure 4). The O, signal levels are lower by more than three orders of

magnitude compared to configuration (a) where the flow tube is directly illuminated.

Finally, Figure 4 also has a mass spectrum using the VUV-IS in configuration (b) with the addition of 110 ppmv of C¢Hs and
8.8 ppmv of CHsl in the ion source flow. The addition of the CsHs does not produce significant amounts of additional ions and
the mass spectra is very similar to that obtained without CsHs. This indicates that using CsHs (or other low IP compounds) as
a light absorber to generate photoelectrons has the potential to extend the use of the VUV-IS to other electron attaching
compounds (e.g. SFs, HNO3, etc.) that have small absorption cross sections in the VUV or have ionization potentials higher

than 10.6 eV.

3.4 Q-CIMS Field Tests

Ground-based measurements of formic acid using the I'-CIMS with the VUV-IS were conducted at a rural site in Dongying,
China, during the Ozone Photochemistry and Export from China Experiment (OPECE) campaign from March 20 to April 21,
2018. Continuous formic acid and jyo, measurements demonstrate reliable field operation of the lamp for long periods (Figure
7). A clogged mass flow controller on the inlet and a scroll pump failure caused brief measurement interruptions on March 27
and in early April. We could not obtain gas mixtures of CH3l at this field location, so we used a liquid reservoir as CHsl source.
This led to using CHsl levels of 100s of ppmv which may have accelerated degradation of the scroll pump tip seals. However,
no direct problems were encountered with the VUV-IS and the lamp used in this work has been operational, with no obvious

degradation of signal, for over 18 months.

3.5 TOF-CIMS Tests

The VUV-IS was found to give very similar signal levels to those obtained with a standard radioactive ion source (with an
activity of ~16 mCi of 2!°Po) on a TOF-CIMS. Both sources gave total reagent ion signals of ~10 MHz and similar sensitivity
to both formic acid and Cl, of about 20-25 Hz/ppt. The I signal for both sources was ~6 MHz and I'(H,O) signal was ~3 MHz.
In addition, as illustrated in Figure 6, both sources gave very similar mass spectra for ambient air. The largest difference
between the mass spectra were that the VUV-IS gave higher levels of I3 while the radioactive source gave higher levels of
peaks corresponding to nitric acid (i.e. I'(HNOj3) and NO3"). Sensitivities as a function of CH3I mixing ratio in the flow tube

were also tested (Figure S2). Sensitivities to formic acid and Cl, increase with the CH;3I mixing ratio up to ~100 ppmv. The

7
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sensitivities normalized to the reagent ion I"(H>O) do not change with CH3l mixing ratio and are the same obtained with the
radioactive source. These results demonstrate that a VUV-IS can be used on a TOF-CIMS to obtain the same sensitivity,

selectivity, and ion distribution as with a radioactive ion source.

4 Discussion

Clearly, the VUV-IS can generate I" ions and mass spectra that are very similar to a radioactive ion source on both a TOF-
CIMS and a Q-CIMS. For this reason, we think that the VUV-IS can replace radioactive ion sources in most I-CIMS
applications without any loss of measurement performance. Perhaps, the largest benefit of the VUV-IS is that it will expand
the use of I'-CIMS to locations or situations where radioactivity is not allowed. The VUV-IS is also likely to be useful for
laboratory flow tube or chamber studies that use CIMS as a detector (D'Ambro et al., 2017;Huang et al., 2017;Faxon et al.,
2018). We have not found any interferences or issues that would limit application of a VUV-IS, though its application to

measurement of individual species must be confirmed by further testing.

Using the VUV-IS requires attention to the possibility of interferences caused by the generation of photoelectrons from surfaces
that can be attached by oxygen or other compounds in the sampled gas matrix. We were able to minimize this effect by using
a flow geometry that shielded the flow tube from the VUV photons albeit at the expense of more than a factor of four in signal
on the Q-CIMS. Similarly, the implementation of the VUV-IS on the TOF-CIMS successfully limited O, production by
passing the ion source flow through a small diameter tube that discriminated against light reaching the IMR. This issue might
also be addressed by further improvements in geometry, the use of optical focusing elements, or higher levels of an absorber

molecule.

The VUV-IS source requires an absorbing species to serve as a source of photoelectrons. Extending the use of the VUV-IS to
other reagent ions such as SF¢™ (Nah et al., 2018), Br (Sanchez et al., 2016), NOs™ (Eisele and Tanner, 1993), CF30" (Crounse
et al., 2006), and CH3CO; (Veres et al., 2008) will most likely require the addition of an absorber such as C¢Hs. Although the
use of CHsl to produce I" with the VUV-IS does not require an additional absorber, this application requires relatively high
levels of CH3l to obtain maximum sensitivities. Since CHsl is a hazardous gas, higher levels of CH3I could be problematic for
some situations such as deployment in a highly regulated environment such as an aircraft. Higher levels of CHsl may also
necessitate protection of scroll pumps with scrubbers and traps. For these reasons, it may be preferable to use a low activity

(Lee et al., 2019) or standard radioactive ion source for some applications.

One potential advantage of the VUV-IS is demonstrated by the lower background signals at masses corresponding to nitric
acid (HNO:s). This is probably due to lower rates of nitrogen radical generation in the VUV-IS as the generated photons are

much lower in energy (~10 eV) relative to the alpha particles (~5.4 MeV) from a >'°Po radioactive source. Additionally, the
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VUV-IS does not produce ions when power is removed but radioactive decay is continuous. Consequently, interfering species
can be continuously generated in a radioactive source, leading to build up of condensable species such as nitric acid. For these

reasons, the VUV-IS may generate significantly lower levels of interferences than a radioactive source.

5 Conclusions

The VUV-IS described in this work can provide sensitivities and limits of detections that are at least comparable to those
obtained with a radioactive ion source for both Q-CIMS and TOF-CIMS using I" as a reagent ion. The VUV-IS is also reliable
and can be safely deployed in remote field missions. These results demonstrate that the VUV-IS can eliminate the need for
radioactivity with an I'-CIMS for most applications. The use of low IP absorbers, such as benzene, to generate photoelectrons
in conjunction with high IP electron attaching compounds should also allow the generation of other reagent ions such as SFs,

CF30, NOs™. In summary, the VUV-IS has the potential to eliminate most of the use of radioactivity with CIMS instruments.
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Figure 1: Diagram of the I'-Q-CIMS system with a VUV-IS in two different configurations. Configuration (a) provides the most
direct route for the generated ions but also directly illuminates the flow tube. Configuration (b) shields the flow tube from the VUV
photons by inserting a QF 40 elbow between the photoionization region and the flow tube.
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Figure 6. Mass spectra of ambient air in Boulder, CO from a TOF-CIMS with (1) a VUV-IS (2) a radioactive source. The bottom
panel (3) is a correlation plot of the individual mass signals with the VUV-IS versus those obtained with a radioactive source, with
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415 Table 1: Experiment conditions, sensitivities and limits of detection (LODs) for VUV-IS configuration (b)

Exp. CH;l only CH;l and C¢Hg CH;I only CH;lI and C¢Hg
flow tube pressure (Torr) 20 20 40 40
CH;I mixing ratio (ppmv) 8.8-86.5 8.8 1.8-19.0 1.8
CgHg mixing ratio (ppmv) 0 0-229.2 0 0-58.9

sensitivity (Hz pptv™") a 79 - 147 79 - 158 77-128 77 -157
formic acid b

1 min LOD (pptv) * 0.78 -0.74 0.78 - 0.67 0.88 —0.62 0.88 - 0.67

sensitivity (Hz pptv™") 2 83 - 161 83 -157 79 - 149 79 - 166
Cl

1 min LOD (pptv) a,b 0.82-0.72 0.82-0.68 0.92 -0.64 0.92-0.52

sensitivity (Hz pptv™') a 77 - 154 77 - 152 85-148 85-138
CINO, b

1 min LOD (pptv) ® 0.45-0.24 0.45-0.31 0.43-0.17 0.43 -0.19

2 Sensitivities and detection limits are for HCOOH T (m/z = 173 amu), Cl,'I" (m/z = 197 amu) and CINO,I" (m/z = 208 amu).

® Signal to noise ratio = 3:1

Table 2: Experiment conditions, sensitivities and limits of detection (LODs) for VUV-IS configuration (a)

Exp. CH;l only CH;I and C¢Hg CHsI only CH;I and C¢Hg
flow tube pressure (Torr) 20 20 40 40
CH;I mixing ratio (ppmv) 9.6-83 9.6 1.6—-19 1.6
CgHg mixing ratio (ppmv) 0 0-175 0 0-54

sensitivity (Hz pptv™') a 228 - 761 225-761 171 - 591 171 -703
formic acid b

1 min LOD (pptv) ® 0.44-0.36 0.59-0.23 0.52-0.28 0.68-0.21

sensitivity (Hz pptv') * 212 -754 210 - 740 173 - 605 173 - 694
Clh

1 min LOD (pptv) * b 0.56-0.30 0.49-0.27 0.62 - 0.24 0.48 - 0.24

sensitivity (Hz pptv?) ® 193 - 687 204 - 679 153-570 169 - 605
CINO, b

1 min LOD (pptv) ® 0.22-0.12 0.20-0.10 0.07 - 0.05 0.12-0.07

2 Sensitivities and detection limits are for HCOOH T (m/z = 173 amu), Cly'I" (m/z = 197 amu) and CINO,I" (m/z = 208 amu).

b Signal to noise ratio = 3:1
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