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Abstract:  

Poor   air   quality   is   the   world’s   single   largest   environmental   health   risk,   and   air   quality   monitoring   is   crucial   for  

developing   informed   air   quality   policies.   Efforts   to   monitor   air   pollution   in   different   countries   are   uneven,   largely  

due   to   the   high   capital   costs   of   reference   air   quality   monitors   (AQMs),   especially   for   airborne   particulate   matter  

(PM).   In   sub-Saharan   Africa,   for   example,   few   cities   operate   AQM   systems.   It   is   thus   important   to   examine   the  

potential   of   alternative   monitoring   approaches.    Although   PM   measurements   can   be   obtained   from    low-cost   optical  

particle   counters   (OPCs) ,   data   quality   can   be   an   issue.   

      This   paper   develops   a   new   method   using   raw   aerosol   size   distributions   from   multiple,   surface-based   low-cost  

Optical   Particle   Counters   (OPCs)   to   calibrate   the   Multi-angle   Imaging   SpectroRadiometer   (MISR)  

component-specific,   column   aerosol   optical   depth   (AOD)   data,   that   contain   some   particle-size-resolved   information.  

The   combination   allows   us   to   derive   surface   aerosol   concentrations   for   particles   as   small   as   ~0.1   μm   in   diameter   that  

MISR   detects   but   are   below   the   OPC   detection   limit   of   ~0.5   μm.    As   such,   we   obtain   better   constraints   on   the  

near-surface   particulate   matter   (PM)   concentration,   especially   as   the   smaller   particles   tend   to   dominate   urban  

pollution.   

      We   test   our   method   using   data   from   five   low-cost   OPCs   deployed   in   the   city   of   Nairobi,   Kenya,   from   May   1  

2016   to   March   2   2017.   As   MISR   passes   over   Nairobi   only   once   in   about   eight   days,   we   use   the   size-resolved   MISR  

AODs   to   scale   the   more   frequent   Moderate   Resolution   Imaging   Spectrometer   (MODIS)-derived   AODs   over   our  

sites.   The   size   distribution   derived   from   MISR   and   MODIS   agrees   well   with   that   from   the   OPCs   in   the   size   range  

where   the   data   overlap   (adjusted-R 2    ~0.80).   We   then   calculate   surface-PM   concentration   from   the   combined   data.  

The   situation   for   this   first   demonstration   of   the   technique   had   significant   limitations.   We   thus   identify   factors   that  
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will   reduce   the   uncertainty   in   this   approach   for   future   experiments.    Within   these   constraints,   the   approach   has   the  

potential   to   greatly   expand   the   range   of   cities   that   can   afford   to   monitor   long-term   air   quality   trends   and   help   inform  

public   policy.   

 

Key  words: MISR,  MODIS,  MAIAC,  aerosol  optical  depth,  low-cost  air  quality  monitor,  particulate  matter,               

Nairobi,   public   health  

 

1   Introduction  

Near-surface  particulate  matter  (PM),  airborne  particles,  also  known  as  aerosol,  is  a  major  pollutant  that  affects  air                  

quality,  and  many  countries  are  taking  measures  to  decrease  PM  levels.  However,  efforts  to  monitor  air  pollution  in                   

different  countries  are  uneven.  In  sub-Saharan  Africa,  for  example,  few  countries  operate  air  quality  monitoring                

systems,  and  most  countries  lack  any  air  quality  monitoring  capabilities  at  all,  even  though  the  limited  observations                  

that  do  exist  show  PM  levels  harmful  to  human  health (Petkova  et  al.,  2013) .  This  is  because  air  quality  monitoring                     

equipment  tends  to  be  costly  to  purchase  (capital  costs  are  in  the  range  of  ~USD  $100,000  -USD  $200,000)  and                    

maintain,  and  data  processing  and  analysis  requires  additional  expertise  and  resources (deSouza,  2017;  Kumar  et  al.,                 

2015;   Mead   et   al.,   2013) .   

 

Given  this  context,  other  technologies,  such  as  low-cost  air  quality  sensors  and  satellite  imagery,  are  being  examined                  

as  alternative  means  of  monitoring  air  quality.  Low-cost  air  quality  sensors,  usually  costing  less  than  $2,000                 

(Morawska  et  al.,  2018) ,  have  the  potential  to  move  us  from  a  paradigm  of  high-cost,  highly  accurate,  sparse                   

reference  air  quality  monitoring  to  low-cost,  more  widely  available  air  quality  monitoring  networks.  One  of  the                 

major  drawbacks  of  using  the  lower-cost  sensors  is  that  no  standards  or  certification  criteria  exist  for  these                  

instruments  yet,  and  consequently,  the  quality  of  the  data  they  produce  is  of  special  concern (Lewis  and  Edwards,                   

2016;   US   EPA,   2016) .   

 

Satellite  imagery,  in  particular  space-based  aerosol  datasets  derived  from  the  NASA  Earth  Observing  System’s               

Moderate  Resolution  Imaging  Spectrometer  (MODIS)  and  Multiangle  Imaging  Spectro-Radiometer  (MISR),  have            

also  been  used  to  estimate  near-surface  particulate  matter  concentrations  from  the  retrieved  total-column  aerosol               

optical  depth  (AOD),  with  the  help  of  aerosol  transport  modelling  (e.g., Liu  et  al.,  2007;  Martin,  2008;  van                   

Donkelaar  et  al.,  2010) .  The  advantages  of  satellite  technology  for  air  quality  monitoring  arise  from  the  spatially                  

extensive  measurements  over  time  (2000-present  for  MISR  and  MODIS),  and  include  global  coverage,  instrument               

calibration   stability,   and   the   low   incremental   cost   of   data   acquisition.   
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However,  the  challenges  of  using  these  datasets  for  air-quality  applications  are  also  considerable.  Among  the  main                 

challenges   in   using   satellite-derived   AOD   for   this   application   are:   

(1)  The  low  temporal  frequency  of  measurements  from  polar-orbiting  instruments  (i.e.,  at  most,  about  once  daily  for                  

MODIS,  and  between  two  and  nine  days  for  MISR,  depending  on  latitude)  compared  to  diurnally  varying  pollution                  

levels   in   many   settings  

(2)  Inaccuracies  introduced  in  satellite  aerosol  retrieval  algorithms  by  uncertain  aerosol  and  surface  optical               

properties  

(3)   The   relatively   coarse   retrieval-product   spatial   resolution   and   aerosol   species   discrimination  

(4)  Inability  to  retrieve  aerosol  in  the  presence  of  cloud  cover,  and  possible  sub-pixel  cloud  contamination  elsewhere                  

(Duncan   et   al.,   2014;   Martonchik   et   al.,   2009) .  

(5)  The  relationship  between  satellite-derived  AOD  and  PM 2.5 is  not  straightforward.  AOD  is  the  integral  of                 

atmospheric optical  extinction  from  the  surface  to  the  top  of  the  atmosphere  under  ambient  temperature  and                 

humidity  conditions,  whereas  PM 2.5  is  the  near-surface  aerosol mass  concentration  of  dry  particles  with  diameters  <                 

2.5  μm.  The  relationship  depends  upon  the  aerosol  vertical  distribution,  hygroscopic  growth  factor,  mass  extinction                

efficiency,  and  ambient  atmospheric  relative  humidity  profile (Gupta  et  al.,  2006) .  The  relationship  is  also  time                 

dependent   and   can   vary   across   typical   satellite   grid-cells    (Engel-Cox   et   al.,   2004;   Hu,   2009;   Lee   et   al.,   2011) .  

 

Some  recent  studies  that  apply  models  to  derive  near-surface  PM 2.5 from  satellite  AOD  measurements  combine  AOD                 

with  ground-based  PM 2.5 measurements  from  reference  air  quality  monitors.  Many  early  methods  derived  simple               

empirical  relationships  between  PM 2.5 and  AOD  (Engel-Cox  et  al.,  2004;  Wang  and  Christopher,  2003;  Zhang  et  al.,                  

2009).  More  advanced  approaches  applied  chemical  transport  models  to  derive  near-surface  PM 2.5 from  the               

total-column  aerosol  optical  depths  of  different  aerosol  components,  which  can  be  done,  e.g.,  using  model-simulated                

aerosol  vertical  distribution  and  aerosol-type  constraints  from  MISR (Friberg  et  al.,  2018;  Liu  et  al.,  2007;  Patadia,                  

2013) .   

 

Many  studies  have  focused  on  continental  US  due  to  the  extensive  surface  measurements  available  for  model                 

validation (Al-Saadi  et  al.,  2005;  Liu  et  al.,  2005;  Tai  et  al.,  2010) . Gupta  et  al.,  (2006 )  were  among  the  first  to                       

examine  the  derivation  of  PM 2.5 from  AOD  in  cities  on  different  continents:  Sydney,  Delhi,  Hong  Kong  and  New                   

York. van  Donkelaar  et  al.,  (2010)  used  the  GEOS-Chem  model  to  determine  the  scaling  factors  between  AOD  and                   

PM 2.5  for  the  entire  globe.  Because  the  AOD-PM 2.5 relationship  varies  by  region  and  season,  it  is  particularly                  

important   to   test   existing   models,   and   modify   them   appropriately   in   the   data-sparse   regions   of   the   world.   

 

To  respond  to  this  challenge,  the  SPARTAN  network  is  adding  numerous  reference-grade  surface  stations  in  poorly                 

sampled  areas,  to  evaluate  and  enhance  satellite-derived  PM  results (Snider  et  al.,  2016;  Weagle  et  al.,  2018) .  Given                   

that  it  is  unlikely  many  cities  will  have  access  to  reference  air  quality  monitoring  instruments  due  to  their  high  cost,                     

it  is  important  to  start  examining  the  fusion  of  data  from  low-cost  air  quality  monitors  with  that  from  satellites,  and                     
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to  develop  insights  from  the  combination  of  these  measurements.  This  paper  represents  the  first  attempt,  to  the  best                   

of   our   knowledge,   to   do   so.  

 

Part  of  the  challenge  of  attempting  to  combine  these  datasets  is  that  low-cost  air  quality  monitors  on  the  market  are                     

not  very  reliable,  and  their  measurements  tend  to  be  much  less  accurate  than  reference  monitors (Lewis  and                  

Edwards,  2016) .  Many  PM  monitors,  termed  Optical  Particle  Counters  (OPCs),  measure  particle  counts  instead  of                

particulate  mass,  and  do  so  reliably  only  for  particles  within  certain  diameter  ranges.  For  example,  assumptions                 

about  particle  density  as  well  as  the  number  of  ultrafine  particles  not  sampled  by  these  instruments  must  be  made  to                     

convert   the   particle   counts   to   PM 2.5 .   These   assumptions   introduce   additional   uncertainties   into   the   results.   

 

This  paper  presents  a  novel  method  linking  the  size-resolved  information  in  MISR  AOD  component-specific               

retrievals  with  the  ground-based  aerosol  size  distribution  derived  from  the  raw  particle  counts  of  surface-based                

OPCs.  As  MISR  passes  over  countries  near  the  equator  only  once  in  about  8  days,  we  use  monthly-MISR  aerosol                    

climatology   to   scale   the   more   frequent   (twice-daily   near   the   equator)   MODIS-derived   AOD.   

 

As  a  first  attempt  at  testing  the  method,  we  apply  it  to  five  Alphasense  OPC-N2  low-cost  monitors deployed  from                    1

May  2016  to  March  2017  in Nairobi,  a  growing  metropolitan  area  in  sub-Saharan  Africa.  The  Nairobi  case  entails                   

some  important  limitations  for  the  current  application;  the  AOD  over  the  region  was  relatively  low,  there  were  no                   

independent  measurements  of  aerosol  vertical  distribution  or  any  surface-based,  high-quality  reference  air  quality              

monitors  to  help  with  validation.  However,  it  is  the  only  location  where  we  have  a  significant  record  of  coincident,                    

ground-based  low-cost  OPC  data.  As  such,  we  have  to  make  assumptions  in  this  first  demonstration  of  the                  

technique,   which   we   detail,   and   mitigate   to   the   extent   possible,   in   this   paper.   

 

Section  2  provides  an  overview  of  the  ground-based  and  satellite  datasets  involved  in  this  study,  as  well  as  the  model                     

simulations  used  to  constrain  the  aerosol  vertical  distribution.  Section  3  describes  in  detail  the  method  we  developed                  

for  combining  the  surface  and  satellite  data.  Section  4  contains  the  results  of  applying  this  method  in  Nairobi.  Our                    

conclusions  appear  in  section  5,  where  we  also  summarize  the  factors  that  will  reduce  the  uncertainties  involved  in                   

combining   data   from   low   cost   monitors   with   satellite   observations   in   future   deployments.  

1   Alphasense   OPC-N2   product   page   URL:   http://www.alphasense.com/index.php/products/optical-particle-counter/  
Last   accessed   15.12.2016)  
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2   Data   

2.1   Ground-Based   measurements:  

The  Alphasense  OPC-N2  monitor  is  a  low-cost  Optical  Particle  Counter,  costing  USD  $450,  that  works  by  using                  

focused  light  from  a  (~  5V,  175  mA,  658  nm)  laser  to  illuminate  one  aerosol  particle  at  a  time,  and  then  measuring                       

the  intensity  of  light  scattered.  The  amount  of  scattering  is  a  function  of  the  size,  shape,  and  composition  of  the                     

aerosol,  and  especially  for  spherical  particles  such  as  those  most  likely  to  dominate  in  the  study  region,  the                   

measurements  can  be  calibrated  using  monodisperse  particles  of  known  size (Sousan  et  al.,  2016) .  The  Alphasense                 

OPC-N2  is  unique  among  low-cost  sensors  as  in  addition  to  PM  estimates,  it  reports  the  raw  particle  counts  in  16                     

bins  based  on  particle  diameter,  ranging  from  0.38 μm  to  17.5 μm,  which  is  critical  to  our  method. The  bins  are                      

tabulated  in  Table  S1  in  Supplementary  Information.  Sousan  et  al.  (2016)  discuss  the  accuracy  of  these  count                  

measurements  in  detail,  and  note  that  they  agree  well  with  reference  instrument  measurements  for  coarser  particles                 

(>   0.78   μm   in   diameter),   but   underestimate   the   particle   counts   for   finer   particles.  

 

As  the  OPCs  cannot  detect  particles  with  diameters  <  0.38  μm,  Alphasense  provides  software  to  extrapolate  the                  

particle  counts,  as  needed  to  estimate  the  contribution  from  aerosols  having  diameters  <  0.38 μm .  The  number  of                   

particles  per  volume  of  air  in  all  bins  can  be  obtained  by  dividing  the  particle  counts  of  each  bin  by  the  flow  rate  and                         

sampling  duration.  The  Alphasense  company  proprietary  data  reduction  algorithm  makes  assumptions  about  the              

particle  density  and  volume  of  aerosols  in  each  bin  to  calculate  PM 1 ,  PM 2.5 and  PM 10  data  from  the  particle  count                     

data.   

 

Details   about   the   Nairobi   OPC   deployment   can   be   found   in   section   S1.1   in   Supplementary   Information.  

2.2   Satellite   Data  

Although  passive  remote  sensing  has  significant  limitations  for  air  quality  applications  at  present,  it  offers                

substantially  more  frequent,  global-scale  aerosol  constraints  than  any  other  measurement  technique.  Starting  in              

December  1999,  the  National  Aeronautics  and  Space  Administration  (NASA)  launched  a  series  of  Earth  Observing                

System  satellite  sensors,  including  the  two  instruments  we  use  in  this  experiment:  the  Multiangle  Imaging                

SpectroRadiometer  (MISR)  on  board  the  Terra  satellite (Diner  et  al.,  1998) ,  and  two  Moderate  Resolution  Imaging                 

Spectroradiometer  (MODIS)  sensors  (e.g., Remer  et  al.,  (2005) ),  one  each  aboard  the  Terra  and  Aqua  satellite                 

platforms.  
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   2.2.1   MISR   Research   Algorithm   AOD   and   Particle   Properties  

MISR  is  one  of  five  instruments  aboard  the  Terra  satellite.  It  measures  sunlight  reflected  from  Earth  in  each  of  nine                     

cameras  pointed  at  different  view  angles,  from  +70 0  through  nadir  to  -70 0 along  the  satellite  flight  path,  in  each  of                     

four  spectral  bands  (446,  558,  672  and  866nm)  (Diner  et  al.,  1998).  This  multi-angle  design  allows  MISR  to  observe                    

the  atmosphere  through  effective  slant  path  ranging  from  one  (i.e.,  vertically  down)  to  three  (i.e.,  at  steep  forward                   

and  aft  angles).  This  geometry  produces  scattering  angles  between  the  sun  and  viewing  vectors  ranging  from                 

approximately  60 0  to  160 0  in  mid-latitudes.  The  combination  of  multi-spectral  and  multi-angular  observations              

provides  information  about  aerosol  amount  and  microphysical  properties,  such  as  particle  size  and  shape (Kahn  et                 

al.,   2001;   Kahn   and   Gaitley,   2015) .   

 

MISR  algorithms  retrieve  aerosol  properties  by  selecting  from  among  the  optical  models  for  an  assumed  set  of                  

aerosol  component  mixtures.  A  “component”  is  a  candidate  aerosol  type  of  specified,  uniform  composition  and  size                 

distribution.  The  top-of-atmosphere  reflectances  simulated  for  each  mixture  are  calculated  and  compared  with  the               

corresponding  MISR  observations,  to  determine  the  mixtures  that  fit  the  data  within  certain  acceptance  criteria;                

these  are  reported  by  the  algorithm  as  the  “successful  mixtures”  likely  to  be  present (Diner  et  al.,  2005;  Limbacher                    

and  Kahn,  2014;  Martonchik  et  al.,  2009) .  Each  mixture  contains  up  to  three  individual  aerosol  components,  where                  

the   percent   contributions   of   all   the   components   to   the   mixture   mid-visible   AOD   sum   to   100%.   

 

The  MISR  Standard  Aerosol  retrieval  algorithm  uses  a  universe  of  74  mixtures.  The  eight  aerosol  components  in  the                   

MISR  Standard  Version  22  and  23  products  are  labelled:  1,  2,  3,  6,  8,  14,  19,  and  21  as  reported  in  Tables  1  and  2  in                           

Kahn  and  Gaitley  (2015)  and  reproduced  in  Table  S3  in  Supplementary  Information.  The  components  are  named                 

based  on  single-scattering  albedo  (SSA):  light-absorbing  or  non-absorbing,  particle  shape:  spherical,  non-spherical             

grains  or  spheroids,  and  effective  radius.  Under  favorable  retrieval  conditions  (e.g.,  when  total-column  mid-visible               

AOD  exceeds  about  0.15  or  0.2),  the  MISR  algorithm  is  able  to  distinguish  between  three  and  five  bins  in                    

column-effective   particle   size    (Kahn   and   Gaitley,   2015) .   

 

The  spectral  extinction  coefficients  for  each  aerosol  component  are  included  in  the  MISR  Aerosol  Physical  and                 

Optical  Properties  ( APOP)  file,  available  from  the NASA  Langley  Research  Center  (LARC)  Atmospheric  Sciences               

Data  Center  (ASDC) . The  MISR  Standard  aerosol  data  product  provides  AOD  values  and  success  flags:  (i.e.,                 2

whether  a  mixture  is  an  adequate  fit  to  the  observations  to  be  considered  a  “successful”  match)  for  each  aerosol                    

mixture,   based   on   estimated   measurement   uncertainties.   

 

2   https://eosweb.larc.nasa.gov/sites/default/files/project/misr/DPS_v32_RevL.pdf    (Last   accessed   on   August   12,  
2019)  
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In  this  paper,  we  use  the  MISR  Research  Aerosol  retrieval  algorithm  (RA;  Limbacher  and  Kahn,  2014;  2017)                  

applied  to  MISR  Level  1B2  radiance  data,  to  derive  AOD  estimates  for  the  eight  MISR  aerosol  components.  The                   

RA  can  be  run  with  different  sets  of  aerosol  components,  including  the  74-mixture  set  used  in  the  MISR  Standard                    

Algorithm,  and  reports  column-effective  aerosol  properties  at  any  desired  spatial  resolution  down  to  the  MISR  pixel                 

resolution  of  1.1  km  x  1.1  km.  In  addition  to  producing  results  at  a  finer  spatial  resolution  than  the  MISR  Standard                      

aerosol  product,  the  RA  also  offers  significantly  better  MISR  aerosol  retrieval  results  for  air  quality  and  other                  

applications  because  of  empirical  calibration  corrections (Limbacher  and  Kahn,  2015) ,  better  treatment  of  surface              

boundary   conditions,   and   other   refinements    (Limbacher   and   Kahn,   2017,   2014,   2019) .   

 

Data  from  MISR  on  its  own  rarely  contains  more  detail  than  qualitative  particle  size  and  shape,  so                  

particle-composition-related  information  that  could  be  used  to  distinguish  different  sources  or  to  assess  particle               

moisture  content  is  lacking,  except  where  detectable  differences  in  other  parameters,  such  as  particle  shape  (e.g.,                 

non-spherical  dust  vs.  spherical  smoke  or  pollution  particles)  and  particle  light-absorption  (e.g.  “dirty”  vs.  “clean”)                

make  these  distinctions  possible (Kahn  et  al.,  2001;  Kahn  and  Gaitley,  2015;  Liu  et  al.,  2007) .  MISR  aerosol-type                   

retrieval  uncertainty  is  assessed  generally  by  Kahn  and  Gaitley  (2015),  and  we  rely  on  these  results  to  indicate  the                    

expected  uncertainties  here.  Specifically,  we  enforce  a  lower  bound  of  0.15  on  mid-visible  AOD  for  accepting                 

MISR-retrieved  particle  size  distributions.  We  assume  that  the  aerosol  components  follow  log-normal  size              

distributions,  and  extract  the  size  distribution  of  the  MISR  aerosol  components  at  diameters  ranging  over  the  MISR                  

size-detection   range   of   about   0.1-3   μm.   

 

For  more  details  of  the  MISR  data  over  the  OPC-N2s  in  Nairobi  refer  to  section  S1.2.1  in  Supplementary                   

Information.  

2.2.2   MODIS   MAIAC   AOD  

MODIS  samples  every  location  on  the  globe  about  twice  a  day,  but  lacks  particle  size  information  (e.g., Levy  et  al.,                     

2013) .  As  aerosol  type  appears  to  be  fairly  constant  on  monthly  timescales,  we  scale  the  MODIS-MAIAC                 

(MultiAngle  Implementation  of  Atmospheric  Correction)  AOD  retrieval  product (Lyapustin  et  al.,  2011a;  Lyapustin              

et   al.,   2011b) ,   with   available,   particle-size-resolved   AOD   from   MISR   over   each   month.   

 

MODIS  has  36  spectral  channels,  designed  to  provide  a  wide  variety  of  biogeophysical  information.  Unlike  MISR,                 

which  uses  near-simultaneous,  multiangle  observations  for  aerosol-surface  retrievals,  MODIS  offers  single-view,            

broad-swath,  multi-spectral  data.  The  MAIAC  algorithm  applies  image-based  processing  techniques  to  analyze             

MODIS  time-series,  i.e.,  multiple  views  of  each  surface  location,  in  different  parts  within  the  MODIS  swath  (and                  

therefore  different  view-angles),  acquired  over  a  sliding,  16-day  orbit-repeat  cycle.  This  non-coincident  multi-angle              

approach  produces  cloud  detection,  AOD  and  atmospheric  correction  over  both  dark  vegetated  land  and  a  range  of                  
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brighter  surfaces,  at  1  km  x  1  km  resolution (Lyapustin  et  al.,  2012) .  Compared  to  operational  MODIS  retrievals,                   

MAIAC  AOD  has  similar  accuracy  over  dark  and  vegetated  surfaces,  and  higher  accuracy  over  brighter  surfaces                 

(Lyapustin   et   al.,   2011a;   Lyapustin   et   al.,   2011b) .   

 

For  details  about  MAIAC  AOD  over  Nairobi  during  the  study  period,  refer  to  Supplementary  Information  section                 

S1.2.2  

2.3   GEOS-Chem   Aerosol   Vertical   Scaling  
GEOS-Chem  simulations  were  used  in  our  study  to  provide  a  constraint  on  the  vertical  distribution  of  the  aerosols,                   

because  AOD  from  the  satellites  is  a  column-integrated  quantity,  whereas  PM 2.5 is  assessed  near-surface.  The                

GEOS-Chem  model  is  driven  with  GEOS-5  assimilated  meteorology  from  the  NASA  Global  Modelling  and               

Assimilation  Office  (GMAO)  at  0.5 0  x  0.667 0  horizontal  resolution  (Bey  et  al.,  2001).  The  model  is  nested  over  the                    

African  continent  and  boundary  conditions  are  from  a  global  simulation  at  2 0  x  2.5 0 . Natural  emissions  are  from                   

MEGANv2.1  for  biogenic  volatile  organic  compounds  (VOCs) (Guenther  et  al.,  2012) ,  for  soil  NOx (Hudman  et  al.,                  

2012) ,  and  for  lightning  NO x (Murray  et  al.,  2012) .  Biogenic  isoprene  emissions  are  updated  using  the  improved                  

model  developed  by (Marais  et  al.,  2014) .  Open  fire  (biomass  burning)  emissions  are  from  GFED4 (van  der  Werf  et                    

al.,  2010) .  Inventories  of  anthropogenic  emissions  in  Africa  include  DICE-Africa  for  cars,  motorcycles,  traditional               

biofuel  use  (fuelwood,  charcoal,  crop  residue),  charcoal  production,  ad  hoc  oil  refining,  backup  generators,  kerosene                

use,  and  gas  flares  (Marais  and  Wiedinmyer,  2016).  Pollution  from  industrial  and  on-grid  power  generation  are  from                  

EDGARv4.2  for  SO 2 ,  NO x ,  and  CO  (EC-JRC/PBL,  2011),  RETROv2  for  VOCs (Schultz  et  al.,  2007) ,  and (Bond  et                   

al.,  2007)  for  black  carbon  (BC)  and  organic  carbon  (OC).  Detailed  gas  and  aerosol  chemistry  are  described  by (Mao                    

et   al.,   2013,   2010) .  

 

Details  about  the  model  simulations  we  used  for  the  Nairobi  case,  as  well  as  our  attempts  to  validate  the  vertical                     

distribution  of  aerosol  obtained  from  the  GEOS-Chem  model,  are  provided  in  section  S1.3  in  Supplementary                

Information.   

 

3   Methodology  
 

Our   approach   uses   the   size   distribution   of   the   aerosol   components   from   MISR   retrievals   to   constrain   the   size  

distribution   derived   from   low-cost   OPCs.   The   satellite   size   distribution   data   is   encoded   in   the   fractional   contribution  

of   each   MISR   component   AOD   to   the   total   MISR   AOD.   We   use   the   ‘monthly’   effective   fraction   of   each   MISR  

component   AOD   to   scale   the   more   frequent   MAIAC   AODs,   yielding   AOD   values   parsed   out   for   the   individual  

MISR   components   on   a   more   frequent   basis.   In   particular,   the   constraint   on   the   aerosol   size   distribution   from   MISR  

remote-sensing   data   is   especially   important   for   particles   with   diameters   <   0.54   μm,   which   the   OPC   cannot   detect.  
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Obtaining   an   understanding   of   the   size   distribution   between   0.1   and   0.54   μm   allows   for   better   estimation   of   PM 2.5  

from   the   combined   MISR   and   OPC   measurements.   We   assess   the   assumptions   required   for   this   analysis   in   Section   5.  

3.1   Step   1:   Estimate   the   ground-based   size   distribution   of   aerosols   at   each   site   from   the  

Alphasense-OPC   N2   monitors  

We  obtain  the  lognormal  size  distribution:  dN/d(ln(d)),  from  the  Alphasense  OPC-N2  ground-based  data,  at  the  time                 

of   the   Terra   overpass,   for   the   diameter   at   the   mid-point   of   each   OPC   bin   using   Equation   1.   

 

                  (1)   × dN
dln(d) =   ∆n

ln(Dupper) ­ln(Dlower)
 

f low rate( )× 10 ×( )×sampling times
ml ­6

ml
m3  

 

Here  D upper  and  D lower  are  the  upper  and  lower  diameters  of  each  OPC  bin.  Δ n  is  the  number  of  particle-counts  in  each                       

bin.  N  is  the  averaged  number  concentration  of  particles  (units:  #/volume  of  air)  over  the  seven-minute  Terra                  

overpass.  The  number  concentration  units  derived  from  Equation  1  are  #/ml.  We  thus  multiply  the  result  by  10 6  to                    

convert   the   number   concentration   from   our   surface   monitors   to   Number   of   particles   (#)   /m 3 .   

 

Equation  1  uses  only  the  raw  particle  counts  from  the  OPC.  We  do  not  include  the  first  bin  (0.38-0.54  μm)  in  this                       

analysis,  as  the  error  in  the  number  concentration  measurement  for  this  bin  is  the  highest  (Sousan  et  al.,  2016).  Note                     

that  the  mode  diameter  of  urban  aerosol  tends  to  be  ~  0.2  μm.  Unfortunately,  the  Alphasense  OPC-N2  only  ‘sees’                    

larger  aerosols.  This  is  a  key  reason  for  combining  the  OPC  data  with  the  satellite  retrievals.  In  future  deployments,                    

other   instruments   that   can   see   the   smaller   particles   can   be   used.  

3.2   Step   2:   Estimate   stable   and   consistent   aerosol   size-resolved   information   from   satellite   data  
We  estimate  the  corresponding  size  distribution  of  surface  particulate  matter  from  MISR  and  MAIAC  AOD                

information   by   calculating   the   monthly   effective   near-surface   AOD   for   each   of   the   eight   MISR   aerosol   components.   

 

We  denote  the  column  fractional  AOD  for  each  aerosol  component  (listed  in  Table  S3  in  Supplementary                 

Information),  as  AOD i,k :  the  mid-visible  AOD  fraction  of  component i  in  the  kth  MISR  atmospheric  column                 

retrieval.  It  is  calculated  as  the  mixture-AOD-weighted  AOD  from  all  passing  mixtures  for  component i in  the  MISR                   

RA   aerosol   climatology.   

 

Step  2a. Estimate  the  near-surface  fraction  of  the  satellite  AOD .  We  estimate  the  fractional  AOD  for  each  aerosol                   

component  residing  in  the  lowest  atmospheric  layer  of  the  GEOS-Chem  model  (up  to  ~  130  meters  above  the                   

surface),  by  scaling  the  total-column  fractional  AOD  with  the  simulated  aerosol  vertical  profiles  from  GEOS-Chem                

using   Equation   2.   
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AOD N-Si = × MISR AODiGEOS Chem lower AOD
GEOS Chem column AOD     (2)  

 

Here   N-S   denotes   Near-Surface.   

 

Step  2b. Associate  the  near-surface  AOD  with  particular  aerosol  species  in  the  model .  Given  the  difference                 

between  the  MISR  aerosol  components  and  the  GEOS-Chem  aerosol  species,  we  use  an  approach  similar  to  Liu  et                   

al.  (2007)  to  connect  the  two.  Specifically,  we  sum  GEOS-Chem  AOD  values  for  spherical  species,  SO4-NH4-NO3,                 

OC  and  BC.  We  then  calculate  the  ratio  of  the  AOD  for  these  species  in  the  lowest  GEOS-Chem  atmospheric  layer                     

to  the  total  columnar  spherical-species  AOD  as  the  scaling  factor  for  the  MISR  spherical  components.  For  the  very                   

large  spherical  (MISR  aerosol  component  6)  and  non-spherical  components  (MISR  aerosol  components  19  and  21),                

we  use  the  ratio  of  GEOS-Chem  dust  AOD  in  the  lowest  layer  to  the  total  column  dust  AOD  (Kahn  and  Gaitley,                      

2015).  Henceforth,  we  refer  to  MISR  component-specific, near-surface  fractional  AODs  as  MISR  fractional              

AODs.  

 

Step  2c. Derive  the  satellite-component  size  distribution  contributions  to  specific  sizes .  We  now  obtain  the  particle                 

properties  from  the  MISR  RA  needed  to  constrain  the  OPC  aerosol  size  distribution  for  sizes  smaller  than  0.54  μm.                    

Depending  on  retrieval  conditions,  if  the  aerosol  retrieval  is  successful,  MISR  is  able  to  distinguish  aerosols  in  about                   

3-5  size  bins  (section  2.2.1).  The  MISR  RA  uses  these  data  to  constrain  a  universe  of  possible  aerosol  mixtures  to  a                      

subset  of  components  that  fit  the  data  best.  Although  there  is  uncertainty  in  the  details  of  the  size  distribution,  the                     

instrument  provides  consistent  and  stable  retrievals  over  large  areas  and  for  a  long  period  of  time.  Similarly,  the                   

process  of  constraining  the  universe  of  MISR  aerosol  types  present  is  also  consistent  and  stable  over  time.  The                   

corresponding  lognormal  size  distribution:  dN/d(ln(d))  of  all  the  aerosol  components  from  the  satellite  data  is                

obtained   from   Equations   3   and   4a.   

 

                                                                           (3) i(d)S =
ln (σi) ×√2π

e 2(ln (σi) )2
­(ln (d) ­ln (dci) )2

 

 

  N ×Si(d)dN
dln(d) = ∑

8

i=1
  N­Si         (4a)  

 

In  Equation  3,  S i (d)  is  the  normalized  size  distribution  of  MISR  aerosol  component  i.  The  representative  size                  

parameters  are,  specifically,  the  characteristic  diameter  ( dc i )  and  the  distribution  width  ( σ i )  for  each  of  the  eight                  
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MISR  aerosol  components.  Note  that  the  upper  and  lower  diameters  of  each  aerosol  component  are  considered  in                  

this  analysis.  Based  on  the  retrieval  algorithm  assumptions,  the  size  distribution  of  an  aerosol  component  for                 

diameters  outside  the  range  of  each  component  is  0.  For  the  Nairobi  cases,  only  small,  spherical  particles  and                   

medium-coarse  particles  contribute  significantly  to  the  MISR-retrieved  AOD  (Table  2).  N N-Si is  the  total  number                

concentration   of   each   MISR   aerosol   component   present   near-surface   for   each   observation.   

 

The  size  distributions  Si(D)  for  MISR  aerosol  components  2,  8  and  14  are  the  same  (Table  S3).  MISR  aerosol                    

components  2,  8,  and  14  represent  optical  analogs  of  typical  urban  pollution  with  different  light-absorption                

properties.  We  rewrite  Equation  4a,  grouping  these  three  components  into  one  aggregate  term  in  Equation  4b.  Here                  

 is  the  total  near-surface  number  concentration  of  components  2,  8  and  14.  The  index  i  here  runs  only  NN­S{2,8,14}                    

over   the   remaining   MISR   aerosol   components:   1,3,6,19,21.   

 

                 (4b)   N ×Si NdN
dln(d) = ∑

 

i=(1,3,6,19,21)
  N­Si (d) +   N­S{2,8,14} × S{2 or 8 or 14} (d)    

 

Importantly,  the  column-effective  size  distribution  from  Equation.  4b,  derived  from  the  MISR  retrievals,              

corresponds  to  the  surface-measured  value  from  Equation  1  only  if  the  near-surface  aerosol  properties  are                

representative  of  the  entire  atmospheric  column.  Due  to  a  lack  of  additional  observational  constraints,  we  must                 

accept  this  as  an  assumption,  along  with  the  corresponding  uncertainty.  The  assumption  will  be  favored  in  places                  

where  the  aerosol  load  is  concentrated  near-surface,  which  is  common  when  the  aerosol  column  is  dominated  by                  

local  sources.  This  is  likely  the  case  for  many  urban  regions  and  is  supported  by  the  high  correlation  between  MISR                     

or  MAIAC  AOD N-S  and  OPC  PM 2.5 in  Nairobi when  AOD  >  0.15  (see  section  S2  in  the  Supplementary  Information).                    

The  size  distribution  of  the  total  aerosol  derived  from  a  MISR  retrieval  is  a  sum  of  the  size  distributions  of                     

individual   aerosol   components,   as   represented   in   Equation   4.  

 

Step  2d. Formulate  the  satellite  constraint  on  size-specific  surface  concentration  so  it  can  be  regressed  against                 

the  OPC  data .  By  definition,  AOD 558  is  proportional  to  [the  number  concentration  of  aerosols]  x  [the  extinction  area                   

of  each  particle  at  558  nm  wavelength]  x  [the  path  over  which  AOD  is  assessed  (which  here  is  130  meters                     

vertically)].  In  order  to  obtain  near-surface  number  concentration  of  each  aerosol  component  using  this  physical                

definition  of  AOD,  we  assume  a  uniformly  mixed,  near-surface  aerosol,  with  the  AOD  measured  in  all  cases  over  a                    

vertical  path  through  the  first  130  m  of  the  GEOS-Chem  model.  As  shown  in  Equation  5,  for  each  aerosol                    

component,  a  dimensionless  proportionality  constant  multiplied  by  the  AOD N-S /path  length  (130  meters)  x  spectral               

extinction  coefficient  is  the  number  concentration  of  particles,  summed  over  the  path,  per  unit  area.  The  spectral                  
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extinction  coefficients  of  each  aerosol  component  can  be  found  in  Table  S3.  The  near-surface  number  concentration                 

of   each   aerosol   group   is   thus   represented   as:  

 

For   MISR   aerosol   components:   1,3,6,19,21:  

 

N N-S(1,3,6,19,21) = Гi=(1,3,6,19,21) ×
AODN­Si

 130 m × 10 × optical extinction coef f icient at 558 nm (μm)­12 (m)2

(μm)2 i

2 
   

(5a)  

 

For   the   aggregate   MISR   aerosol   group   comprising   of   MISR   aerosol   components:   2,   8   and   14:  

N N-S{2,8,14} = Г{2,8,14} × ∑
 

i={2,8,14}

AODN­Si

 130 m ×  10 × ×optical extinction coef f icient at 558 nm (μm)­12 (m)2

(μm)2 i

2 
 

(5b)  

 

The  spectral  extinction  coefficients  obtained  from  Table  S3  are  in  units  of  (μm) 2 .  To  convert  this  to  m 2 ,  we  multiply                     

these  coefficients  by  10 -12 .  The  number  concentration  N N-Si  in  Equations  5a  and  5b  has  units  #/m 3 .  is  a                 i  Г    

dimensionless  scaling  parameter,  needed  to  relate  the  modeled  aerosol  number  concentration  of  each  component  to                

the  actual  number  concentration  present  from  the  OPC  measurements.  We  expect  this  value  to  be  a  constant,  because                   

the  MISR  retrievals  are  stable  and  consistent  over  time.  We  derive  this  parameter  using  the  ground-based  size                  

distribution   from   the   OPC-N2s,   in   the   size   range   where   the   surface   instruments   have   sensitivity.  

 

Step  2e. Increase  the  number  of  satellite  data  points  by  scaling  MODIS  AOD  with  MISR  sizes .  To  increase  the                    

satellite  dataset,  we  use  the  average  fractional  AOD  of  each  MISR  aerosol  component  for  a  given  month  over  a                    

specific  site  to  parse  the  total  AOD  from  the  more  frequently  sampled  MAIC  product,  using  Equation  6  to  represent                    

the   MISR   component   fraction,   and   Equation   7   to   calculate   the   corresponding   MAIAC   value.   

 MISR AODN­S, month, i 
= n

 ∑
n

j=1
MISRN­S i  

   (6)  

 

MAIAC × MAIACN­Si =  
 ∑

8

i=1
MISR AODmonth, i  

MISR AODN­S, month, i   (7)  

Here  MISR  AOD N-S,month , i  is  the  effective  MISR  near-surface  AOD  for  component i  over  a  given  surface  site  for  a                    

specific  month  of  the  year  (obtained  by  averaging  the  available  data,  with  the  assumption  of  negligible  change  in                   
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particle  properties  over  the  month,  as  discussed  in  Section  2.2.1),  and n  is  the  number  of  MISR  AOD i  retrievals  for                     

that  month.  The  AOD  assigned  to  each  MISR  component i ,  based  on  scaling  a  given  MAIAC  AOD  retrieval,  is                    

denoted  MAIAC i ,  For  the  remaining  analysis,  we  use  the  scaled  MAIAC N-S,i  instead  of  MISR N-S,i  in  Equations  5a  and                   

5b.   

 

Step  2f. Regress  the  satellite  near-surface,  size-constrained  particle  concentration  constraints  against  the  OPC              

data  to  obtain  a  more  complete  near-surface  aerosol  size-concentration  distribution .  To  appropriately  link  the               

size-distribution  from  the  OPCs  with  the  MISR  retrievals,  we  would  ideally  aggregate  the  OPC  size  bins  in  a  similar                    

way  MISR  does:  very  small,  small,  medium  and  large,  calculate  the  OPC  size  distribution  at  the  mid-point  of  these                    

bins,  and  fit  these  size  distributions  with  the  size  distribution  derived  from  MISR.  However,  as  the  OPC  has                   

predefined  bins,  we  assume  that  for  favorable  retrievals,  each  aerosol  component  follows  a  log-normal  size                

distribution,  consistent  with  the  MISR  algorithm  assumptions.  We  use  Equation  4  to  extract  the  size  distribution  of                  

the  total  aerosol  from  MISR  measurements  that  corresponds  to  the  mid-point  of  each  pre-existing  OPC  bin  within  its                   

range  of  sensitivity.  Although  the  OPC  counts  particles  for  16  diameter  bins  between  0.38  and  17 μm  (Table  S1),  we                     

perform  the  OPC-MISR  regression  analysis  only  within  the  diameter  range  0.54-2.55 μm  for  which  both  MISR  and                  

the  OPCs  have  adequate  sensitivity.  This corresponds  to  six  of  16  OPC  size  bins,  Bin  2-Bin  7  (Table  S1).  When  we                      

use  the  MAIAC  data,  we  still  rely  on  the  size  information  obtained  from  the  MISR  retrievals  to  represent  aerosol                    

size   distribution.  

 

We  perform  the  regression  analysis,  substituting  the  right  side  of  Equation  1  into  the  left  side  of  Equation  4b,  and                     

substituting  the  right  side  of  Equations  5a  and  5b  for  the  two  N N-Si terms  on  the  right  side  of  Equation  4b.  We  can                        

then  evaluate  the  Гi,  based  on  the  relationship  between  the  surface-monitor  size  distribution  on  the  left  side  of  this                    

equation  (obtained  from  Equation  1),  and  the  satellite  values  represented  on  the  right  side,  for  each  coincident                  

observation.  The  Гi  are  essentially  the  aerosol-group-specific  adjustment  factors  required  to  equate  the  near-surface               

aerosol  number  concentration  measured  by  the  surface  monitor  with  that  derived  from  the  satellite.  After  calculating                 

Гi,   we   can   calculate   N N-Si    using   Equations   5a   and   5b.   

3.3   Step   3:   Calculate   PM 2.5    from   the   number   concentration   of   the   different   MISR   Aerosol   Groups  
In  the  final  step,  we  calculate  PM 2.5  using  the  ‘OPC-calibrated’  aerosol  size  distribution  from  MISR.  As  is  already                   

evident  from  the  discussion  above,  it  is  not  straightforward  to  obtain  quantitative  PM 2.5 values  from  the  particle  size                   

distribution  information  derived  from  satellite  passive  remote  sensing.  Further,  Alphasense  uses  a  proprietary              

algorithm  to  convert  particle  counts  to  dry  mass.  Particle  counts  in  each  of  the  16  bins  are  multiplied  by  the  volume                      

of  particles  under  ambient  conditions  in  each  bin  assuming  spherical  particle  shape,  an  assumed  particle  density,  and                  

a  factor  corresponding  to  the  ISO  respirable  convention  for  PM 2.5 .  Assumptions  are  made  about  the  efficiency  of  the                   

instrument  inlet  as  a  function  of  particle  size,  and  about  the  size  distribution  functional  form,  to  obtain  the  volume  of                     
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particles  within  each  size  bin.  The  total  is  then  divided  by  the  sampling  time  and  sample  flow  rate  to  calculate  the                      

mass  obtained  per  unit  volume  of  air.  Given  these  assumptions,  we  have  more  confidence  in  observed differences  in                   

the  measurements  than  in  the  reported  absolute  concentration  values.  Our  interpretation  of  the  results  in  the  next                  

section  proceeds  with  this  in  mind.  Assuming  spherical  particles,  the  normalized  volume  distribution  per  particle  for                 

MISR   aerosol   component    i    is:   

                                                                                (8) vi (d) = ∑
n

j=1
6

πd3
×

d×ln (σj) ×√2π
e 2(ln (σj) )2
­(ln (d) ­ln (dcj) )2

 

Note  here  the  index i  corresponds  to  MISR  aerosol  components:  1,3,6,19,21  or  the  aggregate  group:  2,  8  and  14.  In                     

Equation  8, vi ( d )  is  the  total  normalized  volume  distribution  of  each  aerosol  component  or  group  per  volume  of  air.                    

The  total  volume  of  the  aerosol  group  with  diameters  between  d  and  d+Δd  per  volume  of  air  is  provided  by V(d)  in                       

Equation  9.  N N-Si  is  the  ambient  value  of  the  total  near-surface  aerosol  number  concentration  for  MISR                 

component/group i .  The  N N-Si  value  in  Equation  9  will  be  the  same  as  that  derived  directly  from  the  MISR  data  in                      

Equations  5a  and  5b  only  to  the  extent  that  the  near-surface  aerosol  type  represents  the  total-column  aerosol  type,  an                    

assumption   we   make   consistently   in   this   analysis.  

(d) d(d)V i = NN­Si × ∫
d+Δd

d
vi (d) ×                           (9)   

The  integration  of  v i (d)  for  each  aerosol  component/group  from  0  to  a  finite  diameter  is  nontrivial.  We  solve  this                    

integral  numerically  using  Equation  10  to  obtain  the  total  volume  contributed  by  each  aerosol  component  per                 

volume  of  air.  When  doing  this  integration,  we  are  careful  to  take  into  consideration  the  lower  and  upper  limits  on                     

the   radius   for   each   MISR   aerosol   component   in   each   aerosol   component/group.  

 

                                                   (10) (v ( )×0.0001V i (D) = NN­Si × ∑
d=D

d=1
i

d
10000  

The  unit  of  volume  ( )  here  is  (µm) 3 ,  as  the  unit  of  the  diameter  we  use  here  is  in  µm.  To  calculate  PM 2.5 we  need     i  V                      

to  multiply  the  total  volume  of  each  of  the  eight  aerosol  components  for  particles  calculated  using  Equation  10,  by                    

the   particle   density,   as   shown   in   Equation   11.   

  density × (D )PM 2.5   =   ∑
8

i=1
V i i  (11)   

In  this  analysis,  we  assume  the  same  particle  density  that  Alphasense  uses  in  its  algorithm.  We  compute  PM 2.5  in                    

units   of   µg/m 3    from   the   volume   obtained:  

1.65   g/cm 3    or   1.65×10 -6    μg/m 3    ( ). )×(μm) ×1.65#
m3 × (10­18

× m3

(μm)3
3 g× g

10 μg6

cm ×( )3
cm3

10 m­6 3   
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Note  that  the  Alphasense  algorithm  to  convert  particle  counts  to  mass  is  proprietary,  and  we  do  not  have  access  to  its                      

methodology.  

4.  Size-Dependent  Near-Surface  Particle  Concentrations,  Constrained  by        

Regression   Against   Satellite   Data   for   Nairobi,   Kenya  
In  this  section  we  apply  the  method  described  in  Section  3  above  to  the  OPC  and  satellite  data  collected  in  Nairobi                      

from  May  2016  through  early  March  2017.  We  present  the  results  using  the  limited  coincident  MISR  data  and  the                    

larger  scaled-MODIS  dataset,  and  then  summarize  the  assumptions  and  mitigating  factors  in  the  current  analysis,                

which   includes   a   discussion   of   possible   improvements   for   future   deployments.   

4.1   Application   of   the   method   to   the   2016-2017   Nairobi   OPC   deployment  
Following   Steps   1,   2a,   and   2b   of   the   methodology   described   in   Section   3,   Table   1   shows   the   near-surface   AOD   for  

the   Nairobi   data   obtained   from   the   vertically   scaled   MISR   Research   Algorithm   for   aerosol   components   1,3,6,19   and  

21,   as   well   as   that   for   the   aerosol   group   comprised   of   components   2,8   and   14,   using   the   standard   universe   of   74  

mixtures.   Table   S2   in   Supplementary   Information   shows   the   lognormal   size   distribution   (dN/d(lnD))   from   the   OPCs  

for   the   coincident   surface   observations   that   correspond   to   the   10   successful   MISR   retrievals   where   the   total   AOD 558  

>   0.15.   

 

We   obtain   the   group-specific   particle-size   data   from   MISR   (Step   2c),   and   the   associated   number   concentrations  

( N N-Si )   from   Equations   5a   and   5b   (Step   2d).   We   then   linked   the   size   distribution   of   the   MISR   aerosol   groups   with   that  

of   the   OPCs   (Step   2f).    The   regression   analysis   was   conducted   using   the   total   dN/d(lnD)   derived   from   the   MISR  

measurements   as   the   predictor   of   the   dN/d(lnD),   with   the   ground-based   measurements   as   the   dependent   variable,  

assessed   at   six   different   diameters   corresponding   to   the   mid-points   of   the   OPC   size   bins   Bin   2   –   Bin   7   (Equation   1),  

where   the   datasets   overlap.   For   each   of   the   10   high-AOD   MISR   cases,   we   have   six   dN/dln(D)   measurements   (=   60  

rows   in   our   regression   analyses).   

 

For   all   regression   analyses   we   excluded   MISR   component   21   as   the   AOD   retrieved   for   this   component   is   0.   In  

Regression   Analysis   1,   we   included   the   remaining   MISR   components.   Not   all   of   the   coefficients   in   the   regression  

are   significant,   and   some   are   negative.   Each   coefficient   in   the   regression   represents   the   total   number   concentration  

of   the   respective   aerosol   group,   which   physically   cannot   be   negative.   However,   it   is   possible   for   a   statistical   weight  

to   be   negative,   as   the   regression   approach   aims   to   formally   match   the   retrieved   values   with   available   observations,  

and   there   can   be   aerosol   components   and   mixtures   missing   from   the   MISR   algorithm   climatology    (Kahn   et   al.,  

2010) .    As   such,   leveraging   from   the   better-fitting   components   can   skew   the   coefficients   for   other   particles   negative.  

Provided   the   negative   weights   are   small   compared   to   the   dominant   retrieved   components,   the   negative   values  
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represent   noise   in   the   results.    This   can   apply   to   components   1   and   8   that   are   often   retrieved   in   relatively   small  

quantities,   as   well   as   to   component   19,   a   dust   optical   analog,   that   very   likely   does   not   match   actual   dust   in   the  

region.   Moreover,   MISR   component   1,   with   re=0.06   μm,   is   well   below   the   OPC   lowest   size   sensitivity   limit.  

Regression   Analysis   2   was   run   without   component   1   and   19.   

 

The   results   of   regression   Analyses   1   and   2   are   given   in   Table   2.   Figure   1   shows   the   particle   size   distributions  

(dN/dlnD)   from   the   air   quality   monitors   obtained   for   all   relevant   ground-based   observations,   superimposed   on   the  

size   distributions   derived   from   the   regression   analysis   results   of   Analysis   2.   The   derived   size   distributions   from   each  

instrument   are   quite   well   matched   in   nearly   all   cases,   despite   the   assumptions   involved.   For   Analysis   2,   the   adjusted  

R   squared   is   0.82.  

 

To   increase   satellite   sampling,   we   repeated   the   regression   analysis   by   scaling   MAIAC   AODs   using   the   monthly  

effective   MISR   aerosol   component   AOD   fractions   (Steps   2e   and   2f).   We   have   1712   MAIAC   AOD   retrievals   that   fall  

within   a   radial   distance   of   1.6   km   of   a   ground-station.   However,   there   are   only   10   favorable   MISR   particle   property  

retrievals,   on   three   unique   days.   Using   the   MISR   component   AOD   values   to   parse   the   MAIAC   total-AOD,   even   on  

a   monthly   basis,   leaves   304   MAIAC   retrievals   on   20   unique   days   (Figure   S6   in   Supplementary   Information).   Yet  

this   provides   about   30   times   as   much   data   as   the   MISR   data   alone.   Like   Analysis   1,   Analysis   3   includes   all   MISR  

aerosol   components,   but   was   run   using   the   scaled   MAIAC   dataset.    We   also   ran   Analyses   4   and   5   the   MAIAC   data,  

this   time   excluding   MISR   components   1   and   19.   For   Analysis   5,   we   also   restricted   the   MAIAC   retrievals   to   those  

with   the   total   AOD   ≥   0.15   (85   MAIAC   AODs),   to   ensure   that   near-surface   aerosols   dominate   in   this   analysis.    The  

adjusted   R   squared   for   Analysis   5   is   0.76.   When   we   used   MAIAC   AODs   at   a   radial   distance   of   1   km   and   0.5   km  

from   each   site   (instead   of   1.6   km),   repeating   Analysis   5,   yielded   adjusted   R   squared   values   of   0.77   in   both   cases.  

This   suggests   that   our   results   are   robust   to   the   radius   considered.  

 

The   results   for   the   five   analyses   are   given   in   Table   2.   All   the   coefficients   for   the   remaining   aerosol   groups   included  

in   Analyses   2,   4   and   5   are   positive   and   statistically   significant   (p-value   almost   equal   to,   or   less   than   0.05).   Figure   2a  

shows   PM 2.5    from   the   ground-based   OPCs   (scaled   by   a   factor   of   4   for   the   sake   of   comparison)   and   the   corresponding  

PM 2.5    calculated   from   MISR   (Step   3),   using   the   results   of   Analysis   2.    The   MISR-derived   and   OPC   PM   tend   to   show  

similar   peaks,   with   the   exception   of   All   Saints.   Taking   all   points   into   consideration,   the   correlation   between   the   two  

PM   datasets   is   0.56.    The   OPC   at   All   Saints   is   situated   in   a   particularly   clean   area,   surrounded   by   hotspots   of  

pollution   due   to   informal   settlements   nearby.   The   average   pollution   in   the   coincident   satellite   grid   cell   is   higher   than  

that   observed   by   the   OPC   at   this   particular   site,   likely   caused   by   the   difference   in   spatial   sampling.   When   we   drop  

measurement   at   All   Saints   from   this   analysis,   the   correlation   between   the   derived   PM 2.5    from   MISR   and   that   of   the  

OPC   is   0.76   (Figure   2b).   
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Similarly,   Figure   S7   in   Supplemental   Information   displays   the   derived   PM 2.5    concentrations   from   MAIAC/MISR  

AOD   estimates   using   coefficients   from   Analysis   5   and   the   corresponding   surface   PM 2.5    from   the   OPCs.   The  

correlation   between   the   two   PM   values   is   0.47.   When   we   drop   All   Saints,   the   correlation   increased   to   0.48.  

However,   the   adjusted   R   squared   is   ~0.8   when   working   directly   with   size   distribution   information   (Step   2f)   rather  

than   the   PM 2.5    values   due   to   the   additional   assumptions   involved   (Step   3).   

 

The  satellite-derived  PM  values  are  very  high  relative  to  the  OPCs  in  nearly  all  cases.  An  important  contributing                   

factor  is  that  a  large  fraction  of  aerosols  in  Nairobi  are  primary  combustion  aerosols  with  diameters  <  0.54 μ m  that                     

MISR  detects  (Figure  S4  and  Table  S3),  but  that  are  not  included  in  the  OPC  data  due  to  lack  of  sensitivity.  In                       

addition,  any  secondary  aerosol  formation  from  the  many  sources  of  gaseous  precursors  would  produce  small                

particles,  and  any  underestimate  in  the  particle  density  assumed  in  the  OPC  retrieval  might  also  play  a  role.  A                    

further  possible  contributing  factor,  at  least  at  one  site  (Kibera  Girls  Soccer  Academy),  is  the  frequent  dominance  of                   

coarse  mode  particles,  which  contribute  to  the  total  AOD  observed  by  MISR.  However,  MISR  does  not  retrieve                  

specific  size  information  for  particles  larger  than  about  2-3  µm  (Section  2.2.1  above),  so  the  MISR  total  AOD  is                    

ascribed  to  smaller-sized  particles,  where  the  retrieval  is  sensitive;  this  can  inflate  the  number  concentration  of  these                  

particles.  Given  these  issues,  our  method  focuses  on  the  size  range  over  which  both  the  OPC  and  MISR                   

measurements  are  sensitive  (Figure  1).  As  most  of  the  particles  retrieved  over  the  urban  Nairobi  region  are                  

components  within  the  typical  combustion-particle  size  distribution  (see  Section  S1.2.1  Supplemental  Material),  the              

method  yields  a  high  correlation  despite  the  limitations  of  the  data,  and  actually  uses  the  satellite  data  to  account  for                     

smaller   particles   that   the   OPCs   miss.   

 

4.2  Assumptions,  and  mitigating  factors  in  the  current  analysis,  with  advice  for  future              

deployments  
The   data   collected   during   the   2016-2017   Nairobi   experiment   are   not   ideal   for   the   current   application.    However,  

there   were   also   mitigating   factors,   which   we   summarize   here,   along   with   the   lessons   learned   for   the   benefit   of   future  

deployments.  

 

•    MISR   sampling   frequency .    Generally   low   AOD   over   Nairobi,   combined   with   the   relatively   narrow   MISR   swath  

width   and   low   latitude   of   the   target   region,   left   just   10   cases   meeting   the   criteria   for   good   aerosol-type   retrievals  

from   MISR   during   the   OPC   surface-network   deployment.    As   such,   we   were   forced   to   assume   that   single   or   pairs   of  

MISR   particle-type   retrievals   in   a   given   month   represent   the   aerosol   properties   for   the   entire   month.    However,   the  

observation   that   the   MISR-retrieved   particles   varied   little   among   the   available   observations   (Figure   S3)   and   are  

typical   of   urban   pollution   from   the   local   sources   expected   in   Nairobi   favors   this   approach.   Selecting   cases   having  

mid-visible   AOD   ≥   0.15   also   favors   conditions   where   local   sources   dominate.   The   assumption   is   further   supported  

by   GEOS-Chem   model   aerosol-type   simulations   (Section   2.3   above,   and   Figure   S5).    As   AOD   varies   considerably  

more   than   aerosol   type   at   the   Nairobi   site,   we   addressed   that   aspect   of   limited   MISR   sampling   by   using   MISR  

17

https://doi.org/10.5194/amt-2020-136
Preprint. Discussion started: 27 April 2020
c© Author(s) 2020. CC BY 4.0 License.



552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

monthly   size-resolved   information   to   scale   the   much   more   frequent   MODIS-MAIAC   AOD   retrievals.   In   future  

experiments,   sites   typically   experiencing   higher   AOD,   preferably   also   at   higher   latitude,   as   well   as   longer  

deployments,   could   greatly   improve   the   MISR   sampling   statistics   for   this   application.  

 

•    Aerosol   vertical   distribution .    We   also   use   the   GEOS-Chem   AOD   vertical   distribution   to   obtain   the   near-surface  

component   of   the   MISR   total-column   AOD   and   assume   that   MISR-retrieved   total-column   particle   properties   are  

dominated   by   near-surface   particles   in   the   study   region.    As   expected,   our   analysis   works   best   on   days   when   the  

satellite-derived   AOD   was   ≥   0.15,   and   near-surface   urban   aerosols   dominate   the   column   (Figure   S5).   The  

observation   that   the   MISR-retrieved   particles   are   typical   of   urban   pollution   from   local   sources   in   Nairobi   (Table   1  

and   Section   1.2.1   in   Supplemental   Material)   also   favors   this   assumption.    Further,   dust   is   the   most   likely   transported  

species,   and   it   is   distinguished   from   pollution   particles   in   MISR   retrievals   based   on   large   size   and   non-spherical  

shape.    AOD   is   derived   from   satellite   instruments   under   ambient   RH   conditions.   If   the   particles   were   hygroscopic,  

however,   they   could   adsorb   water   vapor   and   appear   larger   than   they   would   be   under   dry   conditions,   which   is   how  

PM 2.5    is   usually   assessed.   Yet,   the   RH   at   the   Nairobi   site   was   generally   low   during   the   study   period   (Table   S2),  

pollution   particles   are   not   very   hygroscopic,   and   the   OPC   measurements   were   also   obtained   at   ambient   RH   (section  

2.1   above),   all   mitigating   the   RH   issue.    Unfortunately,   there   were   no   local   lidar   observations   to   validate   the   model  

vertical   aerosol   distribution,   and   neither   the   CALIPSO   nor   the   CATS   space-based   lidars   acquired   data   useful   for   this  

purpose,   as   discussed   in   section   S1.3   in   Supplementary   Information.   In   future   deployments,   a   single,   well-placed  

surface   lidar   in   the   region   could   test   the   assumptions   about   aerosol   vertical   distribution   and   determine   whether   any  

aerosol   layers   aloft   contribute   significantly   to   the   satellite,   column-effective   particle   property   retrievals.   

 

• OPC  small-particle  sampling .  Pollution  particles  typically  have  diameters  in  the  range  0.1  –  0.3  μm,  and  the                   

pollution  particles  MISR  retrieved  had  effective  radii  0.12  μm  (effective  diameter  0.24  μm).  Yet,  the  Alphasense                 

OPC-N2  instruments  used  in  the  current  study  do  not  register  particles  <  0.38  μm  in  diameter,  and  the  smallest  size                     

bin  is  noisy,  effectively  limiting  the  OPC  size  sensitivity  to  particles  >  0.54  μm.  As  such,  particle-size  regressions  in                    

this  study  were  performed  over  six  size  bins  spanning  0.54  -  3  μm,  capturing  the  range  over  which  both  satellite  and                      

surface  instruments  are  sensitive.  The  small-particle-observation  limitations  represent  a  significant  uncertainty  in             

the  results.  However,  the  particle-size  comparisons  shown  in  Figure  1  demonstrate  very  good  agreement  over  the                 

six-bin  range,  and  further,  we  obtained  ~0.8  R 2  model  fits  for  the  aerosol  size  distribution  formally,  when                  

considering  either  the  MISR  retrievals  alone  or  the  better-sampled  MAIAC  AODs  parsed  to  the  MISR  component                 

fractions.  As  MISR  sensitivity  extends  to  particles  ~  0.1  μm,  the  satellite  data  help  account  for  fine  aerosols  having                    

diameters  <  0.54  μm  in  our  analysis.  For  future  deployments  where  the  dominant  particle  type  is  urban  pollution,                   

including  surface  instruments  that  have  sensitivity  to  particles  down  to  ~0.1  –  0.2  µm  in  diameter  would  make  the                    

surface-station  dataset  substantially  more  robust.  Further,  at  least  one  coincident,  strategically  located  reference  air               

quality   monitor   would   make   it   possible   to   quantify   retrieval   sensitivity   with   greater   confidence.  
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5.   Conclusions   
For  many  locations  around  the  world,  the  alternative  to  deploying  low-cost  air-quality  monitors  is  having  no                 

ground-monitoring  at  all.  Surface  monitors  are  essential  to  help  characterize  the  near-surface  aerosol  components               

within  total-column  satellite  observations,  but  they  offer  only  limited  coverage,  and  the  PM  measurements  from                

low-cost   monitors   in   themselves   are   generally   not   well   calibrated.   

 

This  paper  develops  and  presents  a  novel  method  that  moves  away  from  the  conventional  approach  of  linking                  

remotely  sensed,  total-column  AOD  from  satellites  with  directly  sampled  particulate  mass  per  volume  of  air  from                 

surface  monitors.  Instead,  it  combines  satellite,  component-specific  AOD  retrievals  with  particle  counts  from              

low-cost  monitors,  to  constrain  the  size  distribution  of  surface  aerosol  and  PM 2.5 .  Retrieving  some  particle-size                

information  is  possible  with  data  from  the  space-based  MISR  instrument  under  favorable  retrieval  conditions.               

MISR-retrieved  particle  effective  cross-sectional  area  is  linked  with  the  size  distribution  of  particulates  as  observed                

by  the  low-cost  OPC-N2  observations.  As  far  as  we  know,  size-resolved  particle  counts  have  not  previously  been                  

used  to  associate  remote-sensing  and  direct-surface  aerosol  data,  as  most  standard  reference  monitors  provide               

particulate   mass   measurements   and   not   particle   counts   partitioned   by   particle   size.   

 

We  applied  the  method  presented  in  Section  3  to  data  from  a  2016-2017  10-month  Nairobi  experiment,  due  to  the                    

relative  longevity  of  that  data  record.  Limitations  in  the  experiment  design  and  implementation  included  relatively                

infrequent  MISR  sampling  and  low  AOD,  as  well  as  the  lack  of  a  lidar  or  high-quality  reference  particle  sampler  in                     

the  field  to  validate  assumptions  about  aerosol  vertical  distribution  and  satellite-retrieved  small-particle  surface              

concentration,  respectively.  However,  the  dominance  of  locally  generated  urban  pollution  particles  concentrated  near              

the  surface,  low  relative  humidity,  and  an  effective  approach  for  scaling  more  frequent  MODIS  data  with  the                  

MISR-retrieved  size  distributions  were  mitigating  factors.  The  method  produced  high  correlations  (~0.8)  between              

satellite-derived  and  surface-station-measured  PM 2.5 ,  and  most  importantly,  the  satellite  data  helped  significantly  to              

account  for  smaller  particles  that  tend  to  dominate  urban  aerosol  pollution  but  are  below  the  detection  size  limit  of                    

the   OPCs.   

 

Our  analysis  also  led  to  specific  suggestions  for  performing  future  deployments  with  fewer  assumptions,  such  as                 

including  at  least  one  carefully  sited,  surface-based  lidar  and  reference  air  quality  monitor.  Applying  the  technique                 

under  conditions  more  favorable  for  this  approach  could  help  assess  air  quality  in  rapidly  urbanizing  cities  in                  

developing  countries,  where  pollution  increases  are  having  dramatic  public  health  consequences,  and  where              

monitoring  is  limited  or  entirely  absent.  We  hope  with  the  increasing  focus  on  air  quality  (e.g.,  the  expansion  of  the                     

SPARTAN   network,   Weagle   et   al.,   2018),   broader   application   of   low-cost   monitoring   can   occur.   
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Figure  1:  Ground-based  size  distributions  (#/m 3 )  obtained  from  the  low-cost  air  quality  monitors,  represented  by                

points  at  the  bin-center  diameters  (μm)  for  each  of  OPC  bins  2-7,  and  the  corresponding  size  distribution  derived                   

from  the  10  favorable  MISR  retrievals  (represented  by  lines).  The  orbit  number  of  the  satellite  observation  is                  

provided   along   with   which   ground-based   monitor   location   with   which   the   satellite   pixel   overlapped.  
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Figure  2:  (Red)  PM 2.5 (μg/m 3 )  measured  from  the  OPC-N2  (scaled  up  by  a  factor  of  4  to  make  comparable  with  the                      
PM  derived  from  MISR)  ,  and  (Blue)  PM 2.5  calculated  from  coincident  MISR  observations  for  the  (a)  10  cases                   
where  MISR  AOD  >0.15  (identified  by  the  MISR  orbit  number  and  the  coincident  site  name  along  the  horizontal                   
axis),  and  (b)  Coincident  MISR  observations  at  all  sites,  but  All  Saints,  using  model  coefficients  from  Analysis  2  in                    
Table  2.  The  regression  analysis  yields  a  correlation  of  0.56  for  the  data  in  panel  (a),  whereas  the  correlation  is  0.76                      
for  panel  (b). A  major  factor  contributing  to  the  quantitative  difference  is  probably  the  lack  of  OPC  sensitivity  to                    
particles   <   0.54    μ m   in   diameter  
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Tables  
Table  1:  Successful  near-surface  MISR  aerosol  optical  depth  retrievals  for  each  MISR  aerosol  component  (including                

the  aggregate  scaled  AOD  from  components  2,  8  and  14),  the  total  near-surface  MISR  AOD  and  the  total  MISR                    

AOD,  averaged  over  a  radial  distance  of  1.6  km 2  from  each  surface  monitoring  site.  These  values  were  obtained  for                    

each  of  the  28  coincident  observations  from  the  MISR  research  algorithm,  run  with  the  standard  universe  of  74                   

mixtures.  The  AOD  is  set  to  zero  for  aerosol  components  not  present  among  the  MISR-retrieved  aerosol  types.  The                   

retrieved  amounts  of  Components  19  and  21  were  negligible  or  zero  in  all  the  retrievals.  Near-surface  values  were                   

obtained  by  scaling  total-column  AOD  based  on  GEOS-Chem  simulated  aerosol  vertical  distributions.  The  10               

highlighted  rows  correspond  to  observations  that  have  a  MISR  total  AOD  (sum  of  the  AOD  of  the  eight  MISR                    

aerosol  components)  >  0.15.  The  corresponding  surface  PM 2.5  from  the  ground-based  OPC  for  the  10  favorable                 

MISR  retrievals  is  also  presented.  Note  we  have  rounded  the  PM 2.5 values  to  the  nearest  integer  to  acknowledge  the                    

uncertainties   in   the   OPC   PM 2.5    measurements.  

Date  Orbit   #  

Location   (1.6  

km   radial  

average)  

MISR   Near-Surface   AOD   by   component  

Total  

near-  

surface  

AOD 558  

Total  

AOD  

30  

minute-  

averaged  

OPC  

PM 2.5  

( μg/m 3 )  1  

2+8+1 

4  3  6  19  21  

8/2/16  88423  UNEP  0.00  0.13  0.00  0.03  0.00  0.00  0.156  0.340  20  

8/2/16  88423  Alliance  0.00  0.08  0.00  0.01  0.00  0.00  0.090  0.192  9  

8/2/16  88423  Scholastica  0.00  0.17  0.00  0.05  0.00  0.00  0.219  0.463  36  

8/2/16  88423  KGSA  0.00  0.11  0.00  0.03  0.00  0.00  0.139  0.301  18  

8/2/16  88423  All   Saints  0.00  0.13  0.00  0.03  0.00  0.00  0.162  0.348  9  

10/14/16  89486  UNEP  0.02  0.04  0.01  0.02  0.00  0.00  0.085  0.201  19  

10/14/16  89486  Alliance  0.01  0.03  0.01  0.02  0.00  0.00  0.062  0.146   

10/14/16  89486  Scholastica  0.01  0.03  0.01  0.02  0.00  0.00  0.076  0.179  17  

10/14/16  89486  KGSA  0.02  0.03  0.01  0.02  0.00  0.00  0.086  0.203  18  
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873

874

875

876

877

10/14/16  89486  All   Saints  0.01  0.03  0.01  0.03  0.00  0.00  0.089  0.211  16  

12/17/16  90418  UNEP  0.01  0.03  0.01  0.03  0.00  0.00  0.075  0.179  8  

12/17/16  90418  Alliance  0.01  0.02  0.01  0.02  0.00  0.00  0.055  0.130   

12/17/16  90418  Scholastica  0.01  0.02  0.01  0.02  0.00  0.00  0.055  0.131   

12/17/16  90418  KGSA  0.01  0.01  0.01  0.01  0.00  0.00  0.041  0.102   

12/17/16  90418  All   Saints  0.01  0.01  0.01  0.01  0.00  0.00  0.041  0.105   

1/2/17  90651  KGSA  0.01  0.02  0.01  0.02  0.00  0.00  0.048  0.124   

1/18/17  90884  UNEP  0.00  0.02  0.01  0.02  0.00  0.00  0.052  0.132   

1/18/17  90884  Alliance  0.00  0.02  0.01  0.01  0.00  0.00  0.041  0.106   

1/18/17  90884  Scholastica  0.00  0.02  0.01  0.02  0.00  0.00  0.047  0.118   

1/18/17  90884  All   Saints  0.00  0.02  0.01  0.02  0.00  0.00  0.046  0.119   

1/25/17  90986  UNEP  0.01  0.02  0.01  0.02  0.00  0.00  0.049  0.123   

1/25/17  90986  Scholastica  0.01  0.02  0.01  0.02  0.00  0.00  0.046  0.113   

1/25/17  90986  All   Saints  0.01  0.02  0.01  0.02  0.00  0.00  0.053  0.129   

2/3/17  91117  UNEP  0.00  0.00  0.00  0.00  0.00  0.00  0.010  0.028   

2/3/17  91117  Alliance  0.00  0.00  0.00  0.00  0.00  0.00  0.004  0.012   

2/3/17  91117  Scholastica  0.00  0.00  0.00  0.00  0.00  0.00  0.011  0.030   

2/3/17  91117  All   Saints  0.00  0.01  0.00  0.01  0.00  0.00  0.018  0.049   

2/26/17  91452  Alliance  0.01  0.02  0.01  0.02  0.00  0.00  0.058  0.134   

 

 

Table  2:  Results  from  multiple  linear  regression  analyses  using  the  size  distribution  of  MISR  aerosol  components  as                  

the  independent  variable,  and  the  size  distribution  from  the  OPC  as  the  dependent  variable.  In  Analyses  1  and  2,  the                     

size  distribution  of  components  for  MISR  observations  with  a  total  AOD>  0.15  is  used.  In  Analyses  3,  4  and  5                     
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879

880

881

882

883

884

MISR  component  AODs  were  obtained  by  scaling  MAIAC  AODs  using  the  monthly  effective  MISR  aerosol                

component  AOD  fractions.  Equations  5a  and  5b  are  used  to  derive  the  total  number  concentration  of  each  MISR                   

aerosol  group  ( N N-Si ).  Because  the  AOD  retrieved  for  MISR  aerosol  component  21  is  0,  we  do  not  consider  this                    

component  in  the  regression  analysis.  Analysis  1  and  3  includes  MISR  aerosol  component  1  and  19,  while  Analysis                   

2,  4  and  5  do  not.  In  Analysis  5,  we  restricted  the  MAIAC  retrievals  considered  to  those  where  the  total  AOD  ≥                       

0.15.  

 

 Analysis   1  

(MISR   only)  

Analysis   2  

(MISR   only)  

Analysis   3   

(MAIAC)  

Analysis   4  

(MAIAC)  

Analysis   5    (total  

MAIAC   AOD   ≥   0.15)  

 Coef 

ficie 

nts  

95%   CI  Coeff 

icient 

s  

95%   CI  Coefficie 

nts  

95%   CI  Coefficie 

nts  

95%   CI  Coefficie 

nts  

95%   CI  

Compo 

nent1  

-1.7  

x  

10 10   

 

-5.1   x  

10 10 ,   1.9   x  

10 10  

-   -3.3   x  

10 10   (***)  

(-4.0,  

-2.6)   x  

10 10  

-  -    

Compo 

nent  

2,8,14  

4.3   x  

10 8(** 

*)  

 

3.2   x   10 8 ,  

5.4   x   10 8  

4.2   x  

10 +8(** 

*)  

 

3.1   x  

10 8 ,   5.3  

x   10 8  

5.8   x   10 8  

(***)  

(5.4,   6.2)  

x   10 8  

5.3   x  

10 8(***)  

(4.9,   5.7)  

x   10 8  

6.0   x  

10 8(***)  

(5.3,   6.6)  

x   10 8  

Compo 

nent   3  

1.4  

x10 9( 

*)  

 

0.1   x   10 9 ,  

2.6   x   10 9  

8.2   x  

10 +8(** 

*)  

 

0.4   x  

10 9 ,   1.3  

x   10 9  

1.7  

x10 9(***)  

(1.5,   2.0)  

x   10 9  

6.0   x  

10 8(***)  

(5.0,   6.9)  

x   10 8  

3.4   x  

10 8(***)  

(1.6,   5.2)  

x   10 8  

Compo 6.2  3.9   x   10 9 ,  5.7   x  4.2   x  7.1  (6.4,   7.8)  6.8   x  (6.4,   7.2)  6.8   x  (6.1,  
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885

nent   6  x10 9( 

***)  

 

8.4   x   10 9  10 9(*** 

)  

 

10 10 ,   7.3  

x   10 10  

x10 9(***)  x   10 9  10 9(***)  x   10 9  10 9(***)  7.5)x   10 9  

Compo 

nent   19  

-9.0  

x10 9   

 

-3.1   x  

10 10 ,   1.2   x  

10 10  

--  --  -1.5   x  

10 10   (***)  

(-2.2,  

-0.8)   x  

10 10  

  -  -  

Adjust 

ed   R  

square 

d  

0.82  0.82  0.75  0.74  0.76  

p-values   of   coefficients:    0   ‘***’   0.001   ‘**’   0.01   ‘*’   0.05   ‘.’   0.1   ‘   ’   1  

30

https://doi.org/10.5194/amt-2020-136
Preprint. Discussion started: 27 April 2020
c© Author(s) 2020. CC BY 4.0 License.




