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Abstract: 

Poor air quality is the world’s single largest environmental health risk, and air quality monitoring is crucial for 

developing informed air quality policies. Efforts to monitor air pollution in different countries are uneven, largely 

due to the high capital costs of reference air quality monitors (AQMs), especially for airborne particulate matter 

(PM). In sub-Saharan Africa, for example, few cities operate AQM systems. It is thus important to examine the 

potential of alternative monitoring approaches.  Although PM measurements can be obtained from low-cost optical 

particle counters (OPCs), data quality can be an issue.   

     This paper develops a new method using raw aerosol size distributions from multiple, surface-based low-cost 

Optical Particle Counters (OPCs) to constrain the Multi-angle Imaging SpectroRadiometer (MISR) component-

specific, column aerosol optical depth (AOD) data, that contain some particle-size-resolved information.  The 

combination allows us to derive surface aerosol concentrations for particles as small as ~0.1 μm in diameter that 

MISR detects but are below the OPC detection limit of ~0.5 μm.  As such, we obtain better constraints on the near-

surface particulate matter (PM) concentration, especially as the smaller particles tend to dominate urban pollution.  

     We test our method using data from five low-cost OPCs deployed in the city of Nairobi, Kenya, from May 1 

2016 to March 2 2017. As MISR passes over Nairobi only once in about eight days, we use the size-resolved MISR 

AODs to scale the more frequent Moderate Resolution Imaging Spectrometer (MODIS)-derived AODs over our 

sites. The size distribution derived from MISR and MODIS agrees well with that from the OPCs in the size range 

where the data overlap (adjusted-R2 ~0.80). We then calculate surface-PM concentration from the combined data. 

The situation for this first demonstration of the technique had significant limitations. We thus identify factors that 

will reduce the uncertainty in this approach for future experiments.  Within these constraints, the approach has the 

potential to greatly expand the range of cities that can afford to monitor long-term air quality trends and help inform 

public policy.  
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1 Introduction 

Near-surface particulate matter (PM), airborne particles, also known as aerosol, is a major pollutant that affects air 

quality, and many countries are taking measures to decrease PM levels. However, efforts to monitor air pollution in 

different countries are uneven. In sub-Saharan Africa, for example, few countries operate air quality monitoring 

systems, and most countries lack any air quality monitoring capabilities at all, even though the limited observations 

that do exist show PM levels harmful to human health (deSouza, 2020; Petkova et al., 2013). This is because air quality 

monitoring equipment tends to be costly to purchase (capital costs are in the range of several thousand of US dollars) 

and maintenance, and data processing and analysis requires additional expertise and resources (deSouza et al., 2017; 

Kumar et al., 2015; Mead et al., 2013).  

 

Given this context, other technologies, such as low-cost air quality sensors and satellite imagery, are being examined 

as alternative means of monitoring air quality. Low-cost air quality sensors, usually costing less than $2,000 

(Morawska et al., 2018), have the potential to move us from a paradigm of high-cost, highly accurate, sparse reference 

air quality monitoring to low-cost, more widely available air quality monitoring networks. One of the major drawbacks 

of using the lower-cost sensors is that no standards or certification criteria exist for these instruments yet, and 

consequently, the quality of the data they produce is of concern (Carotenuto et al., 2020; Cavaliere et al., 2018; Lewis 

and Edwards, 2016; US EPA, 2016). 

 

Satellite imagery, in particular space-based aerosol datasets derived from the NASA Earth Observing System’s 

Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR), have 

also been used to estimate near-surface particulate matter concentrations from the retrieved total-column aerosol 

optical depth (AOD), with the help of aerosol transport modelling (e.g., Liu et al., 2007; Martin, 2008; van Donkelaar 

et al., 2010). The advantages of satellite technology for air quality monitoring arise from the spatially extensive 

measurements over time (2000-present for MISR and MODIS), and include global coverage, instrument calibration 

stability, and the low incremental cost of data acquisition.  

 

However, the challenges of using these datasets for air-quality applications are also considerable. Among the main 

challenges in using satellite-derived AOD for this application are:   

(1) The low temporal frequency of measurements from polar-orbiting instruments (i.e., at most, about once daily for 

MODIS, and between two and nine days for MISR, depending on latitude) compared to diurnally varying pollution 

levels in many settings 

(2) Inaccuracies introduced in satellite aerosol retrieval algorithms by uncertain aerosol and surface optical properties 

(3) The relatively coarse retrieval-product spatial resolution and aerosol species discrimination 



(4) Inability to retrieve aerosol in the presence of cloud cover, and possible sub-pixel cloud contamination elsewhere 

(Duncan et al., 2014; Martonchik et al., 2009) 

(5) The relationship between satellite-derived AOD and PM2.5 is not straightforward. AOD is the integral of 

atmospheric optical extinction from the surface to the top of the atmosphere under ambient temperature and humidity 

conditions, whereas PM2.5 is the near-surface aerosol mass concentration of dry particles with diameters < 2.5 μm. 

The relationship depends upon the aerosol vertical distribution, hygroscopic growth factor, mass extinction efficiency, 

and ambient atmospheric relative humidity profile (Gupta et al., 2006). The relationship is also time dependent and 

can vary across typical satellite grid-cells (Engel-Cox et al., 2004; Hu, 2009; Lee et al., 2011). 

 

Some recent studies that apply models to derive near-surface PM2.5 from satellite AOD measurements combine AOD 

with ground-based PM2.5 measurements from reference air quality monitors. Many early methods derived simple 

empirical relationships between PM2.5 and AOD (Engel-Cox et al., 2004; Wang and Christopher, 2003; Zhang et al., 

2009). More advanced approaches applied chemical transport models to derive near-surface PM2.5 from the total-

column aerosol optical depths of different aerosol components, which can be done, e.g., using model-simulated aerosol 

vertical distribution and aerosol-type constraints from MISR (Friberg et al., 2018; Liu et al., 2007; Patadia et al., 

2013).  

 

Many studies have focused on continental US due to the extensive surface measurements available for model 

validation (Al-Saadi et al., 2005; Liu et al., 2005; Tai et al., 2010). Gupta et al., (2006) were among the first to examine 

the derivation of PM2.5 from AOD in cities on different continents: Sydney, Delhi, Hong Kong and New York. van 

Donkelaar et al., (2010) used the GEOS-Chem model to determine the scaling factors between AOD and PM2.5 for the 

entire globe.  Because the AOD-PM2.5 relationship varies by region and season, it is particularly important to test 

existing models, and modify them appropriately in the data-sparse regions of the world.  

 

To respond to this challenge, the Surface PARTiculate mAtter Network (SPARTAN) network is adding numerous 

reference-grade surface stations in poorly sampled areas, to evaluate and enhance satellite-derived PM results (Snider 

et al., 2016; Weagle et al., 2018). Given that it is unlikely many cities will have access to reference air quality 

monitoring instruments due to their high cost, it is important to start examining the fusion of data from low-cost air 

quality monitors with that from satellites, and to develop insights from the combination of these measurements. This 

paper represents the first attempt, to the best of our knowledge, to do so. 

 

Part of the challenge of attempting to combine these datasets is that low-cost air quality monitors on the market are 

not very reliable, and their measurements tend to be much less accurate than reference monitors (Lewis and Edwards, 

2016). Many PM monitors, termed Optical Particle Counters (OPCs), measure particle counts instead of particulate 

mass, and do so reliably only for particles within certain diameter ranges. For example, assumptions about particle 

density as well as the number of ultrafine particles not sampled by these instruments must be made to convert the 

particle counts to PM2.5 (Hagan and Kroll, 2020). These assumptions introduce additional uncertainties into the results.  



 

This paper presents a novel method linking the size-resolved information in MISR AOD component-specific retrievals 

with the ground-based aerosol size distribution derived from the raw particle counts of surface-based OPCs. As MISR 

passes over countries near the equator only once in about 8 days, we use monthly-MISR aerosol climatology to scale 

the more frequent (twice-daily near the equator) MODIS-derived AOD.  

 

As a first attempt at testing the method, we apply it to five Alphasense OPC-N2 low-cost monitors1 deployed from 

May 2016 to March 2017 in Nairobi, a growing metropolitan area in sub-Saharan Africa. The Nairobi case entails 

some important limitations for the current application; the AOD over the region was relatively low, there were no 

independent measurements of aerosol vertical distribution or any surface-based, high-quality reference air quality 

monitors to help with validation.  However, it is the only location where we have a significant record of coincident, 

ground-based low-cost OPC data. As such, we have to make assumptions in this first demonstration of the technique, 

which we detail, and mitigate to the extent possible, in this paper.   

 

Section 2 provides an overview of the ground-based and satellite datasets involved in this study, as well as the model 

simulations used to constrain the aerosol vertical distribution. Section 3 describes in detail the method we developed 

for combining the surface and satellite data. Section 4 contains the results of applying this method in Nairobi.  Our 

conclusions appear in section 5, where we also summarize the factors that will reduce the uncertainties involved in 

combining data from low cost monitors with satellite observations in future deployments. 

2 Data  

2.1 Ground-Based measurements: 

The Alphasense OPC-N2 monitor is a low-cost Optical Particle Counter, costing USD $450, that works by using 

focused light from a (~ 5V, 175 mA, 658 nm) laser to illuminate one aerosol particle at a time, and then measuring 

the intensity of light scattered. The amount of scattering is a function of the size, shape, and composition of the aerosol, 

and especially for spherical particles such as those most likely to dominate in the study region, the measurements can 

be calibrated using monodisperse particles of known size (Sousan et al., 2016). The Alphasense OPC-N2 is unique 

among low-cost sensors as in addition to PM estimates, it reports the raw particle counts in 16 bins based on particle 

diameter, ranging from 0.38 μm to 17.5 μm, which is critical to our method. The bins are tabulated in Table S1 in 

Supplementary Information. Sousan et al. (2016) discuss the accuracy of these count measurements in detail, and note 

that they agree well with reference instrument measurements for coarser particles (> 0.78 μm in diameter), but 

underestimate the particle counts for finer particles. 

 

 
1 Alphasense OPC-N2 product page URL: http://www.alphasense.com/index.php/products/optical-particle-counter/ 
Last accessed 15.12.2016) 
 



As the OPCs cannot detect particles with diameters < 0.38 μm, Alphasense provides software to extrapolate the particle 

counts, as needed to estimate the contribution from aerosols having diameters < 0.38 μm. The number of particles per 

volume of air in all bins can be obtained by dividing the particle counts of each bin by the flow rate and sampling 

duration. The Alphasense company proprietary data reduction algorithm makes assumptions about the particle density 

and volume of aerosols in each bin to calculate PM1, PM2.5 and PM10 data from the particle count data.  

 

Details about the Nairobi OPC deployment can be found in section S1.1 in Supplementary Information. 

2.2 Satellite Data 

Although passive remote sensing has significant limitations for air quality applications at present, it offers substantially 

more frequent, global-scale aerosol constraints than any other measurement technique. Starting in December 1999, 

the National Aeronautics and Space Administration (NASA) launched a series of Earth Observing System satellite 

sensors, including the two instruments we use in this experiment: the Multiangle Imaging SpectroRadiometer (MISR) 

on board the Terra satellite (Diner et al., 1998), and two Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensors (e.g., Remer et al., (2005)), one each aboard the Terra and Aqua satellite platforms. 

 2.2.1 MISR Research Algorithm AOD and Particle Properties 

MISR is one of five instruments aboard the Terra satellite. It measures sunlight reflected from Earth in each of nine 

cameras pointed at different view angles, from +700 through nadir to -700 along the satellite flight path, in each of four 

spectral bands (446, 558, 672 and 866nm) (Diner et al., 1998). This multi-angle design allows MISR to observe the 

atmosphere through effective slant path ranging from one (i.e., vertically down) to three (i.e., at steep forward and aft 

angles). This geometry produces scattering angles between the sun and viewing vectors ranging from approximately 

600 to 1600 in mid-latitudes. The combination of multi-spectral and multi-angular observations provides information 

about aerosol amount and microphysical properties, such as particle size and shape  (Kahn et al., 2001; Kahn and 

Gaitley, 2015).   

 

MISR algorithms retrieve aerosol properties by selecting from among the optical models for an assumed set of aerosol 

component mixtures. A “component” is a candidate aerosol type of specified, uniform composition and size 

distribution. The top-of-atmosphere reflectances simulated for each mixture are calculated and compared with the 

corresponding MISR observations, to determine the mixtures that fit the data within certain acceptance criteria; these 

are reported by the algorithm as the “successful mixtures” likely to be present (Diner et al., 2005; Limbacher and 

Kahn, 2014; Martonchik et al., 2009). Each mixture contains up to three individual aerosol components, where the 

percent contributions of all the components to the mixture mid-visible AOD sum to 100%.  

 

The MISR Standard Aerosol retrieval algorithm uses a universe of 74 mixtures. The eight aerosol components in the 

MISR Standard Version 22 and 23 products are labelled: 1, 2, 3, 6, 8, 14, 19, and 21 as reported in Tables 1 and 2 in 

Kahn and Gaitley (2015) and reproduced in Table S3 in Supplementary Information. The components are named 



based on single-scattering albedo (SSA): light-absorbing or non-absorbing, particle shape: spherical, non-spherical 

grains or spheroids, and effective radius. Under favorable retrieval conditions (e.g., when total-column mid-visible 

AOD exceeds about 0.15 or 0.2), the MISR algorithm is able to distinguish between three and five bins in column-

effective particle size (Kahn and Gaitley, 2015).  

 

The spectral extinction coefficients for each aerosol component are included in the MISR Aerosol Physical and Optical 

Properties (APOP) file, available from the NASA Langley Research Center (LARC) Atmospheric Sciences Data 

Center (ASDC)2. The MISR Standard aerosol data product provides AOD values and success flags: (i.e., whether a 

mixture is an adequate fit to the observations to be considered a “successful” match) for each aerosol mixture, based 

on estimated measurement uncertainties.  

 

In this paper, we use the MISR Research Aerosol retrieval algorithm (RA; Limbacher and Kahn, 2014; 2017) applied 

to MISR Level 1B2 radiance data, to derive AOD estimates for the eight MISR aerosol components. The RA can be 

run with different sets of aerosol components, including the 74-mixture set used in the MISR Standard Algorithm, and 

reports column-effective aerosol properties at any desired spatial resolution down to the MISR pixel resolution of 1.1 

km x 1.1 km. In addition to producing results at a finer spatial resolution than the MISR Standard aerosol product, the 

RA also offers significantly better MISR aerosol retrieval results for air quality and other applications because of 

empirical calibration corrections (Limbacher and Kahn, 2015), better treatment of surface boundary conditions, and 

other refinements (Limbacher and Kahn, 2017, 2019, 2014).  

 

Data from MISR on its own rarely contains more detail than qualitative particle size and shape, so particle-

composition-related information that could be used to distinguish different sources or to assess particle moisture 

content is lacking, except where detectable differences in other parameters, such as particle shape (e.g., non-spherical 

dust vs. spherical smoke or pollution particles) and particle light-absorption (e.g. “dirty” vs. “clean”) make these 

distinctions possible (Kahn et al., 2001; Kahn and Gaitley, 2015; Liu et al., 2007). MISR aerosol-type retrieval 

uncertainty, based on the range of particle size, single scattering albedo (SSA), and the fraction of non-spherical values 

among the aerosol mixtures from the algorithm climatology,  is assessed generally by Kahn and Gaitley (2015), and 

we rely on these results to indicate the expected uncertainties here. Specifically, we enforce a lower bound of 0.15 on 

mid-visible AOD for accepting MISR-retrieved particle size distributions. We assume that the aerosol components 

follow log-normal size distributions, and extract the size distribution of the MISR aerosol components at diameters 

ranging over the MISR size-detection range of about 0.1-3 μm.  

 

For more details of the MISR data over the OPC-N2s in Nairobi refer to section S1.2.1 in Supplementary Information. 

 
2 https://eosweb.larc.nasa.gov/sites/default/files/project/misr/DPS_v32_RevL.pdf (Last accessed on August 12, 
2019) 



2.2.2 MODIS MAIAC AOD 

MODIS samples every location on the globe about twice a day, but lacks particle size information (e.g., Levy et al., 

(2013). As aerosol type appears to be fairly constant on monthly timescales, we scale the MODIS-MAIAC 

(MultiAngle Implementation of Atmospheric Correction) AOD retrieval product (Lyapustin et al., 2011a, 2011b, 

2012), with available, particle-size-resolved AOD from MISR over each month.  

 

MODIS has 36 spectral channels, designed to provide a wide variety of biogeophysical information. Unlike MISR, 

which uses near-simultaneous, multiangle observations for aerosol-surface retrievals, MODIS offers single-view, 

broad-swath, multi-spectral data. The MAIAC algorithm applies image-based processing techniques to analyze 

MODIS time-series, i.e., multiple views of each surface location, in different parts within the MODIS swath (and 

therefore different view-angles), acquired over a sliding, 16-day orbit-repeat cycle.  This non-coincident multi-angle 

approach produces cloud detection, AOD and atmospheric correction over both dark vegetated land and a range of 

brighter surfaces, at 1 km x 1 km resolution (Lyapustin et al., 2012). Compared to operational MODIS retrievals, 

MAIAC AOD has similar accuracy over dark and vegetated surfaces, and higher accuracy over brighter surfaces 

(Lyapustin et al., 2011b, 2011a).  

 

For details about MAIAC AOD over Nairobi during the study period, refer to Supplementary Information section 

S1.2.2 

2.3 GEOS-Chem Aerosol Vertical Scaling 
GEOS-Chem simulations were used in our study to provide a constraint on the vertical distribution of the aerosols, 

because AOD from the satellites is a column-integrated quantity, whereas PM2.5 is assessed near-surface.  The GEOS-

Chem model is driven with GEOS-5 assimilated meteorology from the NASA Global Modelling and Assimilation 

Office (GMAO) at 0.50 x 0.6670 horizontal resolution (Bey et al., 2001). The model is nested over the African continent 

and boundary conditions are from a global simulation at 20 x 2.50. Open fire (biomass burning) emissions are from 

GFED4 (van der Werf et al., 2010). Inventories of anthropogenic emissions in Africa include DICE-Africa for cars, 

motorcycles, traditional biofuel use (fuelwood, charcoal, crop residue), charcoal production, ad hoc oil refining, 

backup generators, kerosene use, and gas flares (Marais and Wiedinmyer, 2016). Pollution from industrial and on-

grid power generation for black carbon (BC) and organic carbon (OC) are from (Bond et al., 2007). Detailed aerosol 

chemistry are described by (Mao et al., 2010, 2013). 

 

Details about the model simulations we used for the Nairobi case, as well as our attempts to validate the vertical 

distribution of aerosol obtained from the GEOS-Chem model, are provided in section S1.3 in Supplementary 

Information.  

 

3 Methodology 



 

Our approach uses the size distribution of the aerosol components from MISR retrievals to constrain the size 

distribution derived from low-cost OPCs. The satellite size distribution data is encoded in the fractional contribution 

of each MISR component AOD to the total MISR AOD. We use the ‘monthly’ effective fraction of each MISR 

component AOD to scale the more frequent MAIAC AODs, yielding AOD values parsed out for the individual 

MISR components on a more frequent basis. In particular, the constraint on the aerosol size distribution from MISR 

remote-sensing data is especially important for particles with diameters < 0.54 μm, which the OPC cannot detect. 

Obtaining an understanding of the size distribution between 0.1 and 0.54 μm allows for better estimation of PM2.5 

from the combined MISR and OPC measurements. We assess the assumptions required for this analysis in Section 

5. 

We provide an overview of the methodology using a Flowchart (Figure 1). 

3.1 Step 1: Estimate the ground-based size distribution of aerosols at each site from the Alphasense OPC-N2 

monitors 

We obtain the lognormal size distribution: dN/d(ln(d)), from the Alphasense OPC-N2 ground-based data, at the time 

of the Terra overpass, for the diameter at the mid-point of each OPC bin using Equation 1.  
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Here Dupper and Dlower are the upper and lower diameters of each OPC bin. Δn is the number of particle-counts in each 

bin. N is the averaged number concentration of particles (units: #/volume of air) over the seven-minute Terra overpass. 

The number concentration units derived from Equation 1 are #/ml. We thus multiply the result by 106 to convert the 

number concentration from our surface monitors to Number of particles (#) /m3.  

 

Equation 1 uses only the raw particle counts from the OPC. We do not include the first bin (0.38-0.54 μm) in this 

analysis, as the error in the number concentration measurement for this bin is the highest (Sousan et al., 2016). Note 

that the mode diameter of urban aerosol tends to be ~ 0.2 μm. Unfortunately, the Alphasense OPC-N2 only ‘sees’ 

larger aerosols. This is a key reason for combining the OPC data with the satellite retrievals. In future deployments, 

other instruments that can see the smaller particles can be used. 

3.2 Step 2: Estimate stable and consistent aerosol size-resolved information from satellite data 
We estimate the corresponding size distribution of surface particulate matter from MISR and MAIAC AOD 

information by calculating the monthly effective near-surface AOD for each of the eight MISR aerosol components.   

 



We denote the column fractional AOD for each aerosol component (listed in Table S3 in Supplementary Information), 

as AODi,k: the mid-visible AOD fraction of component i in the kth MISR atmospheric column retrieval. It is calculated 

as the mixture-AOD-weighted AOD from all passing mixtures for component i in the MISR RA aerosol climatology.  

 

Step 2a.  Estimate the near-surface fraction of the satellite AOD. We estimate the fractional AOD for each aerosol 

component residing in the lowest atmospheric layer of the GEOS-Chem model (up to ~ 130 meters above the surface), 

by scaling the total-column fractional AOD with the simulated aerosol vertical profiles from GEOS-Chem using 

Equation 2.  
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Here N-S denotes Near-Surface.  

 

Step 2b. Associate the near-surface AOD with particular aerosol species in the model. Given the difference between 

the MISR aerosol components and the GEOS-Chem aerosol species, we use an approach similar to Liu et al. (2007) 

to connect the two. Specifically, we sum GEOS-Chem AOD values for spherical species, SO4-NH4-NO3, OC and 

BC. We then calculate the ratio of the AOD for these species in the lowest GEOS-Chem atmospheric layer to the total 

columnar spherical-species AOD as the scaling factor for the MISR spherical components. For the very large spherical 

(MISR aerosol component 6) and non-spherical components (MISR aerosol components 19 and 21), we use the ratio 

of GEOS-Chem dust AOD in the lowest layer to the total column dust AOD (Kahn and Gaitley, 2015).  Henceforth, 

we refer to MISR component-specific, near-surface fractional AODs as MISR fractional AODs. 

 

Step 2c. Derive the satellite-component size distribution contributions to specific sizes. We now obtain the particle 

properties from the MISR RA needed to constrain the OPC aerosol size distribution for sizes smaller than 0.54 μm. 

Depending on retrieval conditions, if the aerosol retrieval is successful, MISR is able to distinguish aerosols in about 

3-5 size bins (section 2.2.1). The MISR RA uses these data to constrain a universe of possible aerosol mixtures to a 

subset of components that fit the data best. Although there is uncertainty in the details of the size distribution, the 

instrument provides consistent and stable retrievals over large areas and for a long period of time. Similarly, the 

process of constraining the universe of MISR aerosol types present is also consistent and stable over time. The 

corresponding lognormal size distribution: dN/d(ln(d)) of all the aerosol components from the satellite data is obtained 

from Equations 3 and 4a.  
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In Equation 3, Si(d) is the normalized size distribution of MISR aerosol component i. The representative size 

parameters are, specifically, the characteristic diameter (dci) and the distribution width (σi) for each of the eight MISR 

aerosol components. Note that the upper and lower diameters of each aerosol component are considered in this 

analysis. Based on the retrieval algorithm assumptions, the size distribution of an aerosol component for diameters 

outside the range of each component is 0. For the Nairobi cases, only small, spherical particles and medium-coarse 

particles contribute significantly to the MISR-retrieved AOD (Table 2). NN-Si is the total number concentration of each 

MISR aerosol component present near-surface for each observation.  

 

The size distributions Si(D) for MISR aerosol components 2, 8 and 14 are the same (Table S3). MISR aerosol 

components 2, 8, and 14 represent optical analogs of typical urban pollution with different light-absorption properties. 

We rewrite Equation 4a, grouping these three components into one aggregate term in Equation 4b. Here 𝑁!"#{%,',()} 

is the total near-surface number concentration of components 2, 8 and 14. The index i here runs only over the remaining 

MISR aerosol components: 1,3,6,19,21.  
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Importantly, the column-effective size distribution from Equation. 4b, derived from the MISR retrievals, corresponds 

to the surface-measured value from Equation 1 only if the near-surface aerosol properties are representative of the 

entire atmospheric column. Due to a lack of additional observational constraints, we must accept this as an assumption, 

along with the corresponding uncertainty. The assumption will be favored in places where the aerosol load is 

concentrated near-surface, which is common when the aerosol column is dominated by local sources. This is likely 

the case for many urban regions and is supported by the high correlation between MISR or MAIAC AODN-S and OPC 

PM2.5 in Nairobi when AOD > 0.15 (see section S2 in the Supplementary Information). The size distribution of the 

total aerosol derived from a MISR retrieval is a sum of the size distributions of individual aerosol components, as 

represented in Equation 4. 

 

Step 2d. Formulate the satellite constraint on size-specific surface concentration so it can be regressed against the 

OPC data. By definition, AOD558 is proportional to [the number concentration of aerosols] x [the extinction area of 

each particle at 558 nm wavelength] x [the path over which AOD is assessed (which for MISR is the entire column. 

Here, we scale the AOD to provide the near-surface component residing in the lowest layer of the GEOS-Chem model, 

which is 130 meters vertically)].  In order to obtain near-surface number concentration of each aerosol component 

using this physical definition of AOD, we assume a uniformly mixed, near-surface aerosol, with the AOD measured 



in all cases over a vertical path through the first 130 m of the GEOS-Chem model. As shown in Equation 5, for each 

aerosol component, a dimensionless proportionality constant multiplied by the AODN-S/path length (130 meters) x 

spectral extinction coefficient is the number concentration of particles, summed over the path, per unit area. The 

spectral extinction coefficients of each aerosol component can be found in Table S3. The near-surface number 

concentration of each aerosol group is thus represented as: 

 

For MISR aerosol components: 1,3,6,19,21: 
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For the aggregate MISR aerosol group comprising of MISR aerosol components: 2, 8 and 14: 
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The spectral extinction coefficients obtained from Table S3 are in units of (μm)2. To convert this to m2, we multiply 

these coefficients by 10-12. The number concentration NN-Si in Equations 5a and 5b has units #/m3.  Г𝑖 is a 

dimensionless scaling parameter, needed to relate the modeled aerosol number concentration of each component to 

the actual number concentration present from the OPC measurements. We expect this value to be a constant, because 

the MISR retrievals are stable and consistent over time. We derive this parameter using the ground-based size 

distribution from the OPC-N2s, in the size range where the surface instruments have sensitivity. 

 

Step 2e. Increase the number of satellite data points by scaling MODIS AOD with MISR sizes. To increase the 

satellite dataset, we use the average fractional AOD of each MISR aerosol component for a given month over a specific 

site to parse the total AOD from the more frequently sampled MAIC product, using Equation 6 to represent the MISR 

component fraction, and Equation 7 to calculate the corresponding MAIAC value.  

𝑀𝐼𝑆𝑅	𝐴𝑂𝐷𝑁−𝑆,𝑚𝑜𝑛𝑡ℎ,𝑖 	=
∑𝑛𝑗=1 𝑀𝐼𝑆𝑅𝑁−𝑆	𝑖

𝑛                               (6) 

 

𝑀𝐴𝐼𝐴𝐶".>9 = 	𝑀𝐴𝐼𝐴𝐶	 ×	 `a>b	A=(0$1,!>(?@,-
∑A-B2 `a>b	A=(!>(?@,-

             (7) 

Here MISR AODN-S,month,i is the effective MISR near-surface AOD for component i over a given surface site for a 

specific month of the year (obtained by averaging the available data, with the assumption of negligible change in 

particle properties over the month, as discussed in Section 2.2.1), and n is the number of MISR AODi retrievals for 



that month. The AOD assigned to each MISR component i, based on scaling a given MAIAC AOD retrieval, is denoted 

MAIACi, For the remaining analysis, we use the scaled MAIACN-S,i instead of MISRN-S,i in Equations 5a and 5b.  

 

Step 2f. Regress the satellite near-surface, size-constrained particle concentration constraints against the OPC 

data to obtain a more complete near-surface aerosol size-concentration distribution. To appropriately link the size-

distribution from the OPCs with the MISR retrievals, we would ideally aggregate the OPC size bins in a similar way 

MISR does: very small, small, medium and large, calculate the OPC size distribution at the mid-point of these bins, 

and fit these size distributions with the size distribution derived from MISR.  However, as the OPC has predefined 

bins, we assume that for favorable retrievals, each aerosol component follows a log-normal size distribution, consistent 

with the MISR algorithm assumptions. We use Equation 4 to extract the size distribution of the total aerosol from 

MISR measurements that corresponds to the mid-point of each pre-existing OPC bin within its range of sensitivity. 

Although the OPC counts particles for 16 diameter bins between 0.38 and 17 μm (Table S1), we perform the OPC-

MISR regression analysis only within the diameter range 0.54-2.55 μm for which both MISR and the OPCs have 

adequate sensitivity. This corresponds to six of 16 OPC size bins, Bin 2-Bin 7 (Table S1).  When we use the MAIAC 

data, we still rely on the size information obtained from the MISR retrievals to represent aerosol size distribution. 

 

We perform the regression analysis, substituting the right side of Equation 1 into the left side of Equation 4b, and 

substituting the right side of Equations 5a and 5b for the two NN-Si terms on the right side of Equation 4b. We can then 

evaluate the Гi, based on the relationship between the surface-monitor size distribution on the left side of this equation 

(obtained from Equation 1), and the satellite values represented on the right side, for each coincident observation. The 

Гi are essentially the aerosol-group-specific adjustment factors required to equate the near-surface aerosol number 

concentration measured by the surface monitor with that derived from the satellite. After calculating Гi, we can 

calculate NN-Si using Equations 5a and 5b.  

3.3 Step 3: Calculate PM2.5 from the number concentration of the different MISR Aerosol Groups 
In the final step, we calculate PM2.5 using the ‘OPC-calibrated’ aerosol size distribution from MISR. As is already 

evident from the discussion above, it is not straightforward to obtain quantitative PM2.5 values from the particle size 

distribution information derived from satellite passive remote sensing. Further, Alphasense uses a proprietary 

algorithm to convert particle counts to dry mass. Particle counts in each of the 16 bins are multiplied by the volume 

of particles under ambient conditions in each bin assuming spherical particle shape, an assumed particle density, and 

a factor corresponding to the ISO respirable convention for PM2.5. Assumptions are made about the efficiency of the 

instrument inlet as a function of particle size, and about the size distribution functional form, to obtain the volume of 

particles within each size bin. The total is then divided by the sampling time and sample flow rate to calculate the 

mass obtained per unit volume of air.  Given these assumptions, we have more confidence in observed differences in 

the measurements than in the reported absolute concentration values.  Our interpretation of the results in the next 

section proceeds with this in mind. Assuming spherical particles, the normalized volume distribution per particle for 

MISR aerosol component i is:  



𝑣9(𝑑) = ∑$dH5
F!&

L
× +

$("(	(*)	$"(	(*,C)	).

.("(	(/C)	).

!×#$	(Cd)	×√EF
                                                                             (8) 

Note here the index i corresponds to MISR aerosol components: 1,3,6,19,21 or the aggregate group: 2, 8 and 14.  In 

Equation 8, vi(d) is the total normalized volume distribution of each aerosol component or group per volume of air. 

The total volume of the aerosol group with diameters between d and d+Δd per volume of air is provided by V(d) in 

Equation 9. NN-Si is the ambient value of the total near-surface aerosol number concentration for MISR 

component/group i. The NN-Si value in Equation 9 will be the same as that derived directly from the MISR data in 

Equations 5a and 5b only to the extent that the near-surface aerosol type represents the total-column aerosol type, an 

assumption we make consistently in this analysis. 

𝑉9(𝑑) = 𝑁".>9 × ∫
!ef!
! 𝑣9(𝑑) × 𝑑(𝑑)                             (9)      

The integration of vi(d) for each aerosol component/group from 0 to a finite diameter is nontrivial. We solve this 

integral numerically using Equation 10 to obtain the total volume contributed by each aerosol component per volume 

of air. When doing this integration, we are careful to take into consideration the lower and upper limits on the radius 

for each MISR aerosol component in each aerosol component/group. 

 

𝑉9(𝐷) = 𝑁".>9 × ∑!H(!H5 (𝑣9(
!

56666
) × 0.0001                                                 (10) 

The unit of volume (𝑉𝑖) here is (µm)3, as the unit of the diameter we use here is in µm. To calculate PM2.5 we need to 

multiply the total volume of each of the eight aerosol components for particles calculated using Equation 10, by the 

particle density, as shown in Equation 11.  

 𝑃𝑀E.R		 = 	𝑑𝑒𝑛𝑠𝑖𝑡𝑦	 × ∑G9H5 𝑉9(𝐷9)      (11)                                                             

In this analysis, we assume the same particle density that Alphasense uses in its algorithm. We compute PM2.5 in units 

of µg/m3 from the volume obtained: 

1.65 g/cm3 or 1.65×10-6 μg/m3 ( #
,! × (10"(' ×

,!

(.,)!
) × (𝜇𝑚)0 × 1.65

1×"#
$%&
&

3,!×("#
'$(!

)(! )
).  

Note that the Alphasense algorithm to convert particle counts to mass is proprietary, and we do not have access to its 

methodology. 

4. Size-Dependent Near-Surface Particle Concentrations, Constrained by Regression 

Against Satellite Data for Nairobi, Kenya 
In this section we apply the method described in Section 3 above to the OPC and satellite data collected in Nairobi 

from May 2016 through early March 2017. We present the results using the limited coincident MISR data and also 

using the larger scaled-MODIS dataset, and then summarize the assumptions and mitigating factors in the current 



analysis, which includes a discussion of possible improvements for future deployments.  Some details about the 

Nairobi experiment are given in Supplementary Information; the main points and key results are presented here. 

4.1 Application of the method to the 2016-2017 Nairobi OPC deployment 
Following Steps 1, 2a, and 2b of the methodology described in Section 3, Table 1 shows the near-surface AOD for 

the Nairobi data obtained from the vertically scaled MISR Research Algorithm for aerosol components 1,3,6,19 and 

21, as well as that for the aerosol group comprised of components 2,8 and 14, using the standard universe of 74 

mixtures. Near-surface values were obtained by scaling total-column AOD based on GEOS-Chem simulated aerosol 

vertical distributions. The 10 rows in bold font correspond to observations that have a MISR total AOD (sum of the 

AOD of the eight MISR aerosol components) > 0.15. The corresponding surface PM2.5 from the ground-based OPC 

for the 10 favorable MISR retrievals is also presented. Table S2 in Supplementary Information shows the lognormal 

size distribution (dN/d(lnD)) from the OPCs for the coincident surface observations that correspond to the 10 

successful MISR retrievals where the total AOD558 > 0.15.  

 

We obtain the group-specific particle-size data from MISR (Step 2c), and the associated number concentrations (NN-

Si) from Equations 5a and 5b (Step 2d). We then linked the size distribution of the MISR aerosol groups with that of 

the OPCs (Step 2f).  The regression analysis was conducted using the total dN/d(lnD) derived from the MISR 

measurements as the predictor of the dN/d(lnD), with the ground-based measurements as the dependent variable, 

assessed at six different diameters corresponding to the mid-points of the OPC size bins Bin 2 – Bin 7 (Equation 1), 

where the datasets overlap. For each of the 10 high-AOD MISR cases, we have six dN/dln(D) measurements (= 60 

rows in our regression analyses).   

 

We have performed multiple analyses making different assumptions, to explore the range of impacts these choices 

have on the results. The different analyses are summarized here: 

1) Analysis 1: We only consider observations from MISR, for all MISR aerosol components except for 

component 21 

2) Analysis 2: We only consider observations from MISR, for all components except for components 1 and 21 

3) Analysis 3: We consider the scaled MAIAC AODs for all MISR components except 21 

4) Analysis 4: We considered scaled MAIAC AODs for all components except 1 and 21 

5) Analysis 5: We considered scaled MAIAC AODs where the total MAIAC AOD >= 0.15, for all 

components except 1 and 21 

4.1.1 Only MISR retrievals considered (Analyses 1 and 2) 

For all regression analyses we excluded MISR component 21 as the AOD retrieved for this component is 0.  

 

In Regression Analysis 1, we included the remaining MISR components. Not all of the coefficients in the regression 

are significant, and some are negative. Each coefficient in the regression represents the total number concentration 



of the respective aerosol group, which physically cannot be negative. However, it is possible for a statistical weight 

to be negative, as the regression approach aims to formally match the retrieved values with available observations, 

and there can be aerosol components and mixtures missing from the MISR algorithm climatology (Kahn et al., 

2010).  As such, leveraging from the better-fitting components can skew the coefficients for other particles negative. 

Provided the negative weights are small compared to the dominant retrieved components, the negative values 

represent noise in the results.  This can apply to components 1 and 8 that are often retrieved in relatively small 

quantities, as well as to component 19, a dust optical analog, that very likely does not match actual dust in the 

region. Moreover, MISR component 1, with re=0.06 μm, is well below the OPC lowest size sensitivity limit.   

Regression Analysis 2 was thus run without component 1 and 19.  

 

The results of regression Analyses 1 and 2 are given in Table 2. Figure 2 shows the particle size distributions 

(dN/dlnD) from the air quality monitors obtained for all relevant ground-based observations, superimposed on the 

size distributions derived from the regression analysis results of Analysis 2. The derived size distributions from each 

instrument are quite well matched in nearly all cases, despite the assumptions involved. The Nairobi aerosol has a 

size distribution that is sampled by MISR. The large-end tail is sampled by the OPCs, and our method uses the 

region of size-overlap to perform the particle-size scaling, The results in Figure 2 indicate that the two instruments 

are in fact sampling parts of the same particle size distribution. For Analysis 2, the adjusted R squared is 0.82.  

4.1.2 Using scaled-MAIAC retrievals (Analyses 3, 4, and 5) 

To increase satellite sampling, we repeated the regression analysis by scaling MAIAC AODs using the monthly 

effective MISR aerosol component AOD fractions (Steps 2e and 2f). We have 1712 MAIAC AOD retrievals that 

fall within a radial distance of 1.6 km of a ground-station. However, there are only 10 favorable MISR particle 

property retrievals, on three unique days. Using the MISR component AOD values to parse the MAIAC total-AOD, 

even on a monthly basis, leaves 304 MAIAC retrievals on 20 unique days (Figure S6 in Supplementary 

Information). Yet this provides about 30 times as much data as the MISR data alone.  

 

Like Analysis 1, Analysis 3 includes all MISR aerosol components, but was run using the scaled MAIAC dataset.  

We also ran Analyses 4 and 5 with the MAIAC data, this time excluding MISR components 1 and 19. For Analysis 

5, we further restricted the MAIAC retrievals to those with the total AOD ≥ 0.15 (85 MAIAC AODs), to ensure that 

near-surface aerosols dominate in this analysis.  The adjusted R squared for Analysis 5 is 0.76. When we used 

MAIAC AODs at a radial distance of 1 km and 0.5 km from each site (instead of 1.6 km), repeating Analysis 5, 

yielded adjusted R squared values of 0.77 in both cases. This suggests that our results are robust to the radius 

considered. 

 

The results for the five analyses are given in Table 2. All the coefficients for the remaining aerosol groups included 

in Analyses 2, 4 and 5 are positive and statistically significant (p-value almost equal to, or less than 0.05). Figure 3a 

shows PM2.5 from the ground-based OPCs (scaled by a factor of 4 for the sake of comparison) and the corresponding 



PM2.5 calculated from MISR (Step 3), using the results of Analysis 2.  The MISR-derived and OPC PM tend to show 

similar peaks, with the exception of All Saints. Taking all points into consideration, the correlation between the two 

PM datasets is 0.56.  The OPC at All Saints is situated in a particularly clean area, surrounded by hotspots of 

pollution due to informal settlements nearby. The average pollution in the coincident satellite grid cell is higher than 

that observed by the OPC at this particular site, likely caused by the difference in spatial sampling. When we drop 

measurement at All Saints from this analysis, the correlation between the derived PM2.5 from MISR and that of the 

OPC is 0.76 (Figure 3b).   

 

Similarly, Figure S7 in Supplemental Information displays the derived PM2.5 concentrations from MAIAC/MISR 

AOD estimates using coefficients from Analysis 5 and the corresponding surface PM2.5 from the OPCs. The 

correlation between the two PM values is 0.47. When we drop All Saints, the correlation increased to 0.48. 

However, the adjusted R squared is ~0.8 when working directly with size distribution information (Step 2f) rather 

than the PM2.5 values due to the additional assumptions involved (Step 3).  

 

The satellite-derived PM values are very high relative to the OPCs in nearly all cases.  The dominant contributing 

factor is that a large fraction of aerosols in Nairobi are primary combustion aerosols with diameters < 0.54 μm that 

MISR detects (Figure S4 and Table S3), but that are not included in the OPC data due to lack of sensitivity. In addition, 

any secondary aerosol formation from the many sources of gaseous precursors would produce small particles, and any 

underestimate in the particle density assumed in the OPC retrieval might also play a role. A further possible 

contributing factor, at least at one site (Kibera Girls Soccer Academy), is the frequent dominance of coarse mode 

particles, which contribute to the total AOD observed by MISR. However, MISR does not retrieve specific size 

information for particles larger than about 2-3 µm (Section 2.2.1 above), so the MISR total AOD is ascribed to smaller-

sized particles, where the retrieval is sensitive; this can inflate the number concentration of these particles. Given these 

issues, our method focuses on the size range over which both the OPC and MISR measurements are sensitive (Figure 

2). As most of the particles retrieved over the urban Nairobi region are components within the typical combustion-

particle size distribution (see Section S1.2.1 Supplemental Material), the method yields a high correlation despite the 

limitations of the data, and actually uses the satellite data to account for smaller particles that the OPCs miss.   

 

4.2 Assumptions, and mitigating factors in the current analysis, with advice for future deployments 
The data collected during the 2016-2017 Nairobi experiment are not ideal for the current application.  However, 

there were also mitigating factors, which we summarize here, along with the lessons learned for the benefit of future 

deployments. 

 

• MISR sampling frequency.  Generally low AOD over Nairobi, combined with the relatively narrow MISR swath 

width and low latitude of the target region, left just 10 cases meeting the criteria for good aerosol-type retrievals 

from MISR during the OPC surface-network deployment.  As such, we were forced to assume that single or pairs of 

MISR particle-type retrievals in a given month represent the aerosol properties for the entire month.  However, the 



observation that the MISR-retrieved particles varied little among the available observations (Figure S3) and are 

typical of urban pollution from the local sources expected in Nairobi favors this approach. Selecting cases having 

mid-visible AOD ≥ 0.15 also favors conditions where local sources dominate. The assumption is further supported 

by GEOS-Chem model aerosol-type simulations (Section 2.3 above, and Figure S5).  As AOD varies considerably 

more than aerosol type at the Nairobi site, we addressed that aspect of limited MISR sampling by using MISR 

monthly size-resolved information to scale the much more frequent MODIS-MAIAC AOD retrievals. In future 

experiments, sites typically experiencing higher AOD, preferably also at higher latitude, as well as longer 

deployments, could greatly improve the MISR sampling statistics for this application. 

 

• Aerosol vertical distribution.  We also use the GEOS-Chem AOD vertical distribution to obtain the near-surface 

component of the MISR total-column AOD and assume that MISR-retrieved total-column particle properties are 

dominated by near-surface particles in the study region.  As expected, our analysis works best on days when the 

satellite-derived AOD was ≥ 0.15, and near-surface urban aerosols dominate the column (Figure S5). The 

observation that the MISR-retrieved particles are typical of urban pollution from local sources in Nairobi (Table 1 

and Section 1.2.1 in Supplemental Material) also favors this assumption.  Further, dust is the most likely transported 

species, and it is distinguished from pollution particles in MISR retrievals based on large size and non-spherical 

shape.  AOD is derived from satellite instruments under ambient RH conditions. If the particles were hygroscopic, 

however, they could adsorb water vapor and appear larger than they would be under dry conditions, which is how 

PM2.5 is usually assessed. Yet, the RH at the Nairobi site was generally low during the study period (Table S2), 

pollution particles are not very hygroscopic, and the OPC measurements were also obtained at ambient RH (section 

2.1 above), all mitigating the RH issue.  Unfortunately, there were no local lidar observations to validate the model 

vertical aerosol distribution, and neither the CALIPSO nor the CATS space-based lidars acquired data useful for this 

purpose, as discussed in section S1.3 in Supplementary Information. In future deployments, a single, well-placed 

surface lidar in the region could test the assumptions about aerosol vertical distribution and determine whether any 

aerosol layers aloft contribute significantly to the satellite, column-effective particle property retrievals.  

 

• OPC small-particle sampling.  Pollution particles typically have diameters in the range 0.1 – 0.3 μm, and the 

pollution particles MISR retrieved had effective radii 0.12 μm (effective diameter 0.24 μm). Yet, the Alphasense OPC-

N2 instruments used in the current study do not register particles < 0.38 μm in diameter, and the smallest size bin is 

noisy, effectively limiting the OPC size sensitivity to particles > 0.54 μm.  As such, particle-size regressions in this 

study were performed over six size bins spanning 0.54 - 3 μm, capturing the range over which both satellite and surface 

instruments are sensitive.  The small-particle-observation limitations represent a significant uncertainty in the results. 

However, the particle-size comparisons shown in Figure 2 demonstrate very good agreement over the six-bin range, 

and further, we obtained ~0.8 R2 model fits for the aerosol size distribution formally, when considering either the 

MISR retrievals alone or the better-sampled MAIAC AODs parsed to the MISR component fractions. As MISR 

sensitivity extends to particles ~ 0.1 μm, the satellite data help account for fine aerosols having diameters < 0.54 μm 

in our analysis. For future deployments where the dominant particle type is urban pollution, including surface 



instruments that have sensitivity to particles down to ~0.1 – 0.2 µm in diameter would make the surface-station dataset 

substantially more robust. Further, at least one coincident, strategically located reference air quality monitor would 

make it possible to quantify retrieval sensitivity with greater confidence. 

5. Conclusions  
For many locations around the world, the alternative to deploying low-cost air-quality monitors is having no ground-

monitoring at all. Surface monitors are essential to help characterize the near-surface aerosol components within total-

column satellite observations, but they offer only limited coverage, and the PM measurements from low-cost monitors 

in themselves are generally not well calibrated.  

 

This paper develops and presents a novel method that moves away from the conventional approach of linking remotely 

sensed, total-column AOD from satellites with directly sampled particulate mass per volume of air from surface 

monitors. Instead, it combines satellite, component-specific AOD retrievals with particle counts from low-cost 

monitors, to constrain the size distribution of surface aerosol and PM2.5. Retrieving some particle-size information is 

possible with data from the space-based MISR instrument under favorable retrieval conditions. MISR-retrieved 

particle effective cross-sectional area is linked with the size distribution of particulates as observed by the low-cost 

OPC-N2 observations. As far as we know, size-resolved particle counts have not previously been used to associate 

remote-sensing and direct-surface aerosol data, as most standard reference monitors provide particulate mass 

measurements and not particle counts partitioned by particle size.  

 

We applied the method presented in Section 3 to data from a 2016-2017 10-month Nairobi experiment, due to the 

relative longevity of that data record.  Limitations in the experiment design and implementation included relatively 

infrequent MISR sampling and low AOD, as well as the lack of a lidar or high-quality reference particle sampler in 

the field to validate assumptions about aerosol vertical distribution and satellite-retrieved small-particle surface 

concentration, respectively. However, the dominance of locally generated urban pollution particles concentrated near 

the surface, low relative humidity, and an effective approach for scaling more frequent MODIS data with the MISR-

retrieved size distributions are mitigating factors. The method produced high correlations (~0.8) between satellite-

derived and surface-station-measured PM2.5, and most importantly, the satellite data helped significantly to account 

for smaller particles that tend to dominate urban aerosol pollution but are below the detection size limit of the OPCs.   

 

Our analysis also led to specific suggestions for performing future deployments with fewer assumptions, such as 

including at least one carefully sited, surface-based lidar and reference air quality monitor.  Applying the technique 

under conditions more favorable for this approach could help assess air quality in rapidly urbanizing cities in 

developing countries, where pollution increases are having dramatic public health consequences, and where 

monitoring is limited or entirely absent. We hope with the increasing focus on air quality (e.g., the expansion of the 

SPARTAN network, Weagle et al., 2018), broader application of low-cost monitoring can occur. Further, the planned 

MAIA instrument (expected launch year: 2022), like MISR, will be able to provide size-resolved information about 



aerosols from space for a subset of cities at higher temporal resolution (Diner et al., 2018). As such, it should better 

capture the variability in aerosol type, and the data can be incorporated into our methodology.  
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Figures  
 

 
Figure 1: An overview of the proposed methodology 

 



 
 

 

Figure 2: Ground-based size distributions (#/m3) obtained from the low-cost air quality monitors, represented by 

points at the bin-center diameters (μm) for each of OPC bins 2-7, and the corresponding size distribution derived from 

the 10 favorable MISR retrievals (represented by lines). The orbit number of the satellite observation is provided along 

with which ground-based monitor location with which the satellite pixel overlapped. 

 



 
 
Figure 3: (Red) PM2.5 (μg/m3) measured from the OPC-N2 (scaled up by a factor of 4 to make comparable with the 
PM derived from MISR) , and (Blue) PM2.5 calculated from  coincident MISR observations for the (a) 10 cases where 
MISR AOD >0.15 (identified by the MISR orbit number and the coincident site name along the horizontal axis), and 
(b) Coincident MISR observations at all sites, but All Saints, using model coefficients from Analysis 2 in Table 2. 
The regression analysis yields a correlation of 0.56 for the data in panel (a), whereas the correlation is 0.76 for panel 
(b). A major factor contributing to the quantitative difference is probably the lack of OPC sensitivity to particles < 
0.54 μm in diameter 
 

 

 



Tables 
Table 1: Successful near-surface MISR aerosol optical depth retrievals for each MISR aerosol component (including 

the aggregate scaled AOD from components 2, 8 and 14), the total near-surface MISR AOD and the total MISR AOD, 

averaged over a radial distance of 1.6 km2 from each surface monitoring site. These values were obtained for each of 

the 28 coincident observations from the MISR research algorithm, run with the standard universe of 74 mixtures. The 

AOD is set to zero for aerosol components not present among the MISR-retrieved aerosol types. The retrieved amounts 

of Components 19 and 21 were negligible or zero in all the retrievals. Near-surface values were obtained by scaling 

total-column AOD based on GEOS-Chem simulated aerosol vertical distributions. The 10 rows in bold correspond to 

observations that have a MISR total AOD (sum of the AOD of the eight MISR aerosol components) > 0.15. The 

corresponding surface PM2.5 from the ground-based OPC for the 10 favorable MISR retrievals is also presented. Note 

we have rounded the PM2.5 values to the nearest integer to acknowledge the uncertainties in the OPC PM2.5 

measurements. 

Date Orbit # 

Location (1.6 

km radial 

average) 

MISR Near-Surface AOD by component 
Total 

near- 

surface 

AOD558 

Total 

AOD 

30 minute- 

averaged 

OPC 

PM2.5 

(μg/m3) 1 

2+8+1

4 3 6 19 21 

8/2/16 88423 UNEP 0.00 0.13 0.00 0.03 0.00 0.00 0.156 0.340 20 

8/2/16 88423 Alliance 0.00 0.08 0.00 0.01 0.00 0.00 0.090 0.192 9 

8/2/16 88423 Scholastica 0.00 0.17 0.00 0.05 0.00 0.00 0.219 0.463 36 

8/2/16 88423 KGSA 0.00 0.11 0.00 0.03 0.00 0.00 0.139 0.301 18 

8/2/16 88423 All Saints 0.00 0.13 0.00 0.03 0.00 0.00 0.162 0.348 9 

10/14/16 89486 UNEP 0.02 0.04 0.01 0.02 0.00 0.00 0.085 0.201 19 

10/14/16 89486 Alliance 0.01 0.03 0.01 0.02 0.00 0.00 0.062 0.146  

10/14/16 89486 Scholastica 0.01 0.03 0.01 0.02 0.00 0.00 0.076 0.179 17 

10/14/16 89486 KGSA 0.02 0.03 0.01 0.02 0.00 0.00 0.086 0.203 18 

10/14/16 89486 All Saints 0.01 0.03 0.01 0.03 0.00 0.00 0.089 0.211 16 

12/17/16 90418 UNEP 0.01 0.03 0.01 0.03 0.00 0.00 0.075 0.179 8 



12/17/16 90418 Alliance 0.01 0.02 0.01 0.02 0.00 0.00 0.055 0.130  

12/17/16 90418 Scholastica 0.01 0.02 0.01 0.02 0.00 0.00 0.055 0.131  

12/17/16 90418 KGSA 0.01 0.01 0.01 0.01 0.00 0.00 0.041 0.102  

12/17/16 90418 All Saints 0.01 0.01 0.01 0.01 0.00 0.00 0.041 0.105  

1/2/17 90651 KGSA 0.01 0.02 0.01 0.02 0.00 0.00 0.048 0.124  

1/18/17 90884 UNEP 0.00 0.02 0.01 0.02 0.00 0.00 0.052 0.132  

1/18/17 90884 Alliance 0.00 0.02 0.01 0.01 0.00 0.00 0.041 0.106  

1/18/17 90884 Scholastica 0.00 0.02 0.01 0.02 0.00 0.00 0.047 0.118  

1/18/17 90884 All Saints 0.00 0.02 0.01 0.02 0.00 0.00 0.046 0.119  

1/25/17 90986 UNEP 0.01 0.02 0.01 0.02 0.00 0.00 0.049 0.123  

1/25/17 90986 Scholastica 0.01 0.02 0.01 0.02 0.00 0.00 0.046 0.113  

1/25/17 90986 All Saints 0.01 0.02 0.01 0.02 0.00 0.00 0.053 0.129  

2/3/17 91117 UNEP 0.00 0.00 0.00 0.00 0.00 0.00 0.010 0.028  

2/3/17 91117 Alliance 0.00 0.00 0.00 0.00 0.00 0.00 0.004 0.012  

2/3/17 91117 Scholastica 0.00 0.00 0.00 0.00 0.00 0.00 0.011 0.030  

2/3/17 91117 All Saints 0.00 0.01 0.00 0.01 0.00 0.00 0.018 0.049  

2/26/17 91452 Alliance 0.01 0.02 0.01 0.02 0.00 0.00 0.058 0.134  

 

 

Table 2: Results from multiple linear regression analyses using the size distribution of MISR aerosol components as 

the independent variable, and the size distribution from the OPC as the dependent variable. In Analyses 1 and 2, the 

size distribution of components for MISR observations with a total AOD> 0.15 is used. In Analyses 3, 4 and 5 MISR 

component AODs were obtained by scaling MAIAC AODs using the monthly effective MISR aerosol component 

AOD fractions. Equations 5a and 5b are used to derive the total number concentration of each MISR aerosol group 

(NN-Si). Because the AOD retrieved for MISR aerosol component 21 is 0, we do not consider this component in the 

regression analysis. Analysis 1 and 3 includes MISR aerosol component 1 and 19, while Analysis 2, 4 and 5 do not. 

In Analysis 5, we restricted the MAIAC retrievals considered to those where the total AOD ≥ 0.15. 



 

 Analysis 1 

(MISR only) 

Analysis 2 

(MISR only) 

Analysis 3  

(MAIAC) 

Analysis 4 

(MAIAC) 
Analysis 5 (total 

MAIAC AOD ≥ 

0.15) 

 Coef

ficie

nts 

95% CI Coeff

icient

s 

95% CI Coefficie

nts 

95% CI Coefficie

nts 

95% CI Coefficie

nts 

95% CI 

Compo

nent1 

-1.7 x 

1010  

 

-5.1 x 1010, 

1.9 x 1010 

-  -3.3 x 1010 

(***) 

(-4.0, -2.6) 

x 1010 

- -   

Compo

nent 

2,8,14 

4.3 x 

108(***) 

 

3.2 x 108, 5.4 

x 108 

4.2 x 

10+8(***) 

 

3.1 x 108, 

5.3 x 108 

5.8 x 108 

(***) 

(5.4, 6.2) x 

108 

5.3 x 108(***) (4.9, 5.7) x 

108 

6.0 x 108(***) (5.3, 6.6) x 

108 

Compo

nent 3 

1.4 

x109(*) 

 

0.1 x 109, 2.6 

x 109 

8.2 x 

10+8(***) 

 

0.4 x 109, 

1.3 x 109 

1.7 x109(***) (1.5, 2.0) x 

109 

6.0 x 108(***) (5.0, 6.9) x 

108 

3.4 x 108(***) (1.6, 5.2) x 

108 

Compo

nent 6 

6.2 

x109(**

*) 

 

3.9 x 109, 8.4 

x 109 

5.7 x 

109(***) 

 

4.2 x 1010, 

7.3 x 1010 

7.1 x109(***) (6.4, 7.8) x 

109 

6.8 x 109(***) (6.4, 7.2) x 

109 

6.8 x 109(***) (6.1, 7.5) x 

109 

Compo

nent 19 

-9.0  

x109  

 

-3.1 x 1010, 

1.2 x 1010 

-- -- -1.5 x 1010 

(***) 

(-2.2, -0.8) 

x 1010 

  - - 

Adjust

ed R 

square

d 

0.82 0.82 0.75 0.74 0.76 

p-values of coefficients:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 


