
We thank both reviewers for their comments on our manuscript. Thanks to them, this 
manuscript now conducts a discussion on the interesting topic of the spatial correlation in the 
observation errors, based on new tests described in Appendix A of the new manuscript. We 
provide below detailed responses to all of their comments and the version of the new 
manuscript where the changes are highlighted. 
 

The authors do a good job of explaining a regional tool that can be used to evaluate observing 
systems. Much of this detail has already been covered in Broquet et al (2018), but they add 
some to the analysis presented there and extend to a more comprehensive state vector that 
includes the larger region, as well as exploring the impacts of satellite data precision and 
resolution on the inversions.  

Response to the anonymous Referee #1  

Everything as described is correct mathematically, and the results from the point of view of a 
linear least squares optimization are useful. I find the analysis related to the independence of 
various sources particularly interesting, as distinguishing from neighboring sources is critical 
for the mission of CO2M.  

We thank the reviewer for these positive general statements. 

As the authors highlight their exploration of the observational precision, it behooves me to 
point out that we have no reason to believe the assumption they make about independence of 
the errors in retrievals that are spatially near each other. In fact, work by Kulawik et al. (2020) 
and Worden et al. (2017) would suggest that the correlation length scales would be something 
more like 50km-100km for XCO2. The assumption that errors scale by sqrt(N) is particularly 
poor.  

We made explicit in Section 2.1.2 that we purposely focus on the impact of the instrumental 
noise and we now clarify it in the introduction of our revised manuscript while mentioning the 
exploration of the topic of the correlations in the Appendix A:  

In terms of errors in the XCO2 data, the analysis focuses on random errors due to the 
instrumental noise that have no spatial correlations (even though the topic is explored in 
Appendix A). 

We assume that errors in XCO2 due to this instrumental noise bear no spatial correlations, 
following, e.g., Buchwitz et al. (2013). The analysis of current OCO-2 data at high spatial 
resolution demonstrates that the uncorrelated noise is a significant fraction of the total error 
on XCO2 individual data (e.g. Reuter et al., 2019; Zheng et al. 2020). 

Studying the correlated errors from the radiative transfer inverse modelling was out of the 
scope of our study.   

I can appreciate that handling systematic errors in a classical uncertainty reduction framework 
is not straightforward,  



Systematic errors can be accounted for in a classical uncertainty reduction framework, for 
instance based on a Monte Carlo approach (Broquet et al., 2018). However, assigning them 
remains difficult because: 

- they are not described in the uncertainties calculated by existing retrieval schemes, in 
contrast to the retrieval noise caused by instrument noise. The publications cited above 
characterize them empirically based on the statistics of the retrieval small-scale 
variability (Worden et al., 2017) or on the statistics of the difference to reference 
retrievals that are themselves empirically related to WMO standards (Kulawik et al., 
2019a,b).  

- they depend on the specific measurement configurations and on the evolving skill of 
radiative transfer models and of empirical bias-correction systems, so that conclusions 
from existing missions may hardly apply to future ones. 

but handling correlated observation errors should be doable.  

Including correlations in the R matrix of our inversion framework is definitely doable and we 
have conducted some tests with such correlations to support our discussion on this topic. In 
order to lighten the computations associated with the inversion of such a matrix when using a 
900 km swath, we have actually tested it when considering 4 km resolution pixels rather than 
2 km resolution ones.  

A traditional way to model spatial correlations is to assume that they are isotropic and 
homogeneous in terms of spatial scale (as probably suggested by the reviewer when speaking 
about 50 to 100 km scale correlations). We have modeled such correlations using 
exponentially decaying functions exp(-d/D) of the distances d between two observation 
pixels, and tested their inclusion in R with a 1-sigma uncertainty of 0.3 ppm for individual 
XCO2 data and with D=10, 50 or 100 km (assuming the correlations apply to the total 
uncertainty in individual data i.e. not splitting R into a random noise component and a 
component with spatial correlations). These tests are now described in Appendix A where the 
following Figure A3 is also provided. These results and this topic are now discussed in 
Section 4, with the following main messages: 

- such isotropic correlations should make the errors much easier to filter by the 
inversion than actual spatial patterns of the systematic errors that can follow the same 
atmospheric dynamics as the signature of the targeted fluxes 

- the situation is made even more optimistic here (like in most of studies with 
atmospheric inversion OSSEs) since our inversions are perfectly informed about the 
statistics of the observation errors (and in particular about their spatial scale) 

- as expected, the results indicate that when introducing correlations with small spatial 
scales, the posterior uncertainties increase since these correlations yield larger budget 
of observation errors at the scale of the signatures of the targeted fluxes. Conversely, 
introducing correlations helps the inversion separate the observation error patterns 
from these signatures, and large correlation spatial scales lead to a decrease of the 
posterior uncertainties. The worst case corresponds to correlation scales that are 
function of the scale of the signatures of the targeted fluxes. It varies depending on 
whether we analyze results for point sources, cities or widespread emissions across 
regions. This is why (i) results are poorer with D=10 km than with no correlations, for 
all type of sources (ii) results become generally better with spatial correlation than 
without for point sources and cities respectively for D≥10 km and D≥50km (iv) the 



inversion of the largest of a given category of sources (in terms of amplitude) are 
generally more negatively or less positively impacted by the spatial correlations (iii) 
results are systematically worse with D= 10 to 100 km than with no correlations, for 
countryside emissions. Results for regional budgets mix all these behaviors in a 
complex way. 

- These results and conclusions should be further investigated in future theoretical 
studies (to properly analyze the characterization of the spatial scale of the signature of 
the targeted fluxes) but this would fall out of the scope of this paper since (i) we want 
to keep the focus on the impact of random instrumental noise (ii) we believe that such 
a simple structure of the error correlations and their optimal learning by the inversion 
should be interpreted carefully to avoid misleading conclusions regarding the impact 
of actual systematic errors in the inversions. 

Here is the corresponding text added in section 4: 

Our new inversion framework allows accounting for a realistic simulation of the observation 
sampling and errors. Nevertheless, generating simulations of the systematic errors from the 
retrieval of XCO2 data that are suitable for the purpose of our study would have been 
difficult. Systematic errors are not described in the uncertainties computed by existing 
retrieval schemes. Furthermore, they depend on specific measurement configurations and on 
the evolving skill of radiative transfer inverse models and of empirical bias-correction 
systems, so that their characterization based on diagnostics with existing missions may hardly 
apply to future ones. Simulating realistic patterns of cloud cover consistent with the 
meteorology for the different test cases investigated would have also been challenging. 
Finally, this study focuses on other parameters to allow exploring the sensitivity of the 
inversions to these parameters in depth.  
In order to raise insights into the impact of errors with spatial patterns such as model and 
systematic errors, we have conducted experiments where spatial correlations are included in 
the observation error (in the R matrix). We have tested isotropic and homogeneous spatial 
correlations exponentially decaying with distance, using various correlation lengths. The 
experiments and results are described in Appendix A since they are out of the scope of this 
study. The results indicate that including correlations in the observation errors tends to 
increase the budget of observation errors and thus to increase the posterior uncertainties in 
the flux estimates as long as the correlation length scale does not exceed that of the signature 
of the fluxes in the XCO2 images. However, including correlations in the observation errors 
also tends to increase the ability to distinguish between the patterns of the observation error 
and of the signatures of the fluxes, and thus to decrease the posterior uncertainties, so that for 
large spatial correlation lengths, increasing the correlation length leads to a decrease of the 
posterior uncertainties. In our tests, the worst situation for the monitoring of the emissions in 
the study area corresponds to ~10 km correlation length scales. These results should be 
interpreted cautiously since the spatial patterns of the model and systematic errors are more 
complex than this traditional but simple modeling of spatial correlations and since in these 
tests, the inversion system if perfectly informed about the statistics of the observation error. 
Future studies will integrate more realistic simulations of observation sampling and errors 
from different concepts of spaceborne imagery, based on radiative transfer inverse modeling 
applied to realistic fields of surface and atmospheric conditions and instrumental 
specifications. 



 

Figure A3: Uncertainty reductions (UR) for the emissions of the point sources (1st row), the 
urban areas (2nd row), the countryside areas (3rd row) and the regions (4th row) when 
considering spatial correlations (Y-axis) or no correlations (X-axis) between the observation 
errors. The 1st, 2nd and 3rd column correspond to correlations with a spatial scale of 10, 50 
and 100 km respectively. The color of the dots corresponds to the annual budgets of the 
sources (color bar on the right of the figure). The dashed line is the 1:1 line. 

This consideration is particularly important for small scale sources/sinks of the sort that the 
authors are claiming to constrain.  

The dependence of the impact of such correlations on the type of sources is definitely an 
important aspect of the problem as highlighted above. 

I think the paper is worthy of publication, but I do think that it will have more impact with 
this one extra factor considered.  

As explained above, we have tried to consider this extra factor in the new version, while 
respecting the coherence of the study (by providing the details of the tests of sensitivity to the 



spatial correlations in R in Appendix A) and acknowledging the unknown evolving nature of 
systematic errors. 

I also recommend a bit more rigorous grammar and spelling check, as I noticed typo- 
graphical errors and grammatical errors as I read the manuscript.  

We have carefully proofread the text to significantly improve its grammar and spelling (see 
track changes in the revised manuscript). 

I don’t have specific comments, as the presentation is straightforward, and the figures are self-
explanatory.  

We thank the reviewer again for such a positive assessment. 

 

The authors have done a series of inversions in an OSSE framework to explore the feasibility 
of a wide swath CO2-sensing satellite mission such as CO2M to quantify the fossil fuel (FF) 
CO2 emissions from individual cities, clusters of cities, and regions. They have relied on 
uncertainty reduction as the primary metric for evaluating their inversions. The work they 
have done is mathematically correct, and the results follow expectations from prior 
experience with inversions, i.e., they “make sense”.  

Response to the Anonymous Referee #2  

 
We thank the reviewer for his comments and for raising detailed discussions on our inversion 
set-up.  
 
However, there are three critical shortcomings, owing to which I cannot recommend 
publication unless they make the suggested changes. Since making these changes is likely to 
require a fair amount of additional work, and may change their conclusions, I am classifying 
them as “major” changes. 
 
As detailed below, the first “shortcoming” raised by the reviewer does not apply to the 
inversions that we have presented. Furthermore, we do not agree that suggestions of changes 
related to the “shortcoming #2 and #3” should be required. We disagree with many details of 
these suggestions, and we view the discussions on the corresponding topics as incentive for 
further investigations, while the set of original experiments is already significant, and while 
the manuscript is already long, analyzing many aspects of the inversion and satellite CO2 data 
assimilation problems. However, since the first part of the third suggestion is also raised by 
the first reviewer, we provide some analysis in Appendix A and some discussions in the 
manuscript to address the corresponding topic. 
 
First, in any CO2-based effort to quantify FF CO2 emissions, the biggest confounding factor 
is the nonFF variation of CO2. This can be due to biosphere fluxes over continents, or, in a 
regional study, due to inflow/outflow at the boundary. This has been a well-known problem 
both in the context of estimating FF CO2 from in situ and satellite CO2 measurements (e.g., 
https://doi.org/10.1002/2014GL059684 and https://doi.org/10.1029/2019JD030528 
respectively). Biases in the assumed NEE – which is very likely in any biosphere model – will 
lead to biases in derived FF CO2, which makes any uncertainty reduction irrelevant. And yet, 



in this set of OSSEs the authors skirt this very important issue, assuming the prior NEE to be 
unbiased. 
 
This first “major” comment is misplaced since our control vector does include both NEE 
fluxes at hourly and regional scale and the boundary conditions so that uncertainties in these 
fluxes and conditions are clearly accounted for. We describe the prior NEE errors in terms of 
random time-correlated uncertainties rather than in terms of biases (to use the reviewer’s 
words), but:  

- this is the usual statistical representation of uncertainties is NEE in inversions, in 
particular in those targeting NEE estimates (Rayner et al., 2019) 

- we do not see how this distinction would change the conclusions of the paper 
 

Furthermore, specific tests are conducted to analyze the impact of uncertainties in the NEE in 
section 3.3.2 which also discusses this “confounding factor” based on the correlations 
between the uncertainties in these fluxes and the anthropogenic emissions.  
 
However, we take the opportunity of such a comment to revise section 2.4 to better clarify the 
set-up of uncertainties in the NEE and boundary conditions in the B matrix. 
 
Here are the corresponding sentences added or modified in section 2.4. (see track changes in 
the revised manuscript): 

- Prior estimates of the boundary conditions for regional inversions are usually 
interpolated from large scale analysis or inversions. Such products can bear 
significant large-scale errors at the boundaries of Europe (Monteil et al., 2018). We 
reflect it by setting in B the standard deviation of the prior uncertainty in the scaling 
factor for the boundary conditions (see below). 

- Finally, we use 1% for the STD of the prior uncertainty in the scaling factor 
associated to the boundary conditions (i.e. typically an uncertainty of ~4 ppm in the 
average boundary conditions). This value is quite pessimistic, but some tests in which 
this value was varied (not shown) demonstrate a very weak sensitivity of the results for 
the fluxes to this parameter. 

- Despite the differences between the temporal variations of the hourly emissions from 
one control area to the other, or between natural and anthropogenic fluxes in Hdistr, 
these STD show a negligible variation of less than 1% and when considering the 
reference set-up for B, σhour~65%. 
 

While this does not make the results wrong, it makes them less than useful for evaluating the 
potential of a CO2M-like mission, which will surely have to contend with unknown 
biospheric CO2 fluxes. 
 
Again, we explicitly account for uncertainties in the NEE in our inversions and we have a 
result and analysis section dedicated to the topic. 
 
Second, in the context of satellite CO2 instruments, an additional complication is the data gap 
or poor data due to cloud cover, aerosol loading, and other factors. For example, for the 
currently flying OCO2 spectrometer, only a few percent of its footprints result in good quality 
XCO2 retrievals. For the domain the authors have chosen (NW Europe with lots of urban 
centers), both cloud cover and aerosol loading are important limiting factors. Yet, the authors 
explicitly ignore this complication, “The cloud cover and the corresponding gaps in the 



spaceborne passive XCO2 sampling are ignored” (L100). I understand that simulating 
realistic clouds and aerosols is difficult, but for an OSSE to be realistic, some attempt must be 
made. For example, the authors could have used the statistics of past cloud and aerosol data to 
introduce sampling gaps. Or, they could have taken the fraction of good quality retrievals 
among all footprints from an existing NIR XCO2 instrument like OCO2 and then 
downsampled their footprints. The results presented here without considering realistic 
sampling gaps are mathematically correct, but not very useful for evaluating the capability of 
any real CO2 mission. 
 
Accounting for cloud cover would be important if we had to analyze results for a specific 
mission with a fixed spatial and temporal sampling, and over a long period of time, in order to 
highlight the frequency of its cloud free observations and potentially some asset of using a 
higher spatial resolution for the observations (as discussed in section 4). However, our study 
mainly focuses on the sensitivity of the inversion to other parameters. Adding the impact 
cloud cover, with its short-term chaotic component, in the experiments would not help raise 
such sensitivity curves and understand them. Furthermore, characterizing the sensitivity to 
cloud cover itself for individual images of plumes is not straightforward since it depends on 
how cloud patterns overlap with the plumes or not, especially if the set of cloud cover maps 
used for the study is limited. Of important note is that the impact of testing various cloud 
cover for the inversion of the emissions from a given city was analyzed in our previous study 
(Broquet et al., 2018). 
 
From a technical point of view, the reviewer’s suggestion is challenging. The point is not just 
about having a realistic percentage of pixels removed from the image due to cloud cover, but 
also to have realistic pattern of gaps that are consistent with the meteorology. In particular, a 
uniform spread of cloudy pixels would necessarily impact the observation of a given plume in 
a partial way, while structured cloud coverage could either leave intact or completely hide a 
given plume. A way to tackle the problem is generally to simulate XCO2 data based on real 
earth observation data. For example, Buchwitz et al. (2013) simulated the sampling by the 
proposed CarbonSat mission using MODIS data. This was relatively straightforward since the 
CarbonSat orbit was taken as that of Terra, since its swath was narrower and since its spatial 
resolution was coarser than that of MODIS data. However, here, we simulate theoretical 
observations every day during several months at various spatial resolutions. Building 
assumptions and processing MODIS data to achieve such a simulation would be a study in 
itself, and is clearly out of the scope of the present paper.  We thus disagree with the 
reviewer’s suggestion to add an analysis of the impact of cloud cover on the results. 
 
We now clarify this position in the manuscript (section 4): 
 
Simulating realistic patterns of cloud cover consistent with the meteorology for the different 
test cases investigated would have also been challenging. Finally, this study focuses on other 
parameters to allow for exploring the sensitivity of the inversions to these parameters in 
depth.  
 
Third, the authors use the posterior covariance matrix and uncertainty reduction as 
performance metrics for their inversions throughout the paper.  
 
This is not not specific to this paper at all. It is a standard way to diagnose the skill of 
inversions (Rayner et al., 2019).  
 



Given the importance of uncertainty calculation to the work (as opposed to reduction of biases 
in their priors), 
 
There is no opposition: in the optimal estimation framework, the Kalman gain matrix that 
controls the random uncertainty reduction (together with the observation operator) also 
reduces biases in the prior. The mathematical demonstration is trivial. 
 
I would like to see a more realistic specification of flux and data uncertainty. Currently they 
assume (i) uncorrelated retrieval errors (L193), which is unrealistic for the small footprint and 
dense sampling that they’ve given their satellite instrument, 
 
We do not agree with this point since we explicitly focus on the random measurement errors 
from instrumental noise. Such correlations arise in the systematic errors that have been 
ignored in this study. As written to reviewer 1: 

We made explicit in Section 2.1.2 that we purposely focus on the impact of the instrumental 
noise and we now clarify it in the introduction of our revised manuscript while mentioning the 
exploration of the topic of the correlations in the Appendix A: 

In terms of errors in the XCO2 data, the analysis focuses on random errors due to the 
instrumental noise that have no spatial correlations (even though the topic is explored in 
Appendix A). 

 We assume that errors in XCO2 due to this instrumental noise bear no spatial correlations, 
following, e.g., Buchwitz et al. (2013). The analysis of current OCO-2 data at high spatial 
resolution demonstrates that the uncorrelated noise is a significant fraction of the total error 
on XCO2 individual data (e.g. Reuter et al., 2019; Zheng et al. 2020). 

Studying the correlated errors from the radiative transfer inverse modelling was out of the 
scope of our study.   

Systematic errors can be accounted for in a classical uncertainty reduction framework, for 
instance based on a Monte Carlo approach (Broquet et al., 2018). However, assigning them 
remains difficult because: 

- they are not described in the uncertainties calculated by existing retrieval schemes, in 
contrast to the retrieval noise caused by instrument noise. The publications cited above 
characterize them empirically based on the statistics of the retrieval small-scale 
variability (Worden et al., 2017) or on the statistics of the difference to reference 
retrievals that are themselves empirically related to WMO standards (Kulawik et al., 
2019a,b).  

- they depend on the specific measurement configurations and on the evolving skill of 
radiative transfer models and of empirical bias-correction systems, so that conclusions 
from existing missions may hardly apply to future ones. 

However, including correlations in the R matrix of our inversion framework is definitely 
doable and we have conducted some tests with such correlation to support our discussion on 
this topic. In order to lighten the computations associated with the inversion of such a matrix 
when using a 900 km swath, we have actually tested it when considering 4 km resolution 
pixels rather than 2 km resolution ones.  



A traditional way to model spatial correlations is to assume that they are isotropic and 
homogeneous in terms of spatial scale (as probably suggested by the reviewer when speaking 
about 50 to 100 km scale correlations). We have modeled such correlations using 
exponentially decaying functions exp(-d/D) of the distances d between two observation 
pixels, and tested their inclusion in R with a 1-sigma uncertainty of 0.3 ppm for individual 
XCO2 data and with D=10, 50 or 100 km (assuming the correlations apply to the total 
uncertainty in individual data i.e. not splitting R into a random noise component and a 
component with spatial correlations). These tests are now described in Appendix A where the 
following Figure A3 is also provided. These results and this topic are now discussed in 
Section 4, with the following main messages: 

- such isotropic correlations should make the errors much easier to filter by the 
inversion than actual spatial patterns of the systematic errors that can follow the same 
atmospheric dynamics as the signature of the targeted fluxes 

- the situation is made even more optimistic here (like in most of studies with 
atmospheric inversion OSSEs) since our inversions are perfectly informed about the 
statistics of the observation errors (and in particular about their spatial scale) 

- as expected, the results indicate that when introducing correlations with small spatial 
scales, the posterior uncertainties increase since these correlations yield larger budget 
of observation errors at the scale of the signatures of the targeted fluxes. Conversely, 
when introducing correlations helps the inversion separate the observation error 
patterns from these signatures, and large correlation spatial scales lead to a decrease of 
the posterior uncertainties. The worst case corresponds to correlation scales that are 
function of the scale of the signatures of the targeted fluxes. It varies depending on 
whether we analyze results for point sources, cities or widespread emissions across 
regions. This is why (i) results are poorer with D=10 km than with no correlations, for 
all type of sources (ii) results become generally better with spatial correlation than 
without for point sources and cities respectively for D≥10 km and D≥50km (iv) the 
inversion of the largest of a given category of sources (in terms of amplitude) are 
generally more negatively or less positively impacted by the spatial correlations (iii) 
results are systematically worse with D= 10 to 100 km than with no correlations, for 
countryside emissions. Results for regional budgets mix all these behaviors in a 
complex way. 

These results and conclusions should be further investigated in future theoretical studies (to 
properly analyze the characterization of the spatial scale of the signature of the targeted 
fluxes) but this would fall out of the scope of this paper since (i) we want to keep the focus on 
the impact of random instrumental noise (ii) we believe that such a simple structure of the 
error correlations and their optimal learning by the inversion should be interpreted carefully to 
avoid misleading conclusions regarding the impact of actual systematic errors in the 
inversions. 

Here is the corresponding text added in section 4: 

Our new inversion framework allows accounting for a realistic simulation of the observation 
sampling and errors. Nevertheless, generating simulations of the systematic errors from the 
retrieval of XCO2 data that are suitable for the purpose of our study would have been 
difficult. Systematic errors are not described in the uncertainties computed by existing 
retrieval schemes. Furthermore, they depend on specific measurement configurations and on 
the evolving skill of radiative transfer inverse models and of empirical bias-correction 



systems, so that their characterization based on diagnostics with existing missions may hardly 
apply to future ones. Simulating realistic patterns of cloud cover consistent with the 
meteorology for the different test cases investigated would have also been challenging. 
Finally, this study focuses on other parameters to allow exploring the sensitivity of the 
inversions to these parameters in depth.  
In order to raise insights into the impact of errors with spatial patterns such as model and 
systematic errors, we have conducted experiments where spatial correlations are included in 
the observation error (in the R matrix). We have tested isotropic and homogeneous spatial 
correlations exponentially decaying with distance, using various correlation lengths. The 
experiments and results are described in Appendix A since they are out of the scope of this 
study. The results indicate that including correlations in the observation errors tends to 
increase the budget of observation errors and thus to increase the posterior uncertainties in 
the flux estimates as long as the correlation length scale does not exceed that of the signature 
of the fluxes in the XCO2 images. However, including correlations in the observation errors 
also tends to increase the ability to distinguish between the patterns of the observation error 
and of the signatures of the fluxes, and thus to decrease the posterior uncertainties, so that for 
large spatial correlation lengths, increasing the correlation length leads to a decrease of the 
posterior uncertainties. In our tests, the worst situation for the monitoring of the emissions in 
the study area corresponds to ~10 km correlation length scales. These results should be 
interpreted cautiously since the spatial patterns of the model and systematic errors are more 
complex than this traditional but simple modeling of spatial correlations and since in these 
tests, the inversion system if perfectly informed about the statistics of the observation error. 
Future studies will integrate more realistic simulations of observation sampling and errors 
from different concepts of spaceborne imagery, based on radiative transfer inverse modeling 
applied to realistic fields of surface and atmospheric conditions and instrumental 
specifications 



 

Figure A3 : Uncertainty reductions (UR) for the emissions of the point sources (1st row), the 
urban areas (2nd row), the countryside areas (3rd row) and the regions (4th row) when 
considering spatial correlations (Y-axis) or no correlations (X-axis) between the observation 
errors. The 1st,2nd and 3rd column correspond to correlations with a spatial scale of 10, 50 
and 100 km respectively. The color of the dots corresponds to the annual budgets of the 
sources (color bar on the right of the figure). The dashed line is the 1:1 line. 

 
and (ii) no spatial correlation in their prior flux covariance B (L334), also unrealistic given the 
high spatial resolution of their fluxes. 
 
The characterization of the correlations of the uncertainties in anthropogenic emissions of 
CO2 from inventories (used as prior estimates) is an extremely complex topic, and, currently, 
there is certainly no consensus on how these correlations can be defined.  In fact, one may 
argue for both positive and negative correlations. Positive spatial correlations arise from 
uncertainties in the emission factors applied at national scales in the inventories. Negative 
correlations arise from the spatial disaggregation of national inventories into gridded maps of 
emissions (Wang et al., 2018) use negative correlations between regions of the same country). 
Variations of activities from one city to another, from one plant to another… de-correlate 



uncertainties. The use of local emission factors also de-correlates uncertainties. Finally, in a 
general way, the spatial correlations should be highly complex and have no reason to decrease 
with distance (as suggested by the reviewer’s statement “given the high spatial resolution of 
their fluxes”), since e.g. uncertainties in emissions from two distant cities with large industrial 
activities should be more correlated than that between two neighbor cities with a completely 
different share of domestic, commercial, transport and industrial activities. State of the art 
estimates of the structures of uncertainties in the anthropogenic emissions (Super et al., 2020) 
strongly depend on the model used for the inventories and on the chosen assumptions 
regarding the major sources of uncertainties.  
Given the current lack of characterization of correlations of the uncertainties in anthropogenic 
emissions of CO2, ignoring them or assuming that they are null is a safe solution. We clarify 
this point in section 2.4 and in section 4: 
The spatial correlations of the uncertainties in anthropogenic emission inventories is a 
complex topic and the current lack of characterization for such correlations led to such a 
conservative set-up (Wang et al. 2018; Wang et al., 2020; Super et al., 2020). 
There is still a critical lack of knowledge and of characterization of the correlations in the 
uncertainties in the inventories (Wang et al. 2018, Wang et al., 2020). However, some 
extensive analyses are now conducted to fill this gap (Super et al., 2020). 
NEE is controlled at regional scale only which implicitly translates into significant spatial 
correlations of the uncertainty in the bottom up estimates of the NEE. 
 
I do not understand why they need to make either simplification, since in a batch inversion (as 
opposed to an iterative approximation like EnKF or 4DVAR) one can actually specify off-
diagonals in both B and R. The simplifications (i) and (ii) make their posterior covariance, 
and the conclusions based thereon, not very relevant for real-world inversions of CO2M-like 
satellite data. 
 
This is not about simplification but about making realistic scenarios as detailed above and we 
strongly disagree with the last statement of the reviewer. Of note is that, in a general way, 
adding spatial correlations in B and R tends to simplify the inversion problem, to spoil the 
asset of solving for the fluxes and concentration at high resolution, and to increase the scores 
of uncertainty reduction. We think it would lead to over-optimistic results. 
 
A general comment I would like to make about the three issues I raise above is that in 
inversions of real satellite data, modelers often have to make simplifying choices to make the 
problem tractable. E.g., ignoring off-diagonal elements in R is pretty common, although more 
recent inversions try to at least account for correlations in R by error inflation, aggregating, or 
data thinning (e.g., https://doi.org/10.1029/2007GL030463, https://doi.org/10.5194/acp-13-
8695-2013 and https://doi.org/10.5194/acp-19-9797-2019).  
 
As detailed above, we can definitely include correlations in R and we did it in answer to both 
reviews. However, the corresponding set up and results are not relevant enough for our paper 
to be included within the result section so that they are kept for Appendix A.  
 
Similarly, inversions with an iterative approximation like EnKF or 4DVAR often have an 
inexact posterior covariance due to computational limitations, while many inversions ignore 
biases in satellite retrievals because it’s still an open problem. However, making too many 
simplifications in a single OSSE, as the authors have done here (unbiased priors and 
retrievals, no sampling gaps, uncorrelated retrieval errors, no spatial error correlation in 
fluxes) makes the results inapplicable to any real-world satellite instrument. 



 
See our answers to all these general critics with which we obviously disagree. 
 
I will also point out that several coauthors of this manuscript have previously authored papers 
stressing the importance of these complicating factors (e.g, 
https://doi.org/10.1029/2007GL030463, https://doi.org/10.5194/amt-11-681-2018, and 
https://doi.org/10.1088/1748-9326/ab7835) and published inversions with far more realistic 
assumptions, which makes the current set of simplifications all the more surprising. 
 
We thank the reviewer for recalling these studies that highlighted various challenges which 
have often been disregarded in other studies. However, they should not be used as an 
obligation for us to solve all these long-standing challenges in this paper that is driven by its 
own scientific questions.  
 
Chevallier (2007) studied the impact of hypothetical observation error correlations of 0.5 in 
neighboring observations supposedly caused by modelling errors (radiative transfer and 
atmospheric transport). Such errors are out of the scope of our study, as clearly stated in the 
submitted version, but, as we have explained, we have now included tests to touch this topic. 
  
Broquet et al. (2018) explored the impact of errors in the emission spatial sampling and in the 
boundary conditions but discussed the shortcoming of testing these errors as biases due to the 
lack of ensemble simulations for these parameters. They studied the impact of cloud cover 
and systematic errors in the last step of their incremental analysis, after having diagnosed 
series of experiments ignoring it, in order to focus on other parameters first, which led to a 
major part of the conclusions. Our introduction and discussion / conclusion highlight the 
amount of new topics explored here in cloud free conditions without systematic errors.  
 
The problem of the uncertainties in biofuel emissions and of human respiration from cities has 
been raised by Ciais et al. (2020) as a problem for the spaceborne observation but not tackled 
by any inversion system yet. Actually, this publication shows that this problem will have to be 
addressed by complementary data or source of information since one can hardly adapt an 
atmospheric inversion approach that assimilates satellite XCO2 images only. We now discuss 
this additional source of uncertainty in our results (section 4): 
 
A last significant simplification of the general problem of the inversion of the anthropogenic 
emissions based on XCO2 data has been stressed by Ciais et al. (2020). Anthropogenic 
emissions of CO2 bear a major share of emissions from biofuel combustion which can hardly 
be separated spatially from the fossil fuel combustion component. Furthermore, the emissions 
of CO2 by human respiration represent a significant portion of the total CO2 emitted from 
cities. The XCO2 data and the atmospheric inversion approaches can hardly be used to 
distinguish between these different components if it cannot rely on complementary data. This 
factor was ignored here, as well as in most of the studies dedicated to the inversion of 
anthropogenic CO2 emissions at city scale to regional scale. 
 
Beside these major issues, here are a few minor points that need correcting or clarifying: 
 
1. L156: Delete “and vertical”. The vertical resolution comes later. 
 
Done 
 



2. L161: A high spatial resolution (~2x2 km2) implies higher temporal resolution as well. If 
the driving winds are 3-hourly, what provides high frequency variation in the CHIMERE 
winds? 
 
Before any simulation, a preprocessing stage interpolates the 3-houlry winds from ECMWF at 
1h-resolution and at the spatial resolution of CHIMERE to generate the wind forcing in input 
to the model. CHIMERE itself interpolates the hourly forcing at each of its physical time step 
(Menut et al., 2013). To clarify this point, we add a sentence in section 2.1.1: These three-
hourly fields are interpolated at the spatial and temporal resolution of CHIMERE. 
 
3. L175: The gradients in column CO2 due to the top 30% of the atmosphere would be small, 
agreed, but how large are they? Signals in column CO2 are deceptively small, so terms that 
seem to be negligible are not always negligible. 
 
The analysis of the CO2 concentrations at 11:00 produced by the response functions 
associated to the emissions between 5:00 and 6:00 of several cities and point sources shows 
that these CO2 concentrations at the upper level of the model are indeed negligible with 
respect to the ones within the boundary layer (with a factor < 1e-6). This supports our 
approximation to prescribe the CO2 concentrations in the upper layers of the atmosphere. To 
clarify this point, we add in section 2.1.1 the sentence: 
This is supported by the lack of signal in our simulations of the atmospheric signatures of the 
surface fluxes in the upper layer of the model. 
 
4. L180: Switch 92.8° and 705 km. 
 
Done 
 
5. L227: Since the quantity directly estimated is the FF CO2 emission between 5 and 11 local 
time, to estimate the total emissions one would need an accurate diurnal cycle. What is the 
uncertainty in the diurnal cycle of FF CO2 emissions? 
 
The structures of temporal correlations of the uncertainties in the estimates of emissions from 
inventories is a very complex topic (as well as that of their spatial correlations). The 
uncertainty in the diurnal cycle of the emissions has hardly been characterized and will 
strongly depend on the inventories that are considered. Some insights regarding these 
uncertainties can be found in Super et al. (2020). 
 
However, this part of the paper was not addressing the topic of the estimate of the total 
emissions (over the day or over the year). Note that we have mentioned this topic at the end of 
section 4 (Exploiting further capabilities of the inversion framework: potential of 
complementary observation systems and results at larger temporal scales). 
 
6. Section 2.2.2 and elsewhere: The word “controlled” keeps confusing me. Do you mean 
“estimated”, as in part of the control vector? Or do you mean “controlled” as in kept in 
control, static, not changed? I suspect you mean the former, but “controlled” in English can 
also signify “not allowed to change”. I’d suggest using the word “estimated” or “optimized” if 
you mean the former. 
 
Throughout the text, we use the term “control – controlled (by the inversion)” in a unique, 
clear and explicit way that is equivalent to “correct / adjust / update - corrected / adjusted / 



updated”. Rayner et al. (2019) acknowledges this traditional denomination even though they 
promote the term « target »: « We term the set of these quantities the “target variables” of the 
problem. They are also called unknowns, parameters or control variables.  » (they do not 
speak about « estimated » or « optimized » variables). We prefer « control » than « target » 
since the inversion often has to control some variables which are not a scientific target 
to explicitly account for and tackle uncertainties from these degrees of freedom.  In this 
OSSEs framework where the posterior estimate of the control parameters is not derived, the 
term “estimated” and “optimized” would not be ideal, and we do not think that “estimated 
vector” or “estimated region” sounds very well. Finally, the term optimized can be misleading 
in statistical inversion, especially when focusing on the posterior error covariance matrices 
i.e. on the statistical distribution of the posterior uncertainty around its optimal estimate rather 
than on this optimal estimate. 
 
7. L280: Is this an over-determined problem? Then that’s not very common in flux inversions, 
and is likely due to the unrealistic correlations in R and B (one of my major concerns). 
 
1) We are speaking here about the size of control and observation vectors in a statistical 
inversion problem, not about the question whether the problem is over or under constrained. 
Statistical inversion problems where the number of observations is larger than the number of 
control variables, especially when studying spaceborne imagery of XCO2, is quite common 
(e.g. Reuter et al., 2014; Kemp et al., 2014; Pillai et al., 2016).  
 
2) Furthermore, adding correlations in B will implicitly reduce the size of the space of 
uncertainty in the fluxes, not the opposite.  
 
3) Finally, mathematically speaking, changing correlations in B and R will not change the 
size of the control and observation vectors.  
 
Regarding the major concerns on R and B, see the discussions above. 
 
8. L290: Is random noise added to y, consistent with R? 
 
At this stage of the paper, the text has not said that we will generate pseudo observation y. It 
just provides the theoretical basis for the following. The following clarifies the fact that we do 
not generate such pseudo-data. 
 
9. L304: Typo, change XO2 à XCO2 
 
Done 
 
10. L348: With the assumptions detailed here at the grid scale, what is the uncertainty on the 
(say) annual total or seasonal total NEE and FF? Aggregate numbers are easier to make sense 
of than grid-scale specifications. 
 
We do not want to enter into discussions about the uncertainties in annual fluxes and about 
their link with uncertainties at the 6-hour scale in this part of the paper. This 
requires discussing the temporal correlations of the prior uncertainties in inventories of the 
anthropogenic emissions at the daily to annual scale. Again, this is a highly complex topic 
(Wang et al., 2020; Super et al. 2020), and the general topic is discussed in the last part of 



section 4 (Exploiting further capabilities of the inversion framework: potential of 
complementary observation systems and results at larger temporal scales). 
 
11. L399: “Figures 2i” likely means all the subplots of Figure 2. In that case, just say “Figures 
2”, no need to add the “i”. 
 
Done 
 
12. L437: Speed is one aspect of the wind, direction is the other. Since wind direction 
determines how well plumes present themselves to a satellite that is going one way, 
uncertainty in wind direction must be considered as well as speed uncertainty. Was that done 
here? 
 
This section does not discuss uncertainties in the wind but the sensitivity to wind variations. 
This specific part of the text demonstrates the influence of wind speed on the results. The 
impact of changes in the wind direction is significant for narrow swaths and discussed later. 
 
13. L477: Remove “uncertainty”, B is just the prior covariance matrix. 
 
No, absolutely not. B is the prior uncertainty covariance matrix i.e. B is the covariance matrix 
of the uncertainty in the prior, not the covariance matrix of the prior. 
 
14. L519: Again, I’d like to see the uncertainties on aggregated fluxes, such as annual totals. 
 
We conduct 6-hour inversions. There is no need in this study to make assumptions on 
temporal correlations of the prior uncertainty on larger timescales to propose some 
corresponding annual uncertainties. 
 
15. L560: In Figure 7, why do larger emissions have smaller uncertainty reductions? 
  
The Figure 7 shows that the general tendency is to get larger uncertainty reductions for 
sources with larger emissions. However, other factors driving the variations in uncertainty 
reductions may soften this conclusion for sources that have similar emissions: e.g., if the 
plumes from sources are driven by highly different wind speeds. The influence of the wind on 
the inversion results is analyzed in sections 3.2.1 and 3.3.1.. And, as discussed in sections 
3.2.2 and 3.3.1., the UR for a given source is also sensitive to the level of uncertainty in NEE 
around, and to the potential loss of part of its plume at the edge of the satellite swath.  We 
clarify this point by adding the sentence in section 4: Beside these sensitivities to the source 
amplitudes and to the uncertainties in NEE, the variations in UR are also driven by the wind 
(sections 3.2.1 and 3.3.1) and by the potential loss of part of the atmospheric signatures of 
sources at the edges of the satellite swath (section 3.2.2).   
 
16. L582: “… and thus by the variability of these fluxes, during the month of May”. This only 
matters because the uncertainty on the NEE is larger in May, right? Because this metric/score 
does not care about the actual prior NEE. 
 
Yes, it does, since we define relative values for the prior uncertainties in the NEE rather than 
absolute values for the prior uncertainties in the NEE. So if the NEE varies, the resulting 
absolute value of the corresponding prior uncertainty will vary too.  
We clarify this point in section 3.3.1 with the sentence: 



Using constant prior relative uncertainties in the natural fluxes (as for the anthropogenic 
emissions) yields large absolute uncertainties in May and low absolute uncertainties in 
March. 
 
17. L794: “Efforts have been made to limit the amplitude of such errors in the concept of the 
new CO2M mission. Our new inversion framework allows accounting for a realistic 
simulation of the observation sampling and errors.” I disagree with this statement in the 
context of this paper, especially the part about a realistic simulation, because of the three 
major points raised above. 
 
Again, see our answers to these points. We do not think that this sentence has to be modified. 
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Abstract. This work presents a flux inversion system for assessing the potential of new satellite imagery measurements of 

atmospheric CO2 to monitor anthropogenic emissions at scales ranging from local intense point sources to regional and 10 

national scales. While the modeling framework keeps the complexity of previous studies focused on individual and large 

cities, this system encompasses a wide range of sources to extend the scope of the analysis. This atmospheric inversion 

system uses a zoomed configuration of the regional transport model CHIMERE which covers most of Western Europe with a 

2-km resolution grid over nNorthern France, wWestern Germany and Benelux. For each day of March and May 2016, over 

the 6 hours before a given satellite overpass, the inversion controls separately the hourly budgets of anthropogenic emissions 15 

in this area from ~300 cities, power plants and regions. The inversion also controls hourly regional budgets of the natural 

fluxes. This enables the analysis of results at the local to regional scales for a wide range of sources in terms of emission 

budgets and spatial extent while accounting for the uncertainties associated with to natural fluxes and the overlapping of 

plumes from different sources. The potential of satellite data to monitor CO2 fluxes is quantified by with posterior 

uncertainties or uncertainty reductions (URs) from prior inventory-based statistical knowledge.  20 

A first analysis focuses on the hourly to 6-hour budgets of the emissions of the Paris urban area, and on the sensitivity of the 

results to different characteristics of the images of vertically integrated CO2 (XCO2) corresponding to the spaceborne 

instrument: the pixel spatial resolution, the precision of the XCO2 retrievals per pixel, and the swath width. This sensitivity 

analysis provides a correspondence between these parameters and thresholds on the targeted precisions on of emission 

estimates. However, the results indicate a large sensitivity to the wind speed and to the prior flux uncertainties. The analysis 25 

is then extended to the large ensemble of point sources, cities and regions in the study domain, with a focus on the inversion 

system ability to monitor separately neighbor sources whose atmospheric signatures overlap and are also mixed with those 

produced by natural fluxes. Results highlight the strong dependence of uncertainty reductions to the emission budgets, to the 

wind speed and on whether the focus is on point or area sources. With the system hypothesis that the atmospheric transport is 

perfectly known, the results indicate that the atmospheric signal overlap is not a critical issue. For the emissions within the 6-30 

hours before a satellite overpass, URs of more than 50% can only be achieved for power plants and cities whose annual 
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emissions are more than ~2 MtC·yr-1. For more regional budgets encompassing more diffuse emissions, this threshold 

increases up to ~10 MtC·yr-1. The results suggest therefore an imbalance of the monitoring capabilities towards high and 

dense sources. 

1. Introduction 35 

Comprehensive information about anthropogenic CO2 emissions integrated at the scale of power plants, cities, regions and 

countries up to the globe would allow decision makers to track the effectiveness of emission reduction policies in the context 

of the Paris Agreement on Climate and other voluntary emission reduction efforts. By observing the CO2 plumes downwind 

of large cities and industrial plants, and atmospheric signals at a few to several hundred km scales, future high-resolution 

spectro-imagery of the column-average CO2 dry air mole fraction (XCO2) from space may help addressing this need (Ciais et 40 

al., 2015; Pillai et al., 2016; Pinty et al., 2017; Schwandner et al., 2017; Broquet et al., 2018). The Copernicus 

Anthropogenic Carbon Dioxide Monitoring mission (CO2M, (Pinty et al., 2017)) is a prominent example of such a strategy. 

The CO2M concept relies on a constellation of sun-synchronous satellites with XCO2 spectral-imagers to be deployed from 

2025 by the European Commission and the European Space Agency (ESA). It will be based on passive radiance 

measurements in the Short-Wave InfraRed (SWIR), a part of the spectrum that is sensitive to CO2 and CH4 concentrations 45 

throughout the troposphere including the boundary layer, like almost all the space missions that have been dedicated to 

GreenHouseGreenhouse Gas (GHG) monitoring so far (Crisp et al., 2018). 

Much remains to be understood and to be developed in order to ensure that such a constellation informs about emissions with 

enough detail to be relevant for policy makers. In this context, Observing System Simulation Experiments (OSSEs) of 

atmospheric inversions with synthetic images of XCO2 data have been supporteding the design of the space missions that 50 

will monitor the anthropogenic emissions (Buchwitz et al., 2013b; Pillai et al., 2016; Broquet et al., 2018). So far, they have 

mainly focused on plume inversions for some large plants and cities. However, Wang et al. (2019) estimated that cities and 

plants emitting more than 10 MtC·yr-1 like Berlin (in the study by Pillai et al. (2016)) and Paris (in the study by Broquet et al. 

(2018)) represent less than ~7% of the global CO2 emissions. Furthermore, the studied cases are generally quite isolated 

from other large CO2 sources, facilitating the distinction of their plumes in the XCO2 images, while plumes from neighbor 55 

sources could overlap and hamper the attribution to each underlying emissionthe targeted sourcecity or plant. Finally, the 

signature of emissions in spaceborne imagery does not consist only of clear plumes from cities, industrial clusters and point 

sources. Despite the large atmospheric signature of the natural fluxes, atmospheric inversions may have the potential to 

exploit other spatial variations in XCO2 fields to quantify regional to national budgets of more diffuse sources or of all types 

of sources, even when the overlapping of several plumes prevent from quantifying the emissions from individual cities and 60 

point sources. Therefore, there is a need to extend the OSSEs to a representative range of sources with various emission 

budgets and spreads, and various distances to other major sources, and to a larger range of spatial scales.   
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We have developed a high-resolution inversion system for the monitoring of CO2 anthropogenic emissions at spatial scales 

ranging from local intense point sources like industrial sites to regional and national scales. Furthermore, this system 

accounts for the uncertainty in the natural fluxes. Our current simulation domain covers most of Western Europe with an 65 

extensive ensemble of cities, plants and diffuse CO2 emissions. We use an analytical inversion methodology, which is the 

most adapted approach to efficiently test an important large number of observation scenarios (section 2.1.2.), a high-

resolution atmospheric transport model (section 2.1.1) and a high spatial resolution distribution of the emissions derived 

from different inventory products developed by the Institut für Energiewirtschaft und Rationelle energieanwendung (IER) of 

the University of Stuttgart (section 2.2).  70 

The analytical inversion system follows the traditional Bayesian formalism of the atmospheric inversion. Of direct relevance 

here, it derives uncertainty statistics of its “posterior” emission estimates for the controlled sources (plants, cities, 

countryside areas or whole regions) from: i) the assumed uncertainties in the budgets derived from “prior” emission 

inventories (built on statistics of the fossil fuel consumption, activity data and emission factors), ii) the spaceborne XCO2 

observation sampling and precision, and iii) its atmospheric transport model. The improvement of the knowledge on the 75 

emissions enabled by the satellite imagery is quantified here in terms of “uncertainty reduction”, i.e. of the relative 

difference between the prior and posterior uncertainties. 

The inversion system solves for hourly budgets of the emissions from the different types of sources over the 6 hours before 

the satellite observation of the corresponding area. Indeed, Broquet et al. (2018) showed indeed that, due to atmospheric 

diffusion, the atmospheric signatures of emissions from a mega-city like Paris which that are detectable in satellite XCO2 80 

images, (made with current measurement capabilitiesy) in satellite XCO2 images, correspond approximately to the city 

emissions occurring within less than 6 hours before the satellite overpass. This duration should be even shorter for the range 

of sources analyzed in our study since most of them have lower emissions than Paris. The analysis of the results will 

primarily focus on the 6h-budgets of the emissions before the satellite observation. However, controlling the hourly budgets 

allows evaluating the capability to solve for the temporal profiles of the emissions. It also allows accounting for some level 85 

of independence of thebetween uncertainties in the emissions from different hours, which limits the ability to cross and 

extrapolate information throughout the 6-hour windows. This point is critical for cities whose detectable atmospheric 

signatures are representative of emissions on durations shorter than 6-hours, and thus for which there is no direct constraint 

from the satellite observation on the first hours of such 6-hour windows. 

The OSSEs presented in this study use a rather simple simulation of the XCO2 observation sampling and errors from a single 90 

helio-synchronous satellite over the area of interest. The aim is indeed to provide a general understanding of the performance 

of the inversion system and of its potential to monitor anthropogenic emissions with spaceborne XCO2 imagery rather than 

to evaluate a precise mission configuration with precise orbital parameters and instrumental specifications. In terms of errors 

in the XCO2 data, the analysis focuses on random errors due to the instrumental noise that have no spatial correlations (even 

though the topic is explored in Appendix A). Nevertheless, a large range of values for the precision (assumed to be 95 

homogeneous in the satellite field of view), horizontal resolution and swath of a the spaceborne instrument are tested to 
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assess the impact of these parameters on the inversion results, which can potentially support the design of future missions 

(section 3.2.). 

Furthermore, in order to get a wide range of atmospheric transport conditions (in particular for of average wind speeds, 

(Broquet et al., 2018)) and natural flux conditions (Pillai et al., 2016), inversions are performed for each day of March and 100 

May 2016. We work with full images of the plumes from the targeted sources each day, by flying a satellite any day in its 

their vicinity with a large swath. Partial images of the plumes will be analyzed when studying the sensitivity to the swath 

width (over Paris) only. The cloud cover and large aerosol loads, and the corresponding gaps in the spaceborne passive 

XCO2 sampling are ignored. In any case, the satellite crosses the area of interest at 11:00 (local time used hereafter) similar 

to what is currently recommended for the CO2M mission (Pinty et al., 2017), so that the inversion controls the hourly 105 

emissions of the sources between 5:00-11:00. 

The inversion system and the corresponding transport model extend from Ssouthern France to northernNorth Germany and 

from wWestern UK to eEastern Germany (Fig. 1). However, the grid of the transport model is zoomed and the analysis 

focuses on a 2 km-resolution sub-domain covering the nNorth of France (in particular Paris), sSouth eEast England (in 

particular London), wWest Germany, Belgium, Luxembourg and the Netherlands. 110 

The first part of the analysis concerns the monitoring of the emissions of Paris and its suburb, which represent the most 

populated and densest urban area of Europe. Broquet et al. (2018) chose this megacity as a study case because its emissions 

are high (~11-14 MtC·yr-1 for 2013 according to the AIRPARIF inventory (Staufer et al., 2016; AIRPARIF 2013)), 

concentrated and relatively distant from other major sources. Moreover, Tthe topography of the region is moreover relatively 

flat and the average wind speed is moderate: 7 m·s-1 on average at 100 m above the ground level (Broquet et al., 2018). The 115 

XCO2 plume generated by the Paris emissions has a relatively simple structure that often emerges well from the background. 

Therefore, Tthe monitoring of the emissions of Paris constitutes thus a very favorable case with respect to other cities in 

Europe. Broquet et al. (2018) performed some analysis of the sensitivities of the inversion results as a function ofto the wind 

speed and of to the XCO2 spaceborne spectro-imagery average precision and horizontal resolution. However, they tested a 

limited number of values for these observation parameters, and in particular few high precisions (< 2 ppm) and a single high 120 

spatial resolution value (< 4x4 km2) value, while the refinement of the specification of new missions requires understanding 

of the sensitivity to choices of precision at the 0.1 ppm scale and of resolution at the 1 km2 scale. ;Indeed, these choices 

haveing large impacts on the design of the instrument and therefore on its cost (Pinty et al., 2017). Furthermore, Broquet et 

al. (2018) performed all their OSSEs with an unique hypothesis on the prior uncertainties in the 1-hour to 6-hour budgets of 

the emissions from Paris, while acknowledging that this the characterization specification of these prior uncertainties could 125 

have a significant impact on the results and that the uncertainties in the inventories at such a temporal scale are difficult to 

assess. Therefore, this study performs a deeper investigation of the sensitivity to the observation precision and spatial 

resolution, to the wind speed and to the characterization of the uncertainties in the prior estimate of the emissions (section 

3.2). 
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The second part of this study considers the full ensemble of emission sources, from point sources to regions, in the 2-km 130 

resolution sub-domain. This sub-domain encompasses the Netherlands, Belgium and wWestern Germany which are 

characterized by densely populated areas distributed over a network of medium-sized towns and by a large number of strong 

point sources, with, for example, some power plants in wWestern Germany emitting for example more than 5 MtC·yr-1. The 

ability of the inversion system to disentangle the plumes of from neighbor sources is therefore well challenged in these areas. 

 This paper is organized as follows: section 2 details the theoretical and practical framework of both the inversion 135 

system and of the OSSEs conducted in this study. Section 3 analyses the results relative to the monitoring of the emissions of 

Paris and in particular the corresponding sensitivity analyses tests (section 3.2). This section also diagnoses the potential of 

the inversion system to monitor the anthropogenic emissions at the point source, city and regional scales in the area where 

flux and concentrations are simulated at 2-km resolution (section 3.3). Section 4 addresses the robustness and extent of the 

conclusions that can be derived from this study and proposes some perspectives regarding the analytical inversion system 140 

and the monitoring of anthropogenic emissions based on satellite data. 

2. Inverse modeling system and OSSEs 

In the following sections, we describe the different structural elements of the analytical inversion system: the gridded 

inventories used to define the point or area sources to be controlled, and to map their emissions (section 2.2), the simulation 

of the atmospheric CO2 and XCO2 signatures of the controlled sources using the atmospheric transport model CHIMERE 145 

and the matrix computation of the posterior uncertainties in the emissions (sections 2.1.1 and 2.3). We also describe the 

observations and parameters chosen for the OSSEs in this study: the XCO2 observation sampling and errors (section 2.1.2) 

and the prior uncertainties in the emissions, natural fluxes and boundary conditions (section 2.4). New OSSEs with the 

analytical inversion system can easily be conducted with other options for these These observations and parameters can be 

easily modified to conduct new OSSEs with the analytical inversion system. However, for the sake of clarity, the 150 

descriptions of i) the components of the inversion system and of ii) the options for the OSSEs are intertwined.  

2.1. XCO2: transport model simulations and pseudo-data 

2.1.1. Simulations of CO2 and XCO2 with the CHIMERE model 

To compute the 4D CO2 signatures of surface CO2 fluxes in the study domain and for March and May 2016, and of the 

domain CO2 boundary conditions, we use the regional atmospheric transport model CHIMERE (Menut et al., 2013). This 155 

Eulerian mesoscale model was designed to simulate pollution (Pison et al., 2007) but has also been used for CO2 

atmospheric inversions, and in particular for city-scale inversions of the emissions from Paris (Bréon et al., 2015; Staufer et 

al., 20165; Broquet et al., 2018). It has shown high skill in simulating the daily and synoptic variability of the atmospheric 

CO2 concentrations at European CO2 continuous measurements sites (Patra et al., 2008). 
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 The domain of our CHIMERE configuration covers most of Western Europe (Fig. 1) between latitudes ~42°N 160 

(nNorthern Spain) and ~56°N (nNorthern Germany) and between longitudes 6°W (eEastern Ireland) and ~17°E (eEastern 

Germany). The horizontal and vertical resolutions of the zoomed grid of this configuration ranges from 2 to 50 km; the 2 km 

× 2 km resolution sub-domain being appropriate to simulate the atmospheric signature of a dense network of sources in 

nNorthern France, Belgium, the Netherlands, Luxembourg and wWestern Germany. The zoom and the extent of the 

CHIMERE grid together link the simulation of CO2 at local scales in this area of interest with the transport of CO2 at the 165 

European scale while mitigating the computational cost. The model has 29 sigma vertical layers that extend from the surface 

to 300 hPa. Model concentration outputs are averaged at the hourly scale. The meteorological forcing is from the 9 km × 9 

km- and 3-hour- resolution analysis of the European Center for Medium-Range Weather Forecasts (ECMWF). These three-

hourly fields are interpolated at the spatial and temporal resolution of CHIMERE. The CO2 concentrations used to impose 

the conditions at the initial time and at the lateral and top boundaries of the CHIMERE domain are from the analysis of the 170 

Copernicus Atmosphere Monitoring System (CAMS, (Inness et al., 2019)) at ~16 km resolution. The products used to 

impose surface CO2 fluxes in the model are detailed below in section 2.2. 

XCO2 observations and the corresponding signatures of fluxes are simulated from the CO2 3D fields from CHIMERE at 

11:00. For the sake of simplicity in the OSSEs conducted here, since we use only synthetic data are usedonly and since a 

rather simple modeling of the spaceborne observation is used, the computation of XCO2 assumes that the vertical weighting 175 

function of the CO2 column-averaging (kernel) is vertically uniform. For a given model pixel at latitude lat and longitude 

lon, XCO2 is thus computed from the vertical average of the CO2 mole fractions simulated by the model: 

XCO2(𝑙𝑎𝑡, 𝑙𝑜𝑛) =
∫ 𝐶𝑂2(𝑙𝑎𝑡,𝑙𝑜𝑛,𝑃)𝑑𝑃+𝐶𝑂2������(𝑃𝑡𝑜𝑝)𝑃𝑡𝑜𝑝
𝑃𝑠𝑢𝑟𝑓
𝑃𝑡𝑜𝑝

Psurf(lat,lon)
 ,       (1) 

where P designates the atmospheric pressure, Psurf the atmospheric surface pressure and Ptop (300hPa) the pressure ceiling at 

the top boundary of the model. For pressures lower than Ptop, we assume that the CO2 concentrations equal the horizontally-180 

average of the top-level mixing ratios in CHIMERE (𝐶𝑂2�����(𝑃𝑡𝑜𝑝)). Indeed, we do not expect significant spatial gradients of 

CO2 over the simulation domain in the upper atmosphere. This is supported by the lack of signal in our simulations of the 

atmospheric signatures of the surface fluxes in the upper layer of the model. 

2.1.2. XCO2 pseudo-data sampling and error 

As detailed in section 2.3 below, the OSSE framework of the inversions requires the location and time of the individual 185 

XCO2 data, and the associated error statistics, but not the explicit values of the synthetic observations themselves. In this 

study, we consider pseudo satellites with a Low Earth Orbit (LEO) whose altitude and inclination parameters are similar to 

the ones of the A-Train (705 km and 98.2°98.2° and 705 km respectively, (Parkinson et al., 2006)). The satellite observations 

are assumed to happen occur at 11:00 in the morning. Successive tracks for of a single satellite on this orbit are distant by 

about ~25 degrees. However, we do neithernot study the potential of a specific satellite nor that of a constellation of such 190 
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LEO satellites depending on of their number. Furthermore, Tthis study focuses on statistics of the imageryresults at the scale 

of 6-hours. Therefore, it will considers single satellite tracks for any day that do not correspond to a specific positioning of a 

satellite on the chosen orbit: when studying the emissions of the Paris urban area, it followswe use the track which that 

crosses is nearly centered on this city every day and various swaths are considered to study the sensitivity of the results to 

this parameter (section 3.2.2). For the study of results for the multiple ensemble of sources contained within the 2-km sub-195 

domain (section 3.3), it followswe use a track centered over Belgium every day and we use a 900-km swath to ensure a full 

coverage of the plumes from these sources (the sensitivity to a realistic range of swath widths is not investigated in this 

second set of analysis). 

Our OSSEs assess the impact on the inversion results of the measurement noise fromof the satellite instrument only, ignoring 

the errors associated to the radiative transfer inverse modeling for the retrieval of the XCO2 data from the radiance 200 

measurements (Buchwitz et al., 2013a; Broquet et al., 2018), and in particular any “systematic error”. The errors on the 

XCO2 data at the spatial resolution of the measurements are thus assumed to be Gaussian, unbiased and uncorrelated in space 

or time. The distribution of the standard deviation (STD) for these errors is also assumed to be uniform and these errors are 

therefore summarized by a single value of STD (denoted the data precision hereafter).  

A large number of scenarios are tested for the observation specifications: the precision on the individual XCO2 data varies 205 

between 0.3 and 2 ppm, and the spatial resolution of the ground pixels can take the following values: 2 km×2 km (longitude 

× latitude), 2 km×3 km , 3 km×3 km , 3 km×4 km and 4 km×4 km. The reference is a precision of 0.6 ppm and a spatial 

resolution of 2×2 km2. These values are similar to the characteristics of the simulated simulation of CO2M data used in the 

study of Wang et al. (2020). When studying the sensitivity of the results over Paris, to the swath of the instrument, the swath 

is varieds from 100 km to 600 km, with a reference value of 300 km. 210 

2.2. CO2 fluxes 

2.2.1. Maps and time-series of anthropogenic emissions and natural fluxes 

High resolution maps of anthropogenic emissions are needed to define appropriate point and areas sources to be controlled 

by the inversion. High resolution maps of anthropogenic and biogenic fluxes are also needed to distribute the controlled local 

to regional budgets of these fluxes over on the spatial grid of the CHIMERE model. Finally, such maps are needed to 215 

provide insights intoon the typical budgets of fluxes at the control resolution, and thus to quantify the prior uncertainty in 

these budgets with a suitable order of magnitude.  

The anthropogenic CO2 emissions are extracted from several datasets compiled by IER (Pregger et al., 2007; 

Thiruchittampalam et al., 2012). These datasets provide maps of the annual budgets per sectors of anthropogenic activities 

over different domains, and at different spatial resolutions. We have merged and re-gridded them to derive a map of the 220 

annual budgets of emissions over the entire grid of the CHIMERE configuration. The emissions corresponding to France and 

Germany are extracted from the respective IER national maps for 2005 at a 1-minute resolution, while emissions in Belgium, 
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Luxembourg and the Netherlands are derived from an IER 1-km product covering nNorthern Europe for 2005.; tThe IER 5-

km resolution map covering the whole Europe for 2008 is used for the emissions over the rest of the domain. The gridded 

spread sources in these IER maps are interpolated on the CHIMERE grid but the large point sources are relocated as point 225 

sources in individual CHIMERE grid cells. We then derive the hourly emission maps from the yearly annual emission maps 

by applying the convolution of IER typical temporal profiles specific to each country and sector. These profiles include 

seasonal, daily and diurnal variations of emissions for large sectors such as traffic, power demand, domestic heating or air 

conditioning (Pregger et al. 2007). 

The IER maps for France, Germany, nNorthern Europe and the whole Europe correspond to annual budgets for years (2005 230 

and 2008) that can be different from one area to the other, and which are different from the year chosen for the atmospheric 

transport and for the natural fluxes (2016). This could raise some inconsistencies if assimilating real data in the inversion. 

However, this study is based on OSSEs with some strong simplifications regarding the observation system since the 

overarching target is a general understanding of the behavior and potential of the inversion. This requires the use of a high 

resolution and realistic distribution of the emissions in space and time, but not a precise estimate of their amplitudes for a 235 

given year. 

The land surface natural fluxes are derived from 8-km resolution simulations made with the Vegetation Photosynthesis and 

Respiration Model (VPRM) model for the year 2016. This prognostic model delivers hourly values of Net Ecosystem 

Exchange (NEE) by assimilating satellite and meteorological data (Mahadevan et al., 2008). The values of tThese biogenic 

fluxes NEE values are interpolated over the CHIMERE area at the hourly time scale. Natural ocean fluxes are ignored. 240 

2.2.2. Controlled areas 

The resulting hourly maps of anthropogenic CO2 emissions for spread sources and large point sources are decomposed 

spatially to define the areas for which hourly emission budgets are controlled by the inversion: large point sources, cities, 

remaining parts of regions where from which point sources and cities have been extracted (covering diffuse emissions only), 

and full regions when point sources and cities are not controlled separately but altogether with the diffuse emissions. Hourly 245 

budgets of the natural fluxes are controlled for full regions only, the regions used for the control of anthropogenic and 

biogenic fluxes being identical. 

The definition of the regions is done considering the whole domain. It corresponds to administrative regions of France, 

Belgium, the Netherlands, Luxembourg and Germany, and to three additional large “regions”: the United Kingdom, 

Switzerland and the rest of the domain. This subdivision results in 67 regions (Fig.1). These 67 regions correspond to the 250 

spatial resolution of the natural fluxes in the inversion. 

Point sources and cities are controlled individually in the 2-km resolution part of the CHIMERE grid only (section 2.1.1., 

Fig. 1). In the 39 regions entirely comprised within this sub-domain, we individually control the 84 point sources (e.g., 

factories, power plants...) whose annual emissions are larger than 0.2 MtonC.yr-1. The maps of the remaining emissions 

(excluding these point sources) in each of these 39 regions are then processed to extract large urban areas to be controlled 255 
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independently, ensuring at least one controlled urban area per region, and that no controlled urban area overlaps two 

different regions. An algorithm of pattern recognition has been designed for such an extraction, with the idea that urban areas 

correspond to clusters of adjacent high emitting pixels (also followed by (Wang et al., (2019)). After having applied a 

Gaussian filter to smooth the spatial distribution of the emissions, the large urban areas are defined by a label-connecting 

algorithm (Stockman et al., 2001Shapiro et al., 2000) which defines identifies the clusters of adjacent points whose 260 

emissions are above a predefined threshold. As the density and extension of cities considerably vary considerably amongst 

the different regions, the parameters of the pattern recognition algorithm, i.e. the standard deviation of the Gaussian filtering 

and the emission threshold, are different for each region to ensure that each region contains at least one controlled urban area 

(Fig. 2). As a result, we identify 152 control urban areas within the 2-km resolution sub-domain. They are characterized by a 

wide range of budgets and spatial spread of their emissions, the annual budgets ranging between ~0.07 MtonC.yr-1 and ~9.9 265 

MtonC.yr-1 (with a mean and a standard deviation of ~ 0.8 MtonC.yr-1 and ~1.5 MtonC.yr-1 respectively), and areas ranging 

from ~8 km2 to ~2400 km2 (with a median value of ~240 km2).  

The remaining emissions, after having extracted the large point sources and urban areas in the 39 regions, are considered to 

be diffuse and called hereafter the “countryside” emissions. The inversion controls their budgets in each region. The analysis 

of the results at the regional scale for these 39 regions will consider either the countryside emissions only (i.e. focusing on 270 

the individual control variables), or their aggregation with the emissions from the point sources and cities within the same 

region (i.e. considering the full geographical extent of the regions). The inversion also directly controls the total budget of 

the emissions for the 28 regions that are not fully comprised in the 2-km sub-domain (most of these 28 regions do not 

actually overlap this sub-domain at all). Overall, the control of countryside or total regional emissions adds 67 controlled 

areas (corresponding to the 67 regions) for the anthropogenic emissions so that the inversion controls the hourly budgets of 275 

anthropogenic emissions for 303 areas (84 point sources, 152 urban areas and 67 countryside or regional areas) and the 

hourly budgets of natural fluxes for 67 areas. 

2.3. Analytical flux inversion 

2.3.1 Theoretical framework 

The inversion system follows a traditional analytical inversion approach based on the Bayesian formalism and assuming that 280 

error statistics follow Gaussian errors statisticsdistributions (Tarantola et al., 1987; Broquet et al., 2018). The system controls 

factors that scale the hourly budgets of the different control areas for the anthropogenic and biogenic fluxes defined in 

section 2.2.23. It also controls a single scaling factor applied to the CO2 field used to impose the initial, lateral and top CO2 

boundary CO2 conditions (BC) of the model, since such boundary conditions generally bear important large-scale 

uncertainties that can impact the estimates of sources within the domain (Broquet et al., 2018). In the OSSEs of this study, 285 

more specifically for each day in March or May 2016, the inversion periods for each day in March or May 2016 cover the 6 

hours (5:00-11:00) before 11:00, when the satellite observations are supposed to be made. The number of control variables 
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(2221 = 370 controlled areas × 6 time slots + 1 control variable for the BCboundary conditions), is sufficiently small for 

analytical calculations to solve the inverse problem analytically. However, building the matrix H which that encompasses the 

atmospheric transport operator H and that is described below (section 2.3.2) requires a large computational burden. 290 

For a given inversion period, we define the control vector x as the set of controlled scaling factors for the hourly emission 

flux budgets and the boundary conditions. The prior uncertainty in x is assumed to be follow a Gaussian distribution and to 

be unbiased. Itand is thus characterized by the uncertainty covariance matrix B.  

In this study, the observation vector y is defined by the XCO2 concentrations in the transport model horizontal grid cells 

sampled by the observations. The simulation of y based on a given estimate of x is given by the linear observation operator 295 

H: x → y=Hx, which chains three operators. The first operator Hdistr distributes the controlled hourly budgets of emissions in 

space within the controlled areas, and provides the spatial and temporal mapping of the boundary conditions whose scaling 

factor is controlled by the inversion. The second operator Htransp is the atmospheric transport from the emissions and the 

boundary conditions to the full CO2 and XCO2 fields. Finally, the third operator Hsample performs the XCO2 sampling at the 

location of the XCO2 data (section 2.1.21). Differences between Hx and observed values for y arise due, on the one hand, to 300 

uncertainties in x, and, on the other hand, to the combination of errors in the observation operator and in the observation data 

that are altogether called altogether “observation errors”. The errors from the observation operator are strongly associated 

with the atmospheric transport model errors (Houweling et al., 2010; Chevallier et al., 2010), but also with the discretization 

and spatial resolution of the transport and inversion problems, which raise representation and aggregation errors (Kaminski 

et al., 2001; Bocquet et al., 2011). Assuming that they are follow Gaussian and unbiased distributions like the prior 305 

uncertainties, these observation errors are fully characterized by the observation error covariance matrix R. The H, B and R 

matrices must be explicitly estimated in the analytical inversion framework (section 2.3.2 and 2.4).  

The Bayesian theory (Tarantola et al., 1987) states that the statistics of the knowledge on x knowing i) the prior estimate of 

x, ii) the observed values for y and iii) H as a link between the x and y spaces, follow a Gaussian and unbiased distribution. 

The uncertainty in such a posterior estimate is thus fully characterized by the posterior uncertainty covariance matrix A 310 

given by: 

𝐀 = [𝐁−1 + 𝐇T𝐑−1𝐇]−1                                                                                                                                                           (2)  

The analysis of A and its comparison to B, aggregated or not over different spatial and temporal scales, are the critical 

diagnostics in this study to assess the potential of inversions assimilating XCO2 images. The score of uncertainty reduction 

for a given flux budget is a common indicator for evaluating the performance of an observation system. It is defined as the 315 

relative difference between the STD of the prior (𝜎𝑝𝑟𝑖𝑜𝑟) and posterior (𝜎𝑝𝑜𝑠𝑡) uncertainties in this flux budget (𝑈𝑅 = 100 ×

(1 − 𝜎𝑝𝑜𝑠𝑡
𝜎𝑝𝑟𝑖𝑜𝑟

)). If the assimilation of satellite observations perfectly constrains a given flux budget, the corresponding UR 

equals 100%. If this assimilation does not provide any information on the flux budget, UR equals 0%. 
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2.3.2. Building the observation operator matrix H 

The analytical inversion system is essentially built on the explicit computation of H=HdistrHtranspHsample. The different 320 

columns of H correspond to the signatures (or “response functions”) in the observation space of the different control 

variables, i.e. of the different hourly emissions for each control area, and of the boundary conditions. They are computed by 

applying the sequence of operators Hdistr, Htransp and then Hsample to each control variable set to 1, keeping the others null 

(Broquet et al., 2018). Hdistr is defined based on the flux maps detailed in sections 22.2.1. and 2.2.2. Htransp corresponds to the 

CHIMERE model and to the vertical integration of CO2 into XCO2 presented in section 2.1.1, while Hsample corresponds to 325 

the sampling, on the transport model grid, of the simulated XCO2 values according to the spatial distribution of the pseudo-

observations (section 2.1.2). A generalized H is actually stored for the analytical inversion system to anticipate any option 

for Hsample, by recording the full CO2 and XCO2 fields from the application of HdistrHtransp to each control variable, i.e. the full 

CO2 and XCO2 signatures of each control variable. 

2.4. Practical implementation of the OSSEs 330 

While, in principle, R should characterize both the errors in XCO2 data errors and the errors from the observation operator 

H, this study focuses only on the impact of the observation sampling and errors only. It ignores the errors from the 

observation operator. Moreover, the observation errors are restricted to the measurement noise which is uncorrelated in space 

and time as detailed in section 2.1.2. The different R matrices used for the OSSEs (depending on the observation sampling 

and noise) are thus all diagonal. The errors on the individual pseudo-observations are described by an uniform precision 335 

(𝜎𝑋𝐶𝑂2) depending on the chosen satellite configuration (section 2.1.2). However, the observation vector y is defined by the 

transport model grid rather than by the precise location and coverage of the data. Therefore, Tthe diagonal elements of R 

follow thus the aggregation of nobs pseudo observations with uncorrelated errors (where nobs is potentially greater than 1) 

within each model grid cell corresponding to an element of y, so that the resulting STD of the errors for this element is given 

by 𝜎𝑋𝐶𝑂2
�𝑛𝑜𝑏𝑠

. 340 

Prior estimates of anthropogenic emissions and biogenic fluxes are generally provided by inventories and ecosystem model 

simulations such as those used here in Hdistr to distribute the fluxes at high resolution. B should characterize uncertainties in 

such products and is thus be set with values corresponding to typical relative uncertainties in the budgets from the maps 

detailed in section 2.2.1. Prior estimates of the boundary conditions for regional inversions are usually interpolated from 

large scale analysis or inversions. Such products can bear significant large-scale errors at the boundaries of Europe (Monteil 345 

et al., 2019). We reflect it by setting in B the standard deviation of the prior uncertainty in the scaling factor for the boundary 

conditions (see below). When constructing the B matrices in all our OSSEs, we assume that there is no correlation between 

the prior uncertainties associated to different controlled emission areas or between these uncertainties and the one associated 

to the boundary conditions. The spatial correlations of the uncertainties in anthropogenic emission inventories is a complex 

topic and the current lack of characterization for such correlations led to such a conservative set-up (Wang et al. 2018; Super 350 
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et al., 2020). However, we model the temporal correlations between prior uncertainties in scaling factors associated to 

different hourly natural or anthropogenic flux budgets of the same controlled emission area by using an exponentially 

decaying function with a correlation time scale τ (like, for instance, in (Bréon et al., 2015)): 

𝜌𝑖,𝑗 = 𝑒−
|𝑗−𝑖|
τ                                                                                                                                                                              (3) 

where j and i are the indices of two corresponding hours. The STD of the prior uncertainties in the scaling factors for the 355 

different hourly budgets of the same controlled area are fixed to an identical value σhour. Finally, we assume that the STD of 

the prior uncertainties in scaling factors for the 6-hour budgets of the natural fluxes or of the anthropogenic emissions from a 

controlled area during 5:00-11:00 (to be applied to the budgets from the IER and VPRM products presented in section 2.2.1 

and used to build Hdistr) is fixed to a value σBudget that is the same for all control areas: typically 50% or 100% of the 6-hour 

budgets. The STD of the prior uncertainties in the scaling factors for the hourly budgets of the controlled areas σhour are then 360 

derived based on these different assumptions. The reference parameters for B are fixed to τ = 3 hours and σBudget = 50%. 

Despite the differences between the temporal variations of the hourly emissions from one control area to the other, or 

between natural and anthropogenic fluxes in Hdistr, these STD show a negligible variation of less than 1% and when 

considering theis reference set-up for B, σhour~65%. The sensitivity of the inversion to the values of σBudget and τ is assessed 

in section 3.2.3. Finally, we use 1% for the STD of the prior uncertainty in the scaling factor associated to the boundary 365 

conditions (i.e. typically an uncertainty of ~4 ppm in the average boundary conditions). This value is quite pessimistic, but 

some tests in which this value was varied (not shown) demonstrate a very weak sensitivity of the results for the fluxes to this 

parameter. 

3. Results 

3.1. High-resolution simulations of XCO2 370 

Previous sections documented how, for each 6-hour period, the inversion system exploits the simulated XCO2 fields at 11:00 

to constrain each hourly budget of the anthropogenic or natural fluxes of the controlled areas between 5:00 and 11:00. The 

CHIMERE full XCO2 simulations between 5:00 and 11:00 with the anthropogenic emissions, natural fluxes and/or domain 

boundary conditions detailed in sections 2.1 and 2.2 are used in this section to compare the overall signatures of these 

components and of the controlled areas, and to discuss their overlapping. Figure 2b shows the XCO2 signatures of all the 375 

anthropogenic emissions in the domain excepted those from the 84 point sources controlled individually by the inversion in 

the 2-km resolution subdomain (that are illustrated in Fig. 2a). Figure 2.c integrates the XCO2 produced by the 84 point 

sources and shows the signature of all the anthropogenic emissions. Finally, Ffigure 2d. displays the superposition of the 

XCO2 signatures of all the anthropogenic emissions, of the natural fluxes and of the boundary conditions. For all these 

figures, XCO2 values are taken at 11:00 and are provided by simulations between 5:00 and 11:00 on May 23rd which is a day 380 

of strong northwest-southeast wind (~10 m·s-1 over Paris at 700 m above ground level). 
Formatted: Superscript
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The strong plumes from the megacities of Paris and London are easily distinguished when considering the signature of 

anthropogenic emissions in Fig. 2b and 2c, with their amplitude exceeding 0.3 ppm at 100 km downwind of these cities, and 

with sharp gradients of XCO2 at their edges. The relative narrowness, extended length and small intensity of the plumes 

shown in the Figs. 2b and 2c are explained by the magnitude of the wind speed on May the 23rd (~ 9 m·s-1 over Paris). The 385 

characteristics of those plumes vary considerably with respect to the wind speed and the inversion results are strongly 

impacted by this parameter (section 3.2.1 and Broquet et al. (2018)).  

Figures 2b and 2c also show that the overlapping of plumes from urban areas of in Belgium and in the Netherlands produces 

XCO2 patterns whose amplitudes are comparable to that of the plumes from Paris and London. However, Ddue to the urban 

density of those countries, the level of distinction of between the individual signatures of the different cities is however 390 

weak. If we exclude Paris, nNorthwestern France has a much less dense urban fabric with scattered cities of small 

extensionsextents. Thus, tThis sparse distribution allows the relatively weak plumes of from cities emissions to be visible, 

whereas the more diffuse XCO2 signatures of the anthropogenic countryside emissions of the countryside do not form any 

distinguishable patterns (Fig. 2b).  

The comparison between Figs. 2b and 2c highlights the plumes from some of the large 84 point sources within the 2-km 395 

resolution subdomain (section 2.2.23). The amplitude of these plumes can locally reach that of Paris but such an increase 

above the background occurs on a much smaller extent: for instance, the one of the power plant close to Dunkerque (~51°, 

~2.3°) in the nNorthern French coast reaches 0.4 ppm but its width does not extend to more than 5 km for instance (Fig. 2c). 

The capacity of our high resolution transport model to simulate narrow XCO2 plumes from point sources or urban areas 

distinct from that of neighbor or surrounding sources is revealed by the example of several point sources in Belgium as well 400 

as that of the oil refinery of Grandpuits (48.59°, 2.94°) whose plume stands out of the large plume from the Paris urban area 

(Fig. 2c). The 2-km resolution zoom of the model grid allows distinguishing those features which would otherwise be 

blurred in a coarser resolution transport model. 

When including the XCO2 produced by the natural fluxes and the boundary conditions, identifying the features produced by 

the anthropogenic emissions is more difficult (Fig. 2d). The atmospheric signatures of Paris, of London and of the high-405 

emitting power plants are hardly differentiated from patterns produced by the boundary conditions and natural fluxes even 

though they are still visible. The isolated plumes of low amplitudes from scattered cities with small extensions extents and 

low emission budgets which produce isolated plumes of low amplitudes can hardly be seen. The boundary conditions and the 

natural fluxes tend indeed to produce signatures whose amplitude is often larger than, or at least comparable to that of the 

signal from the anthropogenic emissions, with which they interfer., or at least comparable, which interfer with andThis blurs 410 

thise signals of the anthropogenicse emissions, especially with those of thewhen the emissions are diffuse anthropogenic 

emissions. Boundary conditions and natural fluxes are however much more homogeneously distributed homogeneously than 

the anthropogenic emissions, that are localized over a small fraction of the surface. As a consequence, the boundary 

conditions and the natural fluxes produce smooth XCO2 fields (Fig. 2d) while the anthropogenic emissions from sources 

inside the domain produce heterogeneous fields with smaller and finer structures and sharper gradients (Fig. 2c). Therefore, 415 
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the separation between the two types of fluxes could rely on the differences in terms of spatial scales of their spatial 

atmospheric signatures, or on a precise knowledge of the atmospheric transport patterns.  

This first qualitative overview of the atmospheric signatures could imply that the ability to quantify the budgets of emissions 

from for the two megacities, from for most of the 84 large point sources, and for large regions in the nNorth eEast should be 

much larger than for the individual urban areas in most of the domain or for the countryside emissions. However, this 420 

diagnostic test relies on a qualitative assesment of Figures 2i. In Section 3.3, we will quantitatively analyze the implications 

for the  inversion results of the differences in terms of amplitude or spatial structure between the XCO2 signatures.as a 

function of the type of sources. 

3.2. Potential of the satellite images to monitor the anthropogenic emissions of a megacity: sensitivity studies 

This section assesses the performance of our inversion assimilating XCO2 images to monitor the anthroprogenic emissions 425 

from the Paris area, as a function of the wind conditions for speed and direction, of the XCO2 observation precision, 

resolution and swath, and of the configuration of the prior error covariance matrix B. Results are relative to the inversion 

control area that covers most of the Paris urban area (Fig. 2.a.) and whose contours have been delimited by the pattern 

recognition algorithm described in section 2.2.3. The analysis is based on 62 6-hours inversion tests with satellite images 

nearly centered on this area for each day of March and May 2016. With the reference 300-km wide swath, such images cover 430 

the plumes from the Paris urban area entirely for in most wind conditions ([Broquet et al. 2018]). In the following, the wind 

speed is characterized by its averaged value at 700 m above the ground level over the inversion control area corresponding to 

Paris and over the period corresponding to the chosen diagnostic test: over 5:00-11:00 when analyzing the uncertainty in the 

budgets of the emissions corresponding to the full 6h-period of inversion, or over the time interval [hh,11:00] when 

analyzing the uncertainty in the hourly budget of the emissions between the hours hh and 11:00hhh+1. 435 

3.2.1. Impact of the wind speed 

A first set of inversions is conducted with the reference values for the precision, resolution and swath of the satellite 

observation and for the parameters of the prior uncertainty (respectively 0.6 ppm, 2×2 km2, 300 km, 50% and 3 hours). 

These inversions are applied to 12 different days in March 2016 which present a range of average wind speeds from 2 to 14 

m·s-1 (Fig. 3). We investigate results in winter, when the amplitudes of the biogenic fluxes are low, to mitigate the influence 440 

of these fluxes, and of their variability, on the URs forof the Paris emissions. Note that the time profiles modeling the 

variability of the anthropogenic emissions ignore day-to-day variations (except between week-end and working days) which 

almost removes the influence of the variability of these emissions when studying only results the month ofin March only. 

Results are presented in terms of prior and posterior uncertainties in both the 1-hour and 6-hour budgets of emissions from 

the Paris urban area. The directions of the wind are predominantly meridional so that the selection of the swath has no 445 

impact. The main analysis and conclusions in this section are similar to that of Broquet et al. (2018), and so we thus present 

them briefly. 
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Results in Fig. 3 illustrate the fact that larger wind speeds lead to smaller uncertainty reductions for the 6h-emission budgets: 

Oon March 3 when the average wind speed is 13.5 m·s-1, and the UR for with the reference values for the precision, 

resolution and swath is 74% while on March 10 the (average wind speed ~1.8 m·s-1 and) the UR is of 97% (Fig. 3a). 450 

Stronger winds decreases the UR because, due to an increased atmospheric dilution, the amplitude of the city plume is 

smaller which decreases the signal-to-noise ratio for the inversion. However, when considering the UR for hourly emissions, 

this rule may not apply for wind speeds lower than 6 m·s-1. For this range of wind speeds, the posterior uncertainty in 

individual 9:00-10:00 and 10:00-11:00 emissions increases with decreasing wind speed (Fig. 3b). The inversion system 

shows difficulties in distinguishing the atmospheric signatures produced by consecutive hourly emissions because these 455 

signatures have a significant overlap when the wind speed is low. This explanation is confirmed by the negative correlations 

found between the uncertainties in consecutive hourly emissions since the magnitude of these negative correlations increases 

when the wind speed decreases (Fig. 3c). Important negative correlations explain also that for low wind conditions, 6h-

emission budgets are better constrained even though hourly emissions can be poorly constrained. The overestimation of 

some hourly emissions is compensated by the underestimation of other hourly emissions. 460 

The uncertainty reductions for 1h- and 6h-budgets are important high for a large range of wind values: for the range 

considered in this study, in all the tests here, the URs for the 6h-bugdets are above 74% and the UR for the 1h-budgets after 

7:00 are above 62% (Fig. 3a). Concerning the 1h-budgets of the 5:00 to 7:00 emissions, the corresponding URs significantly 

decrease for wind speeds above 10 m·s-1. In particular, Tthe UR for the 5:00 to 6:00 emission drops below 20% above this 

value for the wind speed. This behavior is consistent with the fact that the signatures of emissions occurring well before the 465 

satellite overpass have been much more diffused through atmospheric transport at the observation time than that of later 

emissions.  

3.2.2. Impact of the precision, resolution and swath of the satellite images 

Figures 4a-d show the uncertainty reductionsURs for the 6 h-emission budgets of March 3 (with a strong wind), March 10 

(with a low wind), May 23 (with a strong wind) and May 27 (with a low wind). This figure is associated to the first analysis 470 

made in this section and corresponds to a second set of inversions performed with the range of options for satellite data 

precisions and resolutions presented in section 2.1.2 but with the observation swath of the satellite track, the relative prior 

uncertainty in the 6 h-budgets of fluxes, and the correlation length scale for the prior uncertainties in hourly fluxes fixed to 

the reference values (respectively 300 km, 50% and 3 hours). The sensitivity of the UR to the measurement precision and 

resolution increases with stronger winds. For example, on May 27 (under "weak" wind) and 23 (under "strong" wind), the 475 

UR increases by 16% and 48% respectively between inversions with 2 ppm precision data and inversions with 0.3 ppm 

precision data (at the resolution of 2 km × 2 km). For those two days, the UR decreases by 6% and 20% respectively 

between inversions with 2 km × 2 km resolution data and inversions with 4 km × 4 km resolution data (for with a precision 

of 0.6 ppm). The comparison between results on March 3 and 10 confirms such a high sensitivity for under stronger winds. It 

is related to the fact that the slope of the convergence of the UR towards 100% with better precision and finer resolution is 480 
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smaller with low wind speeds, which generate higher UR than high wind speeds. For similar reasons, the sensitivity to the 

precision decreases at finer resolution, and the sensitivity to the resolution decreases with better precision (Figs. 4a-d).   

The comparison between results obtained when doubling the random measurement error of the individual observations and 

when multiplying by four the value of their spatial resolution provides insights into on the exploitation of the fine scale 

patterns of the XCO2 image by the inversion. Indeed, both changes result in doubling the resulting error at coarse resolution, 485 

but doubling the random measurement error at fine resolution conserves the capability to exploit information at this fine 

resolution unlike coarsening the spatial resolution of the image. Figs. 4a-d show that scores of UR with 2 km × 2 km 

resolution and 2 ppm precision data are extremely close to that with 4 km × 4 km resolution and 1 ppm precision data. URs 

with 2 km × 2 km resolution and 1.2, 1, 0.8 or 0.6 ppm precision data are also similar to URs with 4 km × 4 km resolution 

and respectively 0.6, 0.5, 0.4 or 0.3 ppm precision data. This indicates that the inversions here do not really take advantage 490 

of the information on the fine scale patterns of the plume from Paris.  

A third set of inversions is conducted to study the sensitivity of the results to varying the width of the satellite swath while 

keeping all other observation and inversion parameters to reference values. This sentivitity is modulated by the wind 

conditions: the speed and direction of the wind control the spread and position of the plume and thus the value of the swath 

which fully covers the extent over which the amplitude of the plume is significant for the inversion, i.e., the value of the 495 

swath above which the results do not change any more (Figs. 4e-h). This threshold value of the swath is lower for smaller 

wind speed. For wind directions across the satellite track, the URs for the 6 h-emissions of the Paris area are no longer 

sensitive to the increase of the swath above a value of 100 km and 400 km for wind speeds superior lower than to 8 m·s-1 and 

to 9 m·s-1 respectively. The sensitivity to the swath is null (except if considering very low values for the swath of the order of 

the width of the plume from Paris) for wind directions along the satellite track as we, since considering satellite tracks 500 

centered on Paris.  

3.2.3. Impact of the definition of the prior uncertainties ion the CO2 fluxes 

The prior uncertainty covariance matrix B has a strong influence on the scores of posterior uncertainties when its 

“amplitude” is comparable to, or much larger than, the one of the HTRH matrix (see Eq. 2), i.e. once the prior uncertainties 

are comparable or much larger than the projection of the observation errors in the control space. The relative prior 505 

uncertaintyies in the 6 h-emission budgets (σBudget, section 2.4.), which characterizes the diagonal of B, is one of the critical 

drivers of the relative weight given by the inversion to the prior information and to the observations.  

In a fourth set of inversions, we thus analyze the sensitivity of the inversion results for 6-hours emission budgets to σBudget, 

with values for this parameter ranging between 0 and 100%. This set of inversions uses the reference values of the 

observation parameters and for the temporal autocorrelation of the prior uncertainties. Figs. 5a-b shows the corresponding 510 

results on March 3 (with under strong wind) and on March 10 (with under low wind), to highlight the dependence of this 

sensitivity to the wind speed. The curves of UR as a function of σBudget have an inflection point for values around 50%. For 

low values of σBudget, the UR is sensitive to this parameter, the posterior uncertainty balancing the prior uncertainty and the 
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projection of the observation error. For large values, the UR converges asymptotically towards 100%, and the posterior 

uncertainties are dominated by the projection of the observation error (i.e. the posterior estimate of the emission essentially 515 

reliesy on the top-down information from the observations). The observational constraint on the inversion is larger on March 

10 than on March 3 since the wind is much lower on the former. As a consequence, the qualitative threshold of for σBudget 

above which the URs are not much sensitive to this quantity is smaller on March 10 than on March 3: 30% and 50% 

respectively. 

These results over Paris suggests an empirical choice of a reference value for σBudget≥greater than 50%, in the absence of any 520 

factual knowledge about σBudget. With 50% as a reference value, we focus our analysis of the posterior uncertainties on such 

athe projection of the information from the observations and we nearly neglect the prior information, while keeping an 

assumption regarding the prior uncertainties that could seem consistent or even optimistic compared to series of assessment 

of the errors in inventories for cities at daily scale (Wang et al., 2020). However, for other cities, point or area sources with 

smaller amplitudes, the observational constraint is lower. The relative weight between the projection of the observations and 525 

the prior information is then more balanced than for Paris, and the prior uncertainty still has a significant impact on the 

posterior uncertainties when using σBudget=50%. In order to study the pure projection of the observation errors, results using 

σBudget=100% will thus be analyzed along with that using σBudget=50% in section 3.3. 

The other important parameter defining the B matrix in this study is τ (section 2.4.). By construction, the increase of the 

corresponding auto-correlations for in the prior uncertainties at the hourly scale in B does not modify the prior uncertainties 530 

of in the 6 h emission budgets. However, it could can help the inversion crossing the information on different hourly budgets 

to better constrain the overall budget of emissions. A fifth set of inversions with the reference values for the observation 

parameters and for σBudget is conducted to test the sensitivity to τ, with values for this parameter from 0 to 6 hours (0 h 

indicating that there is no temporal correlation in B, and 3 h being the reference value), on March 10 and 3. The analysis 

shows that, actually, the increase of τ hardly impacts the results for the 6 h-budgets (not shown) but significantly changes the 535 

results for the hourly budgets (Figs. 5c-d). The auto-correlation brings information about the temporal distribution of the 

emissions, constraining how the 6h-emission budgets are distributed at the hourly scale. This impact is more significant 

when the XCO2 signatures of the hourly emissions overlap, i.e. for hourly emissions between 5:00-7:00 when the wind speed 

is high and for almost all the hourly emissions when the wind speed is low. ButHowever, this better knowledge about the 

temporal variations from auto-correlations does not appear to improve the knowledge on the 6 h-budgets.  540 

3.3. Potential of satellite images to monitor anthropogenic emissions at the regional, city and local scales. 

This section synthesizes the inversion results from at the local scale (for power plants, industrial facilities) to the regional 

scales over most of the model 2-km resolution model subdomain, using a sixth set of inversions assimilating images that 

cover this subdomain entirely (satellite observations with a 900-km swath centered on Belgium, (Fig.1). This set of 

inversions covers all the days of March and May 2016 in order to analyze the impact of the wind speed and of the natural 545 

fluxes on the results. The prior relative uncertaintesy in the 6-hour budgets of the emissions are alternatively set to 
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σBudget=50% and 100%. These inversions use the reference parameters for the observation precision and resolution and for 

the temporal auto-correlation of the prior uncertainties in hourly emissions (0.6 ppm, 2 km × 2 km and 3 hours respectively). 

Results over most of the 2-km resolution model subdomain using different observation spatial resolutions and precisions will 

briefly be discussed in section 4. 550 

3.3.1. Overview of the inversion performance 

Figure 6 gives a geographical overview of the scores of UR in the 2-km resolution sub-domain. The largest scores of UR for 

6-hour budgets are obtained for the mega-cities of Paris and London with a mean values over the two months considered 

>80% over the two months considered. Mean UR can also be >60% for several cities of Belgium and the Netherlands and for 

a large number of point sources (power plants and large industrial facilities) within the dense industrial area of western 555 

Germany, although these sources are close to each other or to other significant point and area sources. 

In a general way, the scores of UR increase with the magnitude of the emissions (Fig. 7). This increase is more important 

when considering lower emission values due to the asymptotic convergence of the UR towards 100% for high emission 

values (with a point of inflectxion for emitting sources of around ~2 MtC·yr-1 in the curves of Fig. 7). The increase of the UR 

as a function of the budgets of emissions is different if considering point or area sources. As expected, the largest URs are 560 

obtained for narrower sources like point sources (Fig. 7a) and the cities (Fig. 7b) which generate plumes with smaller extents 

but larger amplitudes than diffuse countryside emissions. When using σBudget = 100%, the mean URs are larger than 50% for 

all point sources and cities with an emission rate larger than 2 MtC·yr-1, but while for to achieveing the same 50% UR, an 

emission rate of at least 4 MtC·yr-1 is needed for regional countryside emissions (Fig. 7c). The gap is even larger when using 

σBudget = 50%, with mean URs that are systematically larger than 50% for annual emission budgets of point sources and cities 565 

larger than 2 MtC·yr-1, but for annual emission budgets of regional countryside emissions larger than 7 MtC·yr-1.  

When aggregating the results for point sources, cities and countryside emissions at the regional scale, the relative prior 

uncertainty becomes significantly smaller than the values used for individual sources since we assume that there is no 

correlation between their uncertainties: the mean prior uncertainty for the regions is then of ~33% when assuming a 50% 

prior error on the 6 h-budgets of point sources, cities and countryside areas which make these regions. And, the emission 570 

threshold above which the URs for the regional budgets are larger than 50% becomes 10 MtC·yr-1 and 7 MtC·yr-1 when 

using σBudget = 50% and 100%, respectively (Fig. 7d). These thresholds are larger than the ones corresponding to individual 

point sources and cities as given above, but the overall performance of the inversion system at the regional scale is better 

with respect to that of the point sources and cities when analyzing the relative posterior uncertainties: for σBudget = 50%, the 

mean value is of 22% for the total regional budgets while it is of ~40 % for the point sources and cities budgets (Fig. A1). 575 

The results for the different types of sources are shown for four regions of Belgium in Fig. 8. This figure provides an 

illustration of the general results seen in Fig. 7. It shows that the URs for emissions from of the largest urban areas (emitting 

more than 2 MtC·yr-1) are as high as that for the overall emissions of their respective region although the budgets of 

emissions from these urban areas are much smaller than that of their regions. As suggested above, smaller prior uncertainties 
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in the regional budgets lead to similar URs for cities and regions budgets even though the relative posterior uncertainties in 580 

regional budgets are much smaller (Fig. 8b). When comparing point sources and cities which are characterized by the same 

prior uncertainty, the relative magnitudes of the URs are determined by the relative magnitudes of the emissions: URs are 

thus much higher for the largest urban areas than for point sources and cities that emit much less CO2. But, the comparison 

between the URs and emissions of the main cities and countryside areas of the regions of Eastern and Western Vlaanderen 

illustrates that, even thoughdespite lower they have lower emission budgets in these regionsamplitudes, cities are better 585 

constrained than countryside areas. This is in agreement with the enhanced capacity of the inversion system to monitor 

cityies emissions with respect to more diffuse countryside emissions. This figure also qualitatively illustrates the ability of 

the inversion system to separate neighbor emission sources:  the point source and city of Liège (left blue bar for the region of 

Liège in the figure) contained within the region of Liège are characterized by significant URs even though the point source is 

within the city of Liege and its plume is completely overlapped with by the plume from the rest of the city. We will analyze 590 

more systematically and quantitatively the capacity of the framework inversion to disentangle the information signals 

produced by neighbor sources in section 3.3.3. 

The URs for the 6 h-emission budgets show an important variability over the 62 inversion days as illustrated in Fig. 7. When 

using σBudget = 50%,  the standard deviations of the day-to-day variations of the URs for the point sources, cities and 

countryside areas, are on average, equal to ~12%, ~8.3% and 12.2%, respectively. These values are important with respect to 595 

the temporal mean of the values of UR (26%, 16% and 27% when averaging across all the point sources, cities and 

countryside areas respectively). These variations are associated to variations in the wind speed at the daily scale as it was 

evidenced for the Paris case in section 3.2.1. However, when considering results for the months of March and May together, 

they are also influenced driven by the time profiles of the anthropogenic emissions that are characterized by a strong 

decrease of emissions between March and May due to the reduction of residential heating. Moreover, the UR variability is 600 

also determined by that of the uncertainties in the natural fluxes which are also very different from March to May. The 

natural fluxes, havewith large negative amplitudes in May when they are dominated by the primary production and smaller 

positive amplitudes in March when they are mostly restricted to the heterotrophic respiration. Using constant prior relative 

uncertainties in the natural fluxes (as for the anthropogenic emissions) yields large absolute uncertainties in May and low 

absolute uncertainties in March.  Furthermore, as the primary production related to photosynthetic processes is mostly driven 605 

by the radiative forcing and then by the daily variation of the cloud cover, natural fluxes and their prior uncertainties are also 

characterized by a strong day-to-day variability during the month of May whereas in March, they are not because of a weak 

day-to-day variability of heterotrophic respiration. Cross sensitivity studies comparing the influence of the above drivers (not 

shown), indicate the predominant influence of the daily variability of the wind speed on the variability of UR for the 

anthropogenic emissions estimates, for most sources. This conclusion should however be nuanced for some regions and 610 

countryside areas where the scores of UR for the anthropogenic emission estimates is highly impacted by the inversion of the 

natural fluxes, and thus by the variability of these fluxes, during the month of May (see section 3.3.2. below). 
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3.3.2. Impact of the uncertainties in the biogenic fluxes 

The analysis of XCO2 patterns produced by the different CO2 fluxes (section 3.1) suggests that the large signatures of the 

biogenic fluxes in May could impact the monitoring of the anthropogenic emissions. In order to weigh the impact of the 615 

uncertainties in biogenic fluxes, we conduct experiments where these uncertainties are ignored. In these experiments, the 

mean URs for the budgets of the regional and countryside anthropogenic emissions in May areis equal to ~31% and ~41% 

respectively (using σBudget=50%). When accounting for uncertainties in biogenic fluxes, these mean URs decrease down to 

~21% and ~31% respectively (Figs. 9c-d). This reveals some difficulty of the inversion system to separate countryside 

emissions from biogenic fluxes which is also illustrated by the important anti-correlations (-40% on average) between the 620 

corresponding posterior uncertainties. During May, the smaller amplitudes and rather diffuse nature of countryside emissions 

with respect to natural fluxes (data not shown), and the overlapping of their atmospheric signatures (Fig. 2) explain why the 

inversion system only has a limited ability to distinguish the countryside emissions. Oppositely, during March, the smaller 

amplitudes of natural fluxes compared to countryside emissions (data not shown) explains why the inversion can better filter 

the signature of countryside emissions from that of natural fluxes. 625 

Contrarily to the URs for countryside emissions and regional budgets, the URs for the point sources and cities are hardly 

impacted by the uncertainties in biogenic fluxes during the month of May, even when the emission budgets of these sources 

are smaller than 1 MtC·yr-1 (Figs. 9a and b), and even though these budgets are quantitatively lower than the absolute value 

of the regional budgets of biogenic fluxes. Consistently, the posterior uncertainty in the inverted 6-hour budgets of the 

emissions of cities or point sources is weakly correlated with that in the 6-hour budgets of biogenic fluxes in their respective 630 

region (-2% and -5% on average for the cities and point sources respectively). Therefore, the visual inspection of Fig. 2 may 

wrongly suggest that the plumes of the smallest point sources and cities controlled individually can hardly be separated from 

the signature of biogenic fluxes. The differences in terms of spatial scales of the atmospheric signatures appear to be the 

main driver of the skill of the inversion for to separateing anthropogenic sources from biogenic fluxes. 

3.3.3. Separation of the different anthropogenic emission sources 635 

In order to estimate the ability of the inversion system to separately monitor anthropogenic sources whose atmospheric 

signals overlap separately, we focus on pairs of sources contained within a the same region and we assess whether the sum of 

the variances (Var) associated to the inverted emissions for each source is comparable with the absolute value of their 

covariance (Cov), which is nearly systematically negative as a result of the uncertainty in the spatial attribution of emitted 

CO2 to individual sources in the inversion. This criterion means, if the covariance is negative, that the variance associated to 640 

the ensemble of the two sources is much smaller than the sum of the variances associated to each source, given since the 

mathematical expression governingthat the variance of the sum of two random variables Xa and Xb is given by: 

Var(Xa+Xb)=Var(Xa)+Var(Xb)+2*cov(Xa,Xb). In terms of inversion, this case describes the situation when a pair of 
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sources is much better constrained than each of its individual sources (Var(Xa+Xb)<<Var(Xa)+Var(Xb)), i.e when the 

inversion system does not entirely manage to disentangle overlapping signals and to constrain independently each source. 645 

Figure 10 indicates that in general, the system has an overall good ability to independently constrain independently the 

different sources within a given region: point sources, cities, countryside areas, natural fluxes. In this figure, indeed, the 

number of pairs of sources that are characterized by an important negative covariance term (2*cov(Xa,Xb)) compared to the 

sum of the individual variances (V(Xa)+V(Xb)) is  much lower than the number of pairs of sources that are characterized by 

a relatively small covariance term. Only 20 pairs of sources out of a total of 890 pairs show a covariance term that is larger 650 

than 25% of the sum of the variances (squares below the blue line in Fig. 10a). Most pairs for which the inversion system 

may be unable to distinguish individual sources in a completely independent way consist in a point source and its 

surrounding urban or countryside area. Only one case consists in two point sources that are located close to each other near 

Karlsruhe in Germany and, no cases consist in pairs of urban/urban or urban/countryside areas. The 20 cases of less 

separable pairs of sources identified above could be associated to situations for which the inversion system could have 655 

difficulties to independently monitor two sources but this conclusion should be nuanced when all terms (sum of the variances 

and covariances) are small: for example, four pairs of sources characterized by important negative correlations for example 

show an UR for each individual sources which is larger than 50% (squares in the top-right quadrant of the Fig. 10b). For 

these cases, the problem of distinction between the two sources applies to a moderate residual posterior uncertainty, and the 

inversion still gets a relatively precise estimate of the emissions. 660 

Moreover, a low covariance between pair of sources can often be explained by the lack of constraint on their total budget or 

on one of the two sources, rather than by a good separation between the two sources. For Eexamples of, pairs of sources with 

an important UR for their total emissions and a small covariance while only one individual source in each pair is well 

constrained  are can be seen inrepresented by the top-left and bottom-right ofpairs of sources in Fig. 10b, (where the UR for 

the total is larger than 75% while one of the sources shows an UR lower than 20%). Pairs of sources characterized by 665 

relatively low values of covariance but small values of UR for both the total and the two sources are identified in the top-

right quadrant of Fig. 10a and the downbottom-left quadrant of Fig. 10b. These pairs are characterized by low individual 

sources and total emissions whose amplitudes are below the thresholds required by the inversion system to produce reliable 

estimates (see section 3.3.1.).  

4. Discussion and conclusion 670 

We have presented a new and comprehensive high-resolution atmospheric inversion system to assess the potential of the 

satellite imagery of XCO2 for the monitoring of anthropogenic emissions from local to national scales. This system has been 

designed to deal with a wide range of different sources in terms of emission amplitude, distribution and spatial scales and to 

account for the overlapping between the signatures from different anthropogenic sources and natural sources and sinks. To 

cover the local and regional scales while mitigating computational costs, this inversion system is based on an atmospheric 675 
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transport model with a zoomed grid whose horizontal resolution ranges from 2 km in the most resolved domain to 50 km at 

its edges. The area of highest horizontal resolution (2 km) encompasses regions where the hourly emission budgets of a large 

ensemble of cities and point sources are inverted separately for their hourly emission budget, i.e. that of nNorthern France, 

Belgium, the Netherlands, western Germany, Luxemburg and London. Urban areas are delimited using a clustering 

algorithm and large industrial plants are selected based on an emission threshold. In total, the system controls the hourly 680 

budgets of 303 different anthropogenic sources (plants, cities or regions), the hourly budgets of  biogenic fluxes for 67 

regional budgets of biogenic fluxesregions and the a scaling factor applied to the 6-hour average initial and , lateral and top 

boundary conditions for each 6-hour inversion window.  

 

A performance simulation tool 685 

 

The analytical formulation allows easily testingmakes it easy to test different scenarios for of observation systems that 

monitor anthropogenic emissions but, in this study, the OSSEs with the inversion framework have been performed in order 

to investigate the potential of the satellite imagery of XCO2 from helio-synchronous orbits only, depending on instrumental 

configurations or other factors such as the wind or the amplitude of the emissions. Such a spaceborne imagery similar to 690 

CO2M may become the critical component of operational atmospheric inversion systems for the monitoring of CO2 

anthropogenic emissions. These operational inversion systems will likely have to jointly assimilate data from many of the 

existing satellite missions, from ground-based networks and from the planned spectro-imagers. Moreover, in addition to CO2 

concentrations, co-emitted pollutants and radiocarbon should as well be assimilated as well. Ultimately, OSSEs would have 

to integrate all these components of the observation system (Ciais et al., 2015; Pinty et al., 2017). However, we need OSSEs 695 

considering the spaceborne imagery of XCO2 as a stand-alone system to determine the instrumental parameters ensuring that 

this imagery can bring emission estimates with sufficient coverage and accuracy so that it can serve as a backbone for such 

the emission operational monitoring of emissions. Furthermore, in a context where there is a lack of ground based and 

spaceborne networks that are suitable for the monitoring of CO2 anthropogenic emissions, these OSSEs can help better 

understanding the needs in terms of complementary observation components. 700 

The analytical inversion system built for this study allows testing an important set of observational parameters and situations. 

Once the atmospheric transport functions associated to the different emissions sources have been computed, the derivation of 

the posterior uncertainties is fast and results can be delivered for a wide and detailed range of specifications on the spatial 

resolution, precision (focusing here on the errors in XCO2 from the instrumental noise) and swath of the satellite XCO2 

images. Extending the study of Broquet et al. (2018), the sensitivities of the inversion results to these three parameters have 705 

been tested on the example of the inversion of the emissions of Paris (section 3.2.2.). We varied these parameters without 

accounting for current limitations in space technologies (or from cost issues) which imposeing potential trade-offs between 

their configurations. The impact of the wind speed on the determination of the 6-hours and hourly budgets of the emissions 
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is analyzed by assimilating images over different days of March and May. Finally, the flexibility of the inversion system also 

allowed testing the impact of the way a priori errorsprior uncertainties ion the fluxes are prescribed.  710 

The inversion framework produces curves of sensitivity that give several qualitative and quantitative insights into the 

optimal configurations of the satellite imagery:. If we consider the monitoring of the Paris emissions, the impact of the swath 

on the results is limited for swaths larger than 400 km (section 3.2.2 and Fig. 4). As the megacity of Paris produces plumes 

whose intensity and extension are amongst the highest with respect to anthropogenic emissions sources in Western Europe, 

this supports the use of a swath close to 400 km in order the remove the influence of this instrument parameter on the ability 715 

to catch the full extent of plumes from targeted sources in the center of the satellite field of view.  

Tthe study of the UR for the Paris emissions indicates (i) that a 4 km × 4 km spatial resolution is sufficient, provided that the 

precision at this spatial resolution is very high, and (ii) that the inversion hardly makes use of patterns at finer spatial 

resolution. However, as discussed in section 3.2, that might come from the relatively large extent of the plume from Paris, 

and from theits distances from between this plume and other major plumes. We have thus extended the analysis of the 720 

sensitivity to the observation spatial resolution and precision to all the days of March and May and to the ensemble of 

controlled regional, city and local sources (as for the analysis in section 3.3) using testing a reduced set of resolutions and 

precisions to be tested. The results are displayed in Fig. 11. This experiment confirms that results for point sources and 

narrow cities are more sensitive to the availability of the information at the reference resolution of 2 km than that for Paris. 

The UR for point sources and cities emitting less than 2 MtC·yr-1 is larger with a spatial resolution of 2 km × 2 km and a 725 

precision of 1.2 ppm than with a spatial resolution of 4 km × 4 km and a precision of 0.6 ppm, (i.e. with the same precision 

at 4 km resolution but without information about the patterns at scales finer than 4 km). However, the differences are not 

really significant, and Fig. 11 tends to confirm that a spatial resolution of 4 km × 4 km would be fine if achieving a very 

good precision: typically, 0.3 ppm if willing to get the results from the reference configuration of the observation with 2 km 

resolution and 0.6 ppm precision. With a 2 km × 2 km resolution, the mean URs for all type of emissions would increase on 730 

average by 10.1 ±1.5% if the precision increases by a twofold factor (from σ = 1.2 ppm to 0.6 ppm and from 0.6 ppm to 0.3 

ppm). While this represent a dramatic increase of the UR when changing the precision from 1.2 ppm to 0.6 ppm, the relative 

impact is smaller from 0.6 to 0.3 ppm and the reference value of 0.6 ppm precision at 2 km resolution appear to be a 

balanced option. Finally, the results for the Paris case point out that, at the reference precision of 0.6 ppm, the performance 

of the inversion system would be nearly equivalent at the resolutions of 2 km × 2 km and 2 km × 3 km (Fig. 4). The spatial 735 

resolution could thus be relaxed to 2 km × 3 km compared to the reference resolution without degrading much the precision 

of the inversions. 

If we consider the monitoring of the Paris emissions, the impact of the swath on the results is limited for swaths larger than 

400 km (section 3.2.2 and Fig. 4). As the megacity of Paris produces plumes whose intensity and extension extent are 

amongst the highest with respect to anthropogenic emissions sources in Western Europe, this supports the use of a swath 740 

close to 400 km in order the remove the influence of this instrument parameter on the ability to catchto ensure that the full 

extent of plumes from targeted sources nearin the center of the satellite field of view is caught. However, a narrower swath 



24 
 

would be sufficient for the large majority of cities which emit less than Paris, and thus have shorter plumes. This would 

impact the monitoring of the large megacities emitting more than 10 MtC/yr like Paris, which represent aroundmore than 9% 

of the emissions from cities and power plants over the globe (Wang et al., 2020), but section 3.2.2 shows that this impact is 745 

limited for Paris in most meteorological conditions as long as it the swath is larger than 250 km (90% of the cases for the 62 

days of inversion, not shown). A general conclusion from these results is that the swath is a less critical parameter than the 

pixel precision and resolution. 

Overall, these results support the reference configurations for the pixel resolution and precision and for the swath width that 

broadly correspond to the current ones for the CO2M mission, even though they suggest a relaxation of the spatial resolution 750 

to 2 km x 3 km and an extension of the swath up to 400 km. However, since this study does not account for technical and 

cost trade-offs between these parameters, it cannot provide a full assessment for their combination.  Furthermore, by flying a 

satellite any day over the areas of interest in the sensitivity tests, we restrained the role of the swath to covering a more or 

less important portion of the plumes, with a lack of sensitivity when the swath exceeds the plume length or when the wind 

blows along the satellite track. In practice, a critical role of larger swaths (like that of using more satellites in a constellation) 755 

is to increase the number of situations for which the plume from a given city can be seen, which is ignored in this study. 

Finally, the spatial resolution could also play a role when accounting for cloud cover since it could help to increaseing the 

spatial coverage. A more realistic simulation of the observation sampling by specific missions or constellations, with one or 

several satellites following real tracks and including the impact of cloud coverage and large aerosol loads, and some realistic 

technical constraints between the parameters, is needed to fully assess the right balance between higher precision, finer 760 

spatial resolution and larger swaths. 

 

Ability to monitor anthropogenic emissions at the regional, city and local scales 

 

At first, a qualitative overview of the atmospheric signatures could imply that the ability of the inversion system to quantify 765 

the budgets of emissions from most of the 84 large point sources and from the two megacities of Paris and London should be 

much larger than for smaller individual cities, and that countryside emissions should hardly be constrained by the inversion 

(section 3.1). However, Tthe quantitative analysis of the results from the OSSEs analysis described in section 3.3. however 

shows that the capacity of detection of the inversion system is equivalent for point sources and cities: uncertainties on in both 

type of sources emitting more than 2 MtC·yr-1 are reduced on average by more than 50% above an emission threshold of 2 770 

MtC·yr-1 when the resolution and precision of the satellite data are equal to 2 km × 2 km and to 0.6 ppm respectively, and 

when the prior uncertainties on in the fluxes have been set to 50% of the 6 h-budgets (section 3.3.1). With the same 

parameters, the threshold on the level of emissions to get such an UR is much higher (~10 MtC·yr-1) for the anthropogenic 

emissions of the countryside areas and forof the whole regions. Howeverbut, for these types of sources, the overall level of 

performance of the inversion system is still comparable to that for point sources and cities: for the 67 regions considered in 775 

this study, the mean URs for the total emissions and for the countryside emissions are of 37% and 27.4% respectively 
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(section 3.3.1.). The relatively lower performance of the inversion system to monitor the countryside and regional 

anthropogenic emissions could be partly related to the impact of the biogenic fluxes on the determination of these types of 

emission sources contrary to the point sources and cities (section 3.3.2). Beside these sensitivities to the emissionssource 

amplitudes and to the level of uncertaintiesy in biogenic fluxes, the variations in uncertainty reductionsURs are also driven 780 

by the wind (sections 3.2.1 and 3.3.1) and by the potential loss of part of the atmospheric signatures of sources at the edges 

of the satellite swath (section 3.2.2).   

We have also addressed investigated the capacity of the inversion system to deal with the overlapping of XCO2 plumes 

produced by nearby sources (section 3.3.3). As satellite images give snapshots of the XCO2 distribution at a given time 

(11:00) and as atmospheric transport mixes the contribution of the different sources over the 6 hours before the satellite 785 

overpass, it is important to assess the ability of the inversion system to disentangle the information coming from different 

sources at different times. With the hypothesis adopted in this study, most point sources and cities can be independently 

monitored independently by the inversion system. This ability could be partly related to the high-resolution modeling that 

allows describing and catching the fine scale patterns of the XCO2 signatures of the point sources even if the inversion is 

weakly sensitive to patterns at scales <4 km (Fig. 11).  790 

Beyond the capacity to monitor separately the emissions of point sources, urban and countryside areas, the additional benefit 

of separately controlling separately these emissions within a given region is the mitigation of the so-called aggregation errors 

(Kaminski et al., 2001) when inverting the total budget of a region. In analytical inversions, these errors arise when a control 

of the emissions at a too coarse resolution limits too much the ability to fit the actual spatial distribution of the emissions and 

of the concentrations. These errors are evidenced for our study by inverting regional budgets without considering any 795 

internal separation into cities, point sources or countryside areas in the control vector: with such a configuration, the results 

are indeed significantly and wrongly more optimistic than the ones obtained with the inversions that consider use this 

subdivision (Fig. A2). 

 

An optimistic framework 800 

 

This study aims at assessing the projection of only the sampling and observation random noise into the emission estimates. It 

combines optimistic assumptions that prevent from assuming that the level of posterior uncertainties achieved in the OSSEs 

here should correspond to that of the inversions with real data. The ability of the inversion system to separately monitor 

point sources and cities (section 3.3.3) and to quantify regional budgets of diffuse emissions is partly due to the underlying 805 

assumption made in this study that the atmospheric transport is perfectly known. We ignored the transport modeling errors 

and implicitly supposed that the position and extent of the city or point sources XCO2 plumes from cities or point sources are 

perfectly simulated. Accounting for the transport modeling errors by assuming that they can be described as a random noise 

uncorrelated in space and time, as is usually done in atmospheric inversions, would not fundamentally change the results of 

this study. The impact of such an error would be equivalent to decreasing the precision of the observations.  However, as a 810 
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consequence of errors in the wind speed and direction, or in the structure of the CO2 transport model itself, the simulation of 

narrow and localized plumes can poorly match the actual ones and strongly affect the inversion of the emissions from point 

sources and cities. The actual signature of diffuse emissions could also be different in terms of shape, and extent from the 

actual one. An inversion procedure that would simultaneously control both transport parameters and CO2 emissions within a 

coupled meteorological-CO2 transport model (Kang et al., 2011) may partially address these issues although it would greatly 815 

increase the complexity of the inversion, in particular by introducing potentially large non-linearities in the observation 

operator. New methods based on imagery processing (Corpetti et al., 2009), plume detection (Kuhlmann et al., 2019), 

Gaussian plume modeling (Nassar et al., 20176) or direct computation of fluxes through detected plumes may also help 

overcomeing realistic transport uncertainties to invert the emissions corresponding to point sources and cities (Varon et al., 

2018). However, these methods may hardly deal with diffuse emissions whose signatures have low amplitudes, and should 820 

be difficult to detect in XCO2 images. The recovering of countryside emissions and of regional budgets of the emissions may 

thus be optimistic in this study.  

Moreover, the configuration of our inversion system uses many of the traditional assumptions of atmospheric inversions 

systems among which the rather simple characterization of some the sources of uncertainties by with Gaussian distributions, 

which may underestimate their impact in the inversions. Furthermore, some sources of observation errors, such as the so-825 

called systematic errors which bear spatial correlations, are purposely ignored in the present study. Such errors exacerbate 

the problem of the identification of the signatures of point source, city to diffuse emissions in addition to have a larger error 

budget than random noise on at the spatial scales of such signatures. There is a clear need to assess the impact of such 

correlated errors with a similar system than the one presented in this study. Lastly, the extent of the observation sampling is 

made rather optimistic by ignoring cloud cover and the loss of data due to large aerosol loads. In a general way, the results of 830 

this study could be seen as optimistic and as an upper limit of the skill of the inversions using satellite images only but, also 

as good indicators of the sensitivity of the uncertainty reduction to various parameters and drivers.  

Broquet et al. (2018) provided insights into the impact of cloud cover and systematic errors in the XCO2 images. They used 

realistic simulations of satellite samplings and errors made for the CarbonSat mission by (Buchwitz et al. 2013a). Results 

have indicated that, when accounting for cloud cover, the satellite data could efficiently constrain emissions from Paris only 835 

~20 days per year, and that the impact of the systematic errors anticipated for that mission is such that the system would 

hardly be able to reduce errors in the emission estimates if such these errors are not filtered or controlled for. However, 

eEfforts have been made to limit the amplitude of such systematic errors in the concept of the new CO2M mission.  

Our new inversion framework allows accounting for a realistic simulation of the observation sampling and errors. 

Nevertheless, generating simulations of the systematic errors from the retrieval of XCO2 data that are suitable for the purpose 840 

of our study would have been difficult. Systematic errors are not described in the uncertainties computed by existing 

retrieval schemes. Furthermore, they depend on specific measurement configurations and on the evolving skill of radiative 

transfer inverse models and of empirical bias-correction systems, so that their characterization based on diagnostics with 

existing missions may hardly apply to future ones. Simulating realistic patterns of cloud cover consistent with the 
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meteorology for the different test cases investigated would have also been challenging. Finally, this study focuses on other 845 

parameters to allow exploring the sensitivity of the inversions to these parameters in depth.  

In order to raise insights into the impact of errors with spatial patterns such as model and systematic errors, we have 

conducted experiments where spatial correlations are included in the observation error (in the R matrix). We have tested 

isotropic and homogeneous spatial correlations exponentially decaying with distance, using various correlation lengths. The 

experiments and results are described in Appendix A since they are out of the scope of this study. The results indicate that 850 

including correlations in the observation errors tends to increase the budget of observation errors and thus to increase the 

posterior uncertainties in the flux estimates as long as the correlation length scale does not exceed that of the signature of the 

fluxes in the XCO2 images. However, including correlations in the observation errors also tends to increase the ability to 

distinguish between the patterns of the observation error and of the signatures of the fluxes, and thus to decrease the 

posterior uncertainties, so that for large spatial correlation lengths, increasing the correlation length leads to a decrease of the 855 

posterior uncertainties. In our tests, the worst situation for the monitoring of the emissions in the study area corresponds to 

~10 km correlation length scales. These results should be interpreted cautiously since the spatial patterns of the model and 

systematic errors are more complex than this traditional but simple modeling of spatial correlations and since in these tests, 

the inversion system if perfectly informed about the statistics of the observation error. In particular, fFuture studies will 

integrate more realistic simulations of observation sampling and errors from different concepts of spaceborne imagery, based 860 

on radiative transfer inverse modeling applied to realistic fields of surface and atmospheric conditions and instrumental 

specifications. 

A last significant simplification of the general problem of the inversion of the anthropogenic emissions based on XCO2 data 

has been stressed by Ciais et al. (2020). Anthropogenic emissions of CO2 bear a major share of emissions from biofuel 

combustion which can hardly be separated spatially from the fossil fuel combustion component. Furthermore, the emissions 865 

of CO2 by human respiration represent a significant portion of the total CO2 emitted from cities. The XCO2 data and the 

atmospheric inversion approaches can hardly be used to distinguish between these different components if it cannot rely on 

complementary data. This factor was ignored here, as well as in most of the studies dedicated to the inversion of 

anthropogenic CO2 emissions at city to regional scales. 

 870 

Exploiting further capabilities of the inversion framework: potential of complementary observation systems and results at 

larger temporal scales  

 

Our analysis is restricted to a window from 5:00 to 11:00 corresponding to the period which might be constrained by the 

satellite observation from a heliosynchronous satellite with 11:00 local overpass time. This provides little information about 875 

the capacity of the inversion system to monitor daily to monthly budgets. To address this need and improve the results of the 

inversions, the modularity of our data assimilation framework could integrate multiple streams of data in order to increase 

the temporal and spatial coverage of the information (Moore et al., 2018; O'Brien et al., 2016). 
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In future studies, our inversion system could also integrate more realistic hypotheses concerning the description of the prior 

uncertainties in the emissions. Uncertainties in inventories are indeed difficult to characterize and this study assumed, rather 880 

arbitrarily, that the relative error foruncertainty in the 6h budgets was of 50% or 100% (section 2.4). We also assumed that 

the prior uncertainties had low temporal correlations, i.e. correlation over timescales of less than 6h, and we neglected the 

spatial correlations between the budgets for the different point sources, cities and countryside areas. Actual anthropogenic 

emissions and inventories have complex cycles at daily and weekly scales together with a large temporal and spatial 

variability. There is still a critical lack of knowledge and of characterization of the correlations in the uncertainties in the 885 

inventories (Wang et al. 2018, Wang et al., 2020). However, some extensive analyses are now conducted to fill this gap 

(Super et al., 2020). wWe can expect some stronger spatial and temporal connections than assumed in this study, which 

would increase the transfer of information from the atmospheric observations, i.e. both the uncertainty reduction for the 

sources and time windows covered by the observations, and the uncertainty reduction for other sources, time windows, and 

for large spatial and temporal scales. 890 

Appendix A: testing the impact of spatial correlations in the observation error 

When addressing the impact of errors from the atmospheric modeling and observation, our study focuses on the random 

error from the satellite instrumental noise which is assumed not to bear spatial correlations (following, e.g., Buchwitz et al., 

2013a). It does not study the impact of two major sources of uncertainties in the inversions: the transport modeling errors 

and the systematic errors in the XCO2 retrievals from the inverse radiative transfer modeling (Hobbs et al., 2017). These 895 

errors raise spatial correlations in the overall observation errors (Worden et al., 2017; Broquet et al., 2018).  

Beside the need to limit the scope of the study to a reasonable extent, one reason for not studying the impact of these errors 

here is that they depend on the specific modeling and measurement configurations and on the evolving skill of transport and 

radiative transfer models and of empirical bias-correction systems (see, e.g., the dramatic improvement of the agreement 

between NASA's Orbiting Carbon Observatory-2 retrievals and reference ground-based retrievals between version 7 and 900 

version 8 of NASA's algorithm in Fig. 18 of O’Dell et al., 2018). Therefore, conclusions from existing missions may hardly 

apply to future ones. Another reason is that there are characterized empirically and that we still lack of robust and theoretical 

ways to describe them. However, in order to feed the discussion and perspectives regarding such errors, we provide here a 

first exploration of the impact of spatial correlations in the observation errors. 

A traditional way to model spatial correlations between observation errors is to assume that they decrease with the distance, 905 

and that they are isotropic and homogeneous in terms of spatial scale (Chevallier, 2007). Therefore, we model such 

correlations using exponentially decaying functions (exp(-d/D)) of the distances d between two observation pixels, the 

parameter D defining the correlation length scale. Their inclusion in R (sections 2.3.1) is tested by applying such correlations 

to the total observation errors, i.e., not defining the total observation errors has a combination of spatially correlated and 

uncorrelated errors, but as a single component with spatial correlations. This choice eases the analysis of the impact of 910 
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spatial correlations here, which aims at raising first general insights on the behavior of the inversion when including them 

rather than at providing a quantification of such an impact.  

In a new set of tests with our inverse modeling framework, we use the set-up which covers the sources over most of the 2-km 

resolution model subdomain based on 900 km wide XCO2 images (section 3.3). We set R with a 1-sigma uncertainty of 0.3 

ppm for all XCO2 data, and with D=10, 50 or 100 km. In order to lighten the computations associated with the inversion of a 915 

matrix R that is no longer diagonal (Eq. 2), we perform the inversions by considering observations with 4 km resolution 

pixels rather than 2 km resolution ones. The choice of a data precision of 0.3 ppm allows thus to get results for a 

configuration that is close to the reference one (with data resolution and precision of 2 x 2 km2 and 0.6 ppm respectively; see 

section 3.2.2 and 4 regarding the similarity of the results from the inversions done with a given instrumental precision and 

resolution and the inversions done with an instrumental precision twice smaller and a resolution four times larger). 920 

When introducing correlations with small spatial scales (D=10km), the uncertainty reductions for all type of emission 

sources are lower than for the inversions performed without correlations within the R matrix (Fig. A3). When using 

D=50km, this is still true for most of the cities and for countryside and regional emission areas. However, the uncertainty 

reductions get larger than when ignoring spatial correlations for all point sources (except 2) and the cities that emit less than 

~25MtC/year.  Finally, when using D=100km, the uncertainty reductions get larger than when ignoring spatial correlations 925 

for all point sources, all cities emitting less than 40MtC/year, and a significant number of countryside and regional emission 

areas. (i) This behavior, (ii) the analysis of images of the plume from Paris with the different types of observation errors 

tested here (Fig. A4), (iii) the fact the cities with the largest emission rate are generally also those with the largest spatial 

extent, and (iv) the fact the sources with larger emission rates have an atmospheric signature which can be distinguished on 

larger spatial extent, lead us to the following interpretation of the impact of the spatial correlations in R:  930 

- when introducing correlations with small spatial scales in R, the posterior uncertainties in flux estimates increase 

since these correlations yield larger budget of observation errors at the scale of the signatures of the targeted fluxes. 

This impact tends to saturate when the spatial correlation scale in R reaches and gets larger than the scale of the 

signatures of the targeted fluxes. 

- conversely, the increase of the correlation scales helps the inversion separate the observation error patterns from 935 

these signatures.  

- These two opposed effects lead to a worst case in terms of posterior uncertainties in the emission estimates that 

correspond to correlation scales in R that are function of the scale of the flux atmospheric signatures. In particular, 

it varies depending on whether we analyze results for point sources, cities or widespread emissions across regions.  

These insights into the impact of spatial correlations in R call for further investigations. In particular we should test more 940 

complex patterns that could better correspond to actual model and systematic retrieval errors (e.g. following surface and 

atmospheric structures). We should also challenge the potential of the inversion to separate such structured observation 

errors from flux atmospheric signatures in conditions where this inversion is not perfectly informed about the error spatial 

correlations. 
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Figure 1: Maps of the IER annual emissions interpolated over the domain of the CHIMERE model. Point sources are indicated by 1080 
black dots and administrative regions by thin black lines. The grid of the model is defined by sub-domains with several resolutions 
(r×s km2 where r and s=2, 10 or 50 km) and whose boundaries are represented by the red lines. The thick black lines depict the 
edges of the satellite tracks corresponding to the synthetic data used in this study (300 km swath: dash-dotted line, 900 km swath: 
solid line). 
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Figure 2: IER emission maps interpolated over nNorthern France, wWestern Belgium and the London area (a). We have 
represented the anthropogenic emission sources without point sources ("area emissions"). Red curves depict the boundaries of the 1095 
city clusters defined by a pattern recognition algorithm (Section 2.2.3.). Panels (b) and (c) show the simulations of XCO2 (ppm) on 
May the 23rd at 11am that are produced respectively by the area and total anthropogenic emissions between 5:00 and 11:00. Point 
sources are indicated by black dots in panel (c). In panel (d), simulations of XCO2 (ppm) on May the 23rd at 11am that are 
produced altogether by the anthropogenic, natural and boundary fluxes between 5:00 and 11:00.  For the sake of clarity, these 
figures do not show the whole 2 km-resolution sub-domain of CHIMERE, but illustrate the patterns seen over this subdomain 1100 
well. 

 



36 
 

 

 

 1105 

 

 
Figure 3: Uncertainty Reductions (UR) from a 50% prior uncertainty on the 6 h-budgets of the Paris emissions for 12 days 
characterized by different average wind speeds over Paris (a). URs for hourly and 6 h-budgets of the Paris emissions are shown by 
color dots and red segments respectively. In panel (b) are shown prior vs. posterior uncertainties on 1h-emissions (color dots) and 1110 
6h-emissions of Paris (green and red segments). In panels (a,b), the colors of the dots represent the hour of the corresponding 1 h-
budget; the green dots are for the prior uncertainties on the 1 h-emissions (1hB prior σ) which are derived from 50% prior errors 
on the 6h-budgets (6hB prior σ) and by considering temporal prior correlations of 3 hours. Panel (c) shows correlations between 
posterior uncertainties in 2 consecutive 1 h-emissions (color dots). Results are computed with a retrieval resolution of 2 km×2 km, 
a precision of 0.6 ppm and a swath of 300 km. 1115 
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Figure 4: Uncertainty Reductions (UR) from a 50% prior uncertainty for the 6 h-budgets of the Paris emissions. In panels (a)-(d), 
results are displayed for 4 different days characterized by different wind speeds, for different spatial resolutions of the satellite 
data (x-axis) and for different precisions (color markers). For the panels (a)-(d), results are generated by considering a swath of 
300 km. In panels (e)-(h), results are displayed for 4 different days characterized by different wind speeds, for different swaths of 1120 
the satellite data (x-axis), for different precisions (color markers) and for a resolution of 2 km by 2 km. 
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Figure 5: Uncertainty Reductions (UR) as a function of the prior uncertainty (x-axis) for 6 h-budgets of the Paris emissions (a,b). 
Correlations between the prior errors on hourly emissions have a temporal length of 3 hours (see section 2.4). Panels (c,d) show the 1125 
URs for the hourly emissions between 5h and 11h (x-axis) for several temporal lengths defining the correlations between prior 
errors on hourly emissions (color dots), legend “τ 0h” being for an absence of such correlations. Prior uncertainties on 6 h-budgets 
of Paris emissions are taken equal to 50% in panels (c,d). Columns represent 2 different inversion days: March 2016 the 3rd 
(strong wind) and March 2016 the 10th (low wind). All inversion results are computed with a retrieval resolution of 2 km × 2 km, a 
precision of 0.6 ppm and a swath of 300 km. 1130 
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Figure 6: Mean Uncertainty Reductions (UR) for some city clusters (a) and some point sources (b) across the 62 inversion results 
of the days of March and May 2016. The areas and colors of the disks represent the annual emissions (MtC·yr-1) and the URs (%) 
respectively. The inversions are performed with a retrieval resolution of 2 km × 2 km, a precision of 0.6 ppm and a swath of 900 1135 
km. Prior uncertainties on 6h-budgets of clusters and point sources emissions are taken equal to 50% and prior error correlations 
have a temporal length of 3 hours. 
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Figure 7: Mean values and standard deviations of the Uncertainty Reductions (UR) for the emissions of point sources (a), urban 
areas (b), countryside areas (c), and regions (d) across the 62 inversion results of the days of March and May 2016. The lines 
represent the averages of the temporal mean values across all sources of a given type. The emitting areas are chosen within the 2-
km-resolution domain of the model so that they are covered by the satellite track in order to avoid swath effects. Results are given 1145 
as a function of the annual emissions (x-axis) of the emitting areas. The inversions are performed with a retrieval resolution of 2 
km × 2 km, a precision of 0.6 ppm and a swath of 900 km. Prior uncertainties on the 6 h-budgets of the point sources, urban and 
countryside areas are taken equal to 50% (orange squares) and to 100% (blue squares). Prior uncertainties on the regional 
budgets are derived by aggregation of the prior uncertainties on their constituent emitting sources for both cases. Prior error 
correlations between hourly emissions have a temporal length of 3 hours. 1150 
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Figure 8: (a) Mean values and standard deviations of the Uncertainty Reductions (UR) for the regions, point sources, urban and 
countryside areas constituting 4 Belgium regions. Averaging is performed across the 62 inversion results of the days of March and 
May 2016. (b) Mean values and standard deviations of the relative post uncertainty for each emitting area. Prior uncertainties are 1155 
represented as well. Prior uncertainties in the regional budgets are derived by aggregation of the prior uncertainties of their 
constituent emitting sources (mean value ~33%). Panel (c) shows the mean 6-hours budgets for each emitting area. The inversions 
are performed with a retrieval resolution of 2 km × 2 km, a precision of 0.6 ppm and a swath of 900 km. Prior uncertainties on the 
6h-budgets of the point sources, urban and countryside areas are taken equal to 50% and prior error correlations between hourly 
emissions have a temporal length of 3 hours. 1160 
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Figure 9: Same as Fig. 7 but results are derived from inversions considering the anthropogenic emissions only (blue markers) and 
from inversions considering the natural fluxes as well (orange markers). Prior uncertainties on the 6 h-budgets of the point 
sources, urban and countryside areas are taken equal to 50% and prior error correlations between hourly emissions have a 1165 
temporal length of 3 hours. Prior uncertainties on the regional budgets are then derived by aggregation of the prior uncertainties 
of their constituent emitting sources (mean value ~33%). 
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Figure 10: a) Post variances of the emission estimates for pairs of anthropogenic sources contained within a same region function 1170 
of the covariances between the individual sources of the pairs. The colors of the markers correspond to the UR of the pairs. b) For 
a pair of anthropogenic sources contained within a same region, UR of one individual source function of the UR of the other 
individual source of the pair. The colors of the markers correspond to the UR of the pairs. The regions corresponding to this plot 
are contained within the 2 km-resolution area of the model. Results are derived with an instrumental resolution of 2 km × 2 km, a 
precision of 0.6 ppm and a swath of 900 km. Prior uncertainties on the 6 h-budgets of the point sources, urban and countryside 1175 
areas are taken equal to 50% and prior error correlations between hourly emissions have a temporal length of 3 hours. Pair of 
anthropogenic sources are made up of point sources and of urban and countryside areas. 
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Figure 11: Same as Fig. 7 but the inversions are performed with different retrieval resolutions and precisions (swath=900 km). 1180 
Prior uncertainties in the 6 h-budgets of the point sources, urban and countryside areas are taken equal to 50%. 
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Figure A1: Same as Fig. 7 but relative posterior uncertainties are shown instead URs. 1195 
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Figure A2: Mean values of the Uncertainty Reductions (UR) of the emissions at the regional scale across the 62 inversion results of 
the days of March and May 2016. Results are given function of the annual emissions (x-axis). Regional emissions are inverted with 
(blue markers) and without (orange markers) considering an internal separation of the region into cities, point sources or 1200 
countryside areas. 
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Figure A3: Uncertainty reductions (UR) for the emissions of the point sources (1st row), the urban areas (2nd row), the countryside 
areas (3rd row) and the regions (4th row) when considering spatial correlations (Y-axis) or no correlations (X-axis) between the 1205 
observation errors. The 1st, 2nd and 3rd column correspond to correlations with a spatial scale of 10, 50 and 100 km respectively. 
The color of the dots corresponds to the annual budgets of the sources (color bar on the right of the figure). The dashed line is the 
1:1 line. 
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 1210 
Figure A4 : XCO2 distributions produced by the emissions of the Paris area between 5:00 and 11:00 on March the 8th at 11:00: raw 
CHIMERE simulations (top left figure), raw CHIMERE simulations perturbed by an uncorrelated random noise of 0.6 ppm (top 
right figure), raw CHIMERE simulations perturbed by a multivariate normal distribution whose covariance matrix is 
characterized by an uncertainty of 0.6 ppm for the diagonal terms and a correlation length scale of 10 km (bottom left figure) and 
of 100 km (bottom right figure).  1215 
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