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Abstract. This work presents a flux inversion system for assessing the potential of new satellite imagery measurements of 

atmospheric CO2 to monitor anthropogenic emissions at scales ranging from local intense point sources to regional and 10 

national scales. Such imagery measurements will be provided by the future Copernicus Anthropogenic Carbon Dioxide 

Monitoring Mission (CO2M). While the modeling framework keeps the complexity of previous studies focused on 

individual and large cities, this system encompasses a wide range of sources to extend the scope of the analysis. This 

atmospheric inversion system uses a zoomed configuration of the regional transport model CHIMERE which covers most of 

Western Europe with a 2-km resolution grid over northern France, western Germany and Benelux. For each day of March 15 

and May 2016, over the 6 hours before a given satellite overpass, the inversion controls separately the hourly budgets of 

anthropogenic emissions in this area from ~300 cities, power plants and regions. The inversion also controls hourly regional 

budgets of the natural fluxes. This enables the analysis of results at the local to regional scales for a wide range of sources in 

terms of emission budget and spatial extent while accounting for the uncertainties associated to natural fluxes and the 

overlapping of plumes from different sources. The potential of satellite data to monitor CO2 fluxes is quantified with 20 

posterior uncertainties or uncertainty reductions (URs) from prior inventory-based statistical knowledge.  

A first analysis focuses on the hourly to 6-hour budgets of the emissions of the Paris urban area, and on the sensitivity of the 

results to different characteristics of the images of vertically integrated CO2 (XCO2) corresponding to the spaceborne 

instrument: the pixel spatial resolution, the precision of the XCO2 retrievals per pixel, and the swath width. This sensitivity 

analysis provides a correspondence between these parameters and thresholds on the targeted precisions of emission 25 

estimates. However, the results indicate a large sensitivity to the wind speed and to the prior flux uncertainties. The analysis 

is then extended to the large ensemble of point sources, cities and regions in the study domain, with a focus on the inversion 

system ability to monitor separately neighbor sources whose atmospheric signatures overlap and are also mixed with those 

produced by natural fluxes. Results highlight the strong dependence of uncertainty reductions to the emission budgets, to the 

wind speed and on whether the focus is on point or area sources. With the system hypothesis that the atmospheric transport is 30 

perfectly known, the results indicate that the atmospheric signal overlap is not a critical issue. All the tests are conducted 
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considering clear-sky conditions and the limitations from cloud cover are ignored. Furthermore, in these tests, the inversion 

system is perfectly informed about the statistical properties of the various sources of errors that are accounted for and 

systematic errors in the XCO2 retrievals are ignored so that the scores of URs are assumed to be optimistic. For the emissions 

within the 6 hours before a satellite overpass, URs of more than 50% can only be achieved for power plants and cities whose 35 

annual emissions are more than ~2 MtC·yr-1. For regional budgets encompassing more diffuse emissions, this threshold 

increases up to ~10 MtC·yr-1. The results suggest therefore an imbalance of the monitoring capabilities of the satellite XCO2 

spectro-imagery towards high and dense sources. 

1. Introduction 

Comprehensive information about anthropogenic CO2 emissions integrated at the scale of power plants, cities, regions and 40 

countries up to the globe would allow decision makers to track the effectiveness of emission reduction policies in the context 

of the Paris Agreement on Climate and other voluntary emission reduction efforts. By observing the CO2 plumes downwind 

of large cities and industrial plants, and atmospheric signals at a few to several hundred km scales, future high-resolution 

spectro-imagery of the column-average CO2 dry air mole fraction (XCO2) from space may help addressing this need (Ciais et 

al., 2015; Pillai et al., 2016; Pinty et al., 2017; Schwandner et al., 2017; Broquet et al., 2018). The Copernicus 45 

Anthropogenic Carbon Dioxide Monitoring mission (CO2M, (Pinty et al., 2017)) is a prominent example of such a strategy. 

The CO2M concept relies on a constellation of sun-synchronous satellites with XCO2 spectral-imagers to be deployed from 

2025 by the European Commission and the European Space Agency (ESA). It will be based on passive radiance 

measurements in the Short-Wave InfraRed (SWIR), a part of the spectrum that is sensitive to CO2 and CH4 concentrations 

throughout the troposphere including the boundary layer, like almost all the space missions that have been dedicated to 50 

Greenhouse Gas (GHG) monitoring so far (Crisp, 2018).    

Much remains to be understood and to be developed in order to ensure that such a constellation informs about emissions with 

enough detail to be relevant for policy makers. In this context, Observing System Simulation Experiments (OSSEs) of 

atmospheric inversions with synthetic images of XCO2 data have supported the design of the space missions that will 

monitor the anthropogenic emissions (Buchwitz et al., 2013b; Pillai et al., 2016; Broquet et al., 2018). So far, they have 55 

mainly focused on plume inversions for some large plants and cities. However, Wang et al. (2019) estimated that cities and 

plants emitting more than 10 MtC·yr-1 like Berlin (in the study by Pillai et al. (2016)) and Paris (in the study by Broquet et al. 

(2018)) represent less than ~7% of the global CO2 emissions. Furthermore, the studied cases are generally quite isolated 

from other large CO2 sources, facilitating the distinction of their plumes in the XCO2 images, while plumes from neighbor 

sources could overlap and hamper the attribution to the targeted city or plant. Finally, the signature of emissions in 60 

spaceborne imagery does not consist only of clear plumes from cities, industrial clusters and point sources. Despite the large 

atmospheric signature of the natural fluxes, atmospheric inversions may have the potential to exploit other spatial variations 

in XCO2 fields to quantify regional to national budgets of more diffuse sources or of all types of sources, even when the 
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overlapping of several plumes prevent from quantifying the emissions from individual cities and point sources. Therefore, 

there is a need to extend the OSSEs to a representative range of sources with various emission budgets and spreads, and 65 

various distances to other major sources, and to a larger range of spatial scales.   

We have developed a high-resolution inversion system for the monitoring of CO2 anthropogenic emissions at spatial scales 

ranging from local intense point sources like industrial sites to regional and national scales. Furthermore, this system 

accounts for the uncertainty in the natural fluxes. Our current simulation domain covers most of Western Europe with an 

extensive ensemble of cities, plants and diffuse CO2 emissions. We use an analytical inversion methodology, which is the 70 

most adapted approach to efficiently test a large number of observation scenarios (section 2.1.2.), a high-resolution 

atmospheric transport model (section 2.1.1) and a high spatial resolution distribution of the emissions derived from different 

inventory products developed by the Institut für Energiewirtschaft und Rationelle energieanwendung (IER) of the University 

of Stuttgart (section 2.2).  

The analytical inversion system follows the traditional Bayesian formalism of the atmospheric inversion. Of direct relevance 75 

here, it derives uncertainty statistics of its “posterior” emission estimates for the controlled sources (plants, cities, 

countryside areas or whole regions) from: i) the assumed uncertainties in the budgets derived from “prior” emission 

inventories (built on statistics of the fossil fuel consumption, activity data and emission factors), ii) the spaceborne XCO2 

observation sampling and precision, and iii) its atmospheric transport model. The improvement of the knowledge on the 

emissions enabled by the satellite imagery is quantified here in terms of “uncertainty reduction”, i.e. of the relative 80 

difference between the prior and posterior uncertainties. 

The inversion system solves for hourly budgets of the emissions from the different types of sources over the 6 hours before 

the satellite observation of the corresponding area. Indeed, Broquet et al. (2018) showed that, due to atmospheric diffusion, 

the atmospheric signatures of emissions from a mega-city like Paris that are detectable in satellite XCO2 images (made with 

current measurement capabilities) correspond approximately to the city emissions occurring within less than 6 hours before 85 

the satellite overpass. This duration should be even shorter for the range of sources analyzed in our study since most of them 

have lower emissions than Paris. The analysis of the results will primarily focus on the 6h-budgets of the emissions before 

the satellite observation. However, controlling the hourly budgets allows evaluating the capability to solve for the temporal 

profiles of the emissions. It also allows accounting for some level of independence between uncertainties in the emissions 

from different hours, which limits the ability to cross and extrapolate information throughout the 6-hour windows. This point 90 

is critical for cities whose detectable atmospheric signatures are representative of emissions on durations shorter than 6 

hours, and thus for which there is no direct constraint from the satellite observation on the first hours of such 6-hour 

windows. 

The OSSEs presented in this study use a rather simple simulation of the XCO2 observation sampling and errors from a single 

helio-synchronous satellite over the area of interest. The aim is indeed to provide a general understanding of the performance 95 

of the inversion system and of its potential to monitor anthropogenic emissions with spaceborne XCO2 imagery rather than 

to evaluate a precise mission configuration with precise orbital parameters and instrumental specifications. In terms of errors 
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in the XCO2 data, the analysis focuses on random errors due to the instrumental noise that have no spatial correlations (even 

though the topic is explored in Appendix A). Nevertheless, a large range of values for the precision (assumed to be 

homogeneous in the satellite field of view), horizontal resolution and swath of the spaceborne instrument are tested to assess 100 

the impact of these parameters on the inversion results, which can potentially support the design of future missions (section 

3.2.). 

Furthermore, in order to get a wide range of atmospheric transport conditions (in particular of average wind speeds, (Broquet 

et al., 2018)) and natural flux conditions (Pillai et al., 2016), inversions are performed for each day of March and May 2016. 

We work with full images of the plumes from the targeted sources each day, by flying a satellite any day in their vicinity 105 

with a large swath. Partial images of the plumes will be analyzed when studying the sensitivity to the swath width (over 

Paris) only. The cloud cover and large aerosol loads, and the corresponding gaps in the spaceborne passive XCO2 sampling 

are ignored. In any case, the satellite crosses the area of interest at 11:00 (local time used hereafter) similar to what is 

currently recommended for the CO2M mission (Pinty et al., 2017), so that the inversion controls the hourly emissions of the 

sources between 5:00-11:00. 110 

The inversion system and the corresponding transport model extend from southern France to northern Germany and from 

western UK to eastern Germany (Fig. 1). However, the grid of the transport model is zoomed and the analysis focuses on a 2 

km-resolution sub-domain covering the north of France (in particular Paris), south east England (in particular London), west 

Germany, Belgium, Luxembourg and the Netherlands. 

The first part of the analysis concerns the monitoring of the emissions of Paris and its suburb, which represent the most 115 

populated and densest urban area of Europe. Broquet et al. (2018) chose this megacity as a study case because its emissions 

are high (~11-14 MtC·yr-1 for 2013 according to the AIRPARIF inventory (Staufer et al., 2016; AIRPARIF 2013)), 

concentrated and relatively distant from other major sources. Moreover, the topography of the region is relatively flat and the 

average wind speed is moderate: 7 m·s-1 at 100 m above the ground level (Broquet et al., 2018). The XCO2 plume generated 

by the Paris emissions has a relatively simple structure that often emerges well from the background. Therefore, the 120 

monitoring of the emissions of Paris constitutes a very favorable case with respect to other cities in Europe. Broquet et al. 

(2018) performed some analysis of the sensitivities of the inversion results to the wind speed and to the XCO2 spaceborne 

spectro-imagery average precision and horizontal resolution. However, they tested a limited number of values for these 

observation parameters, and in particular few high precisions (< 2 ppm) and a single high spatial resolution value (< 4x4 

km2), while the refinement of the specification of new missions requires understanding of the sensitivity to choices of 125 

precision at the 0.1 ppm scale and of resolution at the 1 km2 scale. Indeed, these choices have large impacts on the design of 

the instrument and therefore on its cost (Pinty et al., 2017). Furthermore, Broquet et al. (2018) performed all their OSSEs 

with an unique hypothesis on the prior uncertainties in the 1-hour to 6-hour budgets of the emissions from Paris, while 

acknowledging that the specification of these prior uncertainties could have a significant impact on the results and that the 

uncertainties in the inventories at such a temporal scale are difficult to assess. Therefore, this study performs a deeper 130 
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investigation of the sensitivity to the observation precision and spatial resolution, to the wind speed and to the 

characterization of the uncertainties in the prior estimate of the emissions (section 3.2). 

The second part of this study considers the full ensemble of sources, from point sources to regions, in the 2-km resolution 

sub-domain. This sub-domain encompasses the Netherlands, Belgium and western Germany which are characterized by 

densely populated areas distributed over a network of medium-sized towns and by a large number of strong point sources, 135 

with, for example, some power plants in western Germany emitting more than 5 MtC·yr-1. The ability of the inversion 

system to disentangle the plumes from neighbor sources is therefore well challenged in these areas. 

 This paper is organized as follows: section 2 details the theoretical and practical framework of both the inversion 

system and the OSSEs conducted in this study. Section 3 analyses the results relative to the monitoring of the emissions of 

Paris and in particular the corresponding sensitivity tests (section 3.2). This section also diagnoses the potential of the 140 

inversion system to monitor the anthropogenic emissions at the point source, city and regional scales in the area where flux 

and concentrations are simulated at 2-km resolution (section 3.3). Section 4 addresses the robustness and extent of the 

conclusions that can be derived from this study and proposes some perspectives regarding the analytical inversion system 

and the monitoring of anthropogenic emissions based on satellite data. 

2. Inverse modeling system and OSSEs 145 

In the following sections, we describe the different structural elements of the analytical inversion system: the gridded 

inventories used to define the point or area sources to be controlled, and to map their emissions (section 2.2), the simulation 

of the atmospheric CO2 and XCO2 signatures of the controlled sources using the atmospheric transport model CHIMERE 

and the matrix computation of the posterior uncertainties in the emissions (sections 2.1.1 and 2.3). We also describe the 

observations and parameters chosen for the OSSEs in this study: the XCO2 observation sampling and errors (section 2.1.2) 150 

and the prior uncertainties in the emissions, natural fluxes and boundary conditions (section 2.4). New OSSEs with the 

analytical inversion system can easily be conducted with other options for these observations and parameters. However, for 

the sake of clarity, the descriptions of i) the components of the inversion system and of ii) the options for the OSSEs are 

intertwined.  

2.1. XCO2: transport model simulations and pseudo-data 155 

2.1.1. Simulations of CO2 and XCO2 with the CHIMERE model 

To compute the 4D CO2 signatures of surface CO2 fluxes in the study domain and for March and May 2016, and of the 

domain CO2 boundary conditions, we use the regional atmospheric transport model CHIMERE (Menut et al., 2013). This 

Eulerian mesoscale model was designed to simulate pollution (Pison et al., 2007) but has also been used for CO2 

atmospheric inversions, and in particular for city-scale inversions of the emissions from Paris (Bréon et al., 2015; Staufer et 160 
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al., 2016; Broquet et al., 2018). It has shown high skill in simulating the daily and synoptic variability of the atmospheric 

CO2 concentrations at European CO2 continuous measurement sites (Patra et al., 2008). 

 The domain of our CHIMERE configuration covers most of Western Europe (Fig. 1) between latitudes ~42°N 

(northern Spain) and ~56°N (northern Germany) and between longitudes 6°W (eastern Ireland) and ~17°E (eastern 

Germany). The horizontal resolution of the zoomed grid of this configuration ranges from 2 to 50 km; the 2 km × 2 km 165 

resolution sub-domain being appropriate to simulate the atmospheric signature of a dense network of sources in northern 

France, Belgium, the Netherlands, Luxembourg and western Germany. The zoom and extent of the CHIMERE grid together 

link the simulation of CO2 at local scales in this area of interest with the transport of CO2 at the European scale while 

mitigating the computational cost. The model has 29 sigma vertical layers that extend from the surface to 300 hPa. Model 

concentration outputs are averaged at the hourly scale. The meteorological forcing is from the 9 km × 9 km- and 3-hour- 170 

resolution analysis of the European Center for Medium-Range Weather Forecasts (ECMWF). These three-hourly fields are 

interpolated at the spatial and temporal resolution of CHIMERE. The CO2 concentrations used to impose the conditions at 

the initial time and at the lateral and top boundaries of the CHIMERE domain are from the analysis of the Copernicus 

Atmosphere Monitoring System (CAMS, (Inness et al., 2019)) at ~16 km resolution. The products used to impose surface 

CO2 fluxes in the model are detailed below in section 2.2. 175 

XCO2 observations and the corresponding signatures of fluxes are simulated from the CO2 3D fields from CHIMERE at 

11:00. For the sake of simplicity in the OSSEs conducted here, since we use synthetic data only and a rather simple 

modeling of the spaceborne observation, the computation of XCO2 assumes that the vertical weighting function of the CO2 

column-averaging (kernel) is vertically uniform. For a given model pixel at latitude lat and longitude lon, XCO2 is thus 

computed from the vertical average of the CO2 mole fractions simulated by the model: 180 

XCO2(𝑙𝑎𝑡, 𝑙𝑜𝑛) =
∫ 𝐶𝑂2(𝑙𝑎𝑡,𝑙𝑜𝑛,𝑃)𝑑𝑃+𝐶𝑂2������(𝑃𝑡𝑜𝑝)𝑃𝑡𝑜𝑝
𝑃𝑠𝑢𝑟𝑓
𝑃𝑡𝑜𝑝

Psurf(lat,lon)
 ,       (1) 

where P designates the atmospheric pressure, Psurf the atmospheric surface pressure and Ptop (300hPa) the pressure at the top 

boundary of the model. For pressures lower than Ptop, we assume that the CO2 concentrations equal the horizontal average of 

the top-level mixing ratios in CHIMERE (𝐶𝑂2�����(𝑃𝑡𝑜𝑝)). Indeed, we do not expect significant spatial gradients of CO2 over the 

simulation domain in the upper atmosphere. This is supported by the lack of signal in our simulations of the atmospheric 185 

signatures of the surface fluxes in the upper layer of the model. 

2.1.2. XCO2 pseudo-data sampling and error 

As detailed in section 2.3 below, the OSSE framework of the inversions requires the location and time of the individual 

XCO2 data, and the associated error statistics, but not the explicit values of the synthetic observations themselves. In this 

study, we consider pseudo satellites with a Low Earth Orbit (LEO) whose altitude and inclination parameters are similar to 190 

the ones of the A-Train (705 km and 98.2° respectively, (Parkinson et al., 2006)). The satellite observations are assumed to 



7 
 

occur at 11:00 in the morning. Successive tracks of a single satellite on this orbit are distant by ~25 degrees. However, we do 

neither study the potential of a specific satellite nor that of a constellation of such LEO satellites depending on their number. 

Furthermore, this study focuses on results at the scale of 6 hours. Therefore, it considers single satellite tracks for any day 

that do not correspond to a specific positioning of a satellite on the chosen orbit: when studying the emissions of the Paris 195 

urban area, we use the track that is nearly centered on this city every day and various swaths are considered to study the 

sensitivity of the results to this parameter (section 3.2.2). For the study of results for the ensemble of sources contained 

within the 2-km sub-domain (section 3.3), we use a track centered over Belgium every day and a 900-km swath to ensure a 

full coverage of the plumes from these sources (the sensitivity to a realistic range of swath widths is not investigated in this 

second set of analysis). 200 

Our OSSEs assess the impact on the inversion results of the measurement noise from the satellite instrument only, ignoring 

the errors associated to the radiative transfer inverse modeling for the retrieval of the XCO2 data from the radiance 

measurements (Buchwitz et al., 2013a; Broquet et al., 2018), and in particular any “systematic error”. The errors on the 

XCO2 data at the spatial resolution of the measurements are thus assumed to be Gaussian, unbiased and uncorrelated in space 

or time. The distribution of the standard deviation (STD) for these errors is also assumed to be uniform and these errors are 205 

therefore summarized by a single value of STD (denoted the data precision hereafter).  

A large number of scenarios are tested for the observation specifications: the precision on the individual XCO2 data varies 

between 0.3 and 2 ppm, and the spatial resolution of the ground pixels can take the following values: 2 km×2 km (longitude 

× latitude), 2 km×3 km , 3 km×3 km , 3 km×4 km and 4 km×4 km. The reference is a precision of 0.6 ppm and a spatial 

resolution of 2×2 km2. These values are similar to the characteristics of the simulation of CO2M data used in the study of 210 

Wang et al. (2020). When studying the sensitivity of the results over Paris to the swath of the instrument, the swath is varied 

from 100 km to 600 km, with a reference value of 300 km. 

2.2. CO2 fluxes 

2.2.1. Maps and time-series of anthropogenic emissions and natural fluxes 

High resolution maps of anthropogenic emissions are needed to define appropriate point and areas sources to be controlled 215 

by the inversion. High resolution maps of anthropogenic and biogenic fluxes are also needed to distribute the controlled local 

to regional budgets of these fluxes on the spatial grid of the CHIMERE model. Finally, such maps are needed to provide 

insights into the typical budgets of fluxes at the control resolution, and thus to quantify the prior uncertainty in these budgets 

with a suitable order of magnitude.  

The anthropogenic CO2 emissions are extracted from several datasets compiled by IER (Pregger et al., 2007; 220 

Thiruchittampalam et al., 2012). These datasets provide maps of the annual budgets per sectors of anthropogenic activities 

over different domains, and at different spatial resolutions. We have merged and re-gridded them to derive a map of the 

annual budgets of emissions over the entire grid of the CHIMERE configuration. The emissions corresponding to France and 
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Germany are extracted from the respective IER national maps for 2005 at a 1-minute resolution, while emissions in Belgium, 

Luxembourg and the Netherlands are derived from an IER 1-km product covering northern Europe for 2005. The IER 5-km 225 

resolution map covering the whole Europe for 2008 is used for the emissions over the rest of the domain. The gridded spread 

sources in the IER maps are interpolated on the CHIMERE grid but the large point sources are relocated as point sources in 

individual CHIMERE grid cells. We then derive the hourly emission maps from the annual emission map by applying the 

convolution of IER typical temporal profiles specific to each country and sector. These profiles include seasonal, daily and 

diurnal variations of emissions for large sectors such as traffic, power demand, domestic heating or air conditioning (Pregger 230 

et al. 2007). 

The IER maps for France, Germany, northern Europe and the whole Europe correspond to annual budgets for years (2005 

and 2008) that can be different from one area to the other, and which are different from the year chosen for the atmospheric 

transport and for the natural fluxes (2016). This could raise some inconsistencies if assimilating real data in the inversion. 

However, this study is based on OSSEs with some strong simplifications regarding the observation system since the 235 

overarching target is a general understanding of the behavior and potential of the inversion. This requires the use of a high 

resolution and realistic distribution of the emissions in space and time, but not a precise estimate of their amplitudes for a 

given year. 

The land surface natural fluxes are derived from 8-km resolution simulations made with the Vegetation Photosynthesis and 

Respiration Model (VPRM) model for the year 2016. This prognostic model delivers hourly values of Net Ecosystem 240 

Exchange (NEE) by assimilating satellite and meteorological data (Mahadevan et al., 2008). These values of NEE are 

interpolated over the CHIMERE area at the hourly time scale. Natural ocean fluxes are ignored. 

2.2.2. Controlled areas 

The resulting hourly maps of anthropogenic CO2 emissions for spread sources and large point sources are decomposed 

spatially to define the areas for which hourly emission budgets are controlled by the inversion: large point sources, cities, 245 

remaining parts of regions from which point sources and cities have been extracted (covering diffuse emissions only), and 

full regions when point sources and cities are not controlled separately but altogether with the diffuse emissions. Hourly 

budgets of the natural fluxes are controlled for full regions only, the regions used for the control of anthropogenic and 

biogenic fluxes being identical. 

The definition of the regions is done considering the whole domain. It corresponds to administrative regions of France, 250 

Belgium, the Netherlands, Luxembourg and Germany, and to three additional large “regions”: the United Kingdom, 

Switzerland and the rest of the domain. This subdivision results in 67 regions (Fig.1). These 67 regions correspond to the 

spatial resolution of the natural fluxes in the inversion. 

Point sources and cities are controlled individually in the 2-km resolution part of the CHIMERE grid only (section 2.1.1., 

Fig. 1). In the 39 regions entirely comprised within this sub-domain, we individually control the 84 point sources (e.g., 255 

factories, power plants...) whose annual emissions are larger than 0.2 MtonC.yr-1. The maps of the remaining emissions 
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(excluding these point sources) in each of these 39 regions are then processed to extract large urban areas to be controlled 

independently, ensuring at least one controlled urban area per region, and that no controlled urban area overlaps two 

different regions. An algorithm of pattern recognition has been designed for such an extraction, with the idea that urban areas 

correspond to clusters of adjacent high emitting pixels (also followed by Wang et al. (2019)). After having applied a 260 

Gaussian filter to smooth the spatial distribution of the emissions, the large urban areas are defined by a label-connecting 

algorithm (Stockman et al., 2001) which identifies the clusters of adjacent points whose emissions are above a predefined 

threshold. As the density and extension of cities vary considerably amongst the different regions, the parameters of the 

pattern recognition algorithm, i.e. the standard deviation of the Gaussian filtering and the emission threshold, are different 

for each region to ensure that each region contains at least one controlled urban area (Fig. 2). As a result, we identify 152 265 

control urban areas within the 2-km resolution sub-domain. They are characterized by a wide range of budgets and spatial 

spread of their emissions, the annual budgets ranging between ~0.07 MtonC.yr-1 and ~9.9 MtonC.yr-1 (with a mean and a 

standard deviation of ~ 0.8 MtonC.yr-1 and ~1.5 MtonC.yr-1 respectively), and areas ranging from ~8 km2 to ~2400 km2 

(with a median value of ~240 km2).  

The remaining emissions, after having extracted the large point sources and urban areas in the 39 regions, are considered to 270 

be diffuse and called hereafter the “countryside” emissions. The inversion controls their budgets in each region. The analysis 

of the results at the regional scale for these 39 regions will consider either the countryside emissions only (i.e. focusing on 

the individual control variables), or their aggregation with the emissions from the point sources and cities within the same 

region (i.e. considering the full geographical extent of the regions). The inversion also directly controls the total budget of 

the emissions for the 28 regions that are not fully comprised in the 2-km sub-domain (most of these 28 regions do not 275 

overlap this sub-domain at all). Overall, the control of countryside or total regional emissions adds 67 controlled areas 

(corresponding to the 67 regions) for the anthropogenic emissions so that the inversion controls the hourly budgets of 

anthropogenic emissions for 303 areas (84 point sources, 152 urban areas and 67 countryside or regional areas) and the 

hourly budgets of natural fluxes for 67 areas. 

2.3. Analytical flux inversion 280 

2.3.1 Theoretical framework 

The inversion system follows a traditional analytical inversion approach based on the Bayesian formalism and assuming that 

error statistics follow Gaussian distributions (Tarantola et al., 1987; Broquet et al., 2018). The system controls factors that 

scale the hourly budgets of the different control areas for the anthropogenic and biogenic fluxes defined in section 2.2.2. It 

also controls a single scaling factor applied to the CO2 field used to impose the initial, lateral and top CO2 boundary 285 

conditions of the model, since such boundary conditions generally bear important large-scale uncertainties that can impact 

the estimates of sources within the domain (Broquet et al., 2018). In the OSSEs of this study, the inversion periods for each 

day in March or May 2016 cover the 6 hours (5:00-11:00) before 11:00, when the satellite observations are supposed to be 



10 
 

made. The number of control variables (2221 = 370 controlled areas × 6 time slots + 1 control variable for the boundary 

conditions), is sufficiently small to solve the inverse problem analytically. However, building the matrix H that encompasses 290 

the atmospheric transport operator and that is described below (section 2.3.2) requires a large computational burden. 

For a given inversion period, we define the control vector x as the set of controlled scaling factors for the hourly flux budgets 

and the boundary conditions. The prior uncertainty in x is assumed to follow a Gaussian distribution and to be unbiased. It is 

thus characterized by the uncertainty covariance matrix B.  

In this study, the observation vector y is defined by the XCO2 concentrations in the transport model horizontal grid cells 295 

sampled by the observations. The simulation of y based on a given estimate of x is given by the linear observation operator 

H: x → y=Hx, which chains three operators. The first operator Hdistr distributes the controlled hourly budgets of emissions in 

space within the controlled areas, and provides the spatial and temporal mapping of the boundary conditions whose scaling 

factor is controlled by the inversion. The second operator Htransp is the atmospheric transport from the emissions and the 

boundary conditions to the full CO2 and XCO2 fields. Finally, the third operator Hsample performs the XCO2 sampling at the 300 

location of the XCO2 data (section 2.1.2). Differences between Hx and observed values for y arise due, on the one hand, to 

uncertainties in x, and, on the other hand, to the combination of errors in the observation operator and in the observation data 

that are called altogether “observation errors”. The errors from the observation operator are strongly associated with the 

atmospheric transport model errors (Houweling et al., 2010; Chevallier et al., 2010), but also with the discretization and 

spatial resolution of the transport and inversion problems, which raise representation and aggregation errors (Kaminski et al., 305 

2001; Bocquet et al., 2011). Assuming that they follow Gaussian and unbiased distributions like the prior uncertainties, these 

observation errors are fully characterized by the observation error covariance matrix R. The H, B and R matrices must be 

explicitly estimated in the analytical inversion framework (section 2.3.2 and 2.4).  

The Bayesian theory (Tarantola et al., 1987) states that the statistics of the knowledge on x knowing i) the prior estimate of 

x, ii) the observed values for y and iii) H as a link between the x and y spaces, follow a Gaussian and unbiased distribution. 310 

The uncertainty in such a posterior estimate is thus fully characterized by the posterior uncertainty covariance matrix A 

given by: 

𝐀 = [𝐁−1 + 𝐇T𝐑−1𝐇]−1                                                                                                                                                           (2)  

The analysis of A and its comparison to B, aggregated or not over different spatial and temporal scales, are the critical 

diagnostics in this study to assess the potential of inversions assimilating XCO2 images. The score of uncertainty reduction 315 

for a given flux budget is a common indicator for evaluating the performance of an observation system. It is defined as the 

relative difference between the STD of the prior (𝜎𝑝𝑟𝑖𝑜𝑟) and posterior (𝜎𝑝𝑜𝑠𝑡) uncertainties in this flux budget (𝑈𝑅 = 1 −
𝜎𝑝𝑜𝑠𝑡
𝜎𝑝𝑟𝑖𝑜𝑟

). If the assimilation of satellite observations perfectly constrains a given flux budget, the corresponding UR equals 

100%. If this assimilation does not provide any information on the flux budget, UR equals 0%. 
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2.3.2. Building the observation operator matrix H 320 

The analytical inversion system is essentially built on the explicit computation of H=HdistrHtranspHsample. The different 

columns of H correspond to the signatures (or “response functions”) in the observation space of the different control 

variables, i.e. of the different hourly emissions for each control area, and of the boundary conditions. They are computed by 

applying the sequence of operators Hdistr, Htransp and then Hsample to each control variable set to 1, keeping the others null 

(Broquet et al., 2018). Hdistr is defined based on the flux maps detailed in section 2. Htransp corresponds to the CHIMERE 325 

model and to the vertical integration of CO2 into XCO2 presented in section 2.1.1, while Hsample corresponds to the sampling, 

on the transport model grid, of the simulated XCO2 values according to the spatial distribution of the pseudo-observations 

(section 2.1.2). A generalized H is actually stored for the analytical inversion system to anticipate any option for Hsample, by 

recording the full CO2 and XCO2 fields from the application of HdistrHtransp to each control variable, i.e. the full CO2 and 

XCO2 signatures of each control variable. 330 

2.4. Practical implementation of the OSSEs 

While, in principle, R should characterize both the errors in XCO2 data and the errors from the observation operator H, this 

study focuses on the impact of the observation sampling and errors only. It ignores the errors from the observation operator. 

Moreover, the observation errors are restricted to the measurement noise which is uncorrelated in space and time as detailed 

in section 2.1.2. The different R matrices used for the OSSEs (depending on the observation sampling and noise) are thus all 335 

diagonal. The errors on the individual pseudo-observations are described by an uniform precision (𝜎𝑋𝐶𝑂2) depending on the 

chosen satellite configuration (section 2.1.2). However, the observation vector y is defined by the transport model grid rather 

than by the precise location and coverage of the data. Therefore, the diagonal elements of R follow the aggregation of nobs 

pseudo observations with uncorrelated errors (where nobs is potentially greater than 1) within each model grid cell 

corresponding to an element of y, so that the resulting STD of the errors for this element is given by 𝜎𝑋𝐶𝑂2
�𝑛𝑜𝑏𝑠

. 340 

Prior estimates of anthropogenic emissions and biogenic fluxes are generally provided by inventories and ecosystem model 

simulations such as those used here in Hdistr to distribute the fluxes at high resolution. B should characterize uncertainties in 

such products and is thus set with values corresponding to typical relative uncertainties in the budgets from the maps detailed 

in section 2.2.1. Prior estimates of the boundary conditions for regional inversions are usually interpolated from large scale 

analysis or inversions. Such products can bear significant large-scale errors at the boundaries of Europe (Monteil et al., 345 

2019). We reflect it by setting in B the standard deviation of the prior uncertainty in the scaling factor for the boundary 

conditions (see below). When constructing the B matrices in all our OSSEs, we assume that there is no correlation between 

the prior uncertainties associated to different controlled emission areas or between these uncertainties and the one associated 

to the boundary conditions. The spatial correlations of the uncertainties in anthropogenic emission inventories is a complex 

topic and the current lack of characterization for such correlations led to such a conservative set-up (Wang et al. 2018; Super 350 

et al., 2020). However, we model the temporal correlations between prior uncertainties in scaling factors associated to 
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different hourly natural or anthropogenic flux budgets of the same controlled emission area by using an exponentially 

decaying function with a correlation time scale τ (like, for instance, (Bréon et al., 2015)): 

𝜌𝑖,𝑗 = 𝑒−
|𝑗−𝑖|
τ                                                                                                                                                                              (3) 

where j and i are the indices of two corresponding hours. The STD of the prior uncertainties in the scaling factors for the 355 

different hourly budgets of the same controlled area are fixed to an identical value σhour. Finally, we assume that the STD of 

the prior uncertainties in scaling factors for the 6-hour budgets of the natural fluxes or of the anthropogenic emissions from a 

controlled area during 5:00-11:00 (to be applied to the budgets from the IER and VPRM products presented in section 2.2.1 

and used to build Hdistr) is fixed to a value σBudget that is the same for all control areas: typically 50% or 100% of the 6-hour 

budgets. The STD of the prior uncertainties in the scaling factors for the hourly budgets of the controlled areas σhour are then 360 

derived based on these different assumptions. The reference parameters for B are fixed to τ = 3 hours and σBudget = 50%. 

Despite the differences between the temporal variations of the hourly emissions from one control area to the other, or 

between natural and anthropogenic fluxes in Hdistr, these STD show a negligible variation of less than 1% and when 

considering the reference set-up for B, σhour~65%. The sensitivity of the inversion to the values of σBudget and τ is assessed in 

section 3.2.3. Finally, we use 1% for the STD of the prior uncertainty in the scaling factor associated to the boundary 365 

conditions (i.e. typically an uncertainty of ~4 ppm in the average boundary conditions). This value is quite pessimistic, but 

some tests in which this value was varied (not shown) demonstrate a very weak sensitivity of the results for the fluxes to this 

parameter. 

3. Results 

3.1. High-resolution simulations of XCO2 370 

Previous sections documented how, for each 6-hour period, the inversion system exploits the simulated XCO2 fields at 11:00 

to constrain each hourly budget of the anthropogenic or natural fluxes of the controlled areas between 5:00 and 11:00. The 

CHIMERE full XCO2 simulations between 5:00 and 11:00 with the anthropogenic emissions, natural fluxes and/or domain 

boundary conditions detailed in sections 2.1 and 2.2 are used in this section to compare the overall signatures of these 

components and of the controlled areas, and to discuss their overlapping. Figure 2b shows the XCO2 signatures of all the 375 

anthropogenic emissions in the domain except those from the 84 point sources controlled individually by the inversion in the 

2-km resolution subdomain (that are illustrated in Fig. 2a). Figure 2c integrates the XCO2 produced by the 84 point sources 

and shows the signature of all the anthropogenic emissions. Finally, figure 2d displays the superposition of the XCO2 

signatures of all the anthropogenic emissions, of the natural fluxes and of the boundary conditions. For all these figures, 

XCO2 values are taken at 11:00 and are provided by simulations between 5:00 and 11:00 on May 23rd which is a day of 380 

strong northwest wind (~10 m·s-1 over Paris at 700 m above ground level). 
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The strong plumes from the megacities of Paris and London are easily distinguished when considering the signature of 

anthropogenic emissions in Fig. 2b and 2c, with their amplitude exceeding 0.3 ppm at 100 km downwind of these cities, and 

with sharp gradients of XCO2 at their edges. The relative narrowness, extended length and small intensity of the plumes 

shown in the Figs. 2b and 2c are explained by the magnitude of the wind speed on May the 23rd. The characteristics of those 385 

plumes vary considerably with respect to the wind speed and the inversion results are strongly impacted by this parameter 

(section 3.2.1 and Broquet et al. (2018)).  

Figures 2b and 2c also show that the overlapping of plumes from urban areas in Belgium and in the Netherlands produces 

XCO2 patterns whose amplitudes are comparable to that of the plumes from Paris and London. However, due to the urban 

density of those countries, the level of distinction between the individual signatures of the different cities is weak. If we 390 

exclude Paris, northwestern France has a much less dense urban fabric with scattered cities of small extents. This sparse 

distribution allows the relatively weak plumes from cities to be visible whereas the more diffuse XCO2 signatures of the 

countryside emissions do not form any distinguishable patterns (Fig. 2b).  

The comparison between Figs. 2b and 2c highlights the plumes from some of the large 84 point sources within the 2-km 

resolution subdomain (section 2.2.2). The amplitude of these plumes can locally reach that of Paris but such an increase 395 

above the background occurs on a much smaller extent: for instance, the one of the power plant close to Dunkerque (~51°, 

~2.3°) in the northern French coast reaches 0.4 ppm but its width does not extend to more than 5 km (Fig. 2c). The capacity 

of our high resolution transport model to simulate narrow XCO2 plumes from point sources or urban areas distinct from that 

of neighbor or surrounding sources is revealed by the example of several point sources in Belgium as well as that of the oil 

refinery of Grandpuits (48.59°, 2.94°) whose plume stands out of the large plume from the Paris urban area (Fig. 2c). The 2-400 

km resolution zoom of the model grid allows distinguishing those features which would be blurred in a coarser resolution 

transport model. 

When including the XCO2 produced by the natural fluxes and the boundary conditions, identifying the features produced by 

the anthropogenic emissions is more difficult (Fig. 2d). The atmospheric signatures of Paris, of London and of the high-

emitting power plants are hardly differentiated from patterns produced by the boundary conditions and natural fluxes even 405 

though they are still visible. The isolated plumes of low amplitudes from scattered cities with small extents and low emission 

budgets can hardly be seen. The boundary conditions and the natural fluxes tend indeed to produce signatures whose 

amplitude is often larger than, or at least comparable to that of the signal from the anthropogenic emissions, with which they 

interfer. This blurs this signal of the anthropogenic emissions, especially when the emissions are diffuse . Boundary 

conditions and natural fluxes are however much more distributed homogeneously than the anthropogenic emissions, that are 410 

localized over a small fraction of the surface. As a consequence, the boundary conditions and the natural fluxes produce 

smooth XCO2 fields (Fig. 2d) while the anthropogenic emissions produce heterogeneous fields with finer structures and 

sharper gradients (Fig. 2c). Therefore, the separation between the two types of fluxes could rely on the differences in terms 

of spatial scales of their atmospheric signatures, or on a precise knowledge of the atmospheric transport patterns.  
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This first qualitative overview of the atmospheric signatures could imply that the ability to quantify the budgets of emissions 415 

for the two megacities, for most of the 84 large point sources, and for large regions in the north east should be much larger 

than for the individual urban areas in most of the domain or for the countryside emissions. However, this diagnostic relies on 

a qualitative assesment of Figure 2. In Section 3.3, we will quantitatively analyze the the inversion results as a function of 

the type of sources. 

3.2. Potential of the satellite images to monitor the anthropogenic emissions of a megacity: sensitivity studies 420 

This section assesses the performance of our inversion assimilating XCO2 images to monitor the anthroprogenic emissions 

from the Paris area, as a function of the wind conditions, of the XCO2 observation precision, resolution and swath, and of the 

configuration of the prior error covariance matrix B. Results are relative to the inversion control area that covers most of the 

Paris urban area (Fig. 2a). The analysis is based on 62 6-hour inversion tests with satellite images nearly centered on this 

area for each day of March and May 2016. With the reference 300-km wide swath, such images cover the plumes from the 425 

Paris urban area entirely in most wind conditions (Broquet et al. 2018). In the following, the wind speed is characterized by 

its averaged value at 700 m above the ground level over the inversion control area corresponding to Paris and over the period 

corresponding to the chosen diagnostic: over 5:00-11:00 when analyzing the uncertainty in the budgets of the emissions 

corresponding to the full 6h-period of inversion, or over the time interval [hh,11:00] when analyzing the uncertainty in the 

hourly budget of the emissions between the hours hh and hh+1. 430 

3.2.1. Impact of the wind speed 

A first set of inversions is conducted with the reference values for the precision, resolution and swath of the satellite 

observation and for the parameters of the prior uncertainty (respectively 0.6 ppm, 2×2 km2, 300 km, 50% and 3 hours). 

These inversions are applied to 12 different days in March 2016 which present a range of average wind speeds from 2 to 14 

m·s-1 (Fig. 3). We investigate results in winter, when the amplitudes of the biogenic fluxes are low, to mitigate the influence 435 

of these fluxes, and of their variability, on the URs for the Paris emissions. Note that the time profiles modeling the 

variability of the anthropogenic emissions ignore day-to-day variations (except between week-end and working days) which 

almost removes the influence of the variability of these emissions when studying results in March only. Results are presented 

in terms of prior and posterior uncertainties in both the 1-hour and 6-hour budgets of emissions from the Paris urban area. 

The directions of the wind are predominantly meridional so that the selection of the swath has no impact. The main analysis 440 

and conclusions in this section are similar to that of Broquet et al. (2018), so we present them briefly. 

Results in Fig. 3 illustrate the fact that larger wind speeds lead to smaller uncertainty reductions for the 6h-emission budgets: 

on March 3 the average wind speed is 13.5 m·s-1 and the UR with the reference values for the precision, resolution and swath 

is 74% while on March 10 the average wind speed ~1.8 m·s-1 and the UR is 97% (Fig. 3a). Stronger winds decrease the UR 

because, due to an increased atmospheric dilution, the amplitude of the city plume is smaller which decreases the signal-to-445 

noise ratio for the inversion. However, when considering the UR for hourly emissions, this rule may not apply for wind 
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speeds lower than 6 m·s-1. For this range of wind speeds, the posterior uncertainty in 9:00-10:00 and 10:00-11:00 emissions 

increases with decreasing wind speed (Fig. 3b). The inversion system shows difficulties in distinguishing the atmospheric 

signatures produced by consecutive hourly emissions because these signatures have a significant overlap when the wind 

speed is low. This explanation is confirmed by the negative correlations found between the uncertainties in consecutive 450 

hourly emissions since the magnitude of these negative correlations increases when the wind speed decreases (Fig. 3c). 

Important negative correlations explain also that for low wind conditions, 6h-emission budgets are better constrained even 

though hourly emissions can be poorly constrained. The overestimation of some hourly emissions is compensated by the 

underestimation of other hourly emissions. 

The uncertainty reductions for 1h- and 6h-budgets are high for a large range of wind values:  in all the tests here, the URs for 455 

the 6h-bugdets are above 74% and the UR for the 1h-budgets after 7:00 are above 62% (Fig. 3a). Concerning the 1h-budgets 

of the 5:00 to 7:00 emissions, the corresponding URs significantly decrease for wind speeds above 10 m·s-1. In particular, the 

UR for the 5:00 to 6:00 emission drops below 20% above this value for the wind speed. This behavior is consistent with the 

fact that the signatures of emissions occurring well before the satellite overpass have been much more diffused through 

atmospheric transport at the observation time than that of later emissions.  460 

3.2.2. Impact of the precision, resolution and swath of the satellite images 

Figures 4a-d show the URs for the 6h-emission budgets of March 3 (with a strong wind), March 10 (with a low wind), May 

23 (with a strong wind) and May 27 (with a low wind). This figure corresponds to a second set of inversions performed with 

the range of options for satellite data precisions and resolutions presented in section 2.1.2 but with the observation swath, the 

relative prior uncertainty in the 6h-budgets of fluxes, and the correlation length scale for the prior uncertainties in hourly 465 

fluxes fixed to the reference values (respectively 300 km, 50% and 3 hours). The sensitivity of the UR to the measurement 

precision and resolution increases with stronger winds. For example, on May 27 (under weak wind) and 23 (under strong 

wind), the UR increases by 16% and 48% respectively between inversions with 2 ppm precision data and inversions with 0.3 

ppm precision data (at the resolution of 2 km × 2 km). For those two days, the UR decreases by 6% and 20% respectively 

between inversions with 2 km × 2 km resolution data and inversions with 4 km × 4 km resolution data (with a precision of 470 

0.6 ppm). The comparison between results on March 3 and 10 confirms such a high sensitivity under stronger winds. It is 

related to the fact that the slope of the convergence of the UR towards 100% with better precision and finer resolution is 

smaller with low wind speeds, which generate higher UR than high wind speeds. For similar reasons, the sensitivity to the 

precision decreases at finer resolution, and the sensitivity to the resolution decreases with better precision (Figs. 4a-d).   

The comparison between results obtained when doubling the random measurement error of the individual observations and 475 

when multiplying by four the value of their spatial resolution provides insights on the exploitation of the fine scale patterns 

of the XCO2 image by the inversion. Indeed, both changes result in doubling the resulting error at coarse resolution, but 

doubling the random measurement error at fine resolution conserves the capability to exploit information at this fine 

resolution unlike coarsening the spatial resolution of the image. Figs. 4a-d show that scores of UR with 2 km × 2 km 



16 
 

resolution and 2 ppm precision data are extremely close to that with 4 km × 4 km resolution and 1 ppm precision data. URs 480 

with 2 km × 2 km resolution and 1.2, 1, 0.8 or 0.6 ppm precision data are also similar to URs with 4 km × 4 km resolution 

and respectively 0.6, 0.5, 0.4 or 0.3 ppm precision data. This indicates that the inversions here do not really take advantage 

of the information on the fine scale patterns of the plume from Paris.  

A third set of inversions is conducted to study the sensitivity of the results to the width of the satellite swath while keeping 

all other observation and inversion parameters to reference values. This sentivitity is modulated by the wind conditions: the 485 

speed and direction of the wind control the spread and position of the plume and thus the value of the swath which fully 

covers the extent over which the amplitude of the plume is significant for the inversion, i.e., the value of the swath above 

which the results do not change any more (Figs. 4e-h). This threshold value of the swath is lower for smaller wind speed. For 

wind directions across the satellite track, the URs for the 6h-emissions of the Paris area are no longer sensitive to the 

increase of the swath above a value of 100 km and 400 km for wind speeds lower than 8 m·s-1 and 9 m·s-1 respectively. The 490 

sensitivity to the swath is null (except if considering very low values for the swath of the order of the width of the plume 

from Paris) for wind directions along the satellite track as we consider satellite tracks centered on Paris.  

3.2.3. Impact of the definition of the prior uncertainties in the CO2 fluxes 

The prior uncertainty covariance matrix B has a strong influence on the scores of posterior uncertainties when its 

“amplitude” is comparable to, or much larger than the one of the HTRH matrix (see Eq. 2), i.e. once the prior uncertainties 495 

are comparable or much larger than the projection of the observation errors in the control space. The relative prior 

uncertainty in the 6h-emission budgets (σBudget, section 2.4.), which characterizes the diagonal of B, is one of the critical 

drivers of the relative weight given by the inversion to the prior information and to the observations.  

In a fourth set of inversions, we thus analyze the sensitivity of the inversion results for 6-hour emission budgets to σBudget, 

with values for this parameter ranging between 0 and 100%. This set of inversions uses the reference values of the 500 

observation parameters and for the temporal autocorrelation of the prior uncertainties. Figs. 5a-b show the corresponding 

results on March 3 (under strong wind) and on March 10 (under low wind), to highlight the dependence of this sensitivity to 

the wind speed. The curves of UR as a function of σBudget have an inflection point for values around 50%. For low values of 

σBudget, the UR is sensitive to this parameter, the posterior uncertainty balancing the prior uncertainty and the projection of 

the observation error. For large values, the UR converges asymptotically towards 100%, and the posterior uncertainties are 505 

dominated by the projection of the observation error (i.e. the posterior estimate of the emission essentially relies on the top-

down information from the observations). The observational constraint on the inversion is larger on March 10 than on March 

3 since the wind is much lower on the former. As a consequence, the qualitative threshold for σBudget above which the URs 

are not much sensitive to this quantity is smaller on March 10 than on March 3: 30% and 50% respectively. 

These results over Paris suggest an empirical choice of a reference value for σBudget > 50%, in the absence of any factual 510 

knowledge about σBudget. With 50% as a reference value, we focus our analysis of the posterior uncertainties on the projection 

of the information from the observations and we nearly neglect the prior information, while keeping an assumption regarding 
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the prior uncertainties that could seem consistent or even optimistic compared to series of assessment of the errors in 

inventories for cities at daily scale (Wang et al., 2020). However, for other cities, for point or area sources with smaller 

amplitudes, the observational constraint is lower. The relative weight between the projection of the observations and the 515 

prior information is then more balanced than for Paris, and the prior uncertainty still has a significant impact on the posterior 

uncertainties when using σBudget=50%. In order to study the pure projection of the observation errors, results using 

σBudget=100% will thus be analyzed along with that using σBudget=50% in section 3.3. 

The other important parameter defining the B matrix in this study is τ (section 2.4.). By construction, the increase of the 

corresponding auto-correlations in the prior uncertainties at the hourly scale in B does not modify the prior uncertainties in 520 

the 6h-emission budgets. However, it can help the inversion crossing the information on different hourly budgets to better 

constrain the overall budget of emissions. A fifth set of inversions with the reference values for the observation parameters 

and for σBudget is conducted to test the sensitivity to τ, with values for this parameter from 0 to 6 hours (0 h indicating that 

there is no temporal correlation in B, and 3 h being the reference value), on March 10 and 3. The analysis shows that, 

actually, the increase of τ hardly impacts the results for the 6h-budgets (not shown) but significantly changes the results for 525 

the hourly budgets (Figs. 5c-d). The auto-correlation brings information about the temporal distribution of the emissions, 

constraining how the 6h-emission budgets are distributed at the hourly scale. This impact is more significant when the XCO2 

signatures of the hourly emissions overlap, i.e. for hourly emissions between 5:00-7:00 when the wind speed is high and for 

almost all the hourly emissions when the wind speed is low. However, this better knowledge about the temporal variations 

from auto-correlations does not appear to improve the knowledge on the 6h-budgets.  530 

3.3. Potential of satellite images to monitor anthropogenic emissions at the regional, city and local scales. 

This section synthesizes the inversion results at the local (for power plants, industrial facilities) to the regional scales over 

most of the model 2-km resolution subdomain, using a sixth set of inversions assimilating images that cover this subdomain 

entirely with a 900-km swath centered on Belgium (Fig.1). This set of inversions covers all the days of March and May 2016 

in order to analyze the impact of the wind speed and of the natural fluxes on the results. The prior relative uncertaintes in the 535 

6-hour budgets of the emissions are alternatively set to σBudget=50% and 100%. These inversions use the reference parameters 

for the observation precision and resolution and for the temporal auto-correlation of the prior uncertainties in hourly 

emissions (0.6 ppm, 2 km × 2 km and 3 hours respectively). Results over most of the 2-km resolution subdomain using 

different observation spatial resolutions and precisions will briefly be discussed in section 4. 

3.3.1. Overview of the inversion performance 540 

Figure 6 gives a geographical overview of the scores of UR in the 2-km resolution sub-domain. The largest scores of UR for 

6-hour budgets are obtained for the mega-cities of Paris and London with mean values over the two months considered > 

80%. Mean UR can also be > 60% for several cities of Belgium and the Netherlands and for a large number of point sources 
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(power plants and large industrial facilities) within the dense industrial area of western Germany, although these sources are 

close to each other or to other significant point and area sources. 545 

In a general way, the scores of UR increase with the magnitude of the emissions (Fig. 7). This increase is more important 

when considering lower emission values due to the asymptotic convergence of the UR towards 100% for high emission 

values (with a point of inflection for sources of ~2 MtC·yr-1 in the curves of Fig. 7). The increase of the UR as a function of 

the budgets of emissions is different if considering point or area sources. As expected, the largest URs are obtained for 

narrower sources like point sources (Fig. 7a) and cities (Fig. 7b) which generate plumes with smaller extents but larger 550 

amplitudes than diffuse countryside emissions. When using σBudget = 100%, the mean URs are larger than 50% for all point 

sources and cities with an emission rate larger than 2 MtC·yr-1, while to achieve 50% UR, an emission rate of at least 4 

MtC·yr-1 is needed for regional countryside emissions (Fig. 7c). The gap is even larger when using σBudget = 50%, with mean 

URs that are systematically larger than 50% for annual emission budgets of point sources and cities larger than 2 MtC·yr-1, 

but for annual emission budgets of regional countryside emissions larger than 7 MtC·yr-1.  555 

When aggregating the results for point sources, cities and countryside emissions at the regional scale, the relative prior 

uncertainty becomes significantly smaller than the values used for individual sources since we assume that there is no 

correlation between their uncertainties: the mean prior uncertainty for the regions is then of ~33% when assuming a 50% 

prior error on the 6h-budgets of point sources, cities and countryside areas which make these regions. And, the emission 

threshold above which the URs for the regional budgets are larger than 50% becomes 10 MtC·yr-1 and 7 MtC·yr-1 when 560 

using σBudget = 50% and 100%, respectively (Fig. 7d). These thresholds are larger than the ones corresponding to individual 

point sources and cities as given above, but the overall performance of the inversion system at the regional scale is better 

with respect to that of the point sources and cities when analyzing the relative posterior uncertainties: for σBudget = 50%, the 

mean value is 22% for the total regional budgets while it is ~40 % for the point sources and cities budgets (Fig. A1). 

The results for the different types of sources are shown for four regions of Belgium in Fig. 8. This figure provides an 565 

illustration of the general results seen in Fig. 7. It shows that the URs for emissions of the largest urban areas (emitting more 

than 2 MtC·yr-1) are as high as that for the overall emissions of their respective region although the budgets of emissions 

from these urban areas are much smaller than that of their regions. As suggested above, smaller prior uncertainties in the 

regional budgets lead to similar URs for cities and regions budgets even though the relative posterior uncertainties in 

regional budgets are much smaller (Fig. 8b). When comparing point sources and cities which are characterized by the same 570 

prior uncertainty, the relative magnitudes of the URs are determined by the relative magnitudes of the emissions: URs are 

thus much higher for the largest urban areas than for point sources and cities that emit much less CO2. But, the comparison 

between the URs and emissions of the main cities and countryside areas of the regions of Eastern and Western Vlaanderen 

illustrates that, even thoughthey have lower emission budgets in these regions, cities are better constrained than countryside 

areas. This is in agreement with the enhanced capacity of the inversion system to monitor city emissions with respect to 575 

more diffuse emissions. This figure also qualitatively illustrates the ability of the inversion system to separate neighbor 

emission sources:  the point source and city of Liège (left blue bar for the region of Liège in the figure) contained within the 
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region of Liège are characterized by significant URs even though the point source is within the city of Liege and its plume is 

completely overlapped by the plume from the rest of the city. We will analyze more systematically and quantitatively the 

capacity of the inversion to disentangle the signals produced by neighbor sources in section 3.3.3. 580 

The URs for the 6h-emission budgets show an important variability over the 62 inversion days as illustrated in Fig. 7. When 

using σBudget = 50%,  the standard deviations of the day-to-day variations of the URs for the point sources, cities and 

countryside areas, are on average, equal to ~12%, ~8.3% and 12.2%, respectively. These values are important with respect to 

the temporal mean of the values of UR (26%, 16% and 27% when averaging across all the point sources, cities and 

countryside areas respectively). These variations are associated to variations in the wind speed at the daily scale as evidenced 585 

for the Paris case in section 3.2.1. However, when considering results for the months of March and May together, they are 

also driven by the time profiles of the anthropogenic emissions that are characterized by a strong decrease of emissions 

between March and May due to the reduction of residential heating. Moreover, the UR variability is also determined by that 

of the uncertainties in the natural fluxes which are also very different from March to May. The natural fluxes have large 

negative amplitudes in May when they are dominated by the primary production and smaller positive amplitudes in March 590 

when they are mostly restricted to the heterotrophic respiration. Using constant prior relative uncertainties in the natural 

fluxes (as for the anthropogenic emissions) yields large absolute uncertainties in May and low absolute uncertainties in 

March. Furthermore, as the primary production related to photosynthetic processes is mostly driven by the radiative forcing 

and then by the daily variation of the cloud cover, natural fluxes and their prior uncertainties are also characterized by a 

strong day-to-day variability during the month of May whereas in March, they are not because of a weak day-to-day 595 

variability of heterotrophic respiration. Cross sensitivity studies comparing the influence of the above drivers (not shown), 

indicate the predominant influence of the daily variability of the wind speed on the variability of UR for the anthropogenic 

emissions estimates, for most sources. This conclusion should however be nuanced for some regions and countryside areas 

where the scores of UR for the anthropogenic emission estimates is highly impacted by the inversion of the natural fluxes, 

and thus by the variability of these fluxes, during the month of May (see section 3.3.2. below). 600 

3.3.2. Impact of the uncertainties in the biogenic fluxes 

The analysis of XCO2 patterns produced by the different CO2 fluxes (section 3.1) suggests that the large signatures of the 

biogenic fluxes in May could impact the monitoring of the anthropogenic emissions. In order to weigh the impact of the 

uncertainties in biogenic fluxes, we conduct experiments where these uncertainties are ignored. In these experiments, the 

mean URs for the budgets of the regional and countryside anthropogenic emissions in May are equal to ~31% and ~41% 605 

respectively (using σBudget=50%). When accounting for uncertainties in biogenic fluxes, these mean URs decrease down to 

~21% and ~31% respectively (Figs. 9c-d). This reveals some difficulty of the inversion system to separate countryside 

emissions from biogenic fluxes which is also illustrated by the important anti-correlations (-40% on average) between the 

corresponding posterior uncertainties. During May, the smaller amplitudes and rather diffuse nature of countryside emissions 

with respect to natural fluxes (not shown), and the overlapping of their atmospheric signatures (Fig. 2) explain why the 610 
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inversion system only has a limited ability to distinguish the countryside emissions. Oppositely, during March, the smaller 

amplitude of natural fluxes compared to countryside emissions (not shown) explains why the inversion can better filter the 

signature of countryside emissions from that of natural fluxes. 

Contrarily to the URs for countryside emissions and regional budgets, the URs for the point sources and cities are hardly 

impacted by the uncertainties in biogenic fluxes during the month of May, even when the emission budgets of these sources 615 

are smaller than 1 MtC·yr-1 (Figs. 9a and b), and even though these budgets are quantitatively lower than the absolute value 

of the regional budgets of biogenic fluxes. Consistently, the posterior uncertainty in the inverted 6-hour budgets of the 

emissions of cities or point sources is weakly correlated with that in the 6-hour budgets of biogenic fluxes in their respective 

region (-2% and -5% on average for the cities and point sources respectively). Therefore, the visual inspection of Fig. 2 may 

wrongly suggest that the plumes of the smallest point sources and cities controlled individually can hardly be separated from 620 

the signature of biogenic fluxes. The differences in terms of spatial scales of the atmospheric signatures appear to be the 

main driver of the skill of the inversion to separate anthropogenic sources from biogenic fluxes. 

3.3.3. Separation of the different anthropogenic emission sources 

In order to estimate the ability of the inversion system to monitor anthropogenic sources whose atmospheric signals overlap 

separately, we focus on pairs of sources contained within the same region and we assess whether the sum of the variances 625 

(Var) associated to the inverted emissions for each source is comparable with the absolute value of their covariance (Cov), 

which is nearly systematically negative as a result of the uncertainty in the spatial attribution of emitted CO2 to individual 

sources in the inversion. This criterion means, if the covariance is negative, that the variance associated to the ensemble of 

the two sources is much smaller than the sum of the variances associated to each source, since that the variance of the sum of 

two random variables Xa and Xb is given by Var(Xa+Xb)=Var(Xa)+Var(Xb)+2*cov(Xa,Xb). In terms of inversion, this 630 

case describes the situation when a pair of sources is much better constrained than each of its individual sources 

(Var(Xa+Xb) << Var(Xa)+Var(Xb)), i.e when the inversion system does not entirely manage to disentangle overlapping 

signals and to constrain independently each source. 

Figure 10 indicates that in general, the system has a good ability to constrain independently the different sources within a 

given region: point sources, cities, countryside areas, natural fluxes. In this figure, indeed, the number of pairs of sources that 635 

are characterized by an important negative covariance term (2*cov(Xa,Xb)) compared to the sum of the individual variances 

(V(Xa)+V(Xb)) is  much lower than the number of pairs of sources that are characterized by a relatively small covariance 

term. Only 20 pairs of sources out of a total of 890 pairs show a covariance term that is larger than 25% of the sum of the 

variances (squares below the blue line in Fig. 10a). Most pairs for which the inversion system may be unable to distinguish 

individual sources in a completely independent way consist in a point source and its surrounding urban or countryside area. 640 

Only one case consists in two point sources that are located close to each other near Karlsruhe in Germany and, no cases 

consist in pairs of urban/urban or urban/countryside areas. The 20 cases of less separable pairs of sources identified above 

could be associated to situations for which the inversion system could have difficulties to independently monitor two sources 
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but this conclusion should be nuanced when all terms (sum of the variances and covariances) are small: for example, four 

pairs of sources characterized by important negative correlations show an UR for each individual sources which is larger 645 

than 50% (squares in the top-right quadrant of the Fig. 10b). For these cases, the problem of distinction between the two 

sources applies to a moderate residual posterior uncertainty, and the inversion still gets a relatively precise estimate of the 

emissions. 

Moreover, a low covariance between sources can often be explained by the lack of constraint on their total budget or on one 

of the two sources, rather than by a good separation between the two sources. Examples of pairs of sources with an important 650 

UR for their total emissions and a small covariance while only one individual source in each pair is well constrained can be 

seen in the top-left and bottom-right of Fig. 10b (where the UR for the total is larger than 75% while one of the sources 

shows an UR lower than 20%). Pairs of sources characterized by relatively low values of covariance but small values of UR 

for both the total and the two sources are identified in the top-right quadrant of Fig. 10a and the bottom-left quadrant of Fig. 

10b. These pairs are characterized by low individual sources and total emissions whose amplitudes are below the thresholds 655 

required by the inversion system to produce reliable estimates (see section 3.3.1.).  

4. Discussion and conclusion 

We have presented a new and comprehensive high-resolution atmospheric inversion system to assess the potential of the 

satellite imagery of XCO2 for the monitoring of anthropogenic emissions from local to national scales. This system has been 

designed to deal with a wide range of different sources in terms of emission amplitude, distribution and spatial scale and to 660 

account for the overlapping between the signatures from different anthropogenic sources and natural sources and sinks. To 

cover the local and regional scales while mitigating computational costs, this inversion system is based on an atmospheric 

transport model with a zoomed grid whose horizontal resolution ranges from 2 km in the most resolved domain to 50 km at 

its edges. The area of highest horizontal resolution (2 km) encompasses regions where the hourly emission budgets of a large 

ensemble of cities and point sources are inverted separately , i.e. that of northern France, Belgium, the Netherlands, western 665 

Germany, Luxemburg and London. Urban areas are delimited using a clustering algorithm and large industrial plants are 

selected based on an emission threshold. In total, the system controls the hourly budgets of 303 different anthropogenic 

sources (plants, cities or regions), the hourly budgets of biogenic fluxes for 67 regions and a scaling factor applied to the 

initial, lateral and top boundary conditions for each 6-hours inversion window.  

Our series of tests and analysis demonstrate the potential of our inversion system to explore various aspects of the estimation 670 

of anthropogenic CO2 emissions based on satellite XCO2 spectro-imagery. 

 

A performance simulation tool 
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The analytical formulation of the inversion makes it easy to test different scenarios of observation systems that monitor 675 

anthropogenic emissions but, in this study, the OSSEs with the inversion framework have been performed in order to 

investigate the potential of the satellite imagery of XCO2 from helio-synchronous orbits only, depending on instrumental 

configurations or other factors such as the wind or the amplitude of the emissions. Such a spaceborne imagery similar to 

CO2M may become the critical component of operational atmospheric inversion systems for the monitoring of CO2 

anthropogenic emissions. These operational inversion systems will likely have to jointly assimilate data from many of the 680 

existing satellite missions, from ground-based networks and from the planned spectro-imagers. Moreover, in addition to CO2 

concentrations, co-emitted pollutants and radiocarbon should be assimilated as well. Ultimately, OSSEs would have to 

integrate all these components of the observation system (Ciais et al., 2015; Pinty et al., 2017). However, we need OSSEs 

considering the spaceborne imagery of XCO2 as a stand-alone system to determine the instrumental parameters ensuring that 

this imagery can bring emission estimates with sufficient coverage and accuracy so that it can serve as a backbone for the 685 

operational monitoring of emissions. Furthermore, in a context where there is a lack of ground based and spaceborne 

networks that are suitable for the monitoring of CO2 anthropogenic emissions, these OSSEs can help better understand the 

needs in terms of complementary observation components. 

The analytical inversion system built for this study allows testing an important set of observational parameters and situations. 

Once the atmospheric transport functions associated to the different sources have been computed, the derivation of the 690 

posterior uncertainties is fast and results can be delivered for a wide and detailed range of specifications on the spatial 

resolution, precision (focusing here on the errors in XCO2 from the instrumental noise) and swath of the satellite XCO2 

images. Extending the study of Broquet et al. (2018), the sensitivities of the inversion results to these three parameters have 

been tested on the example of the inversion of the emissions of Paris (section 3.2.2.). We varied these parameters without 

accounting for current limitations in space technologies (or from cost issues) which impose potential trade-offs between their 695 

configurations. The impact of the wind speed on the determination of the 6-hour and hourly budgets of the emissions is 

analyzed by assimilating images over different days of March and May. Finally, the flexibility of the inversion system also 

allowed testing the impact of the way prior uncertainties in the fluxes are prescribed.  

The inversion framework produces curves of sensitivity that give several qualitative and quantitative insights into the 

optimal configurations of the satellite imagery: the study of the UR for the Paris emissions indicates (i) that a 4 km × 4 km 700 

spatial resolution is sufficient, provided that the precision at this spatial resolution is very high, and (ii) that the inversion 

hardly makes use of patterns at finer spatial resolution. However, as discussed in section 3.2, that might come from the 

relatively large extent of the plume from Paris, and from the distances between this plume and other major plumes. We have 

thus extended the analysis of the sensitivity to the observation spatial resolution and precision to all the days of March and 

May and to the ensemble of controlled regional, city and local sources (as for the analysis in section 3.3) testing a reduced 705 

set of resolutions and precisions. The results are displayed in Fig. 11. This experiment confirms that results for point sources 

and narrow cities are more sensitive to the availability of the information at the reference resolution of 2 km than that for 

Paris. The UR for point sources and cities emitting less than 2 MtC·yr-1 is larger with a spatial resolution of 2 km × 2 km and 
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a precision of 1.2 ppm than with a spatial resolution of 4 km × 4 km and a precision of 0.6 ppm, (i.e. with the same precision 

at 4 km resolution but without information about the patterns at scales finer than 4 km). However, the differences are not 710 

really significant, and Fig. 11 tends to confirm that a spatial resolution of 4 km × 4 km would be fine if achieving a very 

good precision: typically, 0.3 ppm if willing to get the results from the reference configuration of the observation with 2 km 

resolution and 0.6 ppm precision. With a 2 km × 2 km resolution, the mean URs for all type of emissions would increase on 

average by 10.1 ±1.5% if the precision increases by a twofold factor (from σ = 1.2 ppm to 0.6 ppm and from 0.6 ppm to 0.3 

ppm). While this represent a dramatic increase of the UR when changing the precision from 1.2 ppm to 0.6 ppm, the relative 715 

impact is smaller from 0.6 to 0.3 ppm and the reference value of 0.6 ppm precision at 2 km resolution appear to be a 

balanced option. Finally, the results for the Paris case point out that, at the reference precision of 0.6 ppm, the performance 

of the inversion system would be nearly equivalent at the resolutions of 2 km × 2 km and 2 km × 3 km (Fig. 4). The spatial 

resolution could thus be relaxed to 2 km × 3 km compared to the reference resolution without degrading much the precision 

of the inversions. 720 

If we consider the monitoring of the Paris emissions, the impact of the swath on the results is limited for swaths larger than 

400 km (section 3.2.2 and Fig. 4). As the megacity of Paris produces plumes whose intensity and extent are amongst the 

highest with respect to anthropogenic emissions sources in Western Europe, this supports the use of a swath close to 400 km 

to ensure that the full extent of plumes from targeted sources near the center of the satellite field of view is caught. However, 

a narrower swath would be sufficient for the large majority of cities which emit less than Paris, and thus have shorter 725 

plumes. This would impact the monitoring of the large megacities emitting more than 10 MtC/yr like Paris, which represent 

around 9% of the emissions from cities and power plants over the globe (Wang et al., 2020), but this impact is limited for 

Paris in most meteorological conditions as long as the swath is larger than 250 km (90% of the cases for the 62 days of 

inversion, not shown). A general conclusion from these results is that the swath is a less critical parameter than the pixel 

precision and resolution. 730 

Overall, these results support the reference configurations for the pixel resolution and precision and for the swath width that 

broadly correspond to the current ones for the CO2M mission, even though they suggest a relaxation of the spatial resolution 

to 2 km x 3 km and an extension of the swath up to 400 km. However, since this study does not account for technical and 

cost trade-offs between these parameters, it cannot provide a full assessment for their combination. Furthermore, by flying a 

satellite any day over the areas of interest in the sensitivity tests, we restrained the role of the swath to covering a more or 735 

less important portion of the plumes, with a lack of sensitivity when the swath exceeds the plume length or when the wind 

blows along the satellite track. In practice, a critical role of larger swaths (like that of using more satellites in a constellation) 

is to increase the number of situations for which the plume from a given city can be seen, which is ignored in this study. 

Finally, the spatial resolution could also play a role when accounting for cloud cover since it could help to increase the 

spatial coverage. A more realistic simulation of the observation sampling by specific missions or constellations, with one or 740 

several satellites following real tracks and including the impact of cloud coverage and large aerosol loads, and some realistic 
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technical constraints between the parameters, is needed to fully assess the right balance between higher precision, finer 

spatial resolution and larger swaths. 

 

Ability to monitor anthropogenic emissions at the regional, city and local scales 745 

 

At first, a qualitative overview of the atmospheric signatures could imply that the ability of the inversion system to quantify 

the budgets of emissions from most of the 84 large point sources and from the two megacities of Paris and London should be 

much larger than for smaller cities, and that countryside emissions should hardly be constrained by the inversion (section 

3.1). However, the quantitative analysis of the results from the OSSEs described in section 3.3. shows that the capacity of 750 

detection of the inversion system is equivalent for point sources and cities: uncertainties in both type of sources emitting 

more than 2 MtC·yr-1 are reduced on average by more than 50% when the resolution and precision of the satellite data are 

equal to 2 km × 2 km and to 0.6 ppm respectively, and when the prior uncertainties in the fluxes have been set to 50% of the 

6 h-budgets (section 3.3.1). With the same parameters, the threshold on the level of emissions to get such an UR is much 

higher (~10 MtC·yr-1) for the countryside areas and for the whole regions. However, for these types of sources, the overall 755 

level of performance of the inversion system is still comparable to that for point sources and cities: for the 67 regions 

considered in this study, the mean URs for the total emissions and for the countryside emissions are of 37% and 27.4% 

respectively (section 3.3.1.). The lower performance of the inversion system to monitor the countryside and regional 

anthropogenic emissions could be partly related to the impact of the biogenic fluxes on the determination of these types of 

emission sources contrary to the point sources and cities (section 3.3.2). Beside these sensitivities to the source amplitudes 760 

and to the uncertainties in biogenic fluxes, the variations in URs are also driven by the wind (sections 3.2.1 and 3.3.1) and by 

the potential loss of part of the atmospheric signatures of sources at the edges of the satellite swath (section 3.2.2).   

We have also investigated the capacity of the inversion system to deal with the overlapping of XCO2 plumes produced by 

nearby sources (section 3.3.3). As satellite images give snapshots of the XCO2 distribution at a given time (11:00) and as 

atmospheric transport mixes the contribution of the different sources over the 6 hours before the satellite overpass, it is 765 

important to assess the ability of the inversion system to disentangle the information coming from different sources at 

different times. With the hypothesis adopted in this study, most point sources and cities can be monitored independently by 

the inversion system. This ability could be partly related to the high-resolution modeling that allows describing and catching 

the fine scale patterns of the XCO2 signatures of the point sources even if the inversion is weakly sensitive to patterns at 

scales < 4 km (Fig. 11).  770 

Beyond the capacity to monitor separately the emissions of point sources, urban and countryside areas, the additional benefit 

of controlling separately these emissions within a given region is the mitigation of the aggregation errors when inverting the 

total budget of a region. In analytical inversions, these errors arise when a control of the emissions at a too coarse resolution 

limits too much the ability to fit the actual spatial distribution of the emissions and of the concentrations. These errors are 

evidenced for our study by inverting regional budgets without considering any internal separation into cities, point sources or 775 
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countryside areas in the control vector: with such a configuration, the results are significantly and wrongly more optimistic 

than the ones obtained with the inversions that use this subdivision (Fig. A2). 

 

An optimistic framework 

 780 

This study aims at assessing the projection of the sampling and observation random noise into the emission estimates. It 

combines optimistic assumptions that prevent from assuming that the level of posterior uncertainties achieved in the OSSEs 

here should correspond to that of the inversions with real data. The ability of the inversion system to separately monitor 

point sources and cities (section 3.3.3) and to quantify regional budgets of diffuse emissions is partly due to the underlying 

assumption made in this study that the atmospheric transport is perfectly known. We ignored the transport modeling errors 785 

and implicitly supposed that the position and extent of the XCO2 plumes from cities or point sources are perfectly simulated. 

Accounting for the transport modeling errors by assuming that they can be described as a random noise uncorrelated in space 

and time, as is usually done in atmospheric inversions, would not fundamentally change the results of this study. The impact 

of such an error would be equivalent to decreasing the precision of the observations.  However, as a consequence of errors in 

the wind speed and direction, or in the CO2 transport model itself, the simulation of narrow and localized plumes can poorly 790 

match the actual ones and strongly affect the inversion of the emissions from point sources and cities. The actual signature of 

diffuse emissions could also be different in terms of shape and extent from the actual one. An inversion procedure that would 

simultaneously control both transport parameters and CO2 emissions within a coupled meteorological-CO2 transport model 

(Kang et al., 2011) may partially address these issues although it would greatly increase the complexity of the inversion, in 

particular by introducing potentially large non-linearities in the observation operator. New methods based on imagery 795 

processing (Corpetti et al., 2009), plume detection (Kuhlmann et al., 2019), Gaussian plume modeling (Nassar et al., 2017) 

or direct computation of fluxes through detected plumes may also help overcome realistic transport uncertainties to invert the 

emissions corresponding to point sources and cities (Varon et al., 2018). However, these methods may hardly deal with 

diffuse emissions whose signatures have low amplitudes, and should be difficult to detect in XCO2 images. The recovering 

of countryside emissions and of regional budgets of the emissions may thus be optimistic in this study.  800 

Moreover, the configuration of our inversion system uses many of the traditional assumptions of atmospheric inversions 

among which the rather simple characterization of the sources of uncertainties with Gaussian distributions, which may 

underestimate their impact. The perfect knowledge of the statistics of the different source of uncertainties that are accounted 

for is another traditional optimistic assumption used in atmospheric inversions with synthetic data and in the experiments 

here. Furthermore, some sources of observation errors, such as the systematic errors which bear spatial correlations, are 805 

purposely ignored in the present study. Such errors exacerbate the problem of the identification of the signatures of point 

source, city to diffuse emissions in addition to have a larger error budget than random noise at the spatial scales of such 

signatures. There is a clear need to assess the impact of such correlated errors. Lastly, the extent of the observation sampling 

is made rather optimistic by ignoring cloud cover and the loss of data due to large aerosol loads. In a general way, the results 
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of this study could be seen as optimistic and as an upper limit of the skill of the inversions using satellite images only but, 810 

also as good indicators of the sensitivity of the uncertainty reduction to various parameters and drivers.  

Broquet et al. (2018) provided insights into the impact of cloud cover and systematic errors in the XCO2 images. They used 

realistic simulations of satellite samplings and errors made for the CarbonSat mission by (Buchwitz et al. 2013a). Results 

have indicated that, when accounting for cloud cover, the satellite data could efficiently constrain emissions from Paris only 

~20 days per year, and that the impact of the systematic errors anticipated for that mission is such that the system would 815 

hardly be able to reduce errors in the emission estimates if these errors are not filtered or controlled for. However, efforts 

have been made to limit the amplitude of systematic errors in the concept of the new CO2M mission.  

Our new inversion framework allows accounting for a realistic simulation of the observation sampling and errors. 

Nevertheless, generating simulations of the systematic errors from the retrieval of XCO2 data that are suitable for the purpose 

of our study would have been difficult. Systematic errors are not described in the uncertainties computed by existing 820 

retrieval schemes. Furthermore, they depend on specific measurement configurations and on the evolving skill of radiative 

transfer inverse models and of empirical bias-correction systems, so that their characterization based on diagnostics with 

existing missions may hardly apply to future ones. Simulating realistic patterns of cloud cover consistent with the 

meteorology for the different test cases investigated would have also been challenging. Finally, this study focuses on other 

parameters to allow exploring the sensitivity of the inversions to these parameters in depth.  825 

In order to raise insights into the impact of errors with spatial patterns such as model and systematic errors, we have 

conducted experiments where spatial correlations are included in the observation error (in the R matrix). We have tested 

isotropic and homogeneous spatial correlations exponentially decaying with distance, using various correlation lengths. The 

experiments and results are described in Appendix A since they are out of the scope of this study. The results indicate that 

including correlations in the observation errors tends to increase the budget of observation errors and thus to increase the 830 

posterior uncertainties in the flux estimates as long as the correlation length scale does not exceed that of the signature of the 

fluxes in the XCO2 images. However, including correlations in the observation errors also tends to increase the ability to 

distinguish between the patterns of the observation error and of the signatures of the fluxes, and thus to decrease the 

posterior uncertainties, so that for large spatial correlation lengths, increasing the correlation length leads to a decrease of the 

posterior uncertainties. In our tests, the worst situation for the monitoring of the emissions in the study area corresponds to 835 

~10 km correlation length scales. These results should be interpreted cautiously since the spatial patterns of the model and 

systematic errors are more complex than this traditional but simple modeling of spatial correlations and since in these tests, 

the inversion system if perfectly informed about the statistics of the observation error. Future studies will integrate more 

realistic simulations of observation sampling and errors from different concepts of spaceborne imagery, based on radiative 

transfer inverse modeling applied to realistic fields of surface and atmospheric conditions and instrumental specifications. 840 

A last significant simplification of the general problem of the inversion of the anthropogenic emissions based on XCO2 data 

has been stressed by Ciais et al. (2020). Anthropogenic emissions of CO2 bear a major share of emissions from biofuel 

combustion which can hardly be separated spatially from the fossil fuel combustion component. Furthermore, the emissions 
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of CO2 by human respiration represent a significant portion of the total CO2 emitted from cities. The XCO2 data and the 

atmospheric inversion approaches can hardly be used to distinguish between these different components if it cannot rely on 845 

complementary data. This factor was ignored here, as well as in most of the studies dedicated to the inversion of 

anthropogenic CO2 emissions at city to regional scales. 

 

Exploiting further capabilities of the inversion framework: potential of complementary observation systems and results at 

larger temporal scales  850 

 

Our analysis is restricted to a window from 5:00 to 11:00 corresponding to the period which might be constrained by the 

satellite observation from a heliosynchronous satellite with 11:00 local overpass time. This provides little information about 

the capacity of the inversion system to monitor daily to monthly budgets. To address this need and improve the results of the 

inversions, the modularity of our data assimilation framework could integrate multiple streams of data in order to increase 855 

the temporal and spatial coverage of the information (Moore et al., 2018; O'Brien et al., 2016). 

In future studies, our inversion system could also integrate more realistic hypotheses concerning the description of the prior 

uncertainties in the emissions. Uncertainties in inventories are indeed difficult to characterize and this study assumed, rather 

arbitrarily, that the relative uncertainty in the 6h-budgets was of 50% or 100% (section 2.4). We also assumed that the prior 

uncertainties had low temporal correlations, i.e. correlation over timescales of less than 6h, and we neglected the spatial 860 

correlations between the budgets for the different point sources, cities and countryside areas. Actual anthropogenic emissions 

and inventories have complex cycles at daily and weekly scales together with a large temporal and spatial variability. There 

is still a critical lack of knowledge and of characterization of the correlations in the uncertainties in the inventories (Wang et 

al. 2018, Wang et al., 2020). However, some extensive analyses are now conducted to fill this gap (Super et al., 2020). We 

can expect some stronger spatial and temporal connections than assumed in this study, which would increase the transfer of 865 

information from the atmospheric observations, i.e. both the uncertainty reduction for the sources and time windows covered 

by the observations, and the uncertainty reduction for other sources, time windows, and for large spatial and temporal scales. 

Conclusion 

We have presented a new and comprehensive high-resolution atmospheric inversion system to assess the potential of the 

satellite imagery of XCO2 for the monitoring of anthropogenic emissions from local to national scales. This system has been 870 

designed to deal with a wide range of different sources in terms of emission amplitude, distribution and spatial scale and to 

account for the overlapping between the signatures from different anthropogenic sources and natural sources and sinks. To 

cover the local and regional scales while mitigating computational costs, this inversion system is based on an atmospheric 

transport model with a zoomed grid whose horizontal resolution ranges from 2 km in the most resolved domain to 50 km at 

its edges. The area of highest horizontal resolution (2 km) encompasses regions where the hourly emission budgets of a large 875 
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ensemble of cities and point sources are inverted separately, i.e. that of northern France, Belgium, the Netherlands, western 

Germany, Luxemburg and London. Urban areas are delimited using a clustering algorithm and large industrial plants are 

selected based on an emission threshold. In total, the system controls the hourly budgets of 303 different anthropogenic 

sources (plants, cities or regions), the hourly budgets of biogenic fluxes for 67 regions and a scaling factor applied to the 

initial, lateral and top boundary conditions for each inversion window.  880 

The study investigates the potential of imagery of XCO2 from satellites on helio-synchronous orbits, similar to CO2M but 

varying the spatial distribution, precision and swath of the imagery. The aim is to analyze the relative sensitivities to these 

different parameters and thus to raise insights for the optimal configurations of new satellite imagery concepts. In the 

synthetic framework of our experiments, we simulate satellite overpasses over the area of interest at 11:00 (local time), and 

we conduct inversions with windows covering the 6 hours before these overpasses (5:00-11:00), that have been identified as 885 

the periods which might be directly constrained by the satellite observations.  

Focusing on the instrumental noise, the analysis of the sensitivity to the errors on XCO2 data ignores systematic errors from 

the retrieval process. All images are moreover assumed to be taken in clear-sky conditions with the swath centered on the 

targeted sources. Another critical point is that the transport modeling errors are ignored. Finally, i) the optimal spatial 

coverage of the targeted plumes which are seen entirely except during the tests of sensitivity to the swath width, ii) the lack 890 

of systematic and transport modeling errors, and iii) the assumption that the inversion system is perfectly informed about the 

statistics of the errors in the prior estimates of the emissions, biogenic fluxes and transport model boundary conditions, raise 

optimistic scores of URs. However, these scores are mainly analyzed in terms of upper bound for what can be achieved by 

the assimilation of the satellite images, or in a relative way when diagnosing sensitivities to various parameters. 

The results of the sensitivity studies support specifications for the pixel resolution and precision, and the swath width that are 895 

closed to that considered for CO2M: combinations of 2 km x 2km to 2 km x 3km pixel spatial resolution, 0.6 ppm precision 

and 250 to 400 km swath. More constraining options do not appear to raise improvements in the precision of the emission 

estimates that are significant enough. The inversions illustrate a higher skill to monitor individual point sources and dense 

cities. However, despite their optimistic configuration, they also indicate that scores of URs of more than 50% for the 6-hour 

emissions before the satellite overpasses can be achieved for cities and point sources emitting more than 2 MtC·yr-1 only 900 

(with a configuration where the resolution and precision of the satellite data are equal to 2 km × 2 km and to 0.6 ppm 

respectively, and where the prior uncertainties in the 6-hour emissions have been set to 50%). 

Exploiting the modularity of our inversion system and coupling it to radiative transfer inverse models, future studies should 

be conducted to assess the performance of more specific concepts of spaceborne imagery under more realistic scenarios for 

the sampling, for the XCO2 retrieval errors and for the could cover. They should also analyze the complementarity of the 905 

imagery from helio-synchronous orbits with ground-based measurements or with different types of spaceborne observation 

sensors. 
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Appendix A: testing the impact of spatial correlations in the observation error 

When addressing the impact of errors from the atmospheric modeling and observation, our study focuses on the random 

error from the satellite instrumental noise which is assumed not to bear spatial correlations (following, e.g., Buchwitz et al., 910 

2013a). It does not study the impact of two major sources of uncertainties in the inversions: the transport modeling errors 

and the systematic errors in the XCO2 retrievals from the inverse radiative transfer modeling (Hobbs et al., 2017). These 

errors raise spatial correlations in the overall observation errors (Worden et al., 2017; Broquet et al., 2018).  

Beside the need to limit the scope of the study to a reasonable extent, one reason for not studying the impact of these errors 

here is that they depend on the specific modeling and measurement configurations and on the evolving skill of transport and 915 

radiative transfer models and of empirical bias-correction systems (see, e.g., the dramatic improvement of the agreement 

between NASA's Orbiting Carbon Observatory-2 retrievals and reference ground-based retrievals between version 7 and 

version 8 of NASA's algorithm in Fig. 18 of O’Dell et al., 2018). Therefore, conclusions from existing missions may hardly 

apply to future ones. Another reason is that there are characterized empirically and that we still lack of robust and theoretical 

ways to describe them. However, in order to feed the discussion and perspectives regarding such errors, we provide here a 920 

first exploration of the impact of spatial correlations in the observation errors. 

A traditional way to model spatial correlations between observation errors is to assume that they decrease with the distance, 

and that they are isotropic and homogeneous in terms of spatial scale (Chevallier, 2007). Therefore, we model such 

correlations using exponentially decaying functions (exp(-d/D)) of the distances d between two observation pixels, the 

parameter D defining the correlation length scale. Their inclusion in R (sections 2.3.1) is tested by applying such correlations 925 

to the total observation errors, i.e., not defining the total observation errors has a combination of spatially correlated and 

uncorrelated errors, but as a single component with spatial correlations. This choice eases the analysis of the impact of 

spatial correlations here, which aims at raising first general insights on the behavior of the inversion when including them 

rather than at providing a quantification of such an impact.  

In a new set of tests with our inverse modeling framework, we use the set-up which covers the sources over most of the 2-km 930 

resolution model subdomain based on 900 km wide XCO2 images (section 3.3). We set R with a 1-sigma uncertainty of 0.3 

ppm for all XCO2 data, and with D=10, 50 or 100 km. In order to lighten the computations associated with the inversion of a 

matrix R that is no longer diagonal (Eq. 2), we perform the inversions by considering observations with 4 km resolution 

pixels rather than 2 km resolution ones. The choice of a data precision of 0.3 ppm allows thus to get results for a 

configuration that is close to the reference one (with data resolution and precision of 2 x 2 km2 and 0.6 ppm respectively; see 935 

section 3.2.2 and 4 regarding the similarity of the results from the inversions done with a given instrumental precision and 

resolution and the inversions done with an instrumental precision twice smaller and a resolution four times larger). 

When introducing correlations with small spatial scales (D=10km), the uncertainty reductions for all type of emission 

sources are lower than for the inversions performed without correlations within the R matrix (Fig. A3). When using 

D=50km, this is still true for most of the cities and for countryside and regional emission areas. However, the uncertainty 940 
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reductions get larger than when ignoring spatial correlations for all point sources (except 2) and the cities that emit less than 

~25MtC/year.  Finally, when using D=100km, the uncertainty reductions get larger than when ignoring spatial correlations 

for all point sources, all cities emitting less than 40MtC/year, and a significant number of countryside and regional emission 

areas. (i) This behavior, (ii) the analysis of images of the plume from Paris with the different types of observation errors 

tested here (Fig. A4), (iii) the fact the cities with the largest emission rate are generally also those with the largest spatial 945 

extent, and (iv) the fact the sources with larger emission rates have an atmospheric signature which can be distinguished on 

larger spatial extent, lead us to the following interpretation of the impact of the spatial correlations in R:  

- when introducing correlations with small spatial scales in R, the posterior uncertainties in flux estimates increase 

since these correlations yield larger budget of observation errors at the scale of the signatures of the targeted fluxes. 

This impact tends to saturate when the spatial correlation scale in R reaches and gets larger than the scale of the 950 

signatures of the targeted fluxes. 

- conversely, the increase of the correlation scales helps the inversion separate the observation error patterns from 

these signatures.  

- These two opposed effects lead to a worst case in terms of posterior uncertainties in the emission estimates that 

correspond to correlation scales in R that are function of the scale of the flux atmospheric signatures. In particular, 955 

it varies depending on whether we analyze results for point sources, cities or widespread emissions across regions.  

These insights into the impact of spatial correlations in R call for further investigations. In particular we should test more 

complex patterns that could better correspond to actual model and systematic retrieval errors (e.g. following surface and 

atmospheric structures). We should also challenge the potential of the inversion to separate such structured observation 

errors from flux atmospheric signatures in conditions where this inversion is not perfectly informed about the error spatial 960 

correlations. 
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 1080 
Figure 1: Maps of the IER annual emissions interpolated over the domain of the CHIMERE model. Point sources are indicated by 
black dots and administrative regions by thin black lines. The grid of the model is defined by sub-domains with several resolutions 
(r×s km2 where r and s=2, 10 or 50 km) and whose boundaries are represented by the red lines. The thick black lines depict the 
edges of the satellite tracks corresponding to the synthetic data used in this study (300 km swath: dash-dotted line, 900 km swath: 
solid line). 1085 
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Figure 2: IER emission maps interpolated over northern France, western Belgium and the London area (a). We have represented 1095 
the anthropogenic emission sources without point sources ("area emissions"). Red curves depict the boundaries of the city clusters 
defined by a pattern recognition algorithm (Section 2.2.3.). Panels (b) and (c) show the simulations of XCO2 (ppm) on May the 23rd 
at 11am that are produced respectively by the area and total anthropogenic emissions between 5:00 and 11:00. Point sources are 
indicated by black dots in panel (c). In panel (d), simulations of XCO2 (ppm) on May the 23rd at 11am that are produced altogether 
by the anthropogenic, natural and boundary fluxes between 5:00 and 11:00.  For the sake of clarity, these figures do not show the 1100 
whole 2 km-resolution sub-domain of CHIMERE, but illustrate the patterns seen over this subdomain well. 
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Figure 3: Uncertainty Reductions (UR) from a 50% prior uncertainty on the 6h-budgets of the Paris emissions for 12 days 
characterized by different average wind speeds over Paris (a). UR for hourly and 6h-budgets of the Paris emissions are shown by 
color dots and red segments respectively. In panel (b) are shown prior vs. posterior uncertainties on 1h-emissions (color dots) and 1110 
6h-emissions of Paris (green and red segments). In panels (a,b), the colors of the dots represent the hour of the corresponding 1 h-
budget; the green dots are for the prior uncertainties on the 1 h-emissions (1hB prior σ) which are derived from 50% prior errors 
on the 6h-budgets (6hB prior σ) and by considering temporal prior correlations of 3 hours. Panel (c) shows correlations between 
posterior uncertainties in 2 consecutive 1 h-emissions (color dots). Results are computed with a retrieval resolution of 2 km×2 km, 
a precision of 0.6 ppm and a swath of 300 km. 1115 
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Figure 4: Uncertainty Reductions (UR) from a 50% prior uncertainty for the 6h-budgets of the Paris emissions. In panels (a)-(d), 
results are displayed for 4 different days characterized by different wind speeds, for different spatial resolutions of the satellite 
data (x-axis) and for different precisions (color markers). For the panels (a)-(d), results are generated by considering a swath of 
300 km. In panels (e)-(h), results are displayed for 4 different days characterized by different wind speeds, for different swaths of 1120 
the satellite data (x-axis), for different precisions (color markers) and for a resolution of 2 km by 2 km. 
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Figure 5: Uncertainty Reductions (UR) as a function of the prior uncertainty (x-axis) for 6h-budgets of the Paris emissions (a,b). 
Correlations between the prior errors on hourly emissions have a temporal length of 3 hours (see section 2.4). Panels (c,d) show the 1125 
UR for the hourly emissions between 5h and 11h (x-axis) for several temporal lengths defining the correlations between prior 
errors on hourly emissions (color dots), legend “τ 0h” being for an absence of such correlations. Prior uncertainties on 6h-budgets 
of Paris emissions are taken equal to 50% in panels (c,d). Columns represent 2 different inversion days: March 2016 the 3rd 
(strong wind) and March 2016 the 10th (low wind). All inversion results are computed with a retrieval resolution of 2 km × 2 km, a 
precision of 0.6 ppm and a swath of 300 km. 1130 
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Figure 6: Mean Uncertainty Reductions (UR) for some city clusters (a) and some point sources (b) across the 62 inversion results 
of the days of March and May 2016. The areas and colors of the disks represent the annual emissions (MtC·yr-1) and the UR (%) 
respectively. The inversions are performed with a retrieval resolution of 2 km × 2 km, a precision of 0.6 ppm and a swath of 900 1135 
km. Prior uncertainties on 6h-budgets of clusters and point sources emissions are taken equal to 50% and prior error correlations 
have a temporal length of 3 hours. 
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Figure 7: Mean values and standard deviations of the Uncertainty Reductions (UR) for the emissions of point sources (a), urban 
areas (b), countryside areas (c), and regions (d) across the 62 inversion results of the days of March and May 2016. The lines 
represent the averages of the temporal mean values across all sources of a given type. The emitting areas are chosen within the 2-
km-resolution domain of the model so that they are covered by the satellite track in order to avoid swath effects. Results are given 1145 
as a function of the annual emissions (x-axis) of the emitting areas. The inversions are performed with a retrieval resolution of 2 
km × 2 km, a precision of 0.6 ppm and a swath of 900 km. Prior uncertainties on the 6h-budgets of the point sources, urban and 
countryside areas are taken equal to 50% (orange squares) and to 100% (blue squares). Prior uncertainties on the regional 
budgets are derived by aggregation of the prior uncertainties on their constituent emitting sources for both cases. Prior error 
correlations between hourly emissions have a temporal length of 3 hours. 1150 
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Figure 8: (a) Mean values and standard deviations of the Uncertainty Reductions (UR) for the regions, point sources, urban and 
countryside areas constituting 4 Belgium regions. Averaging is performed across the 62 inversion results of the days of March and 
May 2016. (b) Mean values and standard deviations of the relative post uncertainty for each emitting area. Prior uncertainties are 1155 
represented as well. Prior uncertainties in the regional budgets are derived by aggregation of the prior uncertainties of their 
constituent emitting sources (mean value ~33%). Panel (c) shows the mean 6-hour budgets for each emitting area. The inversions 
are performed with a retrieval resolution of 2 km × 2 km, a precision of 0.6 ppm and a swath of 900 km. Prior uncertainties on the 
6h-budgets of the point sources, urban and countryside areas are taken equal to 50% and prior error correlations between hourly 
emissions have a temporal length of 3 hours. 1160 
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Figure 9: Same as Fig. 7 but results are derived from inversions considering the anthropogenic emissions only (blue markers) and 
from inversions considering the natural fluxes as well (orange markers). Prior uncertainties on the 6h-budgets of the point sources, 
urban and countryside areas are taken equal to 50% and prior error correlations between hourly emissions have a temporal 1165 
length of 3 hours. Prior uncertainties on the regional budgets are then derived by aggregation of the prior uncertainties of their 
constituent emitting sources (mean value ~33%). 
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Figure 10: a) Post variances of the emission estimates for pairs of anthropogenic sources contained within a same region function 1170 
of the covariances between the individual sources of the pairs. The colors of the markers correspond to the UR of the pairs. b) For 
a pair of anthropogenic sources contained within a same region, UR of one individual source function of the UR of the other 
individual source of the pair. The colors of the markers correspond to the UR of the pairs. The regions corresponding to this plot 
are contained within the 2 km-resolution area of the model. Results are derived with an instrumental resolution of 2 km × 2 km, a 
precision of 0.6 ppm and a swath of 900 km. Prior uncertainties on the 6h-budgets of the point sources, urban and countryside 1175 
areas are taken equal to 50% and prior error correlations between hourly emissions have a temporal length of 3 hours. Pair of 
anthropogenic sources are made up of point sources and of urban and countryside areas. 
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Figure 11: Same as Fig. 7 but the inversions are performed with different retrieval resolutions and precisions (swath=900 km). 1180 
Prior uncertainties in the 6h-budgets of the point sources, urban and countryside areas are taken equal to 50%. 
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Figure A1: Same as Fig. 7 but relative posterior uncertainties are shown instead UR. 1195 
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Figure A2: Mean values of the Uncertainty Reductions (UR) of the emissions at the regional scale across the 62 inversion results of 
the days of March and May 2016. Results are given function of the annual emissions (x-axis). Regional emissions are inverted with 
(blue markers) and without (orange markers) considering an internal separation of the region into cities, point sources or 1200 
countryside areas. 
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Figure A3: Uncertainty reductions (UR) for the emissions of the point sources (1st row), the urban areas (2nd row), the countryside 
areas (3rd row) and the regions (4th row) when considering spatial correlations (Y-axis) or no correlations (X-axis) between the 1205 
observation errors. The 1st, 2nd and 3rd column correspond to correlations with a spatial scale of 10, 50 and 100 km respectively. 
The color of the dots corresponds to the annual budgets of the sources (color bar on the right of the figure). The dashed line is the 
1:1 line. 

 



48 
 

 1210 
Figure A4 : XCO2 distributions produced by the emissions of the Paris area between 5:00 and 11:00 on March the 8th at 11:00: raw 
CHIMERE simulations (top left figure), raw CHIMERE simulations perturbed by an uncorrelated random noise of 0.6 ppm (top 
right figure), raw CHIMERE simulations perturbed by a multivariate normal distribution whose covariance matrix is 
characterized by an uncertainty of 0.6 ppm for the diagonal terms and a correlation length scale of 10 km (bottom left figure) and 
of 100 km (bottom right figure).  1215 
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