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Response summary 
We have addressed every reviewer comment. From reviewer 2 we did not change the manuscript 
for two comments: 

1) What is the effect on the OE retrieval? The reviewer noted this might be too much work 
for this paper and we agree, because we know there are other factors that now need 5 
correcting. It would substantially delay things to integrate ReFRACtor into the retrieval, 
modify the code for the new v8/v9 OCO-2 L1bSc data changes,  and re-run the very 
expensive retrieval when we know the output will still likely have big biases before we fix 
the vertical structure issue. This is ongoing work. 

2) Could truncation of the lookup table in P_top cause our biases? We didn’t think this was 10 
likely since it should have caused biases predominantly at high or low P_top, and Figure 
5(c) doesn’t show this. Nevertheless, we reprocessed the retrieval with a more restricted 
P_top range, showing that this doesn’t explain our bias. We showed these results in the 
review response but think it would have been an unjustified distraction in the main paper 
so did not make changes. 15 

These are justifiable exclusions and otherwise the reviewers helped us to tidy up the paper nicely, 
we hope you will agree. 
 
We’ve put in page breaks and big colourful titles to separate each section, the sections are: 
 20 
Reviewer 1 response: p2—3  
Reviewer 2 response: p4—9  
Redlined paper: p10—33. 
 
  25 
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Reviewer 1 response 
The paper is well written, and in principle can be published as it is now.I have two minor questions: 

Thank you for your positive review. We answer your specific questions below with our text in bold.  

We tried to keep our text changes as short as possible to maintain the manuscript’s flow. This response 

expands in more detail to provide context so you can confidently judge whether our streamlined text is 30 

clear & accurate. 

 

Line 156: I am confused with the sentence, that LIDORT assumes semi-infinite atmosphere. What is the benefit 

in assuming semi-infinite atmosphere?  

You’re right to be confused, our phrasing was bad so we have changed it. The OCO-2 RT bolts together 35 

multiple codes. Multiple scattering is very important for us so we specifically mention LIDORT,1 which 

uses an infinite-medium solution method for the radiative transfer equation particular integral. However, 

the OCO-2 code does not otherwise assume a semi-infinite atmosphere so we removed “semi infinite”. 

Single scattering is handled separately2, then there’s the second-order-of-scattering code3 polarisation 

correction and also the low stream interpolator4 (which is also 2OS corrected), based on a successive order 40 

of interaction5 approach. ReFRACtor combines these as described in O’Dell et al. (2012)6. There are a lot 

of assumptions and caveats here, and many decisions and supporting evidence underlie the algorithm 

design. Reporting everything would be unwieldy, so we now point at O’Dell et al. (2012), from which 

interested readers can reconstruct the full methodology.  

 45 

The new phrasing is: 

“The forward RT simulations used to generate the LUTs are performed with the ReFRACtor RT code, 

which implements the methodology described in Section 2.2.4 of O’Dell et al. (2012). Of particular 

relevance for cloudy scenes, multiple-scattering is calculated using LIDORT with a polarisation correction 

for low orders of scattering (Natraj and Spurr, 2007; Spurr, 2006). This assumes a plane-parallel 50 

atmosphere with a correction to the direct beam to account for Earth’s sphericity.” 

We have endeavoured to include all relevant information while maintaining brevity. 

 

1. Spurr, R. & Christi, M. The LIDORT and VLIDORT Linearized Scalar and Vector Discrete 

Ordinate Radiative Transfer Models: Updates in the Last 10 Years. in Springer Seeries in Light 55 



3 
 

Scattering (ed. Kokhanovsky, A. A.) 1–62 (Springer Nature, 2019). doi:10.1007/978-3-030-03445-0_1 

2. Nakajima, T. & Tanaka, M. Algorithms for radiative intensity calculations in moderately thick 

atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transf. 40, 51–69 

(1988). 

3. Natraj, V. & Spurr, R. J. D. A fast linearized pseudo-spherical two orders of scattering model to 60 

account for polarization in vertically inhomogeneous scattering–absorbing media. J. Quant. 

Spectrosc. Radiat. Transf. 107, 263–293 (2007). 

4. O’Dell, C. W. Acceleration of multiple-scattering, hyperspectral radiative transfer calculations via 

low-streams interpolation. J. Geophys. Res. 115, D10206 (2010). 

5. Heidinger, A. K., O’Dell, C., Bennartz, R. & Greenwald, T. The Successive-Order-of-Interaction 65 

Radiative Transfer Model. Part I: Model Development. J. Appl. Meteorol. Climatol. 45, 1388–1402 

(2006). 

6. O’dell, C. W. et al. The ACOS CO 2 retrieval algorithm – Part 1: Description and validation against 

synthetic observations. Atmos. Meas. Tech. 5, 99–121 (2012). 

 70 

 

How do you determine the most meaningful wavelengths? 

We think this is still referring to the text following L156 and specifically “Angular output is calculated for 

a handful of wavelengths”. We have expanded on the description: 

“Angular output is calculated with 8 streams for predefined bins in gas optical depth while single stream 75 

calculations are done for preselected wavenumbers at a mean separation Dn ~0.04 cm-1, with smaller 

separation within absorption bands. The high- and low-stream outputs are combined using O’Dell (2010)’s 

low-stream interpolation to rapidly and accurately reproduce high-stream output at all wavenumbers. 

These are then interpolated onto a uniform Dn=0.01 cm-1 grid and convolved with the instrument line 

shapes (ILS) to obtain channel radiances.” 80 

 

We used a standard configuration provided by the OCO-2 team based on their optimised sampling. We 

had wanted to keep all discussion in wavelength rather than wavenumber, but the code implements this 

part in wavenumber so we drop consistency for precision, i.e. “uniformly at Dn=0.01 cm-1” over “close-to-

uniformly at Dl~0.00059 nm”.   85 
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Reviewer 2 response 

Firstly, thanks for having read this paper so attentively and providing a review that both catches 
minor mistakes and is thought provoking with regards to the main science and context. We 
genuinely appreciate your efforts and respond to each point in detail below. Our text continues in 
bold, we leave yours unbolded, and we insert the updated figures at the end of this document. 90 

“A new OCO-2 cloud flagging and rapid retrieval of marine boundary layer cloud properties” by Mark 
Richardson1,2, Matthew D. Lebsock1, James McDuffie1, Graeme L. Stephens  

The manuscript documents a new cloud flagging and retrieval pre-processor for OCO-2 marine boundary liquid cloud 

retrieval algorithm. This new pre-processor contains two steps: step one uses a machine learning perceptron network to 

classify low liquid cloud, and step two that simultaneously retrieves optical thickness (t ), effective radius and cloud top 95 

pressure (Ptot) with a three-parameter LUT using CO2, and O2 continnum radiances and A-band absorption to continuum 

ratio. The new retrievals and throughput are compared with MODIS and CLIPSO retrievals and original CLD-LIDAR-AUX 

as needed. In general, the new classifier/retrieval without CLIPSO show promising results. The residual biases in optical 

thickness, effective radius and cloud top pressure are discussed that could be potentially linked to spatial variability and in-

cloud vertical structure. I would like to see how changes in pre-processor retrieval of tau, Re and Ptot affect the eventual OE 100 

retrieval beyond the impact of qualifying throughput. But that could be another major undertake, if the authors are planning 

to change the cloud model within the OE retrieval system and that could be content of the next paper.  

 

We are also excited to see the updated OE retrieval but want to do a comprehensive job. We first need to derive a 

correction for the cloud vertical structure bias we mention in this submission. After that we have to (i) recalculate the 105 

Sy covariance matrix accounting for vertical structure and given our new, smaller re uncertainty and (ii) repeat the 

channel selection algorithm of Richardson & Stephens (2018) to determine whether to continue using the 75 channels 

selected for OCO2CLD-LIDAR-AUX. We judge this to be too much content to add to this paper. 

We expect the vertical structure issue to be important enough that doing more retrievals without accounting for it 

wouldn’t be a good time investment.  110 

The figure below shows (left) t=10 cloud simulated I and (right) changes in I when properties are the same but the 

vertical extinction structure is converted to subadiabatic (orange) or when the cloud is lowered by 10 hPa (blue). 10 

hPa is multiple times our idealised OE posterior Ptop uncertainties (Richardson & Stephens, 2018, again), and the 

vertical structure effect on radiances is similar in magnitude to that, so we want to finish development of our 

correction method.  115 
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The paper is well written and the addition of Table 1 is very helpful. I have a few more minor comments 
as follows:  

P1L25-33. The description of the first paragraph is a bit misleading as if A-band alone allows all the 120 
retrieval, i.e., Tau, Ptop, H and Nd. But A-band only helps with cloud flag and cloud top height, other 
channels are needed to retrieval Tau, Re, and H.  

Agreed, leaving the re issue to the end of the paragraph makes it easy to misinterpret. We 
removed the last sentence and added: 

“, provided coincident information about effective radius (re) from other channels.” 125 

P3L83. Why do you limit to nadir only orbits?  

We have added the following justification: 

“…we use nadir only orbits to provide complementary vertical information on clouds that are too 
low or thin to be adequately profiled by CloudSat’s nadir-view radar. Glint-view footprints would 
preclude our use of the nadir-only CALIPSO lidar data and atmospheric photon path lengths 130 
would be longer, thereby reducing the retrieval sensitivity. Given our retrieval’s computational 
expense we limit to nadir orbits to optimise the likelihood of good retrievals.” 

Additional reasons include how this is largely a CloudSat project; the original CloudSat proposal 
included an A-band spectrometer for this purpose. We hope to use the ~5 years of coincident 
measurements by combining CloudSat’s exquisite sensitivity to precipitation with an OCO-2 Nd 135 
product plus ancillary information to do aerosol-cloud-precipitation science. 
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That said it would be great if we (or someone) had the time & resources to explore the potential to 
use the glint data.  

Figure 3. A-band ratio will be less sensitive for low clouds. The 403 hPa cloud shown is way above the 
boundary clouds. More relevant to the retrieval of low clouds is whether you are able to separate clouds 140 
from 827 hPa to something like 750 km.  

We assume this refers to Figure 1 and have changed to footprints containing clouds at 943 hPa 
and 740 hPa. This is a good suggestion to keep everything consistently focussed on low clouds.  

We argue against showing smaller Ptop gaps than this: this figure’s purpose is to help readers to 
visualise spectrum differences due to changing photon path length. The ~200 hPa gap makes this 145 
visible. The rest of our analysis and past work shows sensitivities and error statistics. The new 
figure 1 and caption are at the end of this document. 

P7L221: Are you sure the middle parameter is Ic,st/Ic,O2, not Ic,st? In Figure 4a, LUT shows Ic,o2 and 
Ic,st as controlling parameters.  

We are absolutely not sure. That was a typo and has been corrected, thanks for your detailed 150 
reading. 

This was a leftover from an earlier version when we used that ratio: it “stretches out” the vertical 
component of the Nakajima-King table so that instead of looking like a droopy slice of pizza it 
looks more like a wavy pizza al taglio.  

The original interpolation code performed better with this approach at low t, but updates mostly 155 
removed the performance advantage so we decided to stick to the standard droopy pizza slice to 
avoid having to describe & justify an alternative. 

Table 1. It is better to spell out that the input to machine learning classifier includes both radiances and 
radiance ratios.  

Agreed, text changed:  160 

“…based on OCO-2 radiances and radiance ratios” 

P7L220. Not clear if you process all pixels with LUT, or only pixels that identified as cloud from 
classifier to further process with LUT. If so, please mention here.  

Added another step: 

“(ii) Apply the classifier to identify appropriate cloudy footprints, pass only these to the next step” 165 
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P9L280. Could the asymmetric bias of Ptot be related to truncation of LUT, i.e., the same A- band ratio 
could occur in higher cloud but smaller optical depth? How will the retrieval change if you have LUT 
that covers more pressure levels, i.e., from 500hPa to 1010 hPa?  

We did not think about this but have now tested. Extending the LUT to 1,010 hPa would put 
cloud top below our surface pressure. We’d need to generate full new LUTs as well as 170 
reprocessing the retrievals. Our alternative is to cut down the current LUTs: we tried removing 
the 970 hPa entries, then removing the 650 hPa entries, then removing both. The retrievals were 
then reprocessed. Note that we can still retrieve lower/higher values because our interpolator can 
“fill in” Ptop values in some cases. Here’s a 2d histogram of the retrieved Ptop when the 970 hPa 
inputs are removed, versus our main results: 175 

 

We first address the horizontal and vertical striping: it’s where LUT Ptop values are defined. We 
couldn’t identify the exact reason. It could be due the Nakajima-King table “point” at low tau/reff 
where CO2-band radiances span a small range and could present interpolation problems. These 
“stripes” contain optically thin clouds (median t=3.5 versus population t=9.7) with small droplets 180 
(median re=5.8 µm versus population re=12.0 µm), i.e. they are in the point of the N-K pizza slice. 
This is <0.02 % of the sample so we don’t consider it to be worth further development at this 
point. 

Back to the rest of that 2d histogram: the top right cluster shows disagreement where LUT 
information has been removed. The interpolation method still generates some retrievals there, 185 
and gives high or low biases depending on the original Ptop. 

This suggests to us that the limitations placed on the LUT Ptop values are not related to our Ptop 
bias relative to CALIPSO. Referring to Figure 5(c), the large biases occur for Ptop values well 
within the table rather than at the edges as we’d expect if it were related to our truncated table. 
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Here are the median and 10—90 % ranges of retrieval differences when we restrict the input 190 
LUT Ptop values: the median bias ranges from -0.8 hPa to 0.1 hPa, versus our ~12 hPa median 
bias.  

LUT Ptops removed Median [10%,90%] new minus full table Ptop 
970 hPa 0.07 [-1.42,2.29] 
650 hPa -0.78 [-3.98,6.84] 
650, 970 hPa 0.00 [-0.08,0.09] 

Our LUT intentionally extends to 650 hPa, i.e. beyond the ISCCP “low cloud” threshold of 680 
hPa, which was an attempt to minimise truncation issues. This was done even though we intend to 
focus on the lower altitude clouds. Given the apparently small effect we have not made any 195 
changes to the paper in response to this comment. 

Figure 7. I would rename the “passed”, “failed LUT”,”old but not new” into “passed both”,”passed 
classifier”,”failed both”.  

This is nicer and clearer. However, since we don’t pass the non-classified cases to the LUT [now 
clarified in response to P7L220 comment] it feels a bit weird to say the final group “failed both”. 200 
We reproduced the figure using “pass both”, “passed classifier”, “failed classifier” and changed 
the legend. We also increased label font size a bit. The figure and its caption are at the end of this 
document. 

P13L380 Do you mean “inhomogeneity”?  

Another typo, changed.  205 

P13L384. You have previously scaled the Ic,st channel by 0.9804. Is this scaling sufficient? If you scale 
by a smaller value, the mean bias of Re might be reduced.  

This is true and it’s unfair to apparently “accuse” calibration when it could be due to one of our 
choices. We had thought about this but attentive readers should definitely question this, so now 
we provide our justification by replacing that sentence with: 210 

“We also ran the LUT retrieval with a -1 % shift in Ic,st, which shifts median re by +0.2 µm. Such a 
radiance shift could be necessary due to errors in calibration or in our derived scaling factor of 
0.9807, which we used to relate the L1bSc file Ic,st to our lookup table channels. We could 
therefore reduce our re bias by further scaling the Ic,st radiances, but the scaling was derived from 
directly comparing the channel radiances rather than as a post hoc correction to improve 215 
retrieval results. If the re bias is due to other factors then this post hoc correction could result in 
compensating errors which hide other flaws in the retrieval.” 
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Figure 1.(a) OCO-2 A-band spectrum for a cloud with CALIPSO Ptop = 943 hPa, with the used channels in orange and non-used 220 
(e.g. due to FPA pixel damage) in blue, (b) the smoothed super-channel spectrum, where the channels are ranked in brightness and 
then non-overlapping 10-channel means are taken. The super channels used in the classifier are shown in red. (c) Comparison of 
the ranked ratio I/Ic between this cloud, and one at higher altitude (Ptop = 740 hPa). The SZA is within 0.01° and the continuum 
radiance within 1 % between each spectrum, the differences are largely due to the shorter path length resulting in less absorption 
for the higher altitude cloud. 225 

 

 

 
Figure 2. Normalised histograms of OCO2CLD-LIDAR-AUX outputs where SZA < 45° separated into whether the soundings pass 
the new pre-processor flag and retrieval or not. The “passed both” set are those that returned valid cloud properties from the LUT 230 
along with Ttop > 0 °C, the “passed classifier” case gave invalid cloud values or had Ttop < 0 °C, and the “failed classifier” set are 
those that were attempted in OCO2CLD-LIDAR-AUX but are not passed by the new classifier. (a) Logarithm of c2, (b) retrieved 
t, (c) Ptop minus the closest CALIPSO retrieved Ptop. 

 

  235 
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A new OCO-2 cloud flagging and rapid retrieval of marine boundary 
layer cloud properties 
Mark Richardson1,2, Matthew D. Lebsock1, James McDuffie1, Graeme L. Stephens1,2,3 
1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 
2Colorado State University, Fort Collins, CO 90095, USA 240 
3Department of Meteorology, University of Reading, RG6 7BE, UK 

Correspondence to: Mark Richardson (markr@jpl.nasa.gov) 

Abstract. The Orbiting Carbon Observatory-2 (OCO-2) carries a hyperspectral A-band sensor that can obtain information 

about cloud geometric thickness (H). The OCO2CLD-LIDAR-AUX product retrieved H with the aid of collocated 

CALIPSO lidar data to identify suitable clouds and provide a priori cloud-top pressure (Ptop). This collocation is no longer 245 

possible since CALIPSO’s coordination flying with OCO-2 has ended, so here we introduce a new cloud flagging and a 

priori assignment using only OCO-2 data, restricted to ocean footprints where solar zenith angle < 45°. Firstly, a multi-layer 

perceptron network was trained to identify liquid clouds over ocean with sufficient optical depth (t > 1) for a valid retrieval, 

and agreement with MODIS-CALIPSO is 90.0 %. Secondly, we developed a lookup table to simultaneously retrieve cloud t, 

effective radius (re) and Ptop from A-band and CO2 band radiances, with the intention that these will act as the a priori in a 250 

future retrieval. Median Ptop difference versus CALIPSO is 12 hPa with interdecile range [-11,87] hPa, substantially better 

than the MODIS-CALIPSO [-83,81] hPa. The MODIS-OCO-2 t difference is 0.8 (-3.8,6.9) and re is -0.3 [-2.8,2.1] µm. The 

t difference is due to optically thick and horizontally heterogeneous cloud scenes. As well as an improved passive Ptop 

retrieval, this a priori information will allow a purely OCO-2 based Bayesian retrieval of cloud droplet number 

concentration (Nd). Finally, our cloud flagging procedure may also be useful for future partial column above-cloud CO2 255 

abundance retrievals. 

 

Copyright Statement: The author’s copyright for this publication is transferred to the California Institute of Technology. 

1. Introduction 

Hyperspectral O2 A-band measurements near l = 0.78 µm, such as those taken by the Orbiting Carbon Observatory-2 (OCO-260 

2), may provide unique new information about boundary layer clouds by retrieving their geometric thickness (H) or droplet 

number concentration (Nd), provided coincident information about effective radius (re) from other channels. They are able to 

do this because the spectrum responds to the photon path length between the Sun, Earth and the sensor. Increased H or 

decreased Nd with all other cloud properties held constant leads to increased distance between within-cloud scattering events, 

and therefore a longer photon path length and decreased transmittance in wavelengths where O2 absorbs. This leads to 265 
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spectrally varying changes in observed A-band spectra that can allow joint retrievals of cloud optical depth (𝜏), cloud top 

pressure (Ptop) and H, provided there is sufficient spectral resolution and low enough noise (O’Brien and Mitchell, 1992; 

Richardson and Stephens, 2018). Equivalently, with knowledge of a relevant effective radius (re), the Nd could in principle 

be retrieved along with 𝜏 and Ptop. 

The basic principle of A-band absorption for cloud height is well established (Fischer and Grassl, 1991; Rozanov and 270 

Kokhanovsky, 2004; Yamamoto and Wark, 1961) and numerous spaceborne A-band instruments retrieve cloud properties 

(Koelemeijer et al., 2001; Kokhanovsky et al., 2005; Lindstrot et al., 2006; Loyola et al., 2018; Preusker et al., 2007; 

Vanbauce et al., 1998), but most lack the spectral resolution or noise characteristics to obtain H (e.g. Schuessler et al. 

(2014)). Others rely on multi-angle (Ferlay et al., 2010) or combined A- and B-band information (Yang et al., 2013), 

although these tend to contain little information on low-altitude and relatively thin clouds like marine stratocumulus (Davis 275 

et al., 2018; Merlin et al., 2016). 

An OCO-2 based retrieval of 𝜏 , Ptop and H has been developed (OCO2CLD-LIDAR-AUX, available at 

www.cloudsat.cira.colostate.edu/data-products/level-aux/oco2cld-lidar-aux), which uses lidar-based retrievals from the 

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite to help identify cloudy scenes and 

constrain prior Ptop (Richardson et al., 2019). This retrieval is targeted at single-layer liquid clouds over the ocean whose 280 

response, both to warming and aerosols, are a major source of uncertainty in climate simulations (e.g. Bony et al. (2005);  

Bodas-Salcedo et al.,  (2019); Zelinka et al. (2020)). Independent information about cloud structure may help to address 

timely questions where other sensors which rely on different retrieval approaches and assumptions can lead to apparently 

contradictory conclusions (Rosenfeld et al., 2019; Toll et al., 2019). 

With CALIPSO leaving the A-Train constellation in 2018, collocation between OCO-2 and CALIPSO footprints is no longer 285 

possible. Our future retrievals require a new cloud flagging method plus a priori cloud top information for our iterative 

Bayesian optimal estimation (OE) retrieval (Rodgers, 2000). This paper describes a new pre-processor for OCO-2 based 

liquid cloud property retrievals that provides the requisite cloud flagging and a priori information. Details of OCO2CLD-

LIDAR-AUX are summarised in Table 1, which also lists the main changes introduced in this study. 

We do not use the published OCO-2 cloud flag as it was not developed for ocean nadir scenes (Taylor et al., 2016), since 290 

they were considered too dark for OCO-2’s main mission of column CO2 (XCO2) retrievals (Crisp, 2008; Crisp et al., 2004; 

Eldering et al., 2016). Therefore we train a multi-layer perceptron network to rapidly identify liquid cloud scenes using 

collocated CALIPSO and Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals. For the prior cloud property 

retrieval we develop lookup tables (LUTs) that jointly retrieve 𝜏, re and Ptop using OCO-2 O2 A-band and strong CO2 band (l 

~ 2.06 µm) radiances. These are similar to the Nakajima-King tables used in MODIS cloud retrievals (Nakajima and King, 295 

1990) but add an A-band absorption ratio that is sensitive to Ptop.  

Our OCO-2 OE retrievals are computationally expensive due to the complex radiative transfer (RT), so we aim to avoid 

footprints which are unlikely to yield good retrievals. The cloud flagging and prior LUT retrieval developed here are a 

necessary step in excluding these footprints, and we further exclude those where solar zenith angle, SZA > 45° based on 
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OCO2CLD-LIDAR-AUX’s retrieval statistics. It is possible that a future partial-column (i.e. above cloud) XCO2 retrieval 300 

could be developed, which would likely be targeted at columns above optically thick clouds, so the pre-processor developed 

here could find wider use (Schepers et al., 2016; Vidot et al., 2009). A further development is that our past retrievals used a 

fixed re and the addition of varying re is eased by a new Python RT interface using the ReFRACtor (Reusable Framework for 

the Retrieval of Atmospheric Composition) software described in Section 2.3.  Our new LUT retrieval of a prior re will allow 

a more appropriate re to be assumed in the iterative OE. 305 

The paper is organised as follows: Section 2 describes the relevant OCO-2 details, data selection and radiative transfer 

calculations before detailing the methodology. Section 3 reports the performance statistics of the classifier, compares LUT 

retrieved cloud properties versus MODIS and CALIPSO where the instrument footprints overlap, and compares the final 

pre-processor throughput against that of OCO2CLD-LIDAR-AUX. Section 4 discusses and contextualises the results as well 

as proposing actionable future work that could address identified biases and Section 5 concludes. 310 

2. Methods and data 

2.1. Instruments and data selection 

The OCO-2 measurement approach and instrumentation are detailed in Bösch et al. (2017), the L2FP RT’s application to 

clouds in Richardson et al. (2017), and the MODIS-CALIPSO-OCO-2 matchup data are as used in Taylor et al. (2016). The 

datasets used here are listed in Table 2, in particular, from the OCO-2 Level 1b Science (L1bSc) data we obtain calibrated 315 

radiances and RT inputs such as solar zenith angle (SZA) and instrument characteristics.  

The OCO-2 satellite flies in the Sun-synchronous A-Train constellation (L’Ecuyer and Jiang, 2010), and measures during the 

daytime ascending node with an equator crossing time near 1:30 pm. Its orbits are committed primarily to either glint or 

nadir view, and we use nadir only orbits to provide complementary vertical information on clouds that are too low or thin to 

be adequately profiled by CloudSat’s nadir-view radar. Glint-view footprints would preclude our use of the nadir-only 320 

CALIPSO lidar data and atmospheric photon path lengths would be longer, thereby reducing the retrieval sensitivity. Given 

our retrieval’s computational expense we limit to nadir orbits to optimise the likelihood of good retrievals. 

OCO-2. It carries three co-boresighted grating spectrometers centred over the O2 A-band (l~0.78 µm), weak CO2 band 

(l~1.68 µm) and strong CO2 band (l~2.06 µm).   

The satellite operates in a pushbroom fashion with a swath of 8 footprints whose orientation relative to the track rotates 325 

through the orbit as the satellite angles to optimise solar power generation. The subsequent parallelogram-like footprints are 

nominally near 1.4 km´2.2 km at nadir. The channels’ wavelengths vary across the track due to the manner in which the 

optics focus light onto the focal plane array (FPA), and wavelength also drifts throughout an orbit due to Doppler shift. This 

causes issues for a LUT developed from a fixed set of channels, since the wavelengths sampled by those channels will differ 

between each measurement. Furthermore, some sensor pixels are damaged and we only include channel indexes where all 8 330 
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swath soundings are classed as good, which reduces the A-band sample from 1,016 to 853 channels. Section 2.2 describes 

how we use a channel averaging approach to reduce the consequences of this wavelength shift in the cloud classifier and 

Section 2.4 our related channel selection for the LUT.  

For classifier training and validation, we require spatial overlap between OCO-2, MODIS and CALIPSO data. The 

ascending OCO-2 ground track is approximately 200 km to the east of Aqua’s and therefore within the MODIS swath, so we 335 

select the 1 km MODIS retrieval footprint whose centre is closest at the surface to the centre of the OCO-2 footprint. 

However, CALIPSO only measures once at nadir so only one OCO-2 footprint in each swath can be collocated. 

Furthermore, even during formation flying the satellites drifted within their control boxes and some CALIPSO 

measurements occurred outside the OCO-2 swath. We only include footprints with a CALIPSO-OCO-2 matchup distance of 

<1.5 km at the surface. Finally, the dataset was further restricted to footprints with surface type = water, SZA < 45° and with 340 

valid radiances. Between 2014-09-06 and 2018-04-30 the MODIS-CALIPSO-OCO-2 matchup dataset has 5,909 nadir orbits 

of which 4,743 contain valid matchups. This is reduced to N = 3,907 orbits through 2016-12-31 when we also require an 

OCO2CLD-LIDAR-AUX retrieval. 

2.2. Cloud Classifier Data Selection and Training 

For the first step of rapidly identifying footprints that contain liquid clouds over the ocean we select a machine learning 345 

classifier which is trained on a set of collocated MODIS-CALIPSO footprints before being validated against an independent 

set of MODIS-CALIPSO data. The footprints which pass this classifier will be forwarded to the LUT estimator to generate 

the a priori cloud property estimate. 

We generated independent sets of training (N=100,000) and validation (N=250,000) footprints by randomly selecting orbits 

and taking all their valid footprints until we had those sample sizes. We assign a cloud flag value of 1 to a footprint when the 350 

following conditions are all met, else it is 0: 

(i) CALIPSO Feature_Classification_Flag = 2 (cloud present and is liquid) 

(ii) CALIPSO retrieves a single layer 

(iii) MODIS Cloud_Optical_Thickness > 1 (cloud present and is sufficiently optically thick) 

As input we take the continuum radiances (Ic) from all 3 OCO-2 bands and correct for illumination geometry via µ0-1Ic where 355 

µ0=cos(SZA), plus a number of A-band ratios described below. From Python’s sklearn package we selected a multi-layer 

perceptron network (sklearn.neural_networks.MLPClassifier) with hidden layer sizes of (100,50,25). These selections are 

justified in Supplementary §1. 

In these bands the ocean is dark and reflectance increases monotonically with t, so the µ0-1Ic help to identify optically thick 

clouds. Ice also absorbs more strongly than water in the higher wavelength bands, which aids phase discrimination.  360 

We calculate A-band absorption ratios by dividing a non-continuum (i.e. absorbing) channel radiance Iabs,O2 by Ic,O2. Clouds 

tend to increase Iabs,O2/Ic,O2 since photons scattered from the clouds encounter fewer O2 molecules than those that travel all 

the way to the surface. This principle has been exploited to improve detection of clouds over bright snow & ice surfaces with 
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the A- and B-band channels of the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate 

Observatory (DISCOVR) (Zhou et al., 2020). Consider: 365 
!!"#,%&
!',%&

= exp	(−∫ 𝑘"#(𝑧)	𝑑𝑧),       (1) 

Where kO2(z) is the O2 absorption coefficient, which is then integrated over the photon path òdz. Considering a d-function 

distribution of photon path lengths along the beam that is scattered from a single layer with constant kO2(z) = kO2, then at 

nadir the path can be decomposed into the path from TOA to the layer top, 𝜇$%&Δ𝑧, and from the layer top to TOA Δ𝑧: 
!!"#,%&
!',%&

= exp(−𝑘"#(𝜇$%& + 1)𝛥𝑧),     (2) 370 

making 𝑘Δ𝑧 the subject: 

𝑘Δ𝑧 = −ln 5!!"#,%&
!',%&

6 (𝜇$%& + 1)%&,     (3) 

We take the right-hand side of Eq. (3) as our observable. If we select channel combinations with near-constant kO2, then the 

observable is proportional to Dz. Lower values should be associated with high (i.e. more likely ice clouds), and high values 

with clear scenes. This assumes similar scattering properties for the Iabs,O2 and Ic.O2, which is justified by the A-band’s small 375 

wavelength range.  

The kO2 sampled by individual channels varies for three main reasons: 

(i) The central wavelength of each channel depends on the cross-track position due to the way in which the optics 

focus light on the FPA, 

(ii) The wavelengths sampled change due to Doppler shift induces by relative Earth-satellite and Earth-Sun motion, 380 

(iii) The strength of O2 absorption varies due to line broadening induced by atmospheric conditions. 

We use a method from Richardson et al. (2017) to address these factors. The 853 undamaged channels are ranked from 

brightest to darkest and a non-overlapping 10-channel mean is taken, resulting in 85 full “super channels”. These are 

combined with Ic,O2 and µ0 using Equation (3), and we selected every 10th super channel from the 35th onwards 

(Supplementary §1 shows little improvement from additional super channels).  385 

This is illustrated in Figure 3, with Figure 3(a) showing an example cloudy spectrum and the damaged channels, Figure 3(b) 

the ranked super channels and those used in the classifier, and Figure 3(c) compares Iabs,O2/Ic,O2 for the original spectrum 

(CALIPSO Ptop = 827 hPa) and for a spectrum with similar µ0 and Ic,O2 but with CALIPSO Ptop = 403 hPa. The brightest 

super channels show little response to scattering layer altitude, so they contain little information and they are excluded from 

the classifier. The higher altitude cloud has brighter Iabs,O2 due to the shorter mean path length. As stated previously, this aids 390 

in the phase classification, and also to discriminating between cloudy and clear scenes since very low Iabs,O2/Ic,O2 is more 

likely associated with photons scattered from the surface. 
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2.3. Radiative Transfer Simulations and ReFRACtor Interface 

The forward RT simulations used to generate the LUTs are performed with the ReFRACtor RT code, which implements the 

methodology described in Section 2.2.4 of O’Dell et al. (2012). Of particular relevance for cloudy scenes, multiple-scattering 395 

is calculated using which is based on LIDORT with a polarisation correction for low orders of scattering (Natraj and Spurr, 

2007; Spurr, 2006). This code makes a semi-infinitassumes a e plane-parallel assumptionatmosphere, with a correction to the 

direct beam to account for Earth’s sphericity. Angular output is calculated with 8 streams for predefined bins in gas optical 

depth while single stream calculations are done for preselected wavenumbers at a mean separation Dn ~0.04 cm-1, with 

smaller separation within absorption bands. The high- and low-stream outputs are combined using O’Dell (2010)’s low-400 

stream interpolation to rapidly and accurately reproduce high-stream output at all wavenumbers. These are then interpolated 

onto a uniform Dn=0.01 cm-1 grid and convolved with the instrument line shapes (ILS) to obtain channel radiances. Angular 

output is calculated for a handful of wavelengths with 8 streams, with the rest of the spectrum interpolated using a single 

stream using the method of O’Dell (2010), which reliably reproduces the higher-stream output. The selectedis numbers of 

streams was were found to reproduce cloudy scene radiances given MODIS and CALIPSO cloud properties (Richardson et 405 

al., 2017) and also matches the selection in Vidot et al. (2009).  

OCO2CLD-LIDAR-AUX used OCO-2 L2FP RT and required input L1bSc and meteorology files plus a file containing 

pressure level and cloud information. Each footprint’s output was saved to a file for every OE iteration, adding to a read-

write bottleneck. Further inefficiency arose as if any footprint in an orbit included a type of scatterer (e.g. water clouds with 

re = 10 µm, which we term wc_010), its scattering properties had to be assigned for every profile in the orbit. For example, if 410 

one footprint contained a wc_010 cloud, every other footprint in the orbit that didn’t contain a wc_010 cloud would need an 

assigned wc_010 profile with extinction = 0.  

Here we use a the new ReFRACtor, which handles footprints as individual objects. Inputs are assigned uniquely to that 

object and it stores the RT output and updated properties internally, so no external reading or writing is required for 

intermediate OE iterations.  415 

For LUT input we take an ocean footprint near 25 °S from the L1bSc file for orbit 16094a on 2017-07-11 for instrument and 

satellite properties, although we manually vary SZA. We used the mean OCO-2 cloudy profiles for tropical (20 °S—20 °N) 

footprints from Richardson and Stephens (2018). The high latitude case is excluded as its surface temperature is near 0 °C, 

so will mostly represent ice and mixed-phase clouds, and using the midlatitude (20—50 °S/N) case had little effect on the 

retrieval statistics.  420 

The RT code takes input on levels and then linearly interpolates to generate vertically homogeneous layers. We use 16 

pressure levels: 3 assigned linearly in P from TOA to 500 hPa, then 10 from 500 hPa to Ptop, 2 from Ptop to cloud bottom 

(Pbottom), and the final level is the surface. This was found to reliably reproduce OCO-2 L2FP RT standard outputs which use 

20 levels, but with faster processing.  
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The cloud extinction is assigned to the level at the cloud centre, whose neighbouring levels are at Ptop and Pbottom and the 425 

layer interpolation results in a vertically homogeneous cloud with constant t(z) and re(z). Rozanov and Kokhanovsky (2004) 

showed that a vertically uniform assumption may introduce radiation biases, relative to our target marine boundary layer 

clouds which tend to be vertically stratified with increasing extinction towards cloud top (Bennartz, 2007; Grosvenor et al., 

2018; Painemal and Zuidema, 2011), but quantifying such a bias requires extensive testing that we intend to perform 

separately. For now, the cloud H is calculated as in Szczodrak et al. (2001) where 𝐻 ∝ 9𝜏𝑟', and is converted to DP by 430 

assuming Dz/DP»10 m hPa-1. Where this would result in Pbottom > Psurf, the cloud is compressed while maintaining the same 

Ptop. 

For surface reflection ReFRACtor does not currently allow for a Cox-Munk surface, so we assume Lambertian with albedo 

that varies by band and SZA. The band- and SZA-dependent values are derived from a set of OCO-2 radiances as described 

in Supplementary §2 and range from 0.010—0.054. 435 

Gaseous absorption is from the absorption coefficient (ABSCO) version 5.0 tables used in OCO-2’s latest XCO2 retrieval, 

version 9. These tables account for line changes due to temperature, pressure and water vapour. Cloud properties are pre-

calculated using Mie theory at integer micron values of re following an assumed Gamma droplet size distribution with width 

parameter g = 1/9. This follows the standard OCO-2 XCO2 retrieval aerosol input file, but with an update to correct an error 

in water absorption in the CO2 bands [Aronne Merrelli, pers. comm.].  440 

2.4. Lookup table development and retrieval 

The LUT is designed to produce prior cloud property estimates for our future OE retrieval, which specifically targets marine 

boundary layer clouds and aims to provide additional information about their H or Nd. We therefore limit the range of the 

LUT properties to cover the majority of these clouds, with properties t from 1—50, re from 4—32 µm and Ptop from 650—

970 hPa, and SZA spans 20—45° inclusive (see Supplementary Table 3 for selected values). The simulated outputs are Ic,O2 445 

in the O2 A-band, Ic,st in the strong CO2 band and an A-band ratio Iabs,O2/Ic,O2.  

We take the mean of 5 channels for each of Ic,O2 and Ic,st and 10 channels for Iabs,O2, and fixed channel indices are required to 

consistently convert the RT simulated spectra into LUT radiances. The selected channels minimise the root mean squared 

error (RMSE) across a large sample of footprints against the L1bSc continua (for Ic,O2 and Ic,st) and the 60th super-channel for 

Iabs,O2 (as defined in Section 2.2). The 60th super channel is picked as it showed the greatest sensitivity to CALIPSO Ptop in 450 

Richardson et al. (2017). The selection algorithm is described in Supplementary §4, the error statistics are in Supplementary 

Table 4 and the channel indices in Supplementary Table 5. The error statistics show that our selection is valid for a range of 

meteorological conditions, illumination geometries, Doppler shifts and for all 8 cross-track sounding positions.  

The LUT channels are highlighted in Figure 4, which shows mean spectra from a large sample of cloudy footprints. The 

channel means with 2s ranges are shown as shaded bands and are compared with the truth as solid lines. The truth for Ic is 455 

the mean of the sample L1bSc radiance continua, which represent the brightest channels in each footprint and whose channel 
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indices may change with footprint while the Iabs,O2 truth is the spectrum’s 60th super channel. The estimators are consistent 

with the truth in each case, with the best agreement for Ic,O2 and a negative bias in Ic,st. We found that scaling the L1bSc Ic,st 

value by 0.9804 resulted in similar error statistics to using our selected channels, so we use scaled L1bSc Ic,st in our LUT 

retrieval since it those radiances are already loaded for the classifier. The individual Iabs,O2 channels show a large spread, but 460 

the channel selection algorithm accounts for anti-correlation in their radiances such that the 10-channel mean is consistent 

with the 60th super channel across all test footprints. 

For each SZA, Refractor is run for all combinations of input cloud properties to generate A-band and strong CO2 band 

radiances for these selected LUT channels. A LUT is generated at each 5° in SZA from 20—45° inclusive, and the retrieval 

works as follows: 465 

(i) From an L1bSc file, load the SZA plus radiances to get Iabs,O2, Ic,O2 and Ic,st  

(i)(ii) Apply the classifier to identify appropriate cloudy footprints, pass only these to the next step 

(ii)(iii) Convert these into the LUT observables Ic,O2, Ic,st/Ic,O2, and Iabs,O2/Ic,O2 

(iii)(iv) Scale observables onto the nearest LUT SZA using the appropriate µ-related scaling, 

(iv)(v) Interpolate within the LUT to simultaneously estimate t, re and Ptop. 470 

If the observed radiances are outside the LUT values then a NaN is returned and the footprint is flagged as not retrievable. 

The footprint is also flagged as likely to contain ice if L2Met T(Ptop,retrieved) < 0 °C. We refer to NaN or Ttop < 0 °C outputs as 

not being passed by the LUT, since these footprints will not be attempted in our future OE retrieval. 

2.5. Pre-processor prior validation  

The pre-processor is run on the 3,907 orbits used in OCO2CLD-LIDAR-AUX from September 2014—December 2016 475 

where the new L1bSc and L2Met Version 8 files are available along with the collocated MODIS and CALIPSO files, and 

where there are any ocean footprints with SZA < 45°. For validation of the LUT we consider only those footprints where the 

CALIPSO matchup distance < 1.5 km as in Section 2.1, where the MODIS, CALIPSO and LUT retrievals are within the 

valid LUT property range and where derived OCO-2 Ttop > 0 °C (N = 1,264,449). The primary analysis is in the pairwise 

differences between the LUT retrieved properties and MODIS t or re, and CALIPSO Ptop. The MODIS Ptop is also evaluated 480 

against that of CALIPSO.  

2.6. Comparison with OCO2CLD-LIDAR-AUX pre-processor 

The OCO2CLD-LIDAR-AUX matchups are separated into three sets: those that are not flagged by the classifier, those that 

are flatted but do not pass the LUT retrieval (due to out-of-range cloud properties or implied Ttop < 0 °C), and those that fully 

pass the pre-processor. Throughput and agreement are compared with the OCO2CLD-LIDAR-AUX cloud flag, retrieval c2, 485 

retrieved t and Ptop discrepancy versus CALIPSO. The pre-processor performs well if it successfully passes those footprints 

with small posterior c2 and Ptop discrepancy while avoiding those with larger values. 
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The OCO2CLD-LIDAR-AUX cloud flag was based on simple thresholds in µ0-1Ic,O2 and µ0-1Ic,wk combined with a phase 

discrimination based on their combination, and finally a requirement for valid CALIPSO single-layer clouds with Ptop > 680 

hPa occurring within 10 km. This flag did not have a SZA cutoff at 45°, so we will also specifically consider comparisons 490 

between the outputs of the two pre-processors where SZA < 45°.  

3. Results 

3.1. Cloud classifier test statistics 

As in Section 2.2 the classifier output is 1 when we expect a single layer liquid cloud with t > 1 and 0 otherwise and the 

validation data, which we also term “truth”, is the MODIS-CALIPSO classification. We use the following terms: 495 

(i) True Positive (TP), classifier = 1, truth = 1 

(ii) False Positive (FP), classifier = 1, truth = 0 

(iii) False Negative (FN), classifier = 0, truth = 1 

(iv) True Negative (TN), classifier = 0, truth = 0 

Which are normalised such that TP + FP + FN + TN = 100 %. These can be summarised in a confusion matrix, as is done in 500 

Figure 5(a) for the N = 250,000 non-training sample. Its trace is the accuracy score of 90.0 % and the off-diagonal elements 

represent potential misclassifications. Figure 5(b) shows that the FNs are largely clouds of lower MODIS t than those 

identified by the classifier, with 29.4 % of FNs having MODIS t < 3, compared with 7.3 % of TPs. 

Some of these “missed” clouds may be due to collocation error, for example a cloud may average t > 1 over the 1 km 

MODIS footprint, bur not over the larger OCO-2 footprint. The classifier will also have errors: it maximises the accuracy 505 

score, and detecting lower t clouds may require passing darker scenes which could increase the prevalence of FPs. 

Figure 5(c) shows the distribution of CALIPSO Ttop where retrieved, and shows far more cold-topped clouds in the FP case 

compared with the TPs, although there is also a Ttop < 0 °C peak in the FN case. This suggests that the classifier misidentifies 

some ice clouds as liquid, and also that some of the FNs may in reality be mixed phase clouds that CALIPSO has 

nevertheless identified as liquid. For example, 24.6 % of FNs have Ttop < -10 °C, compared with 7.6 % of the TP sample. 510 

Among the false positives, we expected that there would be a larger occurrence of broken or multi-layered clouds, where 

thick broken clouds were sufficiently bright to trigger detection or where overlying thin ice clouds have too little effect on 

the radiances to be flagged as ice. We describe a scene as broken when the MODIS partially cloudy retrieval exists 

(Cloud_Optical_Thickness_PCL > 0) and a scene as multi-layered when CALIPSO retrieves more than 1 cloud layer, 

although strictly this can only detect multiple layers when the upper layer does not fully attenuate the lidar. While 11.3 % of 515 

the full sample is multi-layered, 40.1 % of the FP cases are, and while 12.2 % of scenes are partially cloudy, 30.4 % of FP 

footprints are. Overall, 69.4 % of FPs are associated with multi-layer or broken clouds, or both.  
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3.2. Lookup table matchup performance 

Figure 6(a) shows simulated Ic,O2 and Ic,st at SZA = 30° and Ptop = 810 hPa for all t and re while Figure 6(b) contains the 

median and spread of Iabs,O2/Ic,O2 at each fixed Ptop. Most of the Iabs,O2/Ic,O2 variance is explained by Ptop, with spread largely 520 

due to changes in within cloud scattering. For example, for Ptop = 970 hPa, the optically thickest clouds were artificially 

compressed to prevent them from extending below the surface thereby reducing the in-cloud path and increasing the 

maximum Iabs,O2/Ic,O2. 

The OCO-2 LUT retrievals are compared with those of MODIS and CALIPSO in Figure 7(a—c) and the MODIS and OCO-

2 Ptop differences relative to CALIPSO are in Figure 7(d). We consider the OCO-2 value minus the other product’s value, 525 

and report median [10th, 90th percentiles] instead of standard deviation as these distributions are commonly non-Gaussian. 

There is good correlation between OCO-2 and other products, with a t difference of 0.77 [-3.77,6.93], an re difference of -

0.25 [-2.78,2.13] µm and a Ptop difference of 12 [-11,87] hPa. As can be seen in Figure 7(d), the LUT Ptop retrieval 

outperforms that of MODIS, whose difference relative to CALIPSO is -17 [-83,81] hPa, i.e. the OCO-2 interdecile range is 

approximately 40 % smaller than that of MODIS. 530 

We also divide the t and re differences by the MODIS reported uncertainty (st,MODIS, sre,MODIS). If the OCO-2 and MODIS 

retrievals were independent Gaussian with equal variance then the standard deviation of OCO-2-MODIS differences would 

be √2 ≈ 1.41sMODIS. We find values of 1.26st,MODIS and 0.37sre,MODIS, indicating that the re retrievals are not independent 

and that our differences are within the MODIS-reported uncertainties. 

We acknowledge discrepancies in the median retrieved t and re, and refer to these as biases. The t bias grows both with 535 

OCO-2 retrieved t and with the horizontal variability of the scene as displayed in Figure 8. For this figure, the samples were 

split into deciles according to the LUT retrieved t or the MODIS sub-pixel index at l = 0.66 µm, which is the standard 

deviation of the 250 m footprint radiances with a 1 km cloud retrieval, divided by the mean of those radiances. Spatial 

variability and greater optical depths appear to drive much of the t bias but we could not identify a dominant factor 

consistently correlated with the small re bias. These issues are further discussed in Section 4.2. 540 

 

3.3. Pre-processor throughput 

The multi-layer perceptron classifier passes 5.5 % of all OCO-2 footprints as t > 1 liquid clouds, of which 0.9 % return 

invalid cloud properties from the LUT and a further 0.8 % have implied Ttop < 0 °C, resulting in a final throughput of 3.8 %. 

This is smaller than OCO2CLD-LIDAR-AUX, which attempted to retrieve 14.1 % of all soundings. However, most of the 545 

difference is due to SZA, and when we restrict the denominator to all footprints with SZA < 45° the throughputs are 13.1 % 

for OCO2CLD-LIDAR-AUX and 11.7 % for the new classifier, or 8.1 % after the LUT thresholds.  

Figure 9 displays histograms of selected OCO2CLD-LIDAR-AUX outputs for SZA < 45° retrievals split into footprints 

where the new pre-processor passes the footprint (blue), where the LUT returns invalid properties or Ttop < 0 °C (orange), or 
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the classifier does not pass the footprint (green). The new classifier identifies “better” retrievals that ended with smaller fit 550 

errors: median c2 = 7.2´10-7, versus 1.3´10-4 for those not passed (among those with SZA < 45°). The LUT filtering further 

improves the statistics, with median c2 = 9.8´10-7 for those not passed by the LUT retrieval versus c2 = 6.6´10-7 for those 

successfully retrieved with Ttop > 0 °C. The perceptron network also tends to pass clouds that are more optically thick 

(median t = 8.6 vs. 2.4) and to show smaller spread in the difference between OCO-2 and CALIPSO Ptop (standard deviation 

of differences, s = 33 hPa vs. 55 hPa). 555 

The OCO2CLD-LIDAR-AUX footprints that are excluded by the new pre-processor are consistent with optically thinner 

clouds and with poorer quality retrievals. Among the footprints that are passed by the new pre-processor, 17.1 % were not 

attempted in OCO2CLD-LIDAR-AUX.  

4. Discussion 

4.1. Cloud classifier and pre-processor throughput 560 

The cloud classifier’s agreement of 90.0 % with MODIS-CALIPSO is similar in performance to the original OCO-2 

operational cloud flagging for ocean glint used in the L2FP XCO2 retrieval (Taylor et al., 2016). Furthermore, the multi-

layer perceptron network is lightweight (size <250 kB) and fast. It throughputs 11—13 % of ocean soundings where SZA < 

45°, of which under a quarter are poor retrieval candidates according to MODIS-CALIPSO. These cases are consistently 

(~69 %) broken or multi-layered cloud scenes, while the missed MODIS-CALIPSO cloud scenes are commonly optically 565 

thinner (~4 times likely to be t < 3) and colder (~3 times likelier to have Ttop < -10 °C) than the hit cloud scenes. These 

thinner and colder samples are also likely to be poor candidates for our target future retrieval of droplet number 

concentration in warm topped clouds. 

Applying the LUT retrieval further reduces the number of footprints that are taken to be liquid clouds with t > 1. The 

OCO2CLD-LIDAR-AUX retrieval attempted 13.1 % of SZA < 45° footprints, the new classifier-LUT pre-processor passes 570 

8.1 %. Figure 9 showed that the excluded footprints tended to be more optically thin, have larger discrepancy in retrieved 

Ptop relative to CALIPSO, and to have higher c2. This suggests that the new pre-processor will pass better retrieval 

candidates to the OE code, thereby improving efficiency. Of those that are now passed, 17 % were not passed by 

OCO2CLD-LIDAR-AUX. These likely include cases of mis-identification that will result in poor quality retrievals, but may 

also include true cloud cases that were not identified in OCO2CLD-LIDAR-AUX. For example, retrievals were previously 575 

classified using the nearest CALIPSO footprint up to 10 km away, and if a cloud was in the OCO-2 field of view but not the 

CALIPSO field of view, it would not previously have been passed. Overall, the new pre-processor shows good performance 

in terms of identifying scenes which likely contain liquid clouds with sufficient t.  



21 
 

4.2. Lookup table cloud property retrieval 

The LUT retrieval shows good correlation with MODIS t and re plus CALIPSO Ptop in Figure 7. Versus CALIPSO, the 580 

LUT-based Ptop retrievals have a smaller-magnitude bias and 40 % smaller inter-decile range than MODIS. The 12 hPa Ptop 

bias represents OCO-2 retrieved clouds that are lower in the atmosphere than retrieved by CALIPSO. These statistics may 

include cases of broken cloud, either above a lower cloud or above the surface. Three-dimensional (3d) cloud effects, or 

combined scattering from multiple cloud layers could lead to longer mean photon path lengths and thereby a larger OCO-2 

Ptop, assuming that CALIPSO tends to identify the highest layer. We consider full 3d radiative transfer treatments to be 585 

beyond the scope of this study but point readers to a wide literature on this topic (Davis and Knyazikhin, 2005; Heidinger 

and Stephens, 2002; Kokhanovsky et al., 2007; Várnai and Marshak, 2002).  

Aerosol is ignored in these simulations, as previous analysis using CALIPSO aerosol products showed no change in 

OCO2CLD-LIDAR-AUX Ptop bias in response to CALIPSO-identified aerosol (Richardson et al., 2019). Furthermore, 

above-cloud scattering aerosol would tend to reduce photon path length and therefore have an opposite effect on Ptop to our 590 

observed bias. 

Retrieved Ptop could also change due to the assumed cloud vertical structure and meteorological profile used in the LUT 

development. If the cloud vertical structure used in the RT differs from reality, then this could lead to incorrectly simulated 

within-cloud photon paths. Firstly, if the simulated cloud is too geometrically thin (low H) for a given t, re then the within-

cloud path length will be too small and the above-cloud path must be lengthened to compensate, resulting in a positive Ptop 595 

bias, and vice versa for too-high simulated H. This study improves on the OCO2CLD-LIDAR-AUX prior realistically 

varying H with re in addition to t, but a bias may remain. In particular, shallow marine clouds tend to have extinction 

weighted towards the top which affects the exiting radiance and may introduce Ptop biases which vary with geometry and 

cloud properties. We intend to perform a separate and more detailed analysis of how realistic vertical cloud profiles affect 

simulated OCO-2 radiances, and determine how to account for such a vertical-structure bias. 600 

With regards to meteorology, a warmer and moister profile broadens the O2 absorption lines and we expect stronger resultant 

absorption in the selected Iabs,O2 channels. Our tropical meteorology may lead to too-strong absorption in non-tropical scenes 

such that the retrieved cloud is lifted (i.e. lower Ptop) to compensate, but the observed bias is opposite to this. We also 

retrieved using a LUT developed with the Richardson and Stephens (2018) midlatitude meteorology where surface 

temperature is approximately 10 °C cooler. The retrieved Ptop distribution shifts as expected with median Ptop bias increasing 605 

from 12 hPa to 15 hPa. 

Overall the OCO-2 LUT gives better Ptop retrieval statistics than MODIS for these shallow marine clouds, where for these 

clouds MODIS retrievals rely on brightness temperature at l~11 µm and so may mis-assign Ptop when a temperature 

inversion is present (Baum et al., 2012). However, OCO-2 has a larger footprint, smaller swath and only retrieves during 

nadir view orbits. The Ptop bias relative to CALIPSO is concerning for a future optimal estimation retrieval, since biased 610 

prior properties may subsequently bias the posterior retrieved state in unpredictable ways. We confidently exclude aerosol 
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and meteorology as the main factors in the observed bias, and propose that the main candidate processes are a combination 

of horizontal variability, OCO-2-CALIPSO collocation error and potentially vertical cloud structure. In the future OE 

retrieval we would expect horizontally non-uniform clouds to produce spectra that are more difficult to match under our RT 

assumptions, so such cases may be identified by the posterior c2 statistics. For vertical structure biases, we plan a detailed 615 

future investigation. 

Retrieved t and re show good correlation with those from MODIS and the variance of the differences is smaller than implied 

by the MODIS-reported uncertainties, if the LUT and MODIS uncertainties are independent Gaussian with MODIS’ 

reported variance. However, OCO-2’s Ic,O2 instrumental noise is lower than MODIS’ (single channel signal-to-noise ratio, 

SNR of 300—1200, versus the MODIS band 4 specified SNR of 228), so the instrumental uncertainty contribution to the 620 

error budget should be smaller for OCO-2. There are also common characteristics between the retrievals, such as the use of 

fixed droplet size distribution variances, so individual footprint error will covary between the two. Such covariance should 

further reduce the inter-satellite difference in retrieved t and re. A quantitative analysis would require a thorough calculation 

controlling for individual terms in the error budget, we simply conclude that there is no evidence of substantial unexpected 

variance in our retrieved t and re.  625 

Of greater concern is the residual OCO-2 minus MODIS differences of 0.77 in t  and to a lesser extent -0.25 µm in re. For t 

the bias increases both with horizontal inhomogeneity and with t, and we expect to be able to identify these clouds scenes 

using retrieved t, and either OCO-2 developed metrics of spatial variability or future retrieval c2. 

For the re bias we briefly assessed several factors. Horizontal variability tends to increase retrieved re (Werner et al., 2018; 

Zhang et al., 2012) but we found no evidence of a strong dependence on spatial variability according to MODIS SPI. For a 630 

hypothetical calibration bias we ran the LUT retrieval with a -1 % shift in Ic,st, and this shifts median re by +0.2 µm. We also 

ran the LUT retrieval with a -1 % scaling of Ic,st, which changes median re by +0.2 µm. Such a radiance shift could be 

necessary due to errors in calibration or in our derived scaling factor of 0.9804, which we used to relate the L1bSc file Ic,st to 

our lookup table channels. We could therefore reduce our re bias by further scaling the Ic,st radiances, but the scaling was 

derived from directly comparing the channel radiances rather than as a post hoc correction to improve retrieval results. If the 635 

re bias is due to other factors then this post hoc correction could result in compensating errors which hide other flaws in the 

retrieval. Instrumentally, the MODIS band 7 used in these re retrievals begins at l = 2.105 µm, outside the strong CO2 band. 

Changes in CO2, or, more likely, temperature and vapour-driven broadening or vapour absorption could affect retrieved re. 

When retrieving with the midlatitude profile LUT described above, the median retrieved re increases by 0.17 µm. Given that 

the re discrepancy is small, we make no further efforts to explain or reduce it. 640 
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5. Summary and Conclusions 

Here we developed a new pre-processor for a future optimal estimation retrieval using the OCO-2 A-band to provide new 

estimates of droplet number concentration in marine water clouds. This future retrieval aims to address limitations in the 

previously published OCO2CLD-LIDAR-AUX product, by (1) removing the requirement for collocated CALIPSO data now 

that the satellites are no longer formation flying and (2) adding OCO-2 information about re to extend the analysis to droplet 645 

number concentration. The pre-processor must identify footprints that likely contain liquid clouds of sufficient t, and provide 

prior properties for the future cloud retrieval. It may also be useful for identifying appropriate footprints on which other 

researchers could conduct partial column XCO2 retrievals. 

The pre-processor first flags potentially cloudy scenes using a multi-layer perceptron network fed with continuum radiances 

across all 3 OCO-2 bands plus a set of absorption band radiances from the O2 A-band. The next stage of the retrieval is to 650 

use a three-dimensional lookup table that that jointly retrieves t, re and Ptop using radiances from two bands plus an A-band 

absorption ratio. Footprints whose radiances are inconsistent with the lookup table, or whose implied Ptop occurs where T < 0 

°C can also be excluded from future retrievals. These footprints were associated with worse fit statistics in OCO2CLD-

LIDAR-AUX, implying that the new pre-processor will minimise the waste of computational resources on poor quality 

retrievals. 655 

This pre-processor flag shows excellent agreement with MODIS and OCO-2, and the lookup table t and re compare well 

with MODIS, while its Ptop shows better retrieval statistics than MODIS, when taking CALIPSO as the truth. Many of the 

inter-satellite differences are associated with known factors: false positives from the classifier occur when scenes contain 

broken or multi-layered clouds, and the t retrieval bias grows with the horizontal heterogeneity of the scene. 

A main concern is that the median OCO-2 retrieved Ptop is closer to the surface than CALIPSO’s, by approximately 12 hPa 660 

(~120 m). The assumed mean cloud extinction or its profile will affect photon paths lengths and so could introduce a bias in 

retrieved Ptop, and we propose that a detailed analysis of cloud vertical structure is the next and final step before the 

development of a new OCO-2 cloud retrieval. If successful, this new retrieval would add independent information on cloud 

droplet number concentration, allowing attempts to resolve apparent disagreements about low cloud processes. 

Data sources sklearn is on github at: https://github.com/scikit-learn/scikit-learn 665 

Refractor is on github at: https://github.com/ReFRACtor/framework  

OCO2CLD-LIDAR-AUX can be downloaded from the CloudSat Data Processing Center at: 

http://www.cloudsat.cira.colostate.edu/data-products/level-aux/oco2cld-lidar-aux  
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Table 1. Summary of methods for determining properties in OCO2CLD-LIDAR-AUX, and changes introduced in this study. 
OCO2CLD-LIDAR-AUX is a full optimal estimation (OE) retrieval that combined CALIPSO and OCO-2 information to obtain 
its prior state. This study is intended to provide OCO-2 only prior information for a future OE retrieval. 830 

Property OCO2CLD-LIDAR-AUX This study 

Cloud flagging 1. CALIPSO single layer cloud 

2. CALIPSO Ptop > 680 hPa 

3. OCO-2 radiances exceed static 

thresholds 

4. OCO-2 weak/A-band radiance ratio 

above fixed threshold for given A-band 

radiance 

Multi-layer perceptron network 

classification based on OCO-2 radiances 

and radiance ratios 

Cloud effective radius (re) Fixed re = 12 µm in retrieval Estimated from OCO-2 radiances via 3d 
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lookup table 

Cloud top pressure (Ptop) Prior from collocated CALIPSO 01kmCLay, 

posterior from OE retrieval 

Estimated from OCO-2 radiances via 3d  

lookup table 

Cloud optical depth (t) Prior from lookup table map to A-band radiance, 

posterior from OE retrieval 

Estimated from OCO-2 radiances via 3d  

lookup table 

Cloud geometric thickness (H) Prior from subadiabatic model using prior,  Not reported: assumed subadiabatic 

where needed for radiative transfer, 

derived from t, Ptop, re. 

Retrieved properties t, Ptop, H t, Ptop, re for prior in future retrieval. 

Prior H and/or Nd to be derived from 

subadiabatic model. 

 

 
Table 2. Summary of datasets used. Note that we use the 01kmCLay and MYD061KM products collocated with OCO-2 as 
described in Taylor et al. (2016). 

Dataset name Long  name Summary of data used 

L1bSc OCO-2 Level 1b Science data OCO-2 radiances, geographic information 

and geometry for radiative transfer, 

instrument information. 

L2Met OCO-2 Level 2 Meteorological data Footprint T profiles for Ttop, mean T and q 

profiles for LUT RT.  

01kmCLay CALIPSO 1 km cloud layer product Cloud layer presence, Ptop and phase from 

feature classification flag 

MYD061KM MODIS Aqua 1 km cloud product Cloud effective radius and optical depth 

OCO2CLD-

LIDAR-AUX 

OCO-2 CALIPSO combined cloud 

retrieval 
Preprocessor throughput, retrieval c2 and 

retrieval cloud properties 
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Figure 3.(a) OCO-2 A-band spectrum for a cloud with CALIPSO Ptop = 943 hPa, with the used channels in orange and non-used 
(e.g. due to FPA pixel damage) in blue, (b) the smoothed super-channel spectrum, where the channels are ranked in brightness and 
then non-overlapping 10-channel means are taken. The super channels used in the classifier are shown in red. (c) Comparison of 840 
the ranked ratio I/Ic between this cloud, and one at higher altitude (Ptop = 740 hPa). The SZA is within 0.01° and the continuum 
radiance within 1 % between each spectrum, the differences are largely due to the shorter path length resulting in less absorption 
for the higher altitude cloud. 

 

 845 

 
Figure 4. Mean cloudy scene spectra in (a) the O2 A-band and (b) the strong CO2 band. The channels used in the lookup tables are 
shown as points, red for the continuum radiance Ic and magenta for the O2 absorption band radiance I. Thick horizontal lines 
represent the “truth”, either the L1bSc file’s continuum radiance for Ic or the mean of the 600—609th brightest undamaged 
channels (i.e. the 60th super-channel) for I. The shaded bands of the same colour are the mean±2 standard errors based on the 850 
selected channel sample sizes (5 for Ic, 10 for I). 
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Figure 5. (a) confusion matrix with values in %, comparing trained classifier (“flag”) with collocated MODIS-CALIPSO 
definitions (“truth”) and entries being classified as single-layer water cloud (wc) with t > 1, or “not valid”, (b) normalised 855 
histograms of collocated MODIS t where retrieved, for true positives (TP), false positives (FP) and false negatives (FN), (c) 
normalised histograms of collocated CALIPSO Ttop where retrieved, colours as in (b). 

 

 

 860 
Figure 6. Example lookup table (LUT) properties. (a) radiance in the strong CO2 continuum as a function of A-band continuum 
radiance at SZA = 30° for clouds with Ptop = 810 hPa and t, re as labelled, (b) A-band absorption ratio within the SZA = 30° table 
as a function of Ptop. The solid line is the median value within each LUT at a fixed Ptop, the dashed lines span the 10—90 % range 
and the dotted lines span the minimum to maximum values. 
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Figure 7. Inter-satellite comparison of retrieved cloud properties, (a) MODIS vs. OCO-2 t, (b) MODIS vs. OCO-2 re, (c) 
CALIPSO vs. OCO-2 Ptop and (d) OCO-2 or MODIS Ptop minus CALIPSO Ptop. The colour bar on the right applies to (a)—(c). 

 

 870 
Figure 8. Binned median bias in OCO-2 minus MODIS t (blue) or re (orange) when (a) binned by MODIS sub-pixel index (SPI) 
derived from the 250 m sampling at l = 0.66 µm or (b) binned by the OCO-2 LUT retrieved t. Solid lines are for the full samples, 
and dashed lines are for the subset (a) below the median OCO-2 t or (b) below the median MODIS SPI. 
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Figure 9. Normalised histograms of OCO2CLD-LIDAR-AUX outputs where SZA < 45° separated into whether the soundings pass 
the new pre-processor flag and retrieval or not. The “passed both” set are those that returned valid cloud properties from the LUT 
along with Ttop > 0 °C, the “failed LUTpassed classifier” case gave invalid cloud values or had Ttop < 0 °C, and the “old but not 
newfailed classifier” set are those that were attempted in OCO2CLD-LIDAR-AUX but are not passed by the new classifier. (a) 880 
Logarithm of c2, (b) retrieved t, (c) Ptop minus the closest CALIPSO retrieved Ptop. 


