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Abstract. 12 
Correct, timely and meaningful interpretation of polarimetric weather radar observations requires an accurate understanding 13 
of hydrometeors and their associated microphysical processes along with well-developed techniques that automatize their 14 
recognition in both the spatial and temporal dimensions of the data. This study presents a novel technique for identifying 15 
different types of hydrometeors from Quasi-Vertical Profiles (QVP). In this new technique, the hydrometeor types are 16 
identified as clusters belonging to a hierarchical structure. The number of different hydrometeor types in the data is not 17 
predefined and the method obtains the optimal number of clusters through a recursive process. The optimal clustering is then 18 
used to label the original data. Initial results using observations from the NCAS X-band dual-polarization Doppler weather 19 
radar (NXPol) show that the technique provides stable and consistent results. Comparison with available airborne in situ 20 
measurements also indicates the value of this novel method for providing a physical delineation of radar observations. 21 
Although this demonstration uses NXPol data, the technique is generally applicable to similar multivariate data from other 22 
radar observations.   23 
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1 Introduction 1 

The task of radar-based hydrometeor classification (HC) can be broadly defined as the recognition of different hydrometeor 2 
types in the atmosphere as represented by the various observed moments collected by weather radar.  In general, HC is able to 3 
label radar signatures observed at any one time with physical properties and, over a period of time, the evolution of these labels 4 
can provide insight into the underlying atmospheric processes. As such HC has many impactful applications:  HC simplifies 5 
the detection of the melting layer (Baldini and Gorgucci, 2006), HC is necessary for obtaining accurate estimates of 6 
precipitation quantities (Giangrande and Ryzhkov, 2008) and HC provides critical information for improving modelling of 7 
physical processes in the atmosphere (Vivekanandan et al., 1999).   8 
Radar-based HC requires an extensive and accurate (i.e. expert) knowledge of the physical properties of both multivariate 9 
polarimetric observations and the hydrometeor particles themselves (Hall et al., 1984). Achieving an accurate and precise 10 
radar-based HC is difficult due to the deficiencies (such as low spatial-temporal resolution) and inaccuracies (such as 11 
attenuation) that are inevitable in all radar measurements. The process of HC is made even more difficult when this analysis 12 
needs to be performed during the operational processing of the radar observations where there is a lack of time for expert 13 
assessment. Therefore, automatization of spatial and temporal analysis of multivariate polarimetric data is an important task 14 
for which an advanced and well-tested technique should be developed and utilized.  15 
The development of radar-based HC started in the 1980s and 1990s with the works of Hall et al. (1984), Hendry and Antar 16 
(1984), Aydin et al. (1986), Straka and Zrnić (1993) and Straka (1996). Further refinement and development of automatic HC 17 
algorithms included the application of fuzzy-logic (Straka et al., 2000; Liu and Chandrasekar, 2000), machine-learning 18 
techniques (such as the identification of clusters representing data-wise similarities) (Wen et al., 2015; Grazioli et al., 2015; 19 
Besic et al., 2016; and Ribaud et al., 2019) and neural networks (Wang et al., 2017).  20 
Modern radar-based HC methods (Straka et al, 1996; Liu and Chandrasekar, 2000; Al-Sakka et al., 2013; Grazioli et al., 2015; 21 
Besic et al., 2016; Besic et al., 2018; Bechini and Chandrasekar, 2015; and Wang et al., 2017) are based on the multivariate 22 
data of polarimetric Doppler radar observations. This includes (but is not limited to): the horizontal reflectivity factor𝑍!, 23 
differential reflectivity 𝑍"#, the copolar correlation coefficient 𝜌!$, differential phase shift on propagation 𝛷"%, and specific 24 
differential phase 𝐾"% (for definitions see Bringi and Chandrasekar, 2001) as well as associated derived variables (e.g. standard 25 
deviation). Additionally, temperature and other meteorological data, retrieved from radiosondes or NWP models, are often 26 
utilized (Grazioli et al., 2015; Wen et al., 2015).  27 
In most existing radar-based HC methods, the multivariate input data are analysed per measurement voxel and determined 28 
classes are assigned to the hydrometeor types only according to their characteristics. Such an approach neglects intra-class 29 
relationships and the temporal evolution of the identified classes. This valuable information can also be used in the labelling 30 
of the hydrometeor types and the identification of corresponding microphysical processes. Additionally, almost all methods 31 
within the existing literature are based on theoretical assumptions on the scattering properties of observed particles and/or are 32 
only applicable for a defined (i.e. previously recognized) number and type of classes. Both of these aspects of existing HC 33 
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methods are limitations. For example, theoretical assumptions about the scattering properties of ice-phase hydrometeors are 1 
very uncertain due to unknown size distributions, varying dielectric properties, fall orientation, and their diverse and often 2 
complex geometry (Johnson et al., 2012). A pre-defined number of classes or hydrometeor types is subjective and creates 3 
artificial boundaries for algorithms and, thus, subtle differences in undefined sub-classes are masked, which inhibits 4 
identification of the underlying microphysical processes. 5 
Thus, in this study we take a different approach and ask the following question: can a data-driven HC approach provide an 6 
optimal number of classes from the observations? We define the optimal number as the lowest number of classes representing 7 
all pronounced dissimilarities in the input data. Once the optimal set of classes is identified, the burden of analysis in this 8 
approach is to relate the identified clusters of radar signatures to possible physical properties of hydrometeors. Thus, this 9 
approach does not impose a predefined physical view on the observations but provides a framework for a more efficient 10 
physical interpretation of the properties of the resulting clusters of observed multivariate data in which subtle differences and 11 
intra-cluster relations are easier to identify. In this sense, this approach inverts the procedure of existing methods. Additionally, 12 
we ask whether such an approach can be used to provide information on the temporal evolution of the identified hydrometeors 13 
and reveal relationships between the identified classes. Such information is key for identifying the processes that lead to high 14 
impact weather (i.e. flooding) and improving the physical parametrizations in NWP. 15 
The point of this study is not to create a set of cluster characteristics that could be applied to other datasets. Rather the goal is 16 
to demonstrate the viability of this type of data-driven methodology for creating a set of labelled clusters (i.e. hydrometeor 17 
classes) based on QVP data. As such, the comparison to in situ data and labelling done as part of this study is only shown as 18 
an example of how this tool can be used.   19 
The existing data-driven unsupervised (Grazioli et al., 2015; Ribaud et al., 2019 and Tiira and Moisseev, 2019) and semi-20 
supervised approaches (Bechini and Chandrasekar (2015), Besic et al., 2016; Wang et al., 2017; Roberto et al., 2017 and Besic 21 
et al., 2018) only partially provide an answer to the first question (Grazioli et al., 2015) and do not consider the temporal 22 
evolution or dependencies between the identified classes. The approach described here performs an unsupervised clustering of 23 
quasi-vertical profiles (QVP). QVP were first used in Kumjian et al. (2013) and Ryzhkov et al. (2016) as a way of constructing 24 
a substitute for a vertical profile from a scan conducted at constant elevation, which is a typical mode of scanning for radars 25 
used in operational networks. Calculation of the QVP requires horizontal homogeneity of the observed atmospheric processes. 26 
The height-vs-time format of QVP represents the general structure of the storm or its evolution. Note that this is a novel 27 
application of the QVP data product and the interpretation of QVP polarimetric variables differs from that of PPI or RHI scans 28 
due to the averaging used to construct them. 29 
The QVP input is used in this work to build a hierarchical structure based on the identified clusters and deliver an optimal 30 
number of clusters based solely on internal properties of the multivariate polarimetric data. The optimal clustering is then used 31 
to label the hydrometeor classes and to analyse the temporal evolution of the labelled microphysical processes.  32 
The paper is organised as follows: in Section 2 we introduce the clustering methods we employ, Section 3 contains a description 33 
of the polarimetric radar data and their processing, Section 4 describes the iterative clustering approach, leading to the 34 
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development of the hierarchical structure, Section 5 is devoted to the characterization of the clusters and their labelling, and 1 
Section 6 concludes with a summary, discussion, and thoughts on further perspectives.  2 

2 Background of employed methods 3 

The proposed hierarchical clustering algorithm identifies the optimal number of groups of data points (clusters) in a recursive 4 
loop and organizes the clusters in a hierarchical structure (undirected weighted graph). The two main steps of this approach 5 
are the cluster identification and the optimality check. The cluster identification is achieved after performing dimensionality 6 
reduction by principal component analysis followed by spectral clustering. The optimality check uses validity indexes to 7 
identify the final set of clusters, which best classifies the provided set of data. The description of the dimensionality reduction 8 
and clustering methods with background information about the validity indexes employed can be found in this section directly 9 
after a short introduction to the hierarchical clustering. 10 

2.1 Hierarchical clustering 11 

Hierarchical clustering is a type of clustering technique that splits or combines the data through an iterative process. Unlike 12 
“flat” clustering techniques, hierarchical clustering is not performed in one stage. Rather, it repeats the clustering process 13 
iteratively and keeps the information about each iteration of clustering in a hierarchical structure. In general, for a given set of 14 
multivariate data points, a hierarchical clustering algorithm, depending on top-down or bottom-up direction, either partitions 15 
(divides) or merges (agglomerates) the data into groups (a set of clusters) where data points assigned to the same cluster show 16 
similarity in multivariate values (depending on the context, it could be, for example, having a small distance to each other if 17 
the points are in Euclidean space). The direction of the process (top-down or bottom-up) may be chosen and depends on the 18 
number of individual points in the multivariate dataset and the needs of the underlying problem.  19 
The top-down method begins with all available data points organized in one cluster and splits this cluster into subclusters until 20 
a certain criterion is reached or only solely singleton clusters of individual points remain in the set. The bottom-up method, on 21 
the other hand, begins with all points assigned to individual clusters and at each step, merges the most similar pairs of clusters 22 
into one until all the subclusters are agglomerated into a single cluster. 23 
The optimal number of clusters in both approaches can be identified using a termination criterion. The hierarchical structure 24 
in the bottom-up approach needs to be completely finished before the optimal number of clusters can be identified otherwise 25 
the upper part of the tree will remain unknown. The top-down approach allows for the iterative process to be stopped at any 26 
point whilst preserving the upper part of the hierarchical structure. Another advantage of the top-down approach is the 27 
possibility to have more than two subclusters belonging to one parenting cluster. This allows an optimal number of subclusters 28 
for each parenting cluster, representing the data-driven inheritances in the resulting hierarchical structure. Although this 29 
advantage is often not used, and the bottom-up methods are preferred (Grazioli, 2015 and Rimbaud et al., 2019), the method 30 
presented here fully exploits it for the identification of an optimal number of subclusters in each iteration. 31 
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2.2 Eigenvectors and Principal Components 1 

Principal component analysis (PCA) is a statistical technique mostly utilized in exploratory analysis of multivariate data. It 2 
extracts the most important information from the multivariate dataset generating a simplified view of the original data by 3 
dimensionality reduction.  4 
To reduce a dataset’s dimensionality a set of new orthogonal, non-correlated variables called principal components is 5 
calculated as linear combinations of the original variables. The first component is selected having the largest possible variance, 6 
so it best represents the diversity of the given data. The second component is generated under the assumption of orthogonality 7 
to the first component whilst also having the largest possible variance. This process is continued until the number of principal 8 
components is equal to the number of original variables (d). These components are exactly the eigenvectors of the correlation 9 
matrix and are employed as a basis for a new coordinate system (Wold, 1976; Abdi and Williams, 2010). The first q calculated 10 
coordinates having satisfactory representativeness (e.g. 85 %) can be used to preserve the most important characteristics of the 11 
original data. These q principal components can replace the initial d variables (q < d), and the original data set, consisting of 12 
N measurements on d variables, is reduced to a data set consisting of N measurements on q principal components.  13 

2.3 Clustering method  14 

One of the most popular clustering methods is the k-means algorithm (Steinhouse, 1956). Through its simple interpretability, 15 
it is often used either as a single method or as a part of more computationally expensive clustering methods (e.g. Gaussian 16 
mixtures or spectral clustering). As a single method, it has difficulties with non-convex clusters and is known to perform poorly 17 
if the input variables are correlated (von Luxburg, 2007). As a basis of a more complex method (e.g. spectral clustering) it 18 
allows a solution of non-linear cluster shapes to be found (any low-dimensional manifolds of high-dimensional spaces). 19 
The input data herein are multi-dimensional and were found to have non-convex cluster shapes, therefore the spectral clustering 20 
method was applied (Shi & Malik, 2000; Ng et al., 2002; von Luxburg, 2007). It works by approximating the problem of 21 
partitioning the nodes in a weighted graph as an eigenvalue problem of eigenvectors described above and by applying the k-22 
means algorithm to this representation in order to obtain the clusters. This work implements the Ng et al. (2002) approach and 23 
analyses the eigenvectors of the normalized graph Laplacian.  24 
Spectral clustering has several appealing advantages. First, embedding the data in the eigenvector space of a weighted graph 25 
optimizes a natural cost function by minimizing the pairwise distances between similar data points and such an optimal 26 
embedding is analytically deducible. Secondly, as it was shown in von Luxburg (2007), the spectral clustering variants arise 27 
as relaxations of graph balanced-cut problems. Finally, spectral clustering was shown to be more accurate than other clustering 28 
algorithms such as k-means (von Luxburg, 2007).  29 
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2.4 Determining optimal number of clusters   1 

Clustering algorithms can be roughly divided into two groups based on whether the number of clusters to be found is 2 
predetermined or undetermined. Spectral clustering is a rather flexible technique in the sense that it can be used with a 3 
relaxation (i.e. when the number of clusters to be found is provided) or without it (when the number of clusters is determined 4 
by the multiplicity of the eigenvalue 0). As the approach chosen here is not interested in a flat partitioning of the data, rather 5 
we want to determine hierarchical structures, the determination of the optimal number of clusters is important. To identify this 6 
optimal number of clusters two evaluation scores are used in our method: the Wemmert-Gançarski (WG) index (Hämäläinen 7 
et al., 2017) and Bayesian Information Criterion (BIC) index (Pelleg and Moore, 2000; Hancock, 2017). The WG index was 8 
chosen as best performing according to comparison studies (Niemelä et al., 2018 and Hämäläinen et al., 2017). The BIC is 9 
best for the calculation of the posterior probability of a clustering. While the exact use of the indexes is described in Sect. 4, 10 
the WG and BIC indexes can be defined as follows:  11 
Let the data set 𝑋 = {𝑥& ∈ ℝ': 𝑖 = 1,… ,𝑁} have clustering 𝐶( = {𝑐): 𝑘 = 1,… , 𝐾}, (𝐾 < 𝑁), where 𝑛) – number of 12 
samples/points in the cluster 𝑐) and 𝐼*! – indexes of the points in 𝑋 belonging to the cluster 𝑐). 13 

1) For the WG index: Let 𝑅(𝑥&)	represent the mean of relative distances between the points belonging to the cluster 𝑐) 14 
and the centre of its barycentric weight 𝑔). The 𝑅(𝑥&) value is calculated for each point 𝑥& 15 

𝑅(𝑥&) =
‖,"-.!‖

/&0!#!$‖,"-.!$‖	
, 16 

after that the WG–index 17 

𝑊𝐺2 =
3
4∑ 𝑚𝑎𝑥 @0, 𝑛) −∑ 𝑅(𝑥&)&∈6%! C

(
)73 , (1) 18 

 19 
is calculated representing the WG-index for the set 𝑋 of points partitioned into 𝐾 clusters (Desgraupes, 2017).  20 
The WG-index is a measure of compactness based on the distances between the points and the barycenters of all 21 
clusters. 22 

2) For the BIC index:  23 
Let us model each cluster 𝑐) as a multivariate Gaussian distribution 𝑁(𝜇) , 𝛴)), where 𝜇) can be estimated as the 24 

sample mean vector and 𝛴) = 3
'(4-()∑ ∑ ‖𝑥& − 𝑔)‖&∈6%!

(
)73 , can be estimated as the sample covariance matrix. 25 

Hancock (2017) showed that the optimal clustering is presented by maximum 26 

𝐵𝐼𝐶(𝐶() = ∑ (𝑛) log
0!
4
− '	0!

:
log 2𝜋𝛴) −

	0!-3
:

	𝑑)(
)73 − 3

:
𝐾(𝑑 + 1) log𝑁. (2) 27 

The BIC is an estimate of a function of the posterior probability of a clustering being true, under a certain Bayesian 28 
setup, so that a higher BIC in (2) means that a clustering is considered to be more likely to be the optimal clustering. 29 
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3 Data and processing 1 

This section presents a description of the polarimetric radar data used by the hierarchical algorithm in this study, and some 2 
details of the data pre-processing that is applied before the QVP calculation-processing. Note that the method presented here 3 
is generally applicable with similar multivariate data from other sources. In addition, in situ observations from the FAAM 4 
Airborne Laboratory (FAAM BAe-146) are presented in this section. These data will be used for assigning the labels of the 5 
hydrometeor classes to the detected clusters or cluster groups in the radar observations. 6 

3.1 X-band radar observations 7 

The polarimetric data employed to demonstrate the method developed in this study were collected by the NXPol radar whilst 8 
it was located at the Chilbolton Atmospheric Observatory (CAO), part of the UK’s National Centre for Atmospheric Science’s 9 
Atmospheric Measurement and Observation Facility (AMOF), in southern England (Lat. 51.145° N, Long. 1.438° W ) from 10 
November 2016 to May 2018 (Fig. 1). The NXPol is a mobile Meteor 50DX (Leonardo Germany GmbH) X-band, dual-11 
polarization, Doppler weather radar with a 2.4 m diameter antenna. The radar is a magnetron-based system and operates at a 12 
nominal frequency of 9.375 GHz (λ ∼ 3.2 cm). The detailed characteristics of the NXPol radar can be found in Neely et al. 13 
(2018). From the observations made in 2017–2018 we selected eight dates with the longest precipitation events occurring 14 
within 30 km range of the radar presented on Fig. 1. The exact dates and the total number of volume scans per date can be 15 
found in Table 1. Radar data selected for this study can be found in the list of mobile X-band radar observations on the CEDA 16 
archive (Bennett, 2020). 17 

3.2 Polarimetric variables and temperature data 18 

Here we chose to use the polarimetric variables 𝑍! [dBZ], 𝑍"# [dB], 𝜌!$ [–], and 𝐾"% [° km−1] as well as temperature 𝑇 [° 19 

C] to demonstrate the described clustering technique. The four polarimetric variables were selected as a subset of all the 20 
possible variables as they provide complementary information about the observed hydrometeor properties. Here 𝐾"%is 21 
calculated as the linear gradient of differential phase shift, where the phase shift has been filtered to remove non-meteorological 22 
targets (𝜌!$ > 0.85) and progressively smoothed using decreasing length averaging windows and 𝑍!and	𝑍"# are corrected 23 
for attenuation using the ZPHI method (Testud et al. 2000) where 𝛼=0.27, b=0.78 and specific differential attenuation is 0.14 24 
times the specific horizontal attenuation. Temperature was added to the set of input variables following the reasoning of similar 25 
studies in which either height relative to 0° C–isotherm (Grazioli et al., 2015) or the index representing ice- or liquid-phase of 26 
observed precipitation (Besic et al., 2016) was included. The full input vector used in this study can be represented as: 27 

𝑥 = [𝑍! , 𝑍"# , 𝜌!$ , 𝐾"%, 𝑇],					(3).	28 
 29 

Deleted: attenuation using a linear correction (Bringi et al. 30 
1990).…31 
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Note that this does not preclude the use of differing sets of variables in future studies. The input data used here were pre-1 
processed before being utilized in the clustering algorithm: all range bins that were located at distances less than 400 m from 2 
the radar were removed from all input variables data to reduce the influence of side lobe noise.   3 
The temperature data were taken from the Met Office Unified Model (UM) and interpolated onto the polar grid of the radar’s 4 
observations. The original data can be found on the CEDA archive (Met Office, 2016). Past assessments of the accuracy of 5 
these temperature values suggest that the gridded temperatures are within 1° C of co-incident profiles measured by radiosondes 6 
except in the case of strong inversions or frontal boundaries. An example of one day’s observations (2017-05-17) represented 7 
in the height-vs-time format of the QVP of four polarimetric variables with the temperature presented as isotherms is found in 8 
Fig. 2. Similarly, other dates from our list of cases (Table 1) are in Fig. B1.	9 

3.3 QVP and thresholding 10 

QVP of the input variables are obtained as the azimuthal average of the data from a standard plan position indicator (PPI) scan 11 
at 20° antenna elevation angle (Ryzhkov et al., 2016). The 20° PPI is the highest of ten PPIs of the volume scanning strategy 12 
used by NXPol which starts the scanning from 0.5° elevation angle. The use of 20° PPI minimizes the effects of radar beam 13 
broadening and horizontal inhomogeneity. The beam broadening effect becomes dominant at higher altitudes when observed 14 
by low elevation scan as was shown in Ryzhkov et al. (2016). The radar beam of 1° opening at 20° elevation is about 100 m 15 
at 2-km height, 240 m at 5-km height, and reaches almost 480 m at 10-km height. The resulting profiles have 197 voxels in 16 
each QVP at the altitudes between 0 and 10 km above mean sea level (AMSL) and covering about 30 km range from the radar. 17 
It was also shown in Ryzhkov et al. (2016) that the decrease of 𝑍"# from the oblate spheroidal hydrometeors at 20° elevation 18 
is within the common measurement error of 𝑍"#(0.1–0.2 dB). 19 
An advantage of QVP is that they reduce statistical errors within the input dataset while the height-vs-time format of QVP 20 
naturally represents the temporal dynamics of microphysical processes observed in the radar data. To ensure the observations 21 
are representative of large-scale meteorological features that may be averaged together, the QVP voxels are used in the analysis 22 
only if more than 270 of the 360 azimuthal bins at the range in the PPI scan contain valid data.  23 

3.4 In situ Observations 24 

For the labelling of the clusters, in situ observations can be used to assess any of the clusters within the hierarchical structure 25 
produced by the clustering algorithm. This allows for flexibility in the granularity used to examine the observations. In this 26 
study, the in situ FAAM BAe-146 observations are used to demonstrate the labelling and assessment of the final set of clusters. 27 
The FAAM BAe-146 is a publicly funded research facility that, as part of the National Centre for Atmospheric Science 28 
(NCAS), supports atmospheric research in the United Kingdom by providing a large instrumented atmospheric research aircraft 29 
(ARA) and the associated services. The ARA is a modified British Aerospace 146-301 aircraft. Further details of the FAAM 30 
BAe-146 aircraft instrument systems are available at https://www.faam.ac.uk/the-aircraft/instrumentation/. In situ data for this 31 
study comes from FAAM BAe-146 flights C013, C076, C081, and C082 (FAAM, 2017; FAAM, 2018a; FAAM, 2018b; 32 
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FAAM, 2018c) and observational data are available on the CEDA archive. The dates of the flights with corresponding flight 1 
numbers can be found in Table 1. 2 
For the cases examined, FAAM BAe-146 was equipped with two Cloud Imaging Probes (CIP), which are manufactured by 3 
Droplet Measurement Technologies and described in Baumgardner et al., 2001. The CIP’s are mounted underneath the aircraft 4 
wings and provide 2-bit grayscale images of cloud particles as they pass through the instrument sample volumes. Each CIP 5 
houses a 64 elements photodiode detector, with one CIP having an effective pixel size of 15μm (referred to as CIP15), and the 6 
other having an effective pixel size of 100μm (referred to as CIP100). Therefore, the CIPs provide images of particles in size 7 
ranges of 7.5 μm to 952.5 μm for CIP15 and 50 μm to 6350 μm for CIP100. All probes have ‘Korolev’ anti-shatter tips – the 8 
width of which is 70 mm for the CIP100 and 40 mm for the CIP15.  9 
Particle size distributions are calculated based on CIP data where particle size is defined as being the maximum recorded length 10 
in either the axis of the detector array (X) or along the direction of motion (Y). All particles with inter-arrival times < 10-6 s 11 
are rejected as indicative of shattering as in Field et. al. (2006). The centre-in approach (Heymsfield and Parrish, 1978) for 12 
estimation of particle concentrations from the sample volume is used to calculate the size of partially imaged particles. It 13 
should be noted that despite using the centre-in method with the CIP data, which increases the effective sample volume for 14 
larger particles at the expense of uncertainty in particle size, the ability to measure particles with size > 6 mm is negligible 15 
with this configuration. An indication of the potential presence of such large particles can be obtained through a visual 16 
inspection of the particle images, but no conclusions can be drawn. Also, there are significant uncertainties associated with the 17 
derived properties from the CIPs, which are of the order 20% for number-based properties (Baumgardner et al., 2017). In our 18 
analysis we are not concerned with absolute concentrations from the CIPs. Instead, we are using the CIP data in a qualitative 19 
manner to provide a general framework for comparison with the HC results obtained from the radar observations.  20 
As we base our clustering on the QVP of radar observations, which at each range from the radar are averaged over all available 21 
azimuths, a direct comparison to aircraft observations taken at an exact position and timestamp would not make a representative 22 
comparison. Thus, for the comparison, we have selected the 20-second intervals from the CIP15 and CIP100 data that 23 
correspond to the spatial domain and times of the individual 20° PPI scans that are used to create the QVP. Over these 20 s 24 
intervals the mean number concentrations per particle size bin are calculated (Fig.10). Fig. 9 presents examples of particle 25 
imagery from the CIPs, which typically represents less than 1s of the total 20s of data and shows derived properties of the 26 
particles over the entire 20s sampling period when the airplane observed the atmosphere over the QVP domain.  27 
In order to provide insight into the nature of the particle imagery, we have separated the particle concentrations in Figure 10 28 
into three categories, two of which are based on an analysis of the particle shapes, and another category for partially imaged 29 
particles. “Round” particles are those which have a circularity between 0.9 and 1.2, and particles with a larger circularity are 30 
labelled as “Irregular” - this gives a rough separation into particles which are likely to be liquid water vs ice (Crosier et al., 31 
2011). “Edge” particles are those which are only partially imaged, as indicated by pixels at the extreme edge of the array being 32 
triggered. For the particles which are considered round, the particle size and subsequent concentration is corrected for out-of-33 
focus effects (Korolev, 2007). This out-of-focus correction is not applied to the “irregular” or “edge” images, as there is no 34 
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evidence to show this is an appropriate correction to make. No attempts have been made to classify particle images, for two 1 
key reasons. (1) The larger particles, which have the greatest influence on the polarimetric properties, are poorly sampled by 2 
the CIPs. (2) A recent study by O'Shea et al. (2020, in review at AMTD) suggests existing procedures to classify particle 3 
images using the CIP can lead to inaccurate results due to the effects of diffraction when particles are imaged more than a few 4 
mm off the focal plane, which is a the most common scenario. A thorough assessment of the accuracy of these image 5 
classification algorithms, with respect to particle size and probe configuration, is much needed. 6 

4 Clustering of QVP 7 

Here the clustering steps are described in general. A corresponding overview of the approach is provided in Fig. 3. The 8 
proposed approach uses QVP voxels and temperature data that has been interpolated to the same volume. This data forms the 9 
points of a 5-dimensional space (𝑑 = 5). The PCA (Sect. 2.2) reduces the number of dimensions to 𝑞. The 𝑞-dimensional data 10 
are partitioned into 𝐾 clusters, where 𝐾iteratively increases (𝐾 = 2, 3,…) until the optimal number of clusters is reached, 11 
according to the WG index Eq. (1) in Sect. 2.4. With each of the clusters achieved in this level (“Outer Loop” in Fig. 3), the 12 
process is recursively repeated starting with the PCA calculation and continuing until the optimal partitioning of the sub-13 
clusters is reached (“Inner Loop” in Fig. 3). The total partitioning is confirmed with the BIC index Eq. (2) in Sect. 2.4. When 14 
the BIC’s local maximum is reached the partitioning is considered to be optimal. A detailed description of each of these steps 15 
can be found in the following subsections and the code can be made available on request. 16 

4.1 Start of hierarchical clustering 17 

The hierarchical clustering starts with data standardization and dimensionality reduction of the original 5-variable input data 18 
𝑋 Eq. (3) into a 𝑞-dimensional dataset of principal components (Sect. 2.2). The non-parametric transformation based on the 19 
quantile function maps the data to a uniform distribution. This standardization helps to deal with outliers and satisfy PCA data 20 
assumptions. 21 
To start the loop, all 𝑁 pixels of the input data are used. In later loops, only subsets of the original 5-variable data (𝐼*!) 22 
belonging to active cluster 𝑐) are processed in the Inner Loop (Fig. 3). The first 𝑞 principal components with the largest 23 
variance, having in total at least 85 % representativity of the original dataset, are selected in this step.  24 
The representativity threshold of 85 % was chosen arbitrarily as it reduces the initial 5-variable input space up to 3-dimensions 25 
(𝑞 ≦ 3) in most cases, which effectively simplifies the clustering problem and does not influence the overall outcome. The 26 
threshold can be reduced to further reduce the dimensionality, but it was found that this negatively influences the clustering 27 
accuracy. A higher threshold will retain the high dimensionality of the original dataset but will slow down the clustering 28 
process without gaining further information from the dataset. 29 
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4.2 Iterative process to find the optimal number of clusters (Inner Loop) 1 

At the start of the hierarchical clustering, we begin directly with the first call of the Inner Loop (Fig. 3). The iterative process 2 
in the Inner Loop commences with all 𝑁 QVP pixels represented by the first 𝑞 principal components. The spectral clustering 3 
processes these input data starting with the number of clusters 𝐾 = 2. The number of clusters increases (𝐾 = 2, 3, …) with 4 
each cycle of spectral clustering within the Inner Loop, and at the end of each iteration the WG index Eq. (1) is calculated for 5 
the achieved clustering 𝐶(. At the moment the local maximum is achieved in the WG index values, the clustering in which it 6 
was reached (𝐶(; ) is accepted as the main cluster set of the current level of the hierarchical tree and these clusters become the 7 
set of active clusters (𝐴). Set 𝐴 will be used in the Outer Loop of the implemented hierarchical algorithm.  The active clusters 8 
detected in the first level of the hierarchical structure by spectral clustering for the data on 2017-05-17 are shown in Fig. 4. 9 

4.3 Optimal number of clusters for the total dataset (Outer Loop) 10 

In the Outer Loop of the hierarchical algorithm, the BIC index Eq. (2) is calculated for the active clusters produced by the 11 
Inner Loop (Fig. 3). If the BIC index is calculated for the first time (i.e. the start of the algorithm run,  𝑗 = 1) or the BIC index 12 
values do not show any local maximum, the algorithm continues by calling the Inner Loop for each individual cluster from the 13 
set of active clusters (𝐴<) formed by the calls of the Inner Loop described above.  14 
For the first level of hierarchical clustering all 𝐶(;  are immediately accepted as active 𝐴3 = 𝐶(; . In the Outer Loop, after 15 
calculating the BIC, the original 5-dimensional data belonging to each cluster 𝑐); ∈ 𝐶(;  are sent to the Inner Loop and clustering 16 
(𝐶(;;) achieved by the Inner Loop is used to replace the cluster 𝑐);  in the set of active clusters 𝐴3. If the BIC index calculated on 17 
this ‘suggested set’ shows that the clusters introduced to the 𝐴3 increase the value of BIC, the suggested replacement is accepted 18 
and the set of active clusters is updated as 𝐴: = 𝐶(;; ∩ 𝐶(; /𝑐); .  The Outer Loop then continues with the next cluster from the 19 
original set 𝐴3. When the BIC value does not increase with the ‘suggested set’ the set of active clusters does not change, and 20 
the algorithm continues with the next cluster from the set 𝐴3.  21 

4.4 Next recursion or finalization of results 22 

The final set of active clusters is reached when the value of the BIC index does not increase with any further suggested split 23 
in the current active set of clusters. At this level of detailization, the optimal clustering for the provided input data has been 24 
reached. For the QVP dataset described in Sect. 3, a final set of 13 active clusters is reached (see Fig. 5 and Fig. 6). The 25 
relations between these final clusters (f_cl1, ..., f_cl13) and the 3 parent clusters from the first Inner Loop run (Fig. 4, panel 26 
(a)) are shown in Fig. 5. 27 
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5 Labelling 1 

Once the optimal number of clusters is determined and the hierarchical clustering structure is built, the clusters can be 2 
characterized by their centroids and labelled with appropriate hydrometeor classes using the available verification data. The 3 
clusters for which direct verification data are not available may still be labelled with an appropriate hydrometeor class based 4 
on the scattering characteristics described by the original polarimetric radar variables and considering their position in the 5 
hierarchical tree and height-vs-time QVP representation. As QVP polarimetric characteristics differ from polarimetric 6 
characteristics of hydrometeors observed by PPI and RHI scans, care must be taken when comparing these results to the 7 
literature. Labelling the obtained clusters can be performed for the different levels of granularity depending on the user’s needs 8 
and interests. Note the purpose of the labelling shown here is to demonstrate the ability and validity of the technique rather 9 
than performing a rigorous study of the underlying microphysics observed. The latter will be reserved for follow-up studies 10 
utilizing this technique in a focused manner. 11 

5.1 Level by level clusters check 12 

From the visual verification of the first level parent clusters in Fig. 4 panel (a) and panel (b) we can deduce that there are two 13 
child clusters representing the upper/elevated (ice dominated root.cl2) and the lower (water dominated root.cl1) parts. The 14 
second level clusters from the second loop (panels (c) and (d)) show a well-identified “bright band”, belonging to the melting 15 
layer (ML), (root.cl2.cl2) and a main solid-phase cluster (root.cl2.cl1), both belonging to the cluster representing the ice-phase 16 
dominated part (root.cl2) of the QVP (panel (b)). The three child clusters of the parent root.cl1 cluster (panels (c) and (d)) are 17 
the two rain-type clusters (root.cl1.cl2 and root.cl1.cl3) below the “bright band” and cluster root.cl1.cl1 with most points 18 
located above the “bright band”. In further loops, the main ice-phase cluster (root.cl2.cl1) is split into nine child clusters (Fig. 19 
5) and examples of their positioning in time-vs-height format of QVP can be observed in Fig. 6 or Fig. B1. 20 

5.2 Characteristics of the clusters 21 

The 13 final clusters can be characterized by their centroids (Fig. 7) or their relevant statistics (Fig. 8 and Table A1). The 22 
centroid characteristics in Fig. 7 are plotted as spider plots where each of the five variables is represented by an azimuthal axis. 23 
The filled pentagons in each subplot represent the cluster’s centroid in the five-variable space based on all the data available 24 
in this study. Each vertex of the pentagon shows the centroid’s value in one of the five variables. The non-solid lines in the 25 
subplots of Fig. 7 represent the centroids of the same cluster but based solely on the data from one of the eight cases (Table 26 
1). 27 
Figure 7 confirms a distinction made at the first and the second cycles of the Outer Loop (Fig. 4) between three types of 28 
clusters: liquid-phase clusters (f_cl1, f_cl2 and f_cl3), having lower 𝐾"%and warmer 𝑇 values, ice-phase clusters (f_cl4, f_cl5, 29 
f_cl6, f_cl7, f_cl8, f_cl9, f_cl10, f_cl11), and f_cl12 all with more pronounced 𝜌!$ values; and a very different looking f_cl13, 30 
having warmer 𝑇and rather low 𝜌!$values.  31 
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The largest differences between the centroids selected from the total dataset and the centroids corresponding to the eight 1 
considered cases occur in the temperature (T) values, especially for the clusters f_cl2, f_cl3, f_cl7, f_8, f_cl10 and f_cl12. 2 
These variations can be explained by the origin of the temperature data, which are estimates from the NWP model and do not 3 
always correctly represent the real situation.  4 
The next variable with a rather large variation in several clusters is 𝐾"%.	In	part	this	variation	may	be	due	to	the	fact	that	5 
this	 variable	 has	 an	 extremely	 skewed	 distribution. Clusters f_cl1, f_cl7, f_cl11, f_cl12 and f_cl13 have the highest 6 
variation in 𝐾"%values between the centroids calculated on different cases (Fig. 7). As 𝐾"% can be influenced by the amount 7 
of ice/water particles in the atmosphere, it might be that the clusters have variations in the number of particles. This hypothesis 8 
can only be verified with FAAM BAe-146 observations of the same cluster on different dates. Unfortunately, such verification 9 
is not possible for all clusters and more in situ observations are required. 10 
From the variations of centroid values in the five input variables in Fig. 7, we can also see that the main liquid-phase cluster 11 
(f_cl2) has rather different characteristics in different cases. Case to case it shows large variations in 𝑍!, 𝐾"%, 𝜌!$, 𝑇 and the 12 
highest mean temperature value (6.8° C) among all other clusters. As observed in the histogram of percentages of the cluster 13 
points in Fig. 8 panel (f), f_cl2 is rather big (13.7 % of the total number of points), but does not have the highest percentages 14 
of points in all eight analyzed cases, only in the 2017-05-17 case (9.3 % compared to ≤ 	1.5	% in other cases) (Fig. 7, histogram 15 
per case). Combining all these aspects together we deduce that f_cl2 includes rain of varying intensities and different drop 16 
sizes.  17 
The other rain cluster f_cl3 has less variability in centroid values and has ~20 dBZ smaller 𝑍!values than f_cl2 probably due 18 
to the smaller drop sizes in this cluster. f_cl3 has the smallest mean 𝑍! (7.18 dBZ) and mean 𝐾"% values (-0.097 ° km−1) of 19 
all “water” clusters (f_cl1, f_cl2 and f_cl3). This cluster is often observed at the beginning and at the end of the storm in height-20 
vs-time format representation of the optimal clusters (Fig. B1) and is labelled as “light rain”.  21 
Almost all centroids in Fig. 7 have no or very limited variation in 𝜌!$ or 𝑍"# values except for f_cl13. This cluster has no 22 
variation in temperature (T), having all centroids at 0° C. As such, f_cl13 corresponds to the area in the data referred to as a 23 
“bright band”. According to the box and whiskers plots in Fig. 8 cluster f_cl13 has the highest mean 𝑍! (24 dBZ), mean 𝑍"# 24 
(0.99 dB), and the lowest mean 𝜌!$ (0.93) compared to the other optimal clusters and it is mostly located near 0° C. These 25 
characteristics immediately indicate that f_cl13 can be labelled as the “bright band” belonging cluster having mixed-phase 26 
(MP) particles.  27 
The MP cluster (f_cl13 in Fig. 6) is observed to have some sagging areas: between 10:00 (UTC) and 12:20 (UTC), around 28 
16:00 (UTC) and near 18:00 (UTC). Note that f_cl1 is observed above the MP cluster f_cl13 exactly at these time intervals 29 
(Fig. 6). This sagging “bright band” signature is often observed where aggregation and riming processes are occurring directly 30 
above the melting layer (Kumjian et al., 2016 and Ryzhkov & Zrnic, 2019). This suggests that f_cl1 can be associated with the 31 
processes of aggregation or riming and labelled accordingly. 32 
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Looking at the percentage of points belonging to each cluster in the optimal clustering set (Fig. 8, panel (f)), we see that clusters 1 
f_cl7 and f_cl12 have less than 2 % of points and most probably represent some sporadic and/or special conditions. These 2 
clusters also have been separated early from the other “low ice” (f_cl4, f_cl5, f_cl6) and “elevated ice” (f_cl8, f_cl9, f_cl10, 3 
f_cl11) clusters and are located near the top of the hierarchical tree (Fig. 5). Both clusters f_cl7 and f_cl12 have smaller 4 
absolute mean 𝑍"# values (-0.062 dB and 0.097 dB correspondingly) than the other “ice” clusters (Fig. 8, panel (b).). f_cl7 is 5 
also characterised by the highest mean 𝐾"%value (0.44 ° km−1) among all of the clusters (Fig. 8, panel (d)). The combination 6 
of rather high 𝑍! (17 dBZ) and high 𝐾"%	at	 temperatures	around	 -15	 °C	 indicates a cluster with high particle number 7 
concentration of small ice crystals mixed with a small amount of bigger aggregates. This cluster is potentially a manifestation 8 
of the rapid growth of ice via vapor deposition and onset of aggregation in the dendritic growth layer (DGL) discussed in the 9 
details in Griffin et al. (2018). These characteristics were also recognised as a signature of dendritic crystals in Bechini et al. 10 
(2013).  f_cl12 has the lowest mean 𝑍! value (-3 dBZ) from all optimal clusters. Combining the low mean 𝑍! with low mean 11 
𝑍"# (0.097 dB) and temperature about 3 °C we can assume that f_cl12 can be labelled as small droplets (i.e. drizzle). 12 
f_cl11 belongs to the “elevated ice” clusters and in most cases (see Appendix, Fig. B1) appears as a column in the height-vs-13 
time representation (around 07:00 UTC in Fig. 6 or in Fig. B1 panels (a) 07:00–08:00 UTC; (c) 05:00 UTC and 07:30 UTC; 14 
(g) 12:00 UTC; (h) 12:00–12:30 UTC) filling all the altitudes from the top of the cloud to the ML. This cluster has low mean 15 
𝑍!value (3 dBZ), one of the highest mean 𝑍"# values (0.92 dB) and a close to zero mean 𝐾"% value (-0.009 ° km−1). f_cl11 16 
can be labelled as the pristine ice crystals class, as they typically have high aspect ratios (≫1) and tend to fall preferentially 17 
with their major axis aligned horizontally (Keat and Westbrook, 2017).  18 
Clusters f_cl8, f_cl9 and f_cl10 belong to the “elevated ice” branch of the hierarchical tree (Fig. 5). Among these clusters, 19 
f_cl9 has the most different characteristics compared to f_cl8 and f_cl10 clusters. f_cl9 has higher mean 𝑍! (11 dBZ) and 𝑍"# 20 
(0.59 dB) in combination with a lower 𝜌!$(0.97).  21 
f_cl8 and f_cl10 have rather similar characteristics to each other (Fig. 7 and Table A1). The small difference between these 22 
two clusters is in a higher mean 𝑍! (8.6 dBZ) and 𝐾"% (0.14 ° km−1) for f_cl8 compared to 5.8 dBZ and 0.028 ° km−1 for 23 
f_cl10. Both clusters are the main “elevated ice” clusters. f_cl10 has a warmer mean temperature (-8.2° C compared to -16.7° 24 
C for f_cl8) and most of the time is located near f_cl8 at the beginning or at the end of the observed event (Fig. B1). 25 
The main “low ice” clusters are f_cl4, f_cl5 and f_cl6. Clusters f_cl5 and f_cl6 are often observed together with f_cl6 located 26 
above f_cl5. The f_cl4 has several appearances in height-vs-time formats of events (see Appendix, Fig. B1, e.g. 09:00 UTC 27 
panel (a); 11:00 UTC panel (b); 09:00 and 17:00-18:00 UTC panel (e)), mostly above f_cl1 reaching higher altitudes in the 28 
data.  29 
Measurement errors may influence the clustering results. As it was shown by Bringi et al. (1990) noise in the observations has 30 
a strong impact on k-mean HCA results. Unfortunately, it is impossible to run the same type of analysis conducted by Bringi 31 
et al. (1990) for an unsupervised hierarchical clustering algorithm as the added noise might deliver modified hierarchical 32 
structure with another optimal number of clusters and direct comparison to the original set of final clusters would be 33 
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impossible. Here this issue of noise is partially addressed through our use of QVP. In particular, azimuthal averaging of a QVP 1 
reduces the noisiness of the differential phase within the melting layer (Trömel et al. (2013, 2014)) and was recommended in 2 
Kumjian et al. (2013) to quantify rather small enhancements of 𝑍"# and 𝐾"%.  3 
The mean negative values of 𝑍"# and 𝐾"% in	some	clusters (f_cl1,	f_cl3	and	f_cl7)	might	point	at	potential	biases	due	to	4 
miscalibration	of	𝑍"# ,	differential	attenuation,	or	backscatter	differential	phase	in	the	melting	layer.	Biases in the data 5 
such as miscalibrations will not impact the clustering process but will impact the labelling as it is based on cluster 6 
characteristics.	A	miscalibration	of	𝑍"#	can	also	be	excluded	as	we	routinely perform	calibration	of	this	variable.	𝑍!	and	7 
𝑍"#	are	corrected	for	the	attenuation	in	the	data	pre-processing.	Biases caused by backscatter differential phase in the 8 
melting layer (Trömel et al., 2014) have not been removed and are evident in the cluster characteristics. The influence of the 9 
backscatter differential phase needs further investigation. As discussed, not all clusters can be labelled with absolute confidence 10 
solely based on the cluster’s characteristics and in situ observations can help to verify these initial suppositions.     11 
 12 

5.3 Clusters versus in situ observations 13 

5.3.1 In situ data 14 

For the verification of the preliminary labelling made in Sect. 5.2, data from the CIP15 and CIP100 on board the FAAM BAe-15 
146 is utilised. FAAM BAe-146 aircraft flights were performed on four out of the eight days (Table 1) of radar observations: 16 
2017-05-17, 2018-01-24, 2018-01-24 and 2018-02-14. The flight altitudes and the timestamps when the aircraft was inside the 17 
QVP domain can be observed on the height-vs-time representations of the optimal clusters in Fig. B1. 18 
Out of the four available flights, there are 23 periods of 20-second intervals which result in a total of 460 seconds of flight 19 
time when the aircraft was inside the QVP domain and a cluster can be assigned to the corresponding height. Of these 23 20 
periods there are observations corresponding to 9 unique clusters (f_cl1, f_cl2, f_cl3, f_cl4, f_cl5, f_cl6, f_cl8, f_cl10, f_cl12). 21 
This samples 70 % of the final clusters. From these time series, we present examples of CIP15 and CIP100 images for each 22 
cluster (Fig. 9) and mean particle size distributions of the data observed during the 20-second interval (Fig. 10). 23 

5.3.2 Liquid-phase clusters 24 

The liquid-phase clusters f_cl1, f_cl2 and f_cl3 correspond to in situ data which contains relatively high concentrations (>1 25 
000 m−3) of small particles (mostly < 200 µm in size) which appear round (Fig. 9 and Fig.10, panels (a)–(c)). This strongly 26 
supports the idea of large amounts of liquid water being present in the cloud, which supports the labelling of f_cl1-f_cl3 as 27 
being influenced by liquid water hydrometeors. When looking in detail at CIP100 in situ observations, and to some extent 28 
CIP15 observations at sizes > 200 µm, we can see some significant difference between f_cl1-f_cl3, which we will now discuss. 29 
f_cl1, observed above the “bright band”, was previously assigned to be the result of aggregation and riming. In this region, the 30 
CIP100 (Fig. 9, lower part of panel (a)) shows particle imagery and particle size distributions segregated by shape which show 31 
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the presence of large ice particles (Fig. 10, panel (a)), again confirming the previous cluster labelling. The CIP100 data shows 1 
the presence of irregularly shaped particles, ranging in size from ~1-4 mm, with concentrations in each bin of the order 1 m−3. 2 
This suggests a mode of snow particles is present at the same time as the previously mentioned liquid droplet mode. Many 3 
small water droplets in the CIP15 observations (Fig. 9 and Fig.10, CIP15 of panel (a)) could indicate either the presence of 4 
warm cloud processes or small ice crystals melting first around the ML. The second interpretation is supported by the imagery 5 
from the CIP100 which suggests melting has not started to occur on the larger particles. In this case, the larger aggregate 6 
snowflakes fall to lower altitudes before they start to melt and form the clear “bright band” in the QVP.  7 
 f_cl2 was characterized by the strong variation in 𝑍!, 𝐾"%, 𝜌!$, and 𝑇 of the cluster’s centroids in different cases. Both CIP15 8 
and CIP100 have small round shape particles in the corresponding images (Fig. 9, panel (b)). The mean concentrations per 9 
particle size distributions (Fig. 10, panel (b)) show the prevalence of particles recognised by shape as water droplets. The 10 
droplets of < 2 mm size have the occurrences of the order from 10 m−3 to 90 000 m−3 with higher orders corresponding to 11 
particle sizes < 200 µm. Summing up previous analysis and in situ observations we can assign f_cl2 to a “liquid” cluster, which 12 
includes rain of varying intensities and different drop sizes. 13 
f_cl3 also has predominantly small round shape particles (mean size 𝜇 = 128 μm) in the CIP15 panels (Fig. 9 and Fig.10, 14 
upper part of panel (c)). The CIP100 data (Fig. 9, lower part of panel (c)) were not processed due to technical issues with the 15 
probe so water/ice concentrations based on this data are unfortunately not available. The high concentrations (1000-5000 m−3) 16 
of small size (< 200 μm) particles are assigned to water (Fig.10, panel (c)). Concentrations of the larger particles (> 200 μm 17 
and < 800 μm) are very low (< 100 m−3). Considering these observations, the cluster’s characteristics and the fact that the 18 
cluster appears mostly in the beginning or at the end of the events (Fig. B1) we can assume that the cluster either represents a 19 
very light rain/drizzle or indicates a partially filled QVP domain in the original data. 20 

5.3.3 Solid-phase clusters 21 

The CIP15 images for f_cl4 show a mix of larger irregularly shaped particles (aggregates of snowflakes) and relatively few 22 
tiny ice crystals (Fig. 9, panel (d)) having very small irregular shapes. The mix of small (< 1 mm) particles recognised as water 23 
and ice has low total concentrations (500-800 m−3; Fig.10, upper part of panel (d)). Particles of larger sizes (> 1 mm and < 3.0 24 
mm) have concentrations from 100 m−3 to 800 m−3 (Fig.10, lower part of panel (d)) and were recognised as ice due to their 25 
irregular shapes. The small number of “round” particles recognized as liquid are likely an artefact of the data processing due 26 
to out-of-focus imaging of the numerous ice particles which are present - such artefacts appear when particles are observed at 27 
the edges of the depth of field (O’Shea et al, 2019).  Accordingly, this cluster can be assigned to the mix of pristine ice and 28 
some formed aggregates, all having low concentrations.  29 
f_cl5 and f_cl6 show very similar images in CIP15, but the CIP100 images illustrate the difference between these two clusters 30 
(Fig. 9 panels (e) and (f)). The shape analysis of CIP100, suggests both clusters include a low concentration (40-50 m−3) of 31 
small round shape particles (< 1 mm size; the lower part of panels (e) and (f), Fig. 10). Similar to f_cl4, the number of liquid 32 
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particles are likely an artefact of the data processing (O’Shea et al, 2019). The main difference between these clusters is shown 1 
in the part of the data recognized as ice. The mean size of the particles of f_cl5 is about 1.7 mm and has occurrences of order 2 
100 m−3 (Fig. 10, panel (e)). While the mean size of particles in f_cl6 is a bit smaller - 1.4 mm and particles around that size 3 
have a higher occurrence of order 400 m−3 (Fig. 10, panel (f)). This difference between f_cl5 and f_cl6 resembles the 4 
aggregation processes when dendritic crystals of higher concentrations formed at higher altitudes (f_cl6) start to clump together 5 
during their fall and form aggregates (f_cl5) with a lower concentration of particles.  6 
Clusters f_cl8 and f_cl10, belonging to the “elevated ice” branch of the hierarchical tree (Fig. 5), are also represented by the 7 
very similar images of CIP15 and CIP100 observations (Fig. 9, panels (g)–(h)) with the difference in the particles’ 8 
concentration (Fig. 10, panels (g)–(h)). f_cl8 has a higher concentration of small size (<1 mm) particles (up to 1000 m−3) 9 
recognised as spherical than f_cl10 (up to 300 m−3). The bigger particles captured in CIP100 corresponding to f_cl8 are of 10 
bigger size (from 1 mm and up to 3 mm) and also have a higher concentration (< 500 m−3) compared to particles of f_cl10 11 
having a maximum size of about 2 mm with concentrations < 200 m−3. The example of CIP100 images suggests that these 12 
particles are dendritic in nature (Fig. 9, panel (h)). Again, similar to the artefacts discussed when looking at the CIP 13 
observations for f_cl4, f_cl5 and f_cl6, there is likely an erroneous classification of small size particles (O’Shea et al, 2019). 14 
Thus, according to in situ data, f_cl8 can be assigned to a mix of pristine ice and bigger aggregates and f_cl10 to a low 15 
concentration mix of pristine ice and smaller aggregates. 16 
The last in the list of clusters verifiable with the FAAM BAe-146 data is f_cl12 (Fig. 9, panel (i)). The lower panel (i) of Figure 17 
10 shows occurrences of order 10 000 m−3 for very small particles up to 150 μm and occurrences of order 1000 m−3 for the 18 
droplets of sizes between 150 μm and 250 μm with almost no occurrences of bigger particles. Unfortunately, concentrations 19 
from CIP100 data are not available for this cluster due to technical issues in the CIP100 probe. f_cl12 contains the fewest 20 
number of data points in QVP analysis (Fig 8. panel (f)) and there are no other in situ observations related to this cluster. Based 21 
on available data, we could assume that the cluster has a high concentration of tiny water droplets (potentially drizzle). On the 22 
other hand, similar to the data for other classes, the CIP analysis may have misclassified these as liquid due to their small round 23 
appearance in the observations when in reality the observations could represent high concentrations of small ice particles. 24 
Likewise, the mean temperature of this cluster is close to 0° C, so no definitive label may be given based on the observations. 25 
Thus, the physical interpretation of this cluster is ambiguous though the cluster is separate within the multivariate space. 26 

5.3.4 Assignment conclusions 27 

The rest of the clusters need to be assigned by means of human interpretation according to the cluster characteristics or 28 
deduction from the interactions and temporal evolution of already assigned clusters. The summary of the assigned clusters can 29 
be found in Table A1 of the Appendix A. Application of in situ observations for the assessment of QVP-based clusters has its 30 
limits as not all optimal clusters were captured by the FAAM BAe-146 flights and this process requires a comparison of data 31 
from essentially one-point measurement to the cluster based on the mean QVP domain values. An appropriate validation 32 
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process would utilise columnar vertical profiles (CVP) as described in Murphy et al. (2020) with the thorough collocation of 1 
the aircraft observations. Utilising CVPs within the presented technique is a part of the planned work for the future.  2 

6 Summary and Conclusions 3 

This paper presents a new technique of hydrometeor classification from QVP. Note that both the data-driven approach and the 4 
use of QVP is novel.  In this technique, the hydrometeor types are identified from an optimal number of hierarchical clusters, 5 
obtained through a recursive process. This recursive process includes an initial dimensionality reduction by principal 6 
component analysis followed by spectral clustering. Spectral clustering performed in the PCA space allows us to identify 7 
clusters that would have a non-convex form in the original multivariate input space. This property of the algorithm makes it 8 
unique and advantageous in comparison to other classification methods, which separate classes by hyperplanes. 9 

The final set of clusters is identified with an optimality check using validity indexes. This represents the first attempt, in top-10 
down hierarchical clustering of weather radar data, to identify the number of clusters based solely on the embedded data 11 
characteristics. This data-driven technique produces an optimal number of clusters and keeps the hierarchical structure built in 12 
the clustering process. The final set of clusters may be labelled based on their positioning in the hierarchical structure, the 13 
characteristics of their centroids and co-incident in situ observations. Depending on the user’s needs and interests, the labelling 14 
can also be performed for different levels of granularity. In the example shown in this study, we utilise observations collected 15 
during several FAAM BAe-146 flights to demonstrate the advantages this technique has in the labelling process. In this case, 16 
based on the data available, 70 % of the clusters were labelled using the coincident CIP observations. The other 30 % of the 17 
clusters, which were not sampled during the FAAM BAe-146 flights of this study, were labelled based on the cluster 18 
characteristics, their positioning in the hierarchical structure and considering interactions with clusters in a height-vs-time 19 
format of original QVP data. 20 

Thus, in this study, we find that a data-driven HC approach is capable of providing an optimal number of classes from the 21 
observations. Moreover, the embedded flexibility in the extent of granularity is the main advantage of the technique. Each 22 
branch of the hierarchical structure can be cut out at any level and the parenting cluster characteristics can be used for labelling 23 
and identifying more general processes in the atmosphere, while the lower level clusters can provide information about more 24 
specific properties and features of the observations.  25 

The centroids of the clusters represent characteristics of the points belonging to a cluster in the multivariate input space (in 26 
this case, the polarimetric radar variables and temperature). The identification of these centroids allows the clusters to be 27 
tracked in time and altitude as the centroids are calculated based on QVP from single scans. An analysis of the time series of 28 
the radar volume scans is possible and would allow the clusters to be tracked in time and 3D space. Though unexplored in this 29 
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study, the application of the presented approach in this way could be used to provide information on the temporal evolution of 1 
the identified hydrometeors and reveal relationships between the identified classes.  2 

Note that the final set of clusters is optimal only for the provided input dataset (Table 1), which gives the user an opportunity 3 
to select the input dataset depending on their needs. Thus, for the clustering to reflect ice properties and processes, the 4 
appropriate input data climatology should be used. For identification of specific features in the data (e.g. birds or insects) a 5 
subset of cases potentially including these features should be selected for the analysis. Further analysis of long-term dataset 6 
could be used to create a set of climatologically representative clusters that could be used to study general processes and inform 7 
the development of an operational HC scheme. 8 

In this paper, the technique was used for classification of QVP of long-lasting precipitation events, but the same algorithm can 9 
be applied to various needs (e.g. identification of birds, insects’ or clustering of volume scans of radar data). In parallel with 10 
the application of hierarchical clustering technique to other radar observations a thorough validation of the clusters using CVPs 11 
following the FAAM BAe-146 is planned. 12 
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 6 
Figure 1: NXPol radar location at the Chilbolton Atmospheric Observatory. Circles with the centre at the radar position represent 30, 60, 7 
90 and 120 km range. Credit: USGS (2006). 8 
 9 
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 1 
 2 

Figure 2: The time-vs-height QVP of 𝑍! [dBZ], 𝑍"# [dB], 𝜌!" [–], and 𝐾#$ [° km−1] retrieved from the NXPol radar observations at 3 
Chilbolton on 2017-05-17. Overlaid by temperature isotherms 𝑇 [° C]. 4 

 5 

 6 
Figure 3: Flow chart of the implemented hierarchical top-down clustering algorithm.  7 

 8 
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 1 
Figure 4: The active clusters at the end of the first (panels (a) and (b)) and second (panels (c) and (d)) cycle of the outer loop of the 2 
hierarchical clustering algorithm. Panels (a) and (c) plotted in the hierarchical (tree) structure and panels (b) and (d) plotted in time-vs-3 
height format of the observations on the 17 of May 2017. 4 

 5 
Figure 5: Final hierarchical structure of the optimal clustering found for the QVP input data described in Table 1. The final set of optimal 6 
clusters consists of coloured clusters f_cl1, f_cl2, …, f_cl13. 7 

 8 
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 1 
Figure 6: The time-vs-height format of the final optimal set of active clusters found by the top-down hierarchical clustering for the QVP 2 
input data described in Table 1 (The hierarchical structure behind the optimal clustering is found in Fig. 4). Example of clusters in the time-3 
vs-height format of the 17 of May 2017 QVP presented in Fig. 2. 4 
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 1 
Figure 7: Characteristics of the optimal clustering centroids in four polarimetric variables and temperature. The scales of the variables: from 2 
-20 dBZ to 40 dBZ for 𝑍!, from -1.5 dB to 2.0 dB for 𝑍"#, from 0.9 to 1.0 in 𝜌!", from -0.3 ° km−1to 0.6 ° km−1 for 𝐾"%, and from -20° 3 
C to 10° C in temperature (T). 4 
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 1 
Figure 8: Characteristics of the optimal clustering centroids in four polarimetric variables ((a) – 𝑍!, (b) - 𝑍"#, (c) – 𝜌!$, (d) – 𝐾"%) and 2 
temperature (e). The percentage of points in each cluster is in the panel (f). 3 
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 1 
Figure 9: Examples of the images taken from the Cloud Image Probe CIP-15 (15𝜇m, upper) and CIP-100 (100𝜇m, lower) within 30 km 2 
range from the radar position: (a) for f_cl1 – on 18:25:31 UTC 14-02-2018; (b) for f_cl2 – on 18:56:13 UTC 14-02-2018; (c) f_cl3 – on 3 
11:36:44 UTC 24-01-2018; (d) f_cl4 – on 18:17:53 UTC 14-02-2-18; (e) f_cl5 – on 16:53:50 UTC 14-02-2018; (f) f_cl6 – on 08:52:13 UTC 4 
13-02-2018; (g) f_cl8 – on 07:43:16 UTC 13-02-2018; (h) f_cl10 – on 17:55:01 UTC 14-02-2018; (i) f_cl12 – on 12:07:24 UTC 24-01-5 
2018.The image widths are 960 and 6400 μm, respectively. The temperature values are derived from the model data and the heights are 6 
derived from the location of the clusters in the QVP. 7 
 8 
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 1 
Figure 10: Corresponding to Fig. 9 particle size distributions from the Cloud Image Probe CIP-15 (15𝜇m, upper) and CIP-100 (100𝜇m, 2 
lower) within 30 km range from the radar position: (a) for f_cl1 – on 18:25:31 UTC 14-02-2018; (b) for f_cl2 – on 18:56:13 UTC 14-02-3 
2018; (c) f_cl3 – on 11:36:44 UTC 24-01-2018; (d) f_cl4 – on 18:17:53 UTC 14-02-2-18; (e) f_cl5 – on 16:53:50 UTC 14-02-2018; (f) f_cl6 4 
– on 08:52:13 UTC 13-02-2018; (g) f_cl8 – on 07:43:16 UTC 13-02-2018; (h) f_cl10 – on 17:55:01 UTC 14-02-2018; (i) f_cl12 – on 5 
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12:07:24 UTC 24-01-2018.The image widths are 960 and 6400 μm, respectively. The temperature values are derived from the model data 1 
and the heights are derived from the location of the clusters in the QVP. 2 
 3 
Table 1: in situ data collection campaigns 4 

Date FAAM flight number Number of volume scans Number of QVP voxels 

20170201 - 243 46656 

20170203 - 213 40896 

20170303 - 213 40896 

20170322 - 213 40896 

20170517 C013 100 19226 

20180124  C076 196 37632 

20180213 C081 189 36288 

20180214 C082 189 36288 

 5 

Appendix A: Polarimetric characteristics of the optimal clusters  6 

Table A1 provides the relevant statistics of each of the thirteen optimal clusters identified in this work from a database of X-7 
band radar data.  8 

Table A1. Statistics describing the content of the thirteen optimal clusters identified in Sects. 4. For each polarimetric variable and for 9 
each cluster, we provide the mean value, standard deviation σ, and [minimum, maximum] values.  10 

Variable Cluster Unit MeanValue σ MinValue 25 % 50 % 75 % MaxValue Label 

𝑍!	   
  

f_cl1 
  

dBZ 20 5 3 17 20 23 38  
  
  

aggregation/ 
riming of ice 

crystals 
  

𝑍"#	 dB -0.04 0.11 -0.46 -0.12 -0.05 0.03 0.25 

 𝜌
!$

 - 0.989 0.002 0.974 0.987 0.989 0.990 0.994 

𝐾"%	 ° km−1 0.1 0.1 -0.2 0.0 0.1 0.2 0.6 

T ° C -2 3 -14 -4 -2 -1 5 
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𝑍!	   
  

f_cl2 
  

dBZ 22 6 2 18 23 25 42   
 
  

rain 
  

𝑍"#	 dB 0.13 0.17 -0.21 0.02 0.08 0.20 1.29 

 𝜌
!$

 - 0.991 0.002 0.961 0.990 0.991 0.992 0.995 

𝐾"%	 ° km−1 0.0 0.2 -0.9 0.0 0.0 0.0 0.5 

T ° C 7 3 -5 4 6 10 14 

𝑍!	   
  

f_cl3 
  

dBZ 7 8 -21 2 8 13 29  
  
  

light rain/drizzle 
  

𝑍"#	 dB -0.04 0.09 -0.43 -0.10 -0.04 0.02 0.43 

 𝜌
!$

 - 0.984 0.008 0.875 0.982 0.987 0.989 0.993 

𝐾"%	 ° km−1 -0.1 0.2 -1.0 -0.1 0.0 0.0 0.1 

T ° C 4 4 -10 1 4 6 13 

𝑍!	   
  

f_cl4 
  

dBZ 12 3 1 10 12 14 24   
 

low 
concentration 
pristine ice & 

aggregates 

𝑍"#	 dB 0.15 0.11 -0.22 0.07 0.16 0.23 0.57 

 𝜌
!$

 - 0.984 0.002 0.969 0.983 0.985 0.986 0.993 

𝐾"%	 ° km−1 0.1 0.1 -0.15 0.04 0.07 0.11 0.25 

T ° C -6 4 -20 -8 -6 -3 3 

𝑍!	   
  

f_cl5 
  

dBZ 20 3 11 17 19 22 37  
  

low 
concentration 

larger 
aggregates 

  

𝑍"#	 dB 0.15 0.11 -0.22 0.07 0.15 0.22 0.57 

 𝜌
!$

 - 0.986 0.003 0.954 0.985 0.986 0.988 0.992 

𝐾"%	 ° km−1 0.2 0.1 0.0 0.1 0.2 0.3 0.8 

T ° C -4 3 -13 -6 -4 -2 3 

𝑍!	   
  

f_cl6 
  

dBZ 15 3 7 13 15 17 27   
higher 

concentration 
dendritic 

crystals & low 
𝑍"#	 dB 0.33 0.11 0.01 0.26 0.33 0.40 0.84 

 𝜌
!$

 - 0.982 0.003 0.965 0.980 0.983 0.984 0.989 
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𝐾"%	 ° km−1 0.3 0.2 0.0 0.2 0.2 0.3 1.2 concentration 
aggregates 

T ° C -9 4 -21 -12 -9 -7 0 

𝑍!	   
  

f_cl7 

dBZ 17 4 7 13 18 21 28  
high 

concentration 
pristine ice & 

low 
concentration 

larger 
aggregates 

𝑍"#	 dB -0.06 0.08 -0.03 -0.12 -0.06 -0.01 0.18 

 𝜌
!$

 - 0.985 0.004 0.970 0.984 0.987 0.988 0.992 

𝐾"%	 ° km−1 0.4 0.1 0.1 0.3 0.5 0.5 0.8 

T ° C -15 6 -30 -20 -15 -10 -4 

𝑍!	   
  

f_cl8 
  

dBZ 9 2 2 7 9 10 15  
high 

concentration 
pristine ice & 

low 
concentration of 

dendrites 

𝑍"#	 dB 0.35 0.13 -0.08 0.28 0.34 0.44 0.75 

 𝜌
!$

 - 0.981 0.003 0.960 0.979 0.982 0.984 0.989 

𝐾"%	 ° km−1 0.1 0.1 0.0 0.1 0.1 0.2 0.6 

T ° C -17 4 -33 -20 -17 -14 -2 

𝑍!	  
 
 
 

f_cl9 

dBZ 11 33 2 8 11 13 29  
 
 

dry aggregates 
of pristine ice  

𝑍"#	 dB 0.59 0.18 0.10 0.46 0.56 0.68 1.61 

 𝜌
!$

 - 0.975 0.004 0.944 0.972 0.975 0.977 0.985 

𝐾"%	 ° km−1 0.1 0.1 -0.7 0.1 0.1 0.2 0.7 

T ° C -8 5 -19 -12 -8 -4 4 

𝑍!	   
  
 
 

f_cl10 

dBZ 6 3 -6 4 5 8 17  
 

low 
concentration of 

pristine ice & 
dendrites 

𝑍"#	 dB 0.32 0.16 -0.21 0.22 0.32 0.42 0.87 

 𝜌
!$

 - 0.978 0.004 0.956 0.976 0.9979 0.981 0.989 

𝐾"%	 ° km−1 0.0 0.0 -0.8 0.0 0.0 0.1 0.3 

T ° C -8 5 -26 -12 -7 -4 9 

𝑍!	   dBZ 3 4 -17 1 3 5 16  
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𝑍"#	   
 
 

f_cl11 

dB 0.92 0.43 0.23 0.63 0.83 1.11 3.23  
 

pristine ice 
crystals  

  
 𝜌

!$
 - 0.961 0.017 0.810 0.959 0.966 0.970 0.982 

𝐾"%	 ° km−1 0.0 0.2 -1.3 0.0 0.0 0.1 0.3 

T ° C -5 4 -18 -8 -5 -1 6 

𝑍!	   
  
 

f_cl12 

dBZ -3 5 -19 -6 -2 1 8   
 

drizzle 
𝑍"#	 dB 0.10 0.13 -0.23 0.01 0.07 0.17 0.93 

 𝜌
!$

 - 0.097 0.012 0.88 0.960 0.968 0.973 0.980 

𝐾"%	 ° km−1 0.0 0.1 -0.8 -0.1 0.0 0.0 0.6 

T ° C 3 4 -8 0 3 6 11 

𝑍!	   
  
 

f_cl13 
  

dBZ 24 8 -7 19 25 30 42   
  
 

MP 𝑍"#	 dB 0.99 0.49 0.04 0.63 0.92 0.96 0.99 

 𝜌
!$

 - 0.931 0.032 0.768 0.910 0.934 0.956 0.989 

𝐾"%	 ° km−1 0.2 0.2 -1.3 0.0 0.2 0.3 1.3 

T ° C 1 2 -3 0 1 2 11 

 1 
  2 
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Appendix B: The optimal clusters in eight events 1 

 2 
Figure B1: The time-vs-height format of the final optimal set of active clusters found by the top-down hierarchical clustering for the QVP 3 
input data described in Table 1. The observations were made on (a) 2017-02-01, (b) 2017- 02-03, (c) 2017-03-03, (d) 2017-03-22, (e) 2017-4 
05-17, (f) 2018-01-24, (g) 2018-02-13, and (h) 2018-02-14. (The hierarchical structure behind the optimal clustering is found in Fig. 4).  5 

  6 
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Reviewer 1: 1 
 2 

1) Page 3, Line 16-19: I suggest instead to the authors to underline as novelty the fact that QVP data are used. 3 
Previous studies already demonstrated the viability of the data-driven approach for hydrometeor 4 
classification and this is not a clear novelty of the paper (so i would rephrase also what stated at Page 18, 5 
Line 4-5). 6 

We appreciate the reviewer's concern about the novelty of the QVP based clustering, but in our view, it is 7 
not the only novelty. The clustering technique we use is hierarchical, and it is a subtle but important 8 
difference from previous data-driven approaches in the literature that needs to be highlighted as well. We 9 
have further underlined the novelty of using QVPs in p.3, L.16-19: 10 
  11 
"The point of this study is not to create a set of cluster characteristics that could be applied to other 12 
datasets. Rather the goal is to demonstrate the viability of this type of data-driven methodology for creating 13 
a set of labelled clusters (i.e. hydrometeor classes). As such, the comparison to in situ data and labelling 14 
done as part of this study is only shown as an example of how this tool can be used." 15 
  16 
"The point of this study is not to create a set of cluster characteristics that could be applied to other 17 
datasets. Rather the goal is to demonstrate the viability of this type of data-driven methodology for creating 18 
a set of labelled clusters (i.e. hydrometeor classes) based on QVP data. As such, the comparison to in situ 19 
data and cluster labelling within this study is only shown as an example of how this tool can be used. " 20 
  21 
and it was already present in p.18, L. 4-5: 22 
  23 
"This paper presents a new technique of hydrometeor classification from QVP. Note that both the 24 
hierarchical data-driven approach and the use of QVP is novel." 25 

 26 
 27 

2) Noise and measurement errors (Page 14/15, Lines 30-11): here I still see room to perform and show the 28 
result of actual tests about the effect that noise or biases (which can be artificially introduced) can have on 29 
the output of the clustering (number of clusters, size, statistics of the content). 30 
 31 

We agree that the impact of measurement errors is important. Still, because the clustering technique we 32 
utilise provides a hierarchical tree of clusters and the final number of clusters is not predefined, a series of 33 
tests looking at the impact of differing levels of artificially introduced noise or biases would be meaningless. 34 
Adding artificial noise to the data will most likely change the number of optimal clusters or even the structure 35 
of the hierarchical tree, but any comparison between the perturbed and original data results would not be 36 
possible as there will be no direct correspondence between two optimal sets of clusters. Furthermore, the 37 
sensitivity of our technique to the perturbation of the input data would only mean that the method performs 38 
as expected – changing the result based on the input properties. As such, this is why we think the pre-39 
processing of the data and the reduction of statistical errors through the formation of QVPs is essential. 40 

 41 
Reviewer 2: 42 
 43 
Comment 1. I would suggest specifying the factors being used to correct Z and Zdr for attenuation / differential 
attenuation using differential phase. 
 

We now include requested information in the text. We also changed the description of the attenuation 
technique. This change is due to a confusion in the versions of the pre-processed data used for the final 
clustering tests. We have now triple checked, and we can state that the data we utilise were corrected with 
the method provided in the description of the pre-processing.  We apologise for this confusion and are glad 
the reviewer asked us to check. The text of the manuscript is adapted p.7, LL.24-25: 
 
“attenuation using the ZPHI method (Testud et al. 2000) where =0.27, b=0.78 and specific differential 
attenuation is 0.14 times the specific horizontal attenuation.” 
 
Testud et al. (2000)  has also been added to the list of references. 



38 
  

 1 

 
 
Comment 3. The Griffin et al. (2018) paper is cited in the text but not included in the reference list. 
 

We thank the reviewer for noticing it. The reference list has been updated accordingly. 
 
 
Comment 5. What kind of “technical limitations” prevented the authors to compute wet bulb temperature? It is hard 
to believe that vertical profiles of humidity were not available from the Met Office Unified Model for the cases 
examined. 
 

The high-resolution reanalysis data we have access to from the UK Met Office does not provide a 3D wet-
bulb field. The dataset’s documentation indicates that there should be a field that contains the ‘wet bulb 
freezing height ASL’, however, an inspection of the data files reveals no field with that name, or anything 
relating to wet bulb temperature. Over the last six months, we have tried to contact someone with 
knowledge of the creation of these files to help with this issue. Unfortunately, that has so far been 
unsuccessful.  There is a 3D relative humidity field; however, these are given only on a limited number of 
pressure levels, similar to the temperature profiles used. Therefore, interpolating moisture between 
pressure levels would not hold close to the same level of accuracy as interpolating temperature, and make 
estimating the wet-bulb freezing height in this way would not be reliable. 

 
 
 
Comment 7. The source of the Kumjian 2012 reference is not specified. Is this his ERAD 2012 conference paper of 
PhD thesis? I still do not see Hampton (2019, 2020) in the reference list. It would be better to refer to the full journal 
article of Murphy et al. (2020) in JTECH rather than to the Murphy’s MS thesis. 
 

We thank the reviewer for pointing out the missed specification in the references. We have corrected the 
reference in the text from “Kumjian (2012)” to “Kumjian et al. (2013)” as the first paper where QVP’s as a 
median value per range were presented is that paper (p. 3 L. 24). We removed references Kumjian (2012) 
and Hampton (2019, 2020) from the reference list as they are not used in the text of the paper anymore. 
The reference to Murphy et al. (2020) paper is used in the text in place of Murphy’s MS thesis (p.18, L.1) 
and the list of references has  been updated. 

 
 

  


