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Abstract. 12 
Correct, timely and meaningful interpretation of polarimetric weather radar observations requires an accurate understanding 13 
of hydrometeors and their associated microphysical processes along with well-developed techniques that automatize their 14 
recognition in both the spatial and temporal dimensions of the data. This study presents a novel technique for identifying 15 
different types of hydrometeors from Quasi-Vertical Profiles (QVP). In this new technique, the hydrometeor types are 16 
identified as clusters belonging to a hierarchical structure. The number of different hydrometeor types in the data is not 17 
predefined and the method obtains the optimal number of clusters through a recursive process. The optimal clustering is then 18 
used to label the original data. Initial results using observations from the NCAS X-band dual-polarization Doppler weather 19 
radar (NXPol) show that the technique provides stable and consistent results. Comparison with available airborne in situ 20 
measurements also indicates the value of this novel method for providing a physical delineation of radar observations. 21 
Although this demonstration uses NXPol data, the technique is generally applicable to similar multivariate data from other 22 
radar observations.   23 
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1 Introduction 24 

The task of radar-based hydrometeor classification (HC) can be broadly defined as the recognition of different hydrometeor 25 
types in the atmosphere as represented by the various observed moments collected by weather radar.  In general, HC is able to 26 
label radar signatures observed at any one time with physical properties and, over a period of time, the evolution of these labels 27 
can provide insight into the underlying atmospheric processes. As such HC has many impactful applications:  HC simplifies 28 
the detection of the melting layer (Baldini and Gorgucci, 2006), HC is necessary for obtaining accurate estimates of 29 
precipitation quantities (Giangrande and Ryzhkov, 2007) and HC provides critical information for improving modelling of 30 
physical processes in the atmosphere (Vivekanandan et al., 1999).   31 
Radar-based HC requires an extensive and accurate (i.e. expert) knowledge of the physical properties of both multivariate 32 
polarimetric observations and the hydrometeor particles themselves (Hall et al., 1984). Achieving an accurate and precise 33 
radar-based HC is difficult due to the deficiencies (such as low spatial-temporal resolution) and inaccuracies (such as 34 
attenuation) that are inevitable in all radar measurements. The process of HC is made even more difficult when this analysis 35 
needs to be performed during the operational processing of the radar observations where there is a lack of time for expert 36 
assessment. Therefore, automatization of spatial and temporal analysis of multivariate polarimetric data is an important task 37 
for which an advanced and well-tested technique should be developed and utilized.  38 
The development of radar-based HC started in the 1980s and 1990s with the works of Hall et al. (1984), Hendry and Antar 39 
(1984), Aydin et al. (1986), Straka and Zrnić (1993) and Straka (1996). Further refinement and development of automatic HC 40 
algorithms included the application of fuzzy-logic, machine-learning techniques (such as the identification of clusters 41 
representing data-wise similarities) and neural networks (Straka et al., 2000; Liu and Chandrasekar, 2000; Wen et al.,2015; 42 
Grazioli et al., 2015; Besic et al., 2016; Wang et al., 2017; and Ribaud et al., 2019).  43 
Modern radar-based HC methods (Straka et al, 1996; Liu and Chandrasekar, 2000; Al-Sakka et al., 2013, Grazioli et al., 2015; 44 
Besic et al., 2016; and Wang et al., 2017) are based on the multivariate data of polarimetric Doppler radar observations. This 45 
includes (but is not limited to): the logarithmic reflectivity factor at horizontal polarization 𝑍!, differential reflectivity 𝑍"#, 46 
the copolar correlation coefficient 𝜌!$, differential phase 𝛷"%, and specific differential phase 𝐾"% (for definitions see Bringi 47 
and Chandrasekar, 2001) as well as associated derived variables (e.g. standard deviation). Additionally, temperature and other 48 
meteorological data, retrieved from radiosondes or NWP models, are often utilized (Grazioli et al., 2015; Wen et al., 2015).  49 
In most existing radar-based HC methods, the multivariate input data are analysed per measurement voxel and determined 50 
classes are assigned to the hydrometeor types only according to their characteristics. Such an approach neglects intra-class 51 
relationships and the temporal evolution of the identified classes. This valuable information can also be used in the labelling 52 
of the hydrometeor types and the identification of corresponding microphysical processes. Additionally, almost all methods 53 
within the existing literature are based on theoretical assumptions on the scattering properties of observed particles and/or are 54 
only applicable for a defined (i.e. previously recognized) number and type of classes. Both of these aspects of existing HC 55 
methods are limitations. For example, theoretical assumptions about the scattering properties of ice-phase hydrometeors are 56 
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very uncertain due to unknown size distributions, varying dielectric properties, fall orientation, and their diverse and often 57 
complex geometry (Johnson et al., 2012). A pre-defined number of classes or hydrometeor types is subjective and creates 58 
artificial boundaries for algorithms and, thus, subtle differences in undefined sub-classes are masked, which inhibits 59 
identification of the underlying microphysical processes. 60 
Thus, in this study we take a different approach and ask the following question: can a data-driven HC approach provide an 61 
optimal number of classes from the observations? We define the optimal number as the lowest number of classes representing 62 
all pronounced dissimilarities in the input data. Once the optimal set of classes is identified, the burden of analysis in this 63 
approach is to relate the identified clusters of radar signatures to possible physical properties of hydrometeors. Thus, this 64 
approach does not impose a predefined physical view on the observations but provides a framework for a more efficient 65 
physical interpretation of the properties of the resulting clusters of observed multivariate data in which subtle differences and 66 
intra-cluster relations are easier to identify. In this sense, this approach inverts the procedure of existing methods. Additionally, 67 
we ask whether such an approach can be used to provide information on the temporal evolution of the identified hydrometeors 68 
and reveal relationships between the identified classes. Such information is key for identifying the processes that lead to high 69 
impact weather (i.e. flooding) and improving the physical parametrizations in NWP. 70 
The existing data-driven unsupervised (Grazioli et al., 2015; Ribaud et al., 2019 and Tiira and Moisseev, 2019) and semi-71 
supervised approaches (Besic et al., 2016; Wang et al., 2017 and Roberto et al., 2019) only partially provide an answer to the 72 
first question (Grazioli et al., 2015) and do not consider the temporal evolution or dependencies between the identified classes. 73 
The approach described here performs an unsupervised clustering of quasi-vertical profiles. QVPs were first used in Kumjian 74 
(2012) and Ryzhkov et al. (2016) as a way of constructing a substitute for a vertical profile from a scan conducted at constant 75 
elevation, which is a typical mode of scanning for radars used in operational networks. Calculation of the QVPs requires 76 
horizontal homogeneity of the observed atmospheric processes. The height-vs-time format of QVPs represents the general 77 
structure of the storm or its evolution.  78 
The QVP input is used in this work to build a hierarchical structure based on the identified clusters and deliver an optimal 79 
number of clusters based solely on internal properties of the multivariate polarimetric data. The optimal clustering is then used 80 
to label the hydrometeor classes and to analyse the temporal evolution of the labelled microphysical processes.  81 
The paper is organised as follows: in Section 2 we introduce the clustering methods we employ, Section 3 contains a description 82 
of the polarimetric radar data and their processing, Section 4 describes the iterative clustering approach, leading to the 83 
development of the hierarchical structure, Section 5 is devoted to the characterization of the clusters and their labelling, and 84 
Section 6 concludes with a summary, discussion, and thoughts on further perspectives.  85 

2 Background of employed methods 86 

The proposed hierarchical clustering algorithm identifies the optimal number of groups of data points (clusters) in a recursive 87 
loop and organizes the clusters in a hierarchical structure (undirected weighted graph). The two main steps of this approach 88 
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are the cluster identification and the optimality check. The cluster identification is achieved after performing dimensionality 89 
reduction by principal component analysis followed by spectral clustering. The optimality check uses validity indexes to 90 
identify the final set of clusters, which best classifies the provided set of data. The description of the dimensionality reduction 91 
and clustering methods with background information about the validity indexes employed can be found in this section directly 92 
after a short introduction to the hierarchical clustering. 93 

2.1 Hierarchical clustering 94 

Hierarchical clustering is a type of clustering technique that splits or combines the data through an iterative process. Unlike 95 
“flat” clustering techniques, hierarchical clustering is not performed in one stage. Rather, it repeats the clustering process 96 
iteratively and keeps the information about each iteration of clustering in a hierarchical structure. In general, for a given set of 97 
multivariate data points, a hierarchical clustering algorithm, depending on top-down or bottom-up direction, either partitions 98 
(divides) or merges (agglomerates) the data into groups (a set of clusters) where data points assigned to the same cluster show 99 
similarity in multivariate values (depending on the context, it could be, for example, having a small distance to each other if 100 
the points are in Euclidean space). The direction of the process (top-down or bottom-up) may be chosen and depends on the 101 
number of individual points in the multivariate dataset and the needs of the underlying problem.  102 
The top-down method begins with all available data points organized in one cluster and splits this cluster into subclusters until 103 
a certain criterion is reached or only solely singleton clusters of individual points remain in the set. The bottom-up method, on 104 
the other hand, begins with all points assigned to individual clusters and at each step, merges the most similar pairs of clusters 105 
into one until all the subclusters are agglomerated into a single cluster. 106 
The optimal number of clusters in both approaches can be identified using a termination criterion. The hierarchical structure 107 
in the bottom-up approach needs to be completely finished before the optimal number of clusters can be identified otherwise 108 
the upper part of the tree will remain unknown. The top-down approach allows for the iterative process to be stopped at any 109 
point whilst preserving the upper part of the hierarchical structure. Another advantage of the top-down approach is the 110 
possibility to have more than two subclusters belonging to one parenting cluster. This allows an optimal number of subclusters 111 
for each parenting cluster, representing the data-driven inheritances in the resulting hierarchical structure. Although this 112 
advantage is often not used, and the bottom-up methods are preferred (Grazioli, 2015 and Rimbaud et al., 2019), the method 113 
presented here fully exploits it for the identification of an optimal number of subclusters in each iteration. 114 

2.2 Eigenvectors and Principal Components 115 

Principal component analysis (PCA) is a statistical technique mostly utilized in exploratory analysis of multivariate data. It 116 
extracts the most important information from the multivariate dataset generating a simplified view of the original data by 117 
dimensionality reduction.  118 
To reduce a dataset’s dimensionality a set of new orthogonal, non-correlated variables called principal components is 119 
calculated as linear combinations of the original variables. The first component is selected having the largest possible variance, 120 
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so it best represents the diversity of the given data. The second component is generated under the assumption of orthogonality 121 
to the first component whilst also having the largest possible variance. This process is continued until the number of principal 122 
components is equal to the number of original variables (d). These components are exactly the eigenvectors of the correlation 123 
matrix and are employed as a basis for a new coordinate system (Wold, 1976; Abdi and Williams, 2010). The first q calculated 124 
coordinates having satisfactory representativeness (e.g. 85 %) can be used to preserve the most important characteristics of the 125 
original data. These q principal components can replace the initial d variables (q < d), and the original data set, consisting of 126 
N measurements on d variables, is reduced to a data set consisting of N measurements on q principal components. 127 

2.3 Clustering method  128 

One of the most popular clustering methods is the k-means algorithm (Steinhouse, 1956). Through its simple interpretability, 129 
it is often used either as a single method or as a part of more computationally expensive clustering methods (e.g. Gaussian 130 
mixtures or spectral clustering). As a single method, it has difficulties with non-convex clusters and is known to perform poorly 131 
if the input variables are correlated (von Luxburg, 2007). As a basis of a more complex method (e.g. spectral clustering) it 132 
allows a solution of non-linear cluster shapes to be found (any low-dimensional manifolds of high-dimensional spaces). 133 
The input data herein are multi-dimensional and were found to have non-convex cluster shapes, therefore the spectral clustering 134 
method was applied (Shi & Malik, 2000; Ng et al., 2002; von Luxburg, 2007). It works by approximating the problem of 135 
partitioning the nodes in a weighted graph as an eigenvalue problem of eigenvectors described above and by applying the k-136 
means algorithm to this representation in order to obtain the clusters. This work implements the Ng et al. (2001) approach and 137 
analyses the eigenvectors of the normalized graph Laplacian.  138 
 139 
Spectral clustering has several appealing advantages. First, embedding the data in the eigenvector space of a weighted graph 140 
optimizes a natural cost function by minimizing the pairwise distances between similar data points and such an optimal 141 
embedding is analytically deducible. Secondly, as it was shown in von Luxburg (2007), the spectral clustering variants arise 142 
as relaxations of graph balanced-cut problems. Finally, spectral clustering was shown to be more accurate than other clustering 143 
algorithms such as k-means (von Luxburg, 2007).  144 

2.4 Determining optimal number of clusters   145 

Clustering algorithms can be roughly divided into two groups based on whether the number of clusters to be found is 146 
predetermined or undetermined. Spectral clustering is a rather flexible technique in the sense that it can be used with a 147 
relaxation (i.e. when the number of clusters to be found is provided) or without it (when the number of clusters is determined 148 
by the multiplicity of the eigenvalue 0). As the approach chosen here is not interested in a flat partitioning of the data, rather 149 
we want to determine hierarchical structures, the determination of the optimal number of clusters is important. To identify this 150 
optimal number of clusters two evaluation scores are used in our method: the Wemmert-Gançarski (WG) index (Hämäläinen 151 
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et al., 2017) and Bayesian Information Criterion (BIC) index (Pelleg and Moore, 2000; Hancock, 2017). While the exact use 152 
of the indexes is described in Sect. 4, the WG and BIC indexes can be defined as follows:  153 
Let the data set 𝑋 = {𝑥& ∈ ℝ': 𝑖 = 1,… ,𝑁} have clustering 𝐶( = {𝑐): 𝑘 = 1,… , 𝐾}, (𝐾 < 𝑁), where 𝑛) – number of 154 
samples/points in the cluster 𝑐) and 𝐼*! – indexes of the points in 𝑋 belonging to the cluster 𝑐). 155 

1) For WG index: Let 𝑅(𝑥&)	represent the mean of relative distances between the points belonging to the cluster 𝑐) and 156 
the centre of its barycentric weight 𝑔). The 𝑅(𝑥&) value is calculated for each point 𝑥& 157 

𝑅(𝑥&) =
‖,"-.!‖

/&0!#!$‖,"-.!$‖	
, 158 

after that the WG–index 159 

𝑊𝐺2 =
3
4
∑ 𝑚𝑎𝑥 @0, 𝑛) −∑ 𝑅(𝑥&)&∈6%!

C(
)73 , (1) 160 

 161 
is calculated representing the WG-index for the set 𝑋 of points partitioned into 𝐾 clusters (Desgraupes, 2017).  162 

2) For the BIC index:  163 
Let us model each cluster 𝑐) as a multivariate Gaussian distribution 𝒩(𝜇) , 𝛴)), where 𝜇) can be estimated as the 164 

sample mean vector and 𝛴) = 3
'(4-()

∑ ∑ ‖𝑥& − 𝑔)‖&∈6%!
(
)73 , can be estimated as the sample covariance matrix. 165 

Hancock (2017) showed that the optimal clustering is presented by maximum 166 

𝐵𝐼𝐶(𝐶() = ∑ (𝑛) log
0!
4
− '	0!

:
log 2𝜋𝛴) −

	0!-3
:

	𝑑)(
)73 − 3

:
𝐾(𝑑 + 1) log𝑁. (2) 167 

3 Data and processing 168 

This section presents a description of the polarimetric radar data used by the hierarchical algorithm in this study, and some 169 
details of the data pre-processing that is applied before the QVP calculation-processing. Note that the method presented here 170 
is generally applicable with similar multivariate data from other sources. In addition, in situ observations from the Facility for 171 
Airborne Atmospheric Measurements (FAAM) are presented in this section. These data will be used for assigning the labels 172 
of the hydrometeor classes to the detected clusters or cluster groups in the radar observations. 173 

3.1 X-band radar observations 174 

The polarimetric data employed to demonstrate the method developed in this study were collected by the NXPol radar whilst 175 
it was located at Chilbolton Atmospheric Observatory (CAO), part of the UK’s National Centre for Atmospheric Science’s  176 
Atmospheric Measurement and Observation Facility (AMOF), in southern England (Lat. 51.145° N, Long. 1.438° W ) from 177 
November 2016 to May 2018 (Fig. 1). The NXPol is a modified mobile Meteor 50DX (Leonardo Germany GmbH) X-band, 178 
dual-polarization, Doppler weather radar. The radar is a magnetron-based system and operates at a nominal frequency of 9.375 179 
GHz (λ ∼ 3.2 cm). The detailed characteristics of the NXPol radar can be found in Neely et al. (2018). From the observations 180 
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made in 2017–2018 we selected eight dates with the longest precipitation events occurring above the 30 km circle area around 181 
the radar presented on Fig. 1. The exact dates and the total number of volume scans per date can be found in Table 1. 182 

3.2 Polarimetric variables and temperature data 183 

Here we chose to use the polarimetric variables 𝑍! [dBZ], 𝑍"# [dB], 𝜌!$ [–], and 𝐾"% [° km−1] as well as temperature 𝑇 [° 184 

C] to demonstrate the described clustering technique. The four polarimetric variables were selected as a subset of all the 185 
possible variables as they provide complementary information about the observed hydrometeor properties. Temperature was 186 
added to the set of input variables following the reasoning of similar studies in which either height relative to 0° C–isotherm 187 
(Grazioli et al., 2015) or the index representing ice- or liquid-phase of observed precipitation (Besic et al., 2016) was included. 188 
The full input vector used in this study can be represented as: 189 

𝑥 = [𝑍! , 𝑍"# , 𝜌!$ , 𝐾"%, 𝑇],					(3). 190 
 191 
Note that this does not preclude the use of differing sets of variables in future studies. The input data used here were pre-192 
processed before being utilized in the clustering algorithm: all range bins that were located at distances less than 400 m from 193 
the radar were removed from all input variables data to reduce the influence of side lobe noise.   194 
 195 
The temperature data were taken from the Met Office Unified Model (UM) and interpolated onto the polar grid of the radar’s 196 
observations (Hampton et al., 2019). Past assessments of the accuracy of these temperature values suggest that the gridded 197 
temperatures are within 1° C of co-incident profiles measured by radiosondes except in the case of strong inversions or frontal 198 
boundaries (Hampton et al. 2020). An example of one day’s observations (2017-05-17) represented in the height-vs-time 199 
format of the QVPs of four polarimetric variables with the temperature presented as isotherms is found in Fig. 2. Similarly, 200 
other dates from our list of cases (Table 1) are in Fig. B1. 	201 

3.3 QVPs and thresholding 202 

QVPs of the input variables are obtained as the azimuthal average of the data from a standard plan position indicator (PPI) 203 
scan at 20° antenna elevation angle (Ryzhkov et al., 2016). The 20° PPI is the highest of ten PPIs of the volume scanning 204 
strategy used by NXPol which starts the scanning from 0.5° elevation angle. The use of 20° PPI minimizes the effects of radar 205 
beam broadening and horizontal inhomogeneity. The beam broadening effect becomes dominant at higher altitudes when 206 
observed by low elevation scan as was shown in Ryzhkov et al. (2016). The radar beam of 1° opening at 20° elevation is about 207 
100 m at 2-km height, 240 m at 5-km height, and reaches almost 480 m at 10-km height. The resulting profiles have 197 voxels 208 
in each QVP at the altitudes between 0 and 10 km above mean sea level (AMSL) and covering about 30 km range from the 209 
radar. It was also shown in Ryzhkov et al. (2016) that the decrease of 𝑍"# from the oblate spheroidal hydrometeors at 20° 210 
elevation is within the common measurement error of 𝑍"#(0.1–0.2 dB). 211 
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An advantage of QVPs is that they reduce statistical errors within the input dataset while the height-vs-time format of QVPs 212 
naturally represents the temporal dynamics of microphysical processes observed in the radar data. To ensure the observations 213 
are representative of large-scale meteorological features that may be averaged together, the QVP voxels are used in the analysis 214 
only if more than 270 of the 360 azimuthal bins at the range in the PPI scan contain valid data.  215 

3.4 In situ Observations 216 

For the labelling of the clusters, in situ observations can be used to assess any of the clusters within the hierarchical structure 217 
produced by the clustering algorithm. This allows for flexibility in the granularity used to examine the observations. In this 218 
study, the in situ FAAM observations are used to demonstrate the labelling and assessment of the final set of clusters. The 219 
FAAM is a publicly funded research facility that, as part of the National Centre for Atmospheric Science (NCAS), supports 220 
atmospheric research in the United Kingdom by providing a large instrumented atmospheric research aircraft (ARA) and the 221 
associated services. The ARA is a modified British Aerospace 146-301 aircraft. Further details of the FAAM aircraft 222 
instrument systems are available at https://www.faam.ac.uk/the-aircraft/instrumentation/. In situ data for this study comes from 223 
FAAM flights C013, C076, C081, and C082 (FAAM, 2017; FAAM, 2018a; FAAM, 2018b; FAAM, 2018c). The dates of the 224 
flights with corresponding flight numbers can be found in Table 1. 225 
For the cases examined, FAAM was equipped with two Cloud Imaging Probes (CIP), which are manufactured by Droplet 226 
Measurement Technologies and described in Baumgardner et al., 2001. The CIP’s are mounted underneath the aircraft wings 227 
and provide 2-bit grayscale images of cloud particles as they pass through the instrument sample volumes. Each CIP houses a 228 
64 elements photodiode detector, with one CIP having an effective pixel size of 15μm (referred to as CIP15), and the other 229 
having an effective pixel size of 100μm (referred to as CIP100). Therefore, the CIP’s provide images of particles in size ranges 230 
of 7.5 μm to 952.5 μm for CIP15 and 50 μm to 6350 μm for CIP100. All probes have ‘Korolev’ anti-shatter tips – the width 231 
of which is 70 mm for the CIP100 and 40 mm for the CIP15.  232 
Particle size distributions are calculated based on CIP data where particle size is defined as being the maximum recorded length 233 
in either the axis of the detector array (X) or along the direction of motion (Y). All particles with inter-arrival times < 10-6 s 234 
are rejected as indicative of shattering as in Field et. al. 2006. Particle concentrations are calculated from the sample volume 235 
using the centre-in approach (Heymsfield and Parrish, 1978) is used to calculate the size of partially imaged particles. It should 236 
be noted that there are significant uncertainties associated with the derived properties from the CIP’s, which are of the order 237 
20% for number-based properties (Baumgardener et al., 2017). In our analysis we are not concerned with absolute 238 
concentrations from the CIPs. Instead, we are using the CIP data in a qualitative manner to provide a general framework for 239 
comparison with the HC results obtained from the radar observations.  240 
As we base our clustering on the QVP of radar observations, which at each range from the radar are averaged over all available 241 
azimuths, a direct comparison to aircraft observations taken at an exact position and timestamp would not make a representative 242 
comparison. Thus, for the comparison, we have selected the 20-second intervals from the CIP15 and CIP100 data that 243 
correspond to the spatial domain and times of the individual of the 20° PPI scans that are used to create the QVPs. Over these 244 
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20 s intervals the mean number concentrations per particle size bin are calculated (Fig.10). Fig. 9 presents examples of particle 245 
imagery from the CIPs, which typically represents less than 1s of total 20s data and shows derived properties of the particles 246 
over the entire 20s sampling period when the airplane observed the atmosphere over the QVP domain.  247 
In order to provide insight into the nature of the particle imagery, we have separated the particle concentrations in Figure 10 248 
into three categories, two of which are based on an analysis of the particle shapes, and another category for partially imaged 249 
particles. “Round” particles are those which have a circularity between 0.9 and 1.2, and particles with a larger circularity are 250 
labelled as “Irregular” - this gives a rough separation into particles which are likely to be liquid water vs ice (Crosier et al 251 
2011). “Edge” particles are those which are only partially images, as indicated by pixels at the extreme edge of the array being 252 
triggered. For the particles which are considered round, the particle size and subsequent concentration is corrected for out-of-253 
focus effects (Korolev 2007). This out-of-focus correction is not applied to the “irregular” or “edge” images, as there is no 254 
evidence to show this is an appropriate correction to make. When interpreting the CIP data, it should be noted that out-of-focus 255 
effects can alter the measured shape of the particle, which can result in “irregular” shaped ice particles appearing “round”, 256 

4 Clustering of QVPs 257 

Here the clustering steps are described in general. A corresponding overview of the approach is provided in Fig. 3. The 258 
proposed approach uses QVP voxels and temperature data that has been interpolated to the same volume. This data forms the 259 
points of a 5-dimensional space (𝑑 = 5). The PCA (Sect. 2.2) reduces the number of dimensions to 𝑞. The 𝑞-dimensional data 260 
are partitioned into 𝐾 clusters, where 𝐾iteratively increases (𝐾 = 2, 3,…) until the optimal number of clusters is reached, 261 
according to the WG index Eq. (1) in Sect. 2.4. With each of the clusters achieved in this level (“Outer Loop” in Fig. 3), the 262 
process is recursively repeated starting with the PCA calculation and continuing until the optimal partitioning of the sub-263 
clusters is reached (“Inner Loop” in Fig. 3). The total partitioning is confirmed with the BIC index Eq. (2) in Sect. 2.4. When 264 
the BIC’s local maximum is reached the partitioning is considered to be optimal. A detailed description of each of these steps 265 
can be found in the following subsections. 266 

4.1 Start of hierarchical clustering 267 

The hierarchical clustering starts with data standardization and dimensionality reduction of the original 5-variable input data 268 
𝑋 Eq. (3) into a 𝑞-dimensional dataset of principal components (Sect. 2.2). To start the loop, all 𝑁 pixels of the input data are 269 
used. In later loops, only subsets of the original 5-variable data (𝐼*!) belonging to active cluster 𝑐) are processed in the Inner 270 
Loop (Fig. 3). The first 𝑞 principal components with the largest variance, having in total at least 85 % representativity of the 271 
original dataset, are selected in this step.  272 
The representativity threshold of 85 % was chosen arbitrarily as it reduces the initial 5-variable input space up to 3-dimensions 273 
(𝑞 ≦ 3) in most cases, which effectively simplifies the clustering problem and does not influence the overall outcome. The 274 
threshold can be reduced to further reduce the dimensionality, but it was found that this negatively influences the clustering 275 
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accuracy. A higher threshold will retain the high dimensionality of the original dataset but will slow down the clustering 276 
process without gaining further information from the dataset. 277 

4.2 Iterative process to find the optimal number of clusters (Inner Loop) 278 

At the start of the hierarchical clustering, we begin directly with the first call of the Inner Loop (Fig. 3). The iterative process 279 
in the Inner Loop commences with all 𝑁 QVP pixels represented by the first 𝑞 principal components. The spectral clustering 280 
processes these input data starting with the number of clusters 𝐾 = 2. The number of clusters increases (𝐾 = 2, 3, …) with 281 
each cycle of spectral clustering within the Inner Loop, and at the end of each iteration the WG index Eq. (1) is calculated for 282 
the achieved clustering 𝐶(. At the moment the local maximum is achieved in the WG index values, the clustering in which it 283 
was reached (𝐶(; ) is accepted as the main cluster set of the current level of the hierarchical tree and these clusters become the 284 
set of active clusters (𝐴). Set 𝐴 will be used in the Outer Loop of the implemented hierarchical algorithm.  The active clusters 285 
detected in the first level of the hierarchical structure by spectral clustering for the data on 2017-05-17 are shown in Fig. 4. 286 

4.3 Optimal number of clusters for the total dataset (Outer Loop) 287 

In the Outer Loop of the hierarchical algorithm, the BIC index Eq. (2) is calculated for the active clusters produced by the 288 
Inner Loop (Fig. 3). If the BIC index is calculated for the first time (i.e. the start of the algorithm run,  𝑗 = 1) or the BIC index 289 
values do not show any local maximum, the algorithm continues by calling the Inner Loop for each individual cluster from the 290 
set of active clusters (𝐴<) formed by the calls of the Inner Loop described above.  291 
For the first level of hierarchical clustering all 𝐶(;  are immediately accepted as active 𝐴3 = 𝐶(; . In the Outer Loop, after 292 
calculating the BIC, the original 5-dimensional data belonging to each cluster 𝑐); ∈ 𝐶(;  are sent to the Inner Loop and clustering 293 
(𝐶(;;) achieved by the Inner Loop is used to replace the cluster 𝑐);  in the set of active clusters 𝐴3. If the BIC index calculated on 294 
this ‘suggested set’ shows that the clusters introduced to the 𝐴3 increase the value of BIC, the suggested replacement is accepted 295 
and the set of active clusters is updated as 𝐴: = 𝐶(;; ∩ 𝐶(; /𝑐); .  The Outer Loop then continues with the next cluster from the 296 
original set 𝐴3. When the BIC value does not increase with the ‘suggested set’ the set of active clusters does not change, and 297 
the algorithm continues with the next cluster from the set 𝐴3.  298 

4.4 Next recursion or finalization of results 299 

The final set of active clusters is reached when the value of the BIC index does not increase with any further suggested split 300 
in the current active set of clusters. At this level of detailization, the optimal clustering for the provided input data has been 301 
reached. For the QVP dataset described in Sect. 3, a final set of 13 active clusters is reached (see Fig. 5 and Fig. 6). The 302 
relations between these final clusters (f_cl1, ..., f_cl13) and the 3 parent clusters from the first Inner Loop run (Fig. 4, panel 303 
(a)) are shown in Fig. 5. 304 
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5 Labelling 305 

Once the optimal number of clusters is determined and the hierarchical clustering structure is built, the clusters can be 306 
characterized by their centroids and labelled with appropriate hydrometeor classes using the available verification data. The 307 
clusters for which direct verification data are not available may still be labelled with an appropriate hydrometeor class based 308 
on the scattering characteristics described by the original polarimetric radar variables and considering their position in the 309 
hierarchical tree and height-vs-time QVP representation. Labelling the obtained clusters can be performed for the different 310 
levels of granularity depending on the user’s needs and interests. Note the purpose of the labelling shown here is to demonstrate 311 
the ability and validity of the technique rather than performing a rigorous study of the underlying microphysics observed. The 312 
latter will be reserved for follow-up studies utilizing this technique in a focused manner. 313 

5.1 Level by level clusters check 314 

From the visual verification of the first level parent clusters in Fig. 4 panel (a) and panel (b) we can deduce that there are two 315 
child clusters representing the upper/elevated (ice dominated root.cl2) and the lower (water dominated root.cl1) parts. The 316 
second level clusters from the second loop (panels (c) and (d)) show a well-identified “bright band”, belonging to the melting 317 
layer (ML), (root.cl2.cl2) and a main solid-phase cluster (root.cl2.cl1), both belonging to the cluster representing the ice-phase 318 
dominated part (root.cl2) of the QVP (panel (b)). The three child clusters of the parent root.cl1 cluster (panels (c) and (d)) are 319 
the two rain-type clusters (root.cl1.cl2 and root.cl1.cl3) below the “bright band” and cluster root.cl1.cl1 with most points 320 
located above the “bright band”. In further loops, the main ice-phase cluster (root.cl2.cl1) is split into nine child clusters (Fig. 321 
5) and examples of their positioning in time-vs-height format of QVP can be observed in Fig. 6 or Fig. B1. 322 

5.2 Characteristics of the clusters 323 

The 13 final clusters can be characterized by their centroids (Fig. 7) or their relevant statistics (Fig. 8 and Table A1). The 324 
centroid characteristics in Fig. 7 are plotted as spider plots where each of the five variables is represented by an azimuthal axis. 325 
The filled pentagons in each subplot represent the cluster’s centroid in the five-variable space based on all the data available 326 
in this study. Each vertex of the pentagon shows the centroid’s value in one of the five variables. The non-solid lines in the 327 
subplots of Fig. 7 represent the centroids of the same cluster but based solely on the data from one of the eight cases (Table 328 
1). 329 
Figure 7 confirms a distinction made at the first and the second cycles of the Outer Loop (Fig. 4) between three types of 330 
clusters: liquid-phase clusters (f_cl1, f_cl2 and f_cl3), having lower 𝐾"%and warmer 𝑇 values, ice-phase clusters (f_cl4, f_cl5, 331 
f_cl6, f_cl7, f_cl8, f_cl9, f_cl10, f_cl11), and f_cl12 all with more pronounced 𝜌!$ values; and a very different looking f_cl13, 332 
having warmer 𝑇and rather low 𝜌!$values.  333 
The largest differences between the centroids selected from the total dataset and the centroids corresponding to the eight 334 
considered cases occur in the temperature (T) values, especially for the clusters f_cl2, f_cl3, f_cl7, f_8, f_cl10 and f_cl12. 335 
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These variations can be explained by the origin of the temperature data, which are estimates from the NWP model and not 336 
always correctly represent the real situation.  337 
The next variable with a rather large variation in several clusters is 𝐾"%. Clusters f_cl1, f_cl7, f_cl11, f_cl12 and f_cl13 have 338 
the highest variation in 𝐾"%values between the centroids calculated on different cases (Fig. 7). As 𝐾"% can be influenced by 339 
the amount of ice/water particles in the atmosphere, it might be that the clusters have variations in the number of particles. 340 
This hypothesis can only be verified with FAAM observations of the same cluster on different dates. Unfortunately, such 341 
verification is not possible for all clusters and more in situ observations are required. 342 
From the variations of centroid values in the five input variables in Fig. 7, we can also see that the main liquid-phase cluster 343 
(f_cl2) has rather different characteristics in different cases. Case to case it shows large variations in 𝑍!, 𝐾"%, 𝜌!$, 𝑇 and the 344 
highest mean temperature value (6.8° C) among all other clusters. As observed in the histogram of percentages of the cluster 345 
points in Fig. 8 panel (f), f_cl2 is rather big (13.7 % of the total number of points), but does not have the highest percentages 346 
of points in all eight analyzed cases, only in the 2017-05-17 case (9.3 % compared to ≤ 	1.5	% in other cases) (Fig. 7, histogram 347 
per case). Combining all these aspects together we deduce that f_cl2 includes rain of varying intensities and different drop 348 
sizes.  349 
The other rain cluster f_cl3 has less variability in centroid values and has ~20 dBZ smaller 𝑍!values than f_cl2 probably due 350 
to the smaller drop sizes in this cluster. f_cl3 has the smallest mean 𝑍! (7.18 dBZ) and mean 𝐾"% values (-0.097 ° km−1) of 351 
all “water” clusters (f_cl1, f_cl2 and f_cl3). This cluster is often observed at the beginning and at the end of the storm in height-352 
vs-time format representation of the optimal clusters (Fig. B1) and is labelled as “light rain”.  353 
Almost all centroids in Fig. 7 have no or very limited variation in 𝜌!$ or 𝑍"# values except for f_cl13. This cluster has no 354 
variation in temperature (T), having all centroids at 0° C. As such, f_cl13 corresponds to the “bright band” of the ML. 355 
According to the box and whiskers plots in Fig. 8 the “bright band” cluster f_cl13 has the highest mean 𝑍! (24 dBZ), mean 356 
𝑍"# (0.99 dB), and the lowest mean 𝜌!$ (0.93) compared to the other optimal clusters and it is mostly located near 0° C. These 357 
characteristics immediately indicate that f_cl13 can be labelled as the “bright band” cluster.  358 
The “bright band” cluster (f_cl13 in Fig. 6) is observed to have some sagging areas: between 10:00 (UTC) and 12:20 (UTC), 359 
around 16:00 (UTC) and near 18:00 (UTC). Note that f_cl1 is observed above the “bright band” cluster f_cl13 exactly at these 360 
time intervals (Fig. 6). This sagging “bright band” signature is often observed where aggregation and riming processes are 361 
occurring directly above the ML (Kumjian et al., 2016 and Ryzhkov & Zrnic, 2019). This suggests that f_cl1 can be associated 362 
with the processes of aggregation and riming and labelled accordingly. 363 
Looking at the percentage of points belonging to each cluster in the optimal clustering set (Fig. 8, panel (f)), we see that clusters 364 
f_cl7 and f_cl12 have less than 2 % of points and most probably represent some sporadic and/or special conditions. These 365 
clusters also have been separated early from the other “low ice” (f_cl4, f_cl5, f_cl6) and “elevated ice” (f_cl8, f_cl9, f_cl10, 366 
f_cl11) clusters and are located near the top of the hierarchical tree (Fig. 5). Both clusters f_cl7 and f_cl12 have smaller 367 
absolute mean 𝑍"# values (-0.062 dB and 0.097 dB correspondingly) than the other “ice” clusters (Fig. 8, panel (b).). f_cl7 is 368 
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also characterised by the highest mean 𝐾"%value (0.44 ° km−1) among all of the clusters (Fig. 8, panel (d)). The combination 369 
of rather high 𝑍! (17 dBZ) and high 𝐾"%indicates potentially a cluster with high particle number concentration of small ice 370 
crystals mixed with a small amount of bigger aggregates. f_cl12 has the lowest mean 𝑍! value (-3 dBZ) from all optimal 371 
clusters. Combining these low mean 𝑍! with low mean 𝑍"# (0.097 dB) we can assume that f_cl12 can be labelled as low 372 
particle number concentration of very small ice crystals. 373 
f_cl11 belongs to the “elevated ice” clusters and in most cases (see Appendix, Fig. B1) appears as a column in the height-vs-374 
time representation (around 07:00 UTC in Fig. 6 or in Fig. B1 panels (a) 07:00–08:00 UTC; (c) 05:00 UTC and 07:30 UTC; 375 
(g) 12:00 UTC; (h) 12:00–12:30 UTC) filling all the altitudes from the top of the cloud to the ML. This cluster has low mean 376 
𝑍!value (3 dBZ), one of the highest mean 𝑍"# values (0.92 dB) and a close to zero mean 𝐾"% value (-0.009 ° km−1). f_cl11 377 
can be labelled as the pristine ice crystals class, as they typically have high aspect ratios (≫1) and tend to fall preferentially 378 
with their major axis aligned horizontally (Keat and Westbrook, 2017).  379 
Clusters f_cl8, f_cl9 and f_cl10 belong to the “elevated ice” branch of the hierarchical tree (Fig. 5). Among these clusters, 380 
f_cl9 has the most different characteristics compared to f_cl8 and f_cl10 clusters. f_cl9 has higher mean 𝑍! (11 dBZ) and 𝑍"# 381 
(0.59 dB) in combination with a lower 𝜌!$(0.97). Areas with similar characteristics in the height-vs-time representation of the 382 
QVPs were labelled as dendritic growth layer (DGL) by Ryzhkov et al. (2016) and Trömel et al. (2019). f_cl8 and f_cl10 have 383 
rather similar characteristics to each other (Fig. 7 and Table A1). The small difference between these two clusters is in a higher 384 
mean 𝑍! (8.6 dBZ) and 𝐾"% (0.14 ° km−1) for f_cl8 compared to 5.8 dBZ and 0.028 ° km−1 for f_cl10. Both clusters are the 385 
main “elevated ice” clusters. f_cl10 has a warmer mean temperature (-8.2° C compared to -16.7° C for f_cl8) and most of the 386 
time is located near f_cl8 at the beginning or at the end of the observed event (Fig. B1). 387 
The main “low ice” clusters are f_cl4, f_cl5 and f_cl6. Clusters f_cl5 and f_cl6 are often observed together with f_cl6 located 388 
above f_cl5. The f_cl4 has several appearances in height-vs-time formats of events (see Appendix, Fig. B1, e.g. 09:00 UTC 389 
panel (a); 11:00 UTC panel (b); 09:00 and 17:00-18:00 UTC panel (e)), mostly above f_cl1 reaching higher altitudes in the 390 
data.  391 
Of course, not all clusters can be labelled with absolute confidence and in situ observations can help to verify these initial 392 
suppositions. 393 

5.3 Clusters versus in situ observations 394 

For the verification of the preliminary labelling made in Sect. 5.2, data from the CIP15 and CIP100 on board the FAAM is 395 
utilised. FAAM aircraft flights were performed on four out of the eight days (Table 1) of radar observations: 2017-05-17, 396 
2018-01-24, 2018-01-24 and 2018-02-14. The flight altitudes and the timestamps when the aircraft was inside the QVP domain 397 
can be observed on the height-vs-time representations of the optimal clusters in Fig. B1. 398 
Out of the four available flights, there are 23 periods of 20-second intervals which result in a total of 460 seconds of flight 399 
time when the aircraft was inside the QVP domain and a cluster can be assigned to the corresponding height. Of these 23 400 
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periods there are observations corresponding to 9 unique clusters (f_cl1, f_cl2, f_cl3, f_cl4, f_cl5, f_cl6, f_cl8, f_cl10, f_cl12). 401 
This samples 70 % of the final clusters. From these time series, we present examples of CIP15 and CIP100 images for each 402 
cluster (Fig. 9) and mean particle size distributions of the data observed during the 20-second interval (Fig. 10). 403 
The liquid-phase clusters f_cl1, f_cl2 and f_cl3 correspond to in situ data which contains relatively high concentrations (>1 404 
000 m−3 ) of small particles (mostly < 200 µm in size) which appear round (Fig. 9 and Fig.10, panels (a)–(c)). This strongly 405 
supports the idea of large amounts of liquid water being present in the cloud, which supports the labelling of f_cl1-f_cl3 as 406 
being influenced by liquid water hydrometeors. When looking in detail at CIP100 in situ observations, and to some extent 407 
CIP15 observations at sizes > 200 µm, we can see some significant difference between f_cl1-f_cl3, which we will now discuss. 408 
f_cl1, observed above the “bright band”, was previously assigned to be the result of aggregation/riming. In this region, the 409 
CIP100 (Fig. 9, lower part of panel (a)) shows particle imagery and particle size distributions segregated by shape which show 410 
the presence of large ice particles (Fig. 10, panel (a)), again confirming the previous cluster labelling. The CIP100 data shows 411 
the presence of irregularly shaped particles, ranging in size from ~1-4 mm, with concentrations in each bin of the order 1 m−3. 412 
This suggests a mode of snow particles is present at the same time as the previously mentioned liquid droplet mode. Many 413 
small water droplets in the CIP15 observations (Fig. 9 and Fig.10, CIP15 of panel (a)) could indicate either the presence of 414 
warm cloud processes or small ice crystals melting first at the upper part of the ML. The second interpretation is supported by 415 
the imagery from the CIP100 which suggests melting has not started to occur on the larger particles.  In this case, the larger 416 
aggregate snowflakes fall to lower altitudes before they start to melt and form the clear “bright band” in the QVP.  417 
 f_cl2 was characterized by the strong variation in 𝑍!, 𝐾"%, 𝜌!$, and 𝑇 of the cluster’s centroids in different cases. Both CIP15 418 
and CIP100 have small round shape particles in the corresponding images (Fig. 9, panel (b)). The mean concentrations per 419 
particle size distributions (Fig. 10, panel (b)) show the prevalence of particles recognised by shape as water droplets. The 420 
droplets of < 2 mm size have the occurrences of the order from 10 m−3 to 90 000 m−3 with higher orders corresponding to 421 
particle sizes < 200 µm. Summing up previous analysis and in situ observations we can assign f_cl2 to a “liquid” cluster, which 422 
includes rain of varying intensities and different drop sizes. 423 
f_cl3 also has predominantly small round shape particles (mean size 𝜇 = 128 μm) in the CIP15 panels (Fig. 9 and Fig.10, 424 
upper part of panel (c)). The CIP100 data (Fig. 9, lower part of panel (c)) were not processed due to technical issues with the 425 
probe so water/ice concentrations based on this data are unfortunately not available. The high concentrations (1000-5000 m−3) 426 
of small size (< 200 μm) particles are assigned to water (Fig.10, panel (c)). Concentrations of the larger particles (> 200 μm 427 
and < 800 μm) are very low (< 100 m−3). Considering these observations, the cluster’s characteristics and the fact that f_cl3 428 
appears mostly in the beginning or at the end of the events (Fig. B1) we can assume that the cluster either represents a very 429 
light rain/drizzle or indicates a partially filled QVP domain in the original data. 430 
The CIP15 images for f_cl4 show a mix of larger irregularly shaped particles (aggregates of snowflakes) and relatively few 431 
tiny ice crystals (Fig. 9, panel (d)) having very small irregular shapes. The mix of small (< 1 mm) particles recognised as water 432 
and ice has low total concentrations (500-800 m−3; Fig.10, upper part of panel (d)). Particles of larger sizes (> 1 mm and < 3.0 433 
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mm) have concentrations from 100 m−3 to 800 m−3 (Fig.10, lower part of panel (d)) and were recognised as ice due to their 434 
irregular shapes. The small number of “round” particles recognized as liquid are likely an artefact of the data processing due 435 
to out-of-focus imaging of the numerous ice particles which are present - such artefacts appear when particles are observed at 436 
the edges of the depth of field (O’Shea et al, 2019).  Accordingly, this cluster can be assigned to the mix of pristine ice and 437 
some formed aggregates, all having low concentrations.  438 
f_cl5 and f_cl6 show very similar images in CIP15, but the CIP100 images illustrate the difference between these two clusters 439 
(Fig. 9 panels (e) and (f)). The shape analysis of CIP100, suggests both clusters include a low concentration (40-50 m−3) of 440 
small round shape particles (< 1 mm size; the lower part of panels (e) and (f), Fig. 10). Similar to f_cl4, the number of liquid 441 
particles are likely an artefact of the data processing (O’Shea et al, 2019). The main difference between these clusters is shown 442 
in the part of the data recognized as ice. The mean size of the particles of f_cl5 is about 1.7 mm and has occurrences of order 443 
100 m−3 (Fig. 10, panel (e)). While the mean size of particles in f_cl6 is a bit smaller - 1.4 mm and particles around that size 444 
have a higher occurrence of order 400 m−3 (Fig. 10, panel (f)). This difference between f_cl5 and f_cl6 resembles the 445 
aggregation processes when dendritic crystals of higher concentrations formed at higher altitudes (f_cl6) start to clump together 446 
during their fall and form aggregates (f_cl5) with a lower concentration of particles.  447 
Clusters f_cl8 and f_cl10, belonging to the “elevated ice” branch of the hierarchical tree (Fig. 5), are also represented by the 448 
very similar images of CIP15 and CIP100 observations (Fig. 9, panels (g)–(h)) with the difference in the particles’ 449 
concentration (Fig. 10, panels (g)–(h)). f_cl8 has a higher concentration of small size (<1 mm) particles (up to 1000 m−3) 450 
recognised as spherical than f_cl10 (up to 300 m−3). The bigger particles captured in CIP100 corresponding to f_cl8 are of 451 
bigger size (from 1 mm and up to 3 mm) and also have a higher concentration (< 500 m−3) compared to particles of f_cl10 452 
having as maximum size particles of about 2 mm with concentrations < 200 m−3. The example of CIP100 images suggests that 453 
these particles are dendritic in nature (Fig. 9, panel (h)). Again, similar to the artefacts discussed when looking at the CIP 454 
observations for f_cl4, f_cl5 and f_cl6, there is likely an erroneous classification of small size particles (O’Shea et al, 2019). 455 
Thus, according to in situ data, f_cl8 can be assigned to mix of pristine ice and bigger aggregates and f_cl10 to a low 456 
concentration of pristine and smaller aggregates mix. 457 
The last in the list of clusters verifiable with the FAAM data is f_cl12 (Fig. 9, panel (i)). The lower panel (i) of Figure 10 458 
shows occurrences of order 10 000 m−3 for very small particles up to 150 μm and occurrences of order 1000 m−3 for the 459 
droplets of sizes between 150 μm and 250 μm with almost no occurrences of bigger particles. Unfortunately, concentrations 460 
from CIP100 data are not available for this cluster due to technical issues in the CIP100 probe. f_cl12 contains the fewest 461 
number of data points in QVP analysis (Fig 8. panel (f)) and there are no other in situ observations related to this cluster. Based 462 
on available data, we could assume that the cluster has a high concentration of tiny water droplets (potentially drizzle). On the 463 
other hand, similar to the data for other classes, the CIP analysis may have misclassified these as liquid due to their small round 464 
appearance in the observations when in reality the observations could represent high concentrations of small ice particles. 465 
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Likewise, the mean temperature of this cluster is close to 0° C, so no definitive label may be given based on the observations. 466 
Thus, the physical interpretation of this cluster is ambiguous though the cluster is separate within the multivariate space. 467 
The rest of the clusters need to be assigned by means of human interpretation according to the cluster characteristics or 468 
deduction from the interactions and temporal evolution of already assigned clusters. The summary of the assigned clusters can 469 
be found in Table A1 of the Appendix A. Application of in situ observations for the assessment of QVP-based clusters has its 470 
limits as not all optimal clusters were captured by the FAAM flights and this process requires a comparison of data from 471 
essentially one-point measurement to the cluster based on the mean  QVP domain values. An appropriate validation process 472 
would utilise columnar vertical profiles (CVP) as described in Murphy et al. (2018) with the thorough collocation of the aircraft 473 
observations.  Utilising CVPs within the presented technique is a part of the planned work for the future.  474 

6 Summary and Conclusions 475 

This paper presents a novel technique of hydrometeor classification from QVPs. In this technique, the hydrometeor types are 476 
identified from an optimal number of hierarchical clusters, obtained through a recursive process. This recursive process 477 
includes an initial dimensionality reduction by principal component analysis followed by spectral clustering. Spectral 478 
clustering performed in the PCA space allows us to identify clusters that would have a non-convex form in the original 479 
multivariate input space. This property of the algorithm makes it unique and advantageous in comparison to other classification 480 
methods, which separate classes by hyperplanes. 481 

The final set of clusters is identified with an optimality check using validity indexes. This represents the first attempt, in 482 
clustering of weather radar data, to identify the number of clusters based solely on the embedded data characteristics. This 483 
data-driven technique produces an optimal number of clusters and keeps the hierarchical structure built in the clustering 484 
process. The final set of clusters may be labelled based on their positioning in the hierarchical structure, the characteristics of 485 
their centroids and co-incident in situ observations. Depending on the user’s needs and interests, the labelling can also be 486 
performed for different levels of granularity. In the example shown in this study, we utilise observations collected during 487 
several FAAM flights to demonstrate the advantages this technique has in the labelling process. In this case, based on the data 488 
available, 70 % of the clusters were labelled using the coincident CIP observations. The other 30 % of the clusters, which were 489 
not sampled during the FAAM flights of this study, were labelled based on the cluster characteristics, their positioning in the 490 
hierarchical structure and considering interactions with clusters in a height-vs-time format of original QVP data. 491 

Thus, in this study, we find that a data-driven HC approach is capable of providing an optimal number of classes from the 492 
observations. Moreover, the embedded flexibility in the extent of granularity is the main advantage of the technique. Each 493 
branch of the hierarchical structure can be cut out at any level and the parenting cluster characteristics can be used for labelling 494 
and identifying more general processes in the atmosphere, while the lower level clusters can provide information about more 495 
specific properties and features of the observations.  496 
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The centroids of the clusters represent characteristics of the points belonging to a cluster in the multivariate input space (in 497 
this case, the polarimetric radar variables and temperature). The identification of these centroids allows the clusters to be 498 
tracked in time and altitude as the centroids are calculated based on QVPs from single scans. An analysis of the time series of 499 
the radar volume scans is possible and would allow the clusters to be tracked in time and 3D space. Though unexplored in this 500 
study, the application of the presented approach in this way could be used to provide information on the temporal evolution of 501 
the identified hydrometeors and reveal relationships between the identified classes.  502 

Note that the final set of clusters is optimal only for the provided input dataset, which gives the user an opportunity to select 503 
the input dataset depending on their needs. Thus, for the clustering to reflect ice properties and processes, the appropriate input 504 
data climatology should be used. For identification of specific features in the data (e.g. birds or insects) a subset of cases 505 
potentially including these features should be selected for the analysis. A long-term dataset can be used to create a set of 506 
climatologically representative clusters that could be used to study general processes and inform the development of an 507 
operational HC scheme. 508 

In this paper, the technique was used for classification of QVPs of long-lasting precipitation events, but the same algorithm 509 
can be applied to various needs (e.g. identification of birds, insects’ or clustering of volume scans of radar data). In parallel 510 
with the application of hierarchical clustering technique to other radar observations a thorough validation of the clusters using 511 
CVPs following the FAAM is planned. 512 
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 618 
Figure 1: NXPol radar location at the Chilbolton Atmospheric Observatory. Circles with the centre at the radar position represent 30, 60, 619 
90 and 120 km range. Credit: USGS (2006). 620 
 621 

https://doi.org/10.5194/amt-2020-143
Preprint. Discussion started: 20 May 2020
c© Author(s) 2020. CC BY 4.0 License.



22 
  

 622 
Figure 2: The time-vs-height QVPs of 𝑍! [dBZ], 𝑍"# [dB], 𝜌!" [–], and 𝐾#$ [° km−1] retrieved from the NXPol radar observations at 623 
Chilbolton on 2017-05-17. Overlaid by temperature isotherms 𝑇 [° C]. 624 

 625 

 626 
Figure 3: Flow chart of the implemented hierarchical top-down clustering algorithm.  627 

 628 
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 629 
Figure 4: The active clusters at the end of the first (panels (a) and (b)) and second (panels (c) and (d)) cycle of the outer loop of the 630 
hierarchical clustering algorithm. Panels (a) and (c) plotted in the hierarchical (tree) structure and panels (b) and (d) plotted in time-vs-631 
height format of the observations on the 17 of May 2017. 632 

 633 
Figure 5: Final hierarchical structure of the optimal clustering found for the QVP input data described in Table 1. The final set of optimal 634 
clusters consists of coloured clusters f_cl1, f_cl2, …, f_cl13. 635 

 636 
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 637 
Figure 6: The time-vs-height format of the final optimal set of active clusters found by the top-down hierarchical clustering for the QVP 638 
input data described in Table 1 (The hierarchical structure behind the optimal clustering is found in Fig. 4). Example of clusters in the time-639 
vs-height format of the 17 of May 2017 QVPs presented in Fig. 2. 640 

 641 
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 642 
Figure 7: Characteristics of the optimal clustering centroids in four polarimetric variables and temperature. The scales of the variables: from 643 
-20 dBZ to 40 dBZ for 𝑍!, from -1.5 dB to 2.0 dB for 𝑍"#, from 0.9 to 1.0 in 𝜌!", from -0.3 ° km−1to 0.6 ° km−1 for 𝐾"%, and from -20° 644 
C to 10° C in temperature (T). 645 
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 646 
Figure 8: Characteristics of the optimal clustering centroids in four polarimetric variables ((a) – 𝑍!, (b) - 𝑍"#, (c) – 𝜌!$, (d) – 𝐾"%) and 647 
temperature (e). The percentage of points in each cluster is in the panel (f). 648 

https://doi.org/10.5194/amt-2020-143
Preprint. Discussion started: 20 May 2020
c© Author(s) 2020. CC BY 4.0 License.



27 
  

 649 
Figure 9: Examples of the images taken from the Cloud Image Probe CIP-15 (15𝜇m, upper) and CIP-100 (100𝜇m, lower) within 30 km 650 
range from the radar position: (a) for f_cl1 – on 18:25:31 UTC 14-02-2018; (b) for f_cl2 – on 18:56:13 UTC 14-02-2018; (c) f_cl3 – on 651 
11:36:44 UTC 24-01-2018; (d) f_cl4 – on 18:17:53 UTC 14-02-2-18; (e) f_cl5 – on 16:53:50 UTC 14-02-2018; (f) f_cl6 – on 08:52:13 UTC 652 
13-02-2018; (g) f_cl8 – on 07:43:16 UTC 13-02-2018; (h) f_cl10 – on 17:55:01 UTC 14-02-2018; (i) f_cl12 – on 12:07:24 UTC 24-01-653 
2018.The image widths are 960 and 6400 μm, respectively. The temperature values are derived from the model data and the heights are 654 
derived from the location of the clusters in the QVPs. 655 
 656 
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 657 
Figure 10: Corresponding to Fig. 9 particle size distributions from the Cloud Image Probe CIP-15 (15𝜇m, upper) and CIP-100 (100𝜇m, 658 
lower) within 30 km range from the radar position: (a) for f_cl1 – on 18:25:31 UTC 14-02-2018; (b) for f_cl2 – on 18:56:13 UTC 14-02-659 
2018; (c) f_cl3 – on 11:36:44 UTC 24-01-2018; (d) f_cl4 – on 18:17:53 UTC 14-02-2-18; (e) f_cl5 – on 16:53:50 UTC 14-02-2018; (f) f_cl6 660 
– on 08:52:13 UTC 13-02-2018; (g) f_cl8 – on 07:43:16 UTC 13-02-2018; (h) f_cl10 – on 17:55:01 UTC 14-02-2018; (i) f_cl12 – on 661 
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12:07:24 UTC 24-01-2018.The image widths are 960 and 6400 μm, respectively. The temperature values are derived from the model data 662 
and the heights are derived from the location of the clusters in the QVPs. 663 
 664 
Table 1: in situ data collection campaigns 665 

Date FAAM flight number Number of volume scans Number of QVP voxels 

20170201 - 243 46656 

20170203 - 213 40896 

20170303 - 213 40896 

20170322 - 213 40896 

20170517 C013 100 19226 

20180124  C076 196 37632 

20180213 C081 189 36288 

20180214 C082 189 36288 

 666 

Appendix A: Polarimetric characteristics of the optimal clusters  667 

Table A1 provides the relevant statistics of each of the thirteen optimal clusters identified in this work from a database of X-668 
band radar data.  669 

Table A1. Statistics describing the content of the thirteen optimal clusters identified in Sects. 4. For each polarimetric variable and for 670 
each cluster, we provide the mean value, standard deviation σ, and [minimum, maximum] values.  671 

Variable Cluster Unit MeanValue σ MinValue 25 % 50 % 75 % MaxValue Label 

𝑍!   
  

f_cl1 
  

dBZ 20 5 3 17 20 23 38  
  
  

upper part of 
ML 

  

𝑍"# dB -0.04 0.11 -0.46 -0.12 -0.05 0.03 0.25 

 𝜌
!$

 - 0.989 0.002 0.974 0.987 0.989 0.990 0.994 

𝐾"% ° km−1 0.1 0.1 -0.2 0.0 0.1 0.2 0.6 

T ° C -2 3 -14 -4 -2 -1 5 

𝑍!   
  

f_cl2 
  

dBZ 22 6 2 18 23 25 42   
 
  

rain 
  

𝑍"# dB 0.13 0.17 -0.21 0.02 0.08 0.20 1.29 

 𝜌
!$

 - 0.991 0.002 0.961 0.990 0.991 0.992 0.995 
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𝐾"% ° km−1 0.0 0.2 -0.9 0.0 0.0 0.0 0.5 

T ° C 7 3 -5 4 6 10 14 

𝑍!   
  

f_cl3 
  

dBZ 7 8 -21 2 8 13 29  
  
  

light rain/drizzle 
  

𝑍"# dB -0.04 0.09 -0.43 -0.10 -0.04 0.02 0.43 

 𝜌
!$

 - 0.984 0.008 0.875 0.982 0.987 0.989 0.993 

𝐾"% ° km−1 -0.1 0.2 -1.0 -0.1 0.0 0.0 0.1 

T ° C 4 4 -10 1 4 6 13 

𝑍!   
  

f_cl4 
  

dBZ 12 3 1 10 12 14 24   
 

low 
concentration 
pristine ice & 

aggregates 

𝑍"# dB 0.15 0.11 -0.22 0.07 0.16 0.23 0.57 

 𝜌
!$

 - 0.984 0.002 0.969 0.983 0.985 0.986 0.993 

𝐾"% ° km−1 0.1 0.1 -0.15 0.04 0.07 0.11 0.25 

T ° C -6 4 -20 -8 -6 -3 3 

𝑍!   
  

f_cl5 
  

dBZ 20 3 11 17 19 22 37  
  

low 
concentration 

larger 
aggregates 

  

𝑍"# dB 0.15 0.11 -0.22 0.07 0.15 0.22 0.57 

 𝜌
!$

 - 0.986 0.003 0.954 0.985 0.986 0.988 0.992 

𝐾"% ° km−1 0.2 0.1 0.0 0.1 0.2 0.3 0.8 

T ° C -4 3 -13 -6 -4 -2 3 

𝑍!   
  

f_cl6 
  

dBZ 15 3 7 13 15 17 27   
higher 

concentration 
dendritic 

crystals & low 
concentration 

aggregates 

𝑍"# dB 0.33 0.11 0.01 0.26 0.33 0.40 0.84 

 𝜌
!$

 - 0.982 0.003 0.965 0.980 0.983 0.984 0.989 

𝐾"% ° km−1 0.3 0.2 0.0 0.2 0.2 0.3 1.2 

T ° C -9 4 -21 -12 -9 -7 0 

𝑍!   dBZ 17 4 7 13 18 21 28  
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𝑍"#   
f_cl7 

dB -0.06 0.08 -0.03 -0.12 -0.06 -0.01 0.18 high 
concentration 
pristine ice & 

low 
concentration 

larger 
aggregates 

 𝜌
!$

 - 0.985 0.004 0.970 0.984 0.987 0.988 0.992 

𝐾"% ° km−1 0.4 0.1 0.1 0.3 0.5 0.5 0.8 

T ° C -15 6 -30 -20 -15 -10 -4 

𝑍!   
  

f_cl8 
  

dBZ 9 2 2 7 9 10 15  
high 

concentration 
pristine ice & 

low 
concentration of 

dendrites 

𝑍"# dB 0.35 0.13 -0.08 0.28 0.34 0.44 0.75 

 𝜌
!$

 - 0.981 0.003 0.960 0.979 0.982 0.984 0.989 

𝐾"% ° km−1 0.1 0.1 0.0 0.1 0.1 0.2 0.6 

T ° C -17 4 -33 -20 -17 -14 -2 

𝑍!  
 
 
 

f_cl9 

dBZ 11 33 2 8 11 13 29  
 
 

dendritic growth 
layer 

𝑍"# dB 0.59 0.18 0.10 0.46 0.56 0.68 1.61 

 𝜌
!$

 - 0.975 0.004 0.944 0.972 0.975 0.977 0.985 

𝐾"% ° km−1 0.1 0.1 -0.7 0.1 0.1 0.2 0.7 

T ° C -8 5 -19 -12 -8 -4 4 

𝑍!   
  
 
 

f_cl10 

dBZ 6 3 -6 4 5 8 17  
 

low 
concentration of  

pristine ice & 
dendrites 

𝑍"# dB 0.32 0.16 -0.21 0.22 0.32 0.42 0.87 

 𝜌
!$

 - 0.978 0.004 0.956 0.976 0.9979 0.981 0.989 

𝐾"% ° km−1 0.0 0.0 -0.8 0.0 0.0 0.1 0.3 

T ° C -8 5 -26 -12 -7 -4 9 

𝑍!   
  
 
 

f_cl11 

dBZ 3 4 -17 1 3 5 16  
 
 

pristine ice 
crystals  

  

𝑍"# dB 0.92 0.43 0.23 0.63 0.83 1.11 3.23 

 𝜌
!$

 - 0.961 0.017 0.810 0.959 0.966 0.970 0.982 

𝐾"% ° km−1 0.0 0.2 -1.3 0.0 0.0 0.1 0.3 
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T ° C -5 4 -18 -8 -5 -1 6 

𝑍!   
  
 

f_cl12 

dBZ -3 5 -19 -6 -2 1 8   
 

Ambiguous 
small ice/drizzle 𝑍"# dB 0.10 0.13 -0.23 0.01 0.07 0.17 0.93 

 𝜌
!$

 - 0.097 0.012 0.88 0.960 0.968 0.973 0.980 

𝐾"% ° km−1 0.0 0.1 -0.8 -0.1 0.0 0.0 0.6 

T ° C 3 4 -8 0 3 6 11 

𝑍!   
  
 

f_cl13 
  

dBZ 24 8 -7 19 25 30 42   
  
 

bright band of 
the ML 

𝑍"# dB 0.99 0.49 0.04 0.63 0.92 0.96 0.99 

 𝜌
!$

 - 0.931 0.032 0.768 0.910 0.934 0.956 0.989 

𝐾"% ° km−1 0.2 0.2 -1.3 0.0 0.2 0.3 1.3 

T ° C 1 2 -3 0 1 2 11 

 672 
  673 
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Appendix B: The optimal clusters in eight events 674 

 675 
Figure B1: The time-vs-height format of the final optimal set of active clusters found by the top-down hierarchical clustering for the QVP 676 
input data described in Table 1. The observations were made on (a) 2017-02-01, (b) 2017- 02-03, (c) 2017-03-03, (d) 2017-03-22, (e) 2017-677 
05-17, (f) 2018-01-24, (g) 2018-02-13, and (h) 2018-02-14. (The hierarchical structure behind the optimal clustering is found in Fig. 4).  678 
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