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General comments

Based on radiative transfer simulations, the authors present a method to detect and dis-
criminate PSCs in in airborne CRISTA-NF observations. NAT and ice are identified by
using their characteristic spectral patterns. Detected PSCs, which do not show these
signatures, are classified as STS. Assuming spectral characteristics of spherical par-
ticles, NAT PSCs are sub-grouped into small NAT (median r≤1.0 µm), medium-sized
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NAT (median r=1.5 µm – 4.0 µm) and large NAT (median r≥3.5 µm). Furthermore, a
new method to detect the bottom altitude of non-opaque clouds is introduced. Applica-
tion of the proposed methods to CRISTA-NF data is presented for one flight during the
RECONCILE field campaign.

The presented study is interesting for PSC-related research, since aspects of PSC de-
tection and classification are investigated in further detail and extended. The CRISTA-
NF observations provide another interesting data set in the winter 2009/10, which was
characterised by wide-spread PSC occurrence. The proposed approach to distinguish
between different size classes of NAT particles might have potential to extend PSC
classification using satellite instruments. However, the presented size classification is
elaborated using model simulations only. Direct and detailed comparisons with ob-
served spectra are not presented. Only spherical NAT particles are taken into account,
while previous studies suggest that particle shape is an important issue. Comparisons
with in situ observations could be helpful to test the proposed method. The method
to determine cloud bottoms has the potential to gain more information on PSCs and
thin cirrus clouds in the vertical domain. From my point of view, the manuscript is inter-
esting and should be considered for publication in AMT after the following points have
been addressed.

Main points:

1) From my point of view, it seems that the presented PSC classification and the size
classification of NAT particles are elaborated separately from the observations. Simu-
lated spectra in Figures 1 and 5 are presented in arbitrary units and are scaled individ-
ually, while only a few observations are shown separately in Figure 11 using radiance
units. Furthermore, only a part of the used spectral range is shown for the observations
(it seems that LRS 5 data is not shown). Therefore, the presented plots do not allow
to evaluate whether the simulations reproduce details of the observations. From my
point of view, this aspect is important, especially if issues related to particle shape are
addressed. Overlays or residuals between simulated spectra and observations would
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allow to evaluate to which degree the underlying assumptions of the classification are
supported.

2) The proposed size classification is based on spectral characteristics of spherical
NAT particles. However, field observations (Molleker et al. 2014) and laboratory ex-
periments (Grothe et al., 2006) support a highly aspherical particle shape of large NAT
particles or alternative habits. In a well-constrained scenario, the observed spectral
fingerprint of large NAT particles has been shown to be clearly better compatible with
highly aspherical particles (Woiwode et al., 2016). From my point of view, potential
uncertainties of the proposed size classification related to the adopted particle shape
should be discussed.

3) The spectral range used by the windows for NAT index-1 to -3 focuses only on the
spectral region around the feature at ∼820 cmˆ-1. In previous work, it has been shown
that, beside details of the spectral feature at ∼820 cmˆ-1, the overall spectrum and
especially the spectral region towards 960 cmˆ-1 respond to particle size and shape
(Woiwode et al., 2016). Are there certain (e.g. instrument-related) reasons for not
considering the full available spectral range (and particularly the region 960 cmˆ-1) to
constrain the size classification and define the criteria?

4) Previous studies showed the spectra of large NAT particles respond significantly to
variable radiation from the troposphere/surface, which is scattered by the large parti-
cles into the line-of-sight (see Woiwode et al., 2016, 2019). The signal is modulated
by the absence or presence of tropospheric clouds. To me it is not clear whether this
aspect has been taken into account and which uncertainties might result in the size
classification. (Were tropospheric clouds considered for the discussed flight?)

5) Application of the proposed classification scheme is presented for one flight and
comparisons with in situ observations are not provided. In situ observations during the
same flight suggest particle radii exceeding 7.5 and 10 µm (see Molleker et al., 2014,
Table 1), while the proposed size classification suggests STS and medium-sized NAT
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(r=1.5 µm – 4.0 µm) here. Are these results compatible? A comparison with in situ
observations and including further flights could be helpful to evaluate (and potentially
optimise) the proposed classification scheme.

6) Regarding the detection method for cloud bottoms, it would be interesting if the
authors could discuss how the method responds if the cloud bottom is located above
flight altitude and in the presence of several PSC layers located above each other.
Such scenarios are frequently found in polar winters (e.g. Pitts et al., 2018).

Specific comments

L15, L492 It should be mentioned that the size classification assumes spherical NAT
particles.

L35 References to further studies focusing on model simulations and comparisons with
observations might be considered (e.g. Zhu et al., 2015; Zhu et al., 2017; Khosrawi et
al., 2017, Tritscher et al., 2019).

L39ff Further PSC detection techniques (e.g. lidar, in situ) might be mentioned (e.g.
Achtert and Tetsche, 2014; Molleker et al., 2014; Pitts et al., 2018).

L51 It should be noted that relatively high volume densities are required for this signa-
ture (see Höpfner et al., 2006, 2006b), which are found less frequently in the Arctic.

L67, L227 “Very small” should be defined.

L67 “Another spectral feature” should be explained. To me it seems to be the same
spectral signature of beta-NAT particles reported by previous studies, which is modu-
lated by the actual PSC scenario, particle size distribution, particle shape and scattered
light from below. “A similar spectral feature” seems more appropriate to me.

L70 It should be mentioned that also other particle modes between 1 µm and 6 µm
were analysed by the same study (see Woiwode et al., 2016, Table 2, Fig. 10ff, Ap-
pendix B).
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L72 It should be mentioned that particle shape and scattered radiation from below
where also found to be important parameters by the same study.

L127ff Information on the along-track sampling would be helpful.

L167 The overall cloud scenario used is well-described. However, the tropospheric
cloud scenario and implications for scattered radiation from below, which is scattered
by the particles, are not addressed (see 4)).

L163 Did the simulations account for CFC-12? (spectral band centered at ∼920 cmˆ-1)

L202, L222 Detailed analysis in the Woiwode et al. (2016) showed that the shape of
the feature is sensitive to particle shape.

L230ff See 1)-4): The observed spectral fingerprint is not exploited fully to define of
criteria of the classification. E.g. the spectral region around 960 cmˆ-1, which was
shown to respond significantly to size distributions and particle shape (see Woiwode
et al., 2016) is not considered. It is not clear to me whether modulation of the spectra
by scattered light from the below is considered. Direct comparisons between observed
and simulated spectra are not presented to verify the underlying assumptions.

L279, L314, L336, L507 It should be noted that these statements on the performance
are valid within the assumptions made. Verification by direct comparisons of simulated
and observed spectra and comparisons with other observations are not provided here.

L315ff For comparisons with other studies, it would be helpful to include a Figure show-
ing the used size distributions.

L383ff See 6): It would be interesting if the authors could discuss how the method
responds if the cloud bottom is located above flight altitude and in the presence of
several PSC layers located above each other. Such conditions are frequently found in
polar winters (e.g. Pitts et al., 2018).

L392 The motivation for choosing the discussed flight should be provided.
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L397 It would be helpful to indicate the location of the selected two profiles in Fig. 10
and comment on the composition derived in Fig. 10b.

L416ff See 5): Considering one case study constitutes only a limited test for a new
classification scheme. Further RECONCILE PSC flights, collocated in situ observa-
tions and e.g. CALIPSO observations could be used to test (and potentially optimise)
the proposed classification scheme.

L422 Why are only spectra with CI < 3.0 shown here? (compare Fig. 3 and L388)

L424 See 1): Figure 11 shows examples of PSC spectra in radiance units, while Fig-
ures 1 and 5 show simulations in arbitrary units, which are individually scaled. Clear
comparisons between simulations and observations are not possible. Only a part of the
used spectral range is shown for the observations (compare L99). Overlays or residu-
als between simulated and observed spectra using the same units would be helpful to
evaluate to which degree the simulations meet details of the observations.

L435,436 See 5): Here, the CRISTA-NF observations are classified as STS or medium
sized (median r=1.5-4.0 µm) NAT. However, collocated in situ observations suggest
particles with radii exceeding 7.5 and 10 µm (see Molleker et al., 2014, Table 1). Are
these results compatible? It would be interesting to compare size distributions, which
are supported by the CRISTA-NF simulations, with the in situ observations.

L472 The conclusion on the spectral range from 833 to 960 cm-1 is not supported
sufficiently by Fig. 5, since the spectral range from 840 to 940 cm-1 is not shown.

L474ff From my point of view, the conclusion “very similar” is not sufficiently supported.
The Woiwode et al. (2016,2019) studies used a broader spectral range, higher spectral
resolution and spectra in absolute radiance units (which constitutes another “piece of
information”). Furthermore, these studies used direct overlays and residuals of sim-
ulated observed spectra to analyse the spectral fingerprint of large NAT particles in
detail and to define criteria for detection. In the study presented here, the full avail-
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able spectral range is not exploited and no direct comparisons between simulated and
observed spectra are provided.

However, within the abovementioned limitations, the conclusion on similarity is sup-
ported to some degree by the Woiwode et al. (2016) study, Appendix B, for the small
and medium particle sizes. In this study it was shown that for small NAT particles (r=1
µm), spherical and aspherical particle populations show an almost identical spectrum,
while at r=3 µm the signatures start to diverge notably. Furthermore, one might spec-
ulate that particles become gradually more aspheric when growing to large sizes, and
that (nearly) spherical particles are a suitable assumption at earlier growing stages.

L476ff It has been shown before that a similar signature can be simulated by assuming
spherical particles (see Woiwode et al., 2016, Appendix B). Furthermore it should be
noted that the possibility of some variability in the NAT phase regarding particle habits
has been clearly mentioned in previous studies (Molleker et al., 2014; Woiwode et al.,
2016) and has not been ruled out in the Woiwode et al. (2019) study.

However, using the combination of a wide spectral range, high spectral resolution, and
supporting information from in situ observations, the Woiwode et al. (2016,2019) stud-
ies were not successful in reproducing details of developed spectral fingerprints of large
NAT particles by assuming spherical particles. The observed combination of a strong
“step-like” feature and a flat spectral baseline of the observed spectra towards higher
wave numbers (described by the simplified “hockey-stick” picture in Woiwode et al.,
2019) could not be reproduced. Close inspection of the spectra showed that Mie sim-
ulations of spherical particles always showed significant differences from the observed
”shifted feature” around 820 cmˆ-1 and a significant negative slope and/or an “upward
arching” of the spectral baseline at higher wave numbers, and further discrepancies.
These discrepancies resulted in significant patterns in the residuals. Using spectral
characteristics of highly aspherical particles clearly improved the residuals. Thus, the
spectrum clearly includes information on particle shape. Also from other work it is
known that infrared spectroscopy allows to infer information on particle shape (Wag-
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ner et al., 2005). However, it is understandable to me that within the limited spectral
range considered here and without detailed comparisons between observations and
simulations a clear decision appears to be not feasible here.

From my point of view, the question is not only whether any “hockey-stick” signature
can be modelled, but also whether details of the entire accessible spectral fingerprint
in developed signatures of large NAT particles can be reproduced, and how the results
compare with other observations.

L477f This sentence should be revisited, since this has been done in before (Woiwode
et al., 2016,2019). Of course, any further case studies including in situ comparisons
would be helpful to further constrain properties of large NAT particles.

L480f Here, clarification is required. Since absolute radiances are shown in Figure 11,
I would expect that integrated radiances and their differences can be calculated.

L484 See comment to L476ff: it has been shown before that a similar signature can be
simulated by assuming spherical particles. However, close inspection showed signifi-
cant discrepancies between simulated and observed spectra in the case of spherical
particles.

Fig 11 The channel LRS 5 seems not to be shown (compare L99).

Fig 10 An additional panel including a map with the geolocations of the observations
would be helpful to visualize the location and size of the sampled region.

Technical corrections

L32 denitrifaction -> denitrification

L115 KOPRA should be expanded

L450 CALIPSO and CALIOP should be expanded and a reference should be provided
(e.g. Pitts et al., 2018)
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L458 transfered -> transferred

L478 FSSP should be expanded and a reference should be provided

L500 GLORIA should be expanded and a reference should be provided

L508 Sentence should be revisited. How can new PSC observations be obtained from
the presented method? (Possibly, “observations” should be replaced e.g. by “data set”)

Fig 3, Fig 6 Plots may be refined: data points seem to overlap strongly and it is not
clear whether significant populations of data points are hidden below other data points.
At least, this should be discussed in the text.

Caption Fig 4 spetrum -> spectrum

Fig 7b The x-axis might be scaled from e.g. -4 to >8 for a better focus on the relevant
region
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