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Abstract. We evaluate the uncertainties of methane optimal estimation retrievals from single footprint thermal infrared
observations from the Atmospheric Infrared Sounder (AIRS). These retrievals are primarily sensitive to atmospheric methane
in the mid-troposphere through the lower stratosphere (~2 to ~17 km). We compare to in situ observations made from aircraft
during the Hiaper Pole to Pole Observations (HIPPO), the NASA Atmospheric Tomography Mission (ATom) campaigns, and
from the NOAA ESRL aircraft network, between the surface and 5-13 km, across a range of years, latitudes between 60 S to
80 N, and over land and ocean. After a global, pressure dependent bias correction, we find that the land and ocean have similar
biases and that the reported observation error (combined measurement and interference errors) of ~27 ppb is consistent with
the standard deviation between aircraft and individual AIRS observations. A single measurement has measurement (noise
related) uncertainty of ~17 ppb, a ~20 ppb uncertainty from radiative interferences (e.g. from water, temperature, etc.), and ~
30 ppb due to “smoothing error”, which is partially removed when making comparisons to in situ measurements or models in
a way that account for this regularization. We estimate a 16 ppb validation error because the aircraft typically did not measure
methane at altitudes where the AIRS measurements have some sensitivity, e.g. the stratosphere. Daily averaged AIRS
measurements of at least 9 observations over spatio-temporal domains of < 1 degree and 1 hour have a standard deviation of
~17 ppb versus aircraft, likely because the observation errors from temperature and water vapor (for example) are only partly
reduced through averaging. Seasonal averages can reduce this ~17 ppb uncertainty further to ~10 ppb, as determined through
comparison with NOAA aircraft, likely because uncertainties related to radiative effects of temperature and water vapor can

be reduced when averaged over a season.


Highlight
Define the term "validation error". Is it due to natural variability because the co-incidences are not perfect (both horizontal and vertical)?


35

40

45

50

55

60

65

1 Introduction

Advances in remote sensing, global transport modeling, and an increasingly dense network of surface measurements have led
to substantive advances in evaluating the components and error structure of the global methane budget and the processes
controlling this budget. For example, Frankenberg et al. (2005, 2011) showed that total column methane estimates could be
derived from near infrared (NIR) radiances at ~1.6 microns measured by the Scanning Imaging Absorption Spectrometer for
Atmospheric Cartography (SCIAMACHY). Since then, methane retrievals have also been applied to NIR radiances from the
Greenhouse Gases Observing Satellite (GOSAT) instrument (e.g. Parker et al., 2011; Schepers et al., 2012), launched in 2009
with measurements, and the TROPOspeheric Monitoring Instrument (TROPOMI, e.g. Hu et al., 2018), launched in 2017.
These data have sufficient accuracy to map regional surface methane enhancements (e.g. Kort et al., 2014; Wecht et al., 2014)
and point source anomalies (Varon et al., 2019; Pandey et al., 2019). Estimates of the free-tropospheric methane concentrations
from spaceborne measurements in the thermal infrared (TIR) at ~8 microns were demonstrated using radiances from the Aura
Tropospheric Emission Spectrometer (TES, Worden et al., 2012; 2013b), the Atmospheric Infrared Sounder (AIRS, e.g. Xiong
et al., 2013), the Infrared Atmospheric Sounding Interferometers (IASI, e.g. Ravazi et al., 2009; De Wachter et al., 2017,
Siddans et al., 2017), the Cross-Track Infrared Sounders (CrlIS, e.g. Smith and Barnet, 2019) and TIR GOSAT measurements
(de Lange and Landgraf, 2018). TIR methane measurements have been used to evaluate the role of fires (e.g. Worden et al.,
2013b; 2017a), Asian emissions and stratospheric intrusions (e.g. Xiong et al., 2009; 2013) on the global methane budget.
The goal of this paper is to evaluate the uncertainties of new methane retrievals from AIRS single footprint, original (non-
cloud-cleared) radiances using aircraft measurements from the HIAPER Pole-to-Pole Observations (HIPPO) and Atmospheric
Tomography Mission (ATom) campaigns and National Oceanic and Atmospheric Administration (NOAA) Earth System
Research Laboratory (ESRL) aircraft network, taken between 2006 and 2017. Evaluation of these uncertainties are needed to
determine if AIRS methane data can characterize and improve errors in global chemistry transport models. For example, a
recent paper by Zhang et al. (2018) combined synthetic CrIS and TROPOMI methane retrievals and a global inversion system
to show that it would be possible to infer the north-south gradient of OH, the primary methane sink, to within 10%, and
temporal variations of OH concentrations. However, knowing the accuracy of the methane data is important for inferring the
uncertainty in the spatio-temporal variability of OH. Over decadal time scales, OH can vary by 3-5% (e.g. Turner et al., 2018a,
2018b, 2019; Rigby et al., 2017). Therefore, to be useful for understanding OH, monthly or seasonally averaged AIRS data
should have an uncertainty that is less than 3-5% (55-99 ppb).

In this paper we present an evaluation of methane retrievals derived from AIRS single footprint radiances. We follow an
optimal estimation approach (Rodgers, 2000), based on the heritage of the Aura Tropospheric Emission Spectrometer (TES)
algorithm (Bowman et al., 2006), now called the MUIti-SpEctra, MUIti-SpEcies, MUIti-Sensors (MUSES) algorithm (Worden
et al., 2006, 2013b; Fu et al., 2013, 2016, 2018, 2019). MUSES uses radiances from one or multiple instruments to quantify
and characterize geophysical parameters derivable from those radiances. The optimal estimation method provides the vertical

sensitivity (i.e., the averaging kernel matrix) and estimates of the uncertainties due to noise and to radiative interferences such
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as temperature, N20, and water vapor. We compare AIRS retrievals with corresponding aircraft data over a range of latitudes
and longitudes in order to evaluate the calculated uncertainties over ocean and land. Much of the description of the forward
model and retrieval approach is provided in Worden et al. (2012, 2019). We therefore refer the reader to these papers for a
more in depth description of the retrieval approach and only summarize aspects here that are relevant for comparing the AIRS

methane retrievals to aircraft data.

2 Datasets used in this paper

The quantities of interest that we validate in this paper are a) the AIRS CH4 dry volume mixing ratio (VMR) at particular
pressure values between 750 hPa and 300 hPa, or b) the AIRS CH4 dry VMR partial column covering the same pressure range
that is measured by the aircraft. We use aircraft profiles which span the pressure range that contains at least 0.20 degrees of

freedom for the AIRS CHj4 partial column.

2.1 Description of AIRS

The AIRS instrument is a nadir-viewing, scanning infrared spectrometer (Aumann et al., 2003; Pagano et al., 2003; Irion et
al., 2018; DeSouza-Machado et al., 2018) that is onboard the NASA Aqua satellite and was launched in 2002. AIRS measures
the thermal radiance between approximately 3-12 microns with a resolving power of approximately 1200. For the 8 micron
spectral range used for the HDO/H,0/CHp, retrievals, the spectral resolution is ~1 wavenumber (cm-1), with a gridding of ~0.5
cm-1, and the signal-to-noise (SNR) ranges from ~400 to ~1000 over the 8 micron region for a typical tropical scene. A single
footprint has a diameter of ~15 km in the nadir; given the ~1250 km swath, the AIRS instrument can measure nearly the whole
globe in a single day. The Aqua satellite is part of the “A-Train” that consists of multiple satellites and instruments, including
TES, in a sun-synchronous orbit at 705 km with an approximately 1:30 am and 1:30 pm equator crossing-time. In this paper,

we use only daytime data to match the validation observations.

1.2 Overview of Aircraft Data

Measurements from the HIPPO and ATom aircraft campaigns (Wofsy et al., 2012) provide an excellent data set for satellite
validation, due to the wide latitudinal coverage, the large vertical extent of the profiles (up to 9-12 km), and the availability of
campaigns over a wide range of months. Each of the five HIPPO campaigns flew south, then north over a period of weeks,
often using a different path for the northern and southern legs, with campaign dates in 2009 - 2011. Atmospheric methane
concentrations were measured with a quantum cascade laser spectrometer (QCLS) at 1 Hz frequency with accuracy of 1.0 ppb
and precision of 0.5 ppb (Santoni et al., 2014). HIPPO methane data are reported on the WMO X2004 scale and have been
used in several other studies to evaluate satellite retrievals of methane (e.g. Alvarado et al., 2015; Wecht et al., 2012; Crevoisier
et al., 2013). Comparisons with NOAA flask data showed a mean positive bias of 0.85 ppb for the QCLS during the HIPPO
campaigns, which is consistent with the estimated QCLS accuracy of 1.0 ppb (Santoni et al., 2014; Kort et al., 2011). We used
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396 QCLS CH, profiles from the HIPPO campaigns. Using coincidence criteria of +9 hours, +50 km, 22,271 AIRS

observations were processed, of which 5537 passed quality flags. The latitude of the matches ranges from 57S to 81N.

We compare AIRS to observations from the ATom aircraft campaigns 1-4 (Wofsy et al., 2018). This comparison provides
validatation ~7 years after HIPPO, between 2016 and 2018. Similar to HIPPO, these observations include observations in the
Pacific Ocean, but ATom also includes observations in the Atlantic (as seen in Table A.1 and Fig. 1). ATom methane data are
reported on the WMO X2004A scale. We used 289 profiles from the ATom campaigns from the NOAA Picarro instrument
(Karion et al., 2013). For more information on the instrument, see
https://espo.nasa.gov/sites/default/files/archive_docs/NOAA-Picarro_ATom1234_readme.pdf. Using coincidence criteria of
+9 hours, +50 km, 21,225 AIRS observations were processed, of which 4913 passed quality flags. The latitude of the matches
ranges from 65S to 65N.

The NOAA ESRL aircraft network observations (Cooperative Global Atmospheric Data Integration Project, 2019) are taken
+wvice per month at fixed sites primarily in North America, and also Rarotonga (RTA) at 21S (Sweeney et al., 2015,
nitp://dx.doi.org/10.1002/2014JD022591). NOAA aircraft network methane data are reported on the WMO X2004 A scale.
Although HIPPO data are not reported on the same scale as ATom and NOAA aircraft network data, differences in values of
calibration tanks used for HIPPO (Santoni et al., 2014) on the two different scales are < 1 ppb. We match AIRS and aircraft
observations between 2006 and 2017, with coincidence criteria of 50 km, 9 hours, finding ~43,000 matches, and 18,000 good
quality matches following the retrieval, to 719 aircraft measurements, at sites ACG (67.7N, 164.6E, 401 matches), ESP (49.4N,
126.5E, 2743 matches), NHA (43.0N, 70.6E, 2682 matches), THD (41.1N, 124.2E, 1551 matches), CMA (38.8N, 74.3E, 3269
matches), TGC (27.7N, 96.9E, 1944 matches), and RTA (21.2S, 159.8E, 810 matches).

Figure 1 shows the locations of all the aircraft data used for the comparisons described in this paper. Most of the ocean
measurements are from the HIPPO and ATom campaigns that spans a range of latitudes, whereas most of the land

measurements are taken over North America..

3 MUSES-AIRS Optimal Estimation of CH4 from single-footprint, original (non-cloud-cleared) AIRS radiances

Worden et al. (2012, 2019) describe in detail the forward model and retrieval approach used for estimating methane from TES
and AIRS radiances. The radiative transfer forward model used for this work is the Optimal Spectral Sampling (OSS) fast
radiative transfer model (RTM) (Moncet et al., 2005, 2008, 2015). In particular, radiances from the thermal infrared bands at
8 and 12 microns are used to quantify profiles of atmospheric concentrations of CH4, HDO, H,0, N0, as well as temperature,
emissivity, and cloud properties. Since we use optimal estimation, or C ;= (e.g. Rodgers, 2000; Bowman et al., 2006) to

estimate these quantities we can characterize the vertical resolution and uncertainties of these retrievals, which allows us to
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compare them to models and independent data sets, while accounting for the regularization used for the retrieval. We follow
the OE approach for the Aura TES instrument (e.g. Bowman et al., 2006; Worden et al., 2006, 2012) but with some differences.
First, methane retrievals using the TES radiances are obtained using only the 8 micron band, because of slight calibration
differences between the detectors that measure the 12 and 8 micron bands (e.g. Shephard et al., 2008; Connor et al., 2011).
For the AIRS retrievals, we use both the 8 and 12 micron bands in order to better constrain temperature in the troposphere and
stratosphere. Secondly, the TES based retrieval uses the ratio of a jointly-retrieved N20O profile to the CH, profile in order to
help correct biases related to temperature variations in the (UTLS) upper-troposphere lower-stratosphere (Worden et al., 2012).
However, the N20 correction is not used for the AIRS retrievals because we can jointly estimate temper=ture in the UTLS
region using the 12 micron band. We use similar quality flags as the TES retrievals such as checks on the "7, residual signal,
and cloud optical depth as discussed in Kulawik et al. (2006a, 2006b), except that we screen out cloudy and low-sensitivity

cases, resulting in about 1/4 of the data passing screening. The specific flags used for AIRS CH, are as follows:

wood quality and sensitivity flagging for AIRS CH4

Radiance residual rms < 1.5. This screens off the standard deviation of the radiance residual (the difference between
the observed and fit radiance normalized by the NESR).

|Radiance residual mean| < 0.15. This screens off the mean difference of the radiance residual.

|[KdotdL| < 0.23. This screens off the dot product of the Jacobians and the radiance residual and indicates that there
is little remaining information relative to the noise level about the surface and atmosphere in the retrieval

TSUR < near-surface atmospheric temperature value + 30K. This ensures that the thermal gradient is less than 30K.
Cloudtop pressure > 90 hPa. This ensures that the retrieved cloudtop is not above 90 hPa.

Cloud OD < 0.3. This ensures that the cloud is not opaque and there is sensitivity below the cloud.

Cloud variability versus wavenumber < 1.5 * cloud OD. This ensures that the cloud optical depth does not vary too
much with wavenumber.

Degrees of freedom > 1.1. This ensures a minimum sensitivity.

Tropospheric degrees of freedom > 0.7. This ensures a minimum Tropospheric sensitivity.

Stratospheric degrees of freedom < 0.5. This ensures that there is not too much sensitivity in the stratosphere.

Predicted error on the column above 750 hPa < 53 ppb. This ensures that the predicted error is not too large.

3.1 Retrieval Error Characteristics

Detailed descriptions of the use of optimal estimation (OE) to infer trace gas profiles from remote sensing radiance
measurements retrieval is included in numerous publications (e.g. Rodgers, 2000; Worden et al., 2006; Bowman et al., 2006).
However, we present a partial description here as it is relevant for comparing the AIRS methane retrievals and aircraft profile
measurements. As discussed in Rodgers (2000), the estimate for a trace gas profile inferred (or inverted) from a radiance

spectrum is described by the following linear equation:
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R =x, +A(x—x_)+GgY; K} (b; —b{)+Gn (1)

where X" _is the estimate of Log(VMR), [x_ ] _a" is the log of the a priori concentration profile used to regularize the

inversion. We split x into [X,y], where X is the quantity of interest, the methane profile, and y are the jointly estimated quantities
(such as temperature, water vapor, clouds, and surface properties), which results in the cross-state error (Worden et al., 2004;
Connor et al., 2008).

R o=x, +Au(x—x,)+GrY; K (b;—bf) +A,(y-y,)+GCn 2)
For the AIRS (and TES) OE methane retrievals, Xa comes from the MOZART atmosphere chemistry model (e.g. Brasseur et

al., 1998). The vector X is the “true state”, or in this case the (log) concentration profile. The matrix A is the averaging kernel

matrix or A = % and describes the vertical sensitivity of the measurement. The matrix G relates changes in the radiance (L)

to perturbations in X, G = gzgi. The vector n is the noise vector, the matrix K is the sensitivity of the radiance to changes in
daL daL

(log) concentration K = and the set of vectors bi represent interference errors not estimated from the

dlog(x) - dlog(VMR)’
observed radiances. The true state, noise vector, and interference errors as described here are the “true” values and are therefore
not actually known but are represented in this form so that we can calculate how their uncertainties affect the estimate X ~/\n
example averaging kernel matrix is shown in Figure 2 and shows that AIRS based estimates of methane are most sensitive to
methane in the free-troposphere and lower-stratosphere as demonstrated previously for AIRS and other TIR based estimates

of tropospheric methane (e.g. Xiong et al., 2016; de Lange and Landgraf, 2018).

Finally, we look at the quantity of interest, x = hx. The vector h combines all the necessary operations that maps the (log)
concentration profiles to whatever quantity is needed such as selecting one particular pressure level (e.g. h=[0,0,0,1,0,0,0, ...],
selecting a column average, (h = pressure weighting function) — see Connor et al., 2008) or selecting the VMR mean (e.g.

h=1/m, where m is the number of pressure levels to average).

£ =hR (3a)
£=hx_ +hA, (x—x,) +hGgY; K} (b; —b{) +hA,,(y—y_,)+hGn (3b)

In Eq. 3a, the vector X (denoted in bold) is converted to the scalar of interest, ¥ (non-bold, italic). In our validation
comparisons, h is used to select 1) a specific pressure level that is measured by the aircraft, 2) the partial column average over

the pressure levels measured by the aircraft, and 3) the partial column above 750 hPa.
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3.2 Approach for Comparing AIRS measurements to aircraft profiles

A challenge in comparing the satellite-based AIRS measurements to aircraft data is that the aircraft will typically measure only
a section of the atmosphere (e.g. the troposphere), whereas the AIRS measurements are sensitive, to varying degrees (see Fig.
2), to the entire atmosphere. To account for these differences, we divide the atmosphere into two parts X = [Xc,Xs]: where X is
the part measured by the aircraft (denoted ¢ for airCraft), and xs is the part not measured by the aircraft (denoted s for

Stratospheric):

Xc=hx  + hA . (x.—x fl) +hGgY; KP (b; — b¥) + hCACy(y -y a) +hA(xs — xfl)Acs(xS — xfl) + h.Gn
(4)

where the term Acs is the cross-term in the averaging kernel that describes the partial derivatives of the aircraft-measured levels
(e.g. the troposphere) to the un-measured levels (e.g. the stratosphere). Equation 4 describes how the AIRS measurement %,

responds to the true state [Xc,Xs].

We compare our AIRS observation, X, in Eq. 4, to our aircraft observation, x To compare directly to the aircraft

aircraft’

c

observation (without accounting for AIRS sensitivity) we would compare to X ;... =

h.x . However, the expected
aircraft

error would include smoothing error which is estimated to be 30 ppb. In Equation 5a, we first apply the AIRS Averaging

kernel to the aircraft measurement to account for the AIRS sensitivity:

4 _ c M C s S
X aircraft — hCX a + hCACC (X aircraft X a) + hCACS (X aircraft X a) (58‘)
One issue is that we do not actually have aircraft observations in the “s” part of the atmosphere, x 7, P which is used in

the second term of Eq. 5a. We have aircraft observations in the “c” part of the atmosphere only, so we apply the Averaging

Kernel to this part of the atmosphere only:

/x\flircraft = th a + hCACC (x flircraft - X fl) (5b)
Equation 5a accounts for the AIRS smoothing error, whereas Equation 5b (the equation used in this work) only accounts for
the smoothing error from the part of the atmosphere measured by the aircraft profile. The difference from Eqgs. 5a and 5b is

discussed in Section 3.3.
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The expected difference between X, (the measured AIRS value) and X (the aircraft value with the AIRS Averaging

kernel applied) is calculated from Egs. 4 and 5b:

E” (ﬁc - ’x\Zircraft)” =

hc(Ach:la)bAIb + Acys;}x'yA'Ey + AcsS;sAIs + Sﬁf)hf (6)
The matrix Sa term describes the a priori uncertainty of methane, interferents, or systematic parameters, which propagate into
the error in the first 3 terms: (1) A, SEPAT, describes systematic error, e.g. due to spectroscopy and calibration; these likely

impart biases into the AIRS measurement which are characterized during validation, (2) AcysiyA{y describes the “cross-state
error”, the effect of jointly retrieved parameters like temperature onto methane, (3) AsSSSAL describes the impact of the part
of the atmosphere not covered by the aircraft on the measured section: this must be included because the AIRS measurement
sees a combination of both parts of the atmosphere and cannot completely disentangle thel...= The final term, Sg, is the
measurement error, which is the propagation of radiance error into the retrieved parameters, and is G, S, GX, where G, is the
gain matrix and S, is the covariance of the radiance error, in our case, a diagonal matrix. The error covariances all represent

fractional errors, in log(VMR). The error in ppb is approximately the fractional error times the methane value in ppb.

For the purpose of evaluating the AIRS methane measurement uncertainties and comparing the AIRS methane to aircraft in

situ measurements we refer to the four terms on the right side of Eq. 6 as:

1) Sg€ is the systematic error due to terms that are not accounted for in the retrieval state vector, such as spectroscopy
and calibration; these terms are estimated by comparisons with the aircraft data. A pressure-dependent bias
correction, described in Section 3.4, of approximately -60 ppb is used to correct this systematic bias.

2) A Sy AYy, the “cross-state”, which is included in the MUSES-AIRS methane estimate product files, and is the
propagation of temperature, water vapor, and cloud errors into AIRS. The errors in the retrieved temperature and
water vapor at nearby location are correlated over short spatio-temporal scales, as described in Section 4, and so this
error does not reduce with averaging nearby observations. However, monthly or seasonal averages reduces cross-
state error, because systematic errors from temperature / water / cloud can be assumed to vary pseudo-randomly
over larger time scales. We estimate this error as ~21 ppb (see next paragraph).

3) A, SIMAT, is the “validation uncertainty” due to knowledge uncertainty of the stratosphere although this may also
contain other levels that are also not measured by the aircraft. This is the smoothing error which cannot be removed
from the comparisons because the aircraft does not make measurements at the “n” (not measured) levels. We

estimate this validation error as ~16 ppb (see next section).
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4)  SEE, the “measurement” error, which is included in the AIRS methane estimate product files. The measurement
error is random and is expected to reduce as the inverse square root of the number of observations averaged. We

estimate this error as ~18 ppb (see next paragraph)

Figure 3 shows the predicted errors for the AIRS partial column matching the aircraft measurements. The measurement error
(light green) is 18 ppb, the cross-state error is 21 ppb (red minus green in quadrature), and the total error for a single observation
(including smoothing error) is 41 ppb. The errors not shown in this plot are the validation error, estimated in the next section,

and systematic error, which we remove with a bias correction in Section 3.4.

3.3 Estimating validation error due to aircraft not measuring the stratosphere

A typical aircraft profile will only measure part of the troposphere and rarely measure into the stratosphere. However, the
AIRS methane profile ma=2surements are sensitive to methane variations over the whole atmosphere as shown by the averaging
kernel matrix in Figure 2. Options for dealing with this are a) extending the true with the AIRS prior or b) extending the true
with a model profile value. Note that models in general have a positive bias in the extratropical stratosphere (Patra et al.,
2011). In GEOS-Chem 4x5, the column bias is shown in Figure 2¢ of Turner et al. (2015) and further discussed in Maasakkers
(2019), which finds a bias in the stratosphere.

c

This section estimates this uncertainty by calculating the difference of x aircraft

for Eg. 5a minus Eq. 5b when extending the

aircraft using two different “true” profiles taken from two different global atmospheric chemistry models, the Laboratoire de
Météorologie Dynamique (LMDz) model (e.g. Folberth et al., 2006) model and the Goddard Earth Observing System (GEOS-
Chem) model (e.g. Maasakkers et al., 2019). So, if the model value equaled the AIRS prior in the stratosphere, this difference

would be zero. The differences for x fu.rcmft from LMDz model and GEOS-Chem are shown in Figure 4 for all HIPPO

ocean and land data; these differences show that model/model differences in the stratosphere can contribute significantly to
the differences between AIRS and aircraft validation.

These differences provide an estimate for how knowledge error in the stratosphere projects to uncertainties in our methane
retrievals. For example, this uncertainty varies with latitude, similar to the residual bias between the AIRS estimate and aircraft
(next section). Furthermore, the variability over small latitudinal ranges of 10 degrees or less suggests that the random part of
the stratospheric error is smaller than this latitudinal variability. Our 16 ppb estimate for this error is similar to the 10 ppb
estimate for the impact of stratospheric uncertainty on column estimates from aircraft profiles (Wunch et al., 2010). Appendix

A shows further analysis of mean differences of AIRS minus aircraft for different profile extension choices.
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3.4 Bias Correction

AIRS CH, shows a persistent high bias of 25 to 90 ppb versus aircraft observations in Fig. 6. Previous studies using remotely
sensed measurements suggest that a bias correction to the AIRS methane profile measurement must account for the vertical
sensitivity (e.g. Worden et al., 2011). For example, in the limit where the AIRS measurement is perfectly sensitive to the
vertical distribution of methane, the bias correction could be a simple scaling factor. However, in the limit where the AIRS
measurement is completely insensitive (e.g. DOFS = 0.0) then the bias correction is zero. We therefore use the bias correction
approach described in Worden et al. (2011), which passes a bias correction through the averaging kernel to account for the
AIRS sensitivity.

We use HIPPO-4 observations to set a bias correction which we then evaluate with the other HIPPO campaigns and NOAA
aircraft network data. To set the bias, we use Eg. 5 to estimate the aircraft observation as seen by AIRS, then compare this to

AIRS observations. The result (by pressure level) is shown in Table 1. Then a bias was applied to AIRS using Eqg. 7, with the

bias term 8p;qs in the form of Eq. 8.

In(Xeorrectea) = ln(/x\orig) + A(Opias) @)

Where In() is the natural log, because the retrieved quantity is In(VMF.. We fit a single bias function for all AIRS
measurements by minimizing the difference between the AIRS and HIPPO-4 with § bias constrained to have a slope with

pressure, and two pressure domains. We specify that 8 bias cannot jump more than 0.05 (5%) between the two domains.

6bias =c+dP (P > Po)
8pias = € + fP (P <Po) 8

where P is pressure in hPa. The optimized bias correction parameters were: ¢ = 0.0; d = - 6.1e-5; Po=400 hPa; e=-0.09;
f=0.00018. This bias correction results are shown for HIPPO-4; HIPPO-1,2,3,5; and NOAA observations in Table 1. The

remainder of the paper, unless specified, uses data bias-corrected by Eqgs. 7 and 8.

Figure 5 shows the effect of bias correction on the average of all HIPPO 1,2,3,5 AIRS profiles. The bias correction improves
the mean AIRS /[ aircraft difference and improves the pressure-dependent skew in the bias (Table 1). The HIPPO data is
shown before and after the AIRS averaging kernel is applied (using Eq. 5), which has the effect of bringing the HIPPO
observations towards the AIRS prior.__This is to match the imperfect sensitivity of satellite-based observations, which are

similarly influenced by the prior.
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4 Evaluation against aircraft data by latitude
4.1 Comparison of aircraft observations with and without bias correction

Figure 6 shows a comparison between all AIRS measurements within 50 km and 9h of an aircraft measurement for the partial
column measured by the aircraft. There is a mean bias of 57 ppb overall, ~56 ppb for ocean and ~64 ppb for the land. The
RMS difference is ~27 ppb. Furthermore, there appears to be latitudinal variations in the bias. For example, the mean difference
between the AIRS and aircraft over the ocean for latitudes less than 20 S is ~74 ppb and for latitudes between 20 S and 20 N
this bias is ~ 56 ppb.

Figure 7 snows the same comparisons as Fig. 6 after bias correction (described in Section 3.4). The mean bias is 1 ppb, and
the RMS difference is 24 ppb. The overall land bias is 13 ppb, and the overall ocean bias is 1 ppb (shown in Table A.1). Note
that the HIPPO land observations are primarily in Australia, New Zealand, and North America, whereas the ocean comparisons
are in the mid-Pacific, as seen in Fig. 1. We expect the RMS difference to be similar to the observation error, as the terms that
make up the observation error are the primary source of variability in the observations (e.g. Worden et al., 2017b). The
predicted observation error from Fig. 3, is 27 ppb, and is consistent with the RMS difference seen here, 24 ppb. However,
knowledge of the stratosphere / validation error is potentially a large component of the latitudinal variability in the difference
seen in the bottom panel of Fig. 7.

We also compare to NOAA aircraft network and ATom observations and find similar results as HIPPO. Figure 8, discussed
in Section 4.2, shows ATom results, and Figure 9, discussed in Section 4.2, shows comparisons to a NOAA aircraft time series.
The biases for different pressure ranges, campaigns, and surfaces is shown in Table A.1. Table A.3 shows the standard

deviation of AIRS minus validation by pressure and surface type, for single observations, daily, and seasonal averages.

4.2 Errors in averaged AIRS data

Satellite data are typically averaged in order to improve the precision of a comparison between data and model. However, as
shown in the previous figure, these data contain errors that vary with latitude. For example, knowledge error of the true profile
in the stratosphere as well as errors in the jointly retrieved AIRS temperature and water vapor retrievals have both a random
and a bias component, both of which vary with latitude. The bias component is approximately the same for all AIRS methane
measurements taken at roughly the same location and time as we do not expect large variations in temperature and water vapor
errors over these scales. To quantify the component of the accuracy that cannot be reduced by averaging, we compare averages
of AIRS measurements to HIPPO and ATom measurements. We average the daily matches, which contain at least 9 AIRS
observations matching a single HIPPO or ATom measurement, within +-50 km of the measurement. The number of AIRS
observations averaged ranges from 9 to 53 and averages 20. We specify that there needs to be at least 9 AIRS observations

for each comparison so that the systematic error, and not the precision (or measurement error) , is the dominant term. Figure 8
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shows the average predicted error, assuming that the error is random, e.g. if 20 observations were averaged, this would equal
24 /20 ppb or ~ 5 ppb. The standard deviation between the averaged AIRS and HIPPO or ATom data is ~17 ppb. Note that
same-colored adjacent points (i.e. adjacent observations from the same campaign) often show similar biases. Because this
RMS difference is much larger than what is expected if the errors were purely random, this shows the presence of systematic
errors, either in the AIRS data or in the validation error. We therefore report 17 ppb as the limiting error when averaging AIRS

data within one-degree grids and 1 day for the purpose of comparing to models or other methane profiles.

On the other hand, averaging AIRS data seasonally can reduce the error further because geophysical errors from as temperature
and water vapor vary over longer time scales. We demonstrate this aspect of the AIRS uncertainties by comparing averaged
AIRS data to the NOAA aircraft methane profiles taken off the coast near Corpus Christi, Texas (27.7N, 96.9W, site TGC).
We screen for at least 3 observations per day, less than the 9 observations/day used for HIPPO / ATom daily averages in order
to get enough daily averages to explore how the errors reduce with monthly and seasonal averages, since the aircraft make 1-
2 measurements per month. Figure 9 shows daily, monthly, 90-day, and seasonal averages of the partial column matching the
aircraft measured column at TGC. The seasonal averages are created by converting all AIRS/aircraft matched pairs to 2012
by adding 5.4 ppb per year multiplied by (year minus 2012), then averaging all values within each month. Similarly to the
findings for HIPPO and ATom, the daily error is much larger than predicted from the observation error with the assumption
of randomness. The standard deviation of AIRS minus aircraft at TGC is 24 ppb (for single AIRS observation, not shown),
11.5 ppb (for daily AIRS average, (Figure 9a)). The predicted error with the assumption that the error is random, is 6.0 ppb.
Therefore, similarly to the ATom and HIPPO findings, the errors within small geophysical region are correlated and do not
average as the square root of the number of observations. However, next, we try averaging multiple days within 1 month, and
find a standard deviation of for monthly averages of at least 2 days of 8.2 ppb (Figure 9b), and the standard deviation of 3-
month averages containing at least 3 days, 6.2 ppb (Figure 9¢). These agree with the predicted errors of 8.0 and 6.0 ppb,
respectively, by taking the daily standard deviation (11.5 ppb) and dividing by the square root of the number of days averaged.
The seasonal cycle average, which is a monthly average of all matched pairs from any year, has a standard deviation of 5.9

ppb, whereas the predicted error, from the daily average divided by the square root of number of observations, is 4.2 ppb.

Appendix A, Table A.3 shows the standard deviation for all NOAA ESRL stations, for ocean and land AIRS observations.
The ocean vs. land observations show similar values, with land and ocean standard deviations within 2 ppb. A single land
observation has a standard deviation versus aircraft observations of 23 ppb for the partial column, in agreement with predicted
observation error of 23 ppb. The standard deviation for daily observations is 15.2 ppb, whereas the predicted error, using 23
ppb divided by the square root of the number of observations averaged, is 5.9 ppb, indicated correlated errors when averaging
nearby observations. The monthly standard deviation is 10.9, in reasonable agreement with the predicted of 9.4 ppb, from the
daily average standard deviation divided by the number of observations averaged. The seasonal cycle average, which is a

monthly average of all matched pairs from all years, has a standard deviation of 7.7 ppb, which is similar to the predicted error
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of 6.9 ppb, from the daily average divided by the square root of number of observations. We find that estimating the error as
the daily standard deviation divided by the square root of the number of days averaged is a reasonable estimate of the actual

error.

5 Discussion and Conclusions

We validate single-footprint AIRS methane by comparing 27,000 AIRS methane retrievals to 396 aircraft profiles from the
HIPPO campaign, 719 profiles from the NOAA ESRL aircraft network, and 289 aircraft profiles from the ATom campaign,
taken across a range of latitudes, longitudes, and times. The AIRS methane retrievals are derived using the MUSES optimal
estimation algorithm that has previously been applied to Aura TES radiances (e.g. Fu et al., 2013). After adjusting the aircraft
profile to account for the AIRS sensitivity (using the averaging kernel and a priori profile), we compare the mean methane
value over the aircraft profile to the mean methane from the AIRS profile over the same altitude (or pressure) range. We use a
subset of validation data to derive a pressure-dependent bias correction on the order of -60 ppb, and test this on an independent
set of validation data. After the bias correction, we report a bias of 0 +/- 10 ppb. The bias between AIRS and aircraft varies

with pressure and location, as seen in Appendix A.

After applying the bias correction, from Eq. 7 and 8, the RMS difference between the AIRS and aircraft data of the partial
column matching the aircraft of ~22 ppb is consistent with the mean observation error, composed of random error from noise
and the cross-state errors from jointly retrieved temperature, water vapor, clouds, and surface parameters that are projected
onto the AIRS methane retrieval. The extent to which the aircraft profiles used here can be utilized as “truth” for the purposes
of validation is limited by knowledge of the methane profile above the aircraft profile (referred to here as “validation error

which limits our knowledge of “truth” to within about 16 ppb. This uncertainty is consistent with the location-dependent bias

in the satellite/aircraft comparisons which can vary by ~10 ppb.

We quantify the AIRS minus validation standard deviation for single observations, daily averages (within 50 km of the
validation location), monthly averages, and seasonal averages for data bias corrected using Egs. 7 and 8. The AIRS minus
validation standard deviations are: 24 ppb (single AIRS footprint), 17 ppb (daily AIRS averages within 1 degree latitude and
longitude), 10 ppb (“monthly” AIRS averages), 9 ppb (3-month AIRS average), and 7 ppb (seasonal cycle average). The errors
on averaged AIRS data are likely an upper bound on the AIRS error, due to the uncertainty in the validation. The single-
footprint and daily average standard deviations for different pressure ranges and surface types are shown in Appendix A. We

recommend using the standard deviations in this paragraph as the error budget for the specified averaged quantities.

These results can be compared to AIRS v6 validation by Xiong et al. (2015), which validated AIRS CHg retrieved from cloud-
cleared radiances on the 9-footprint 45 km field of regard. Xiong et al. (2015) finds AIRS standard deviations versus HIPPO
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of 0.9% (16 ppb) for pressures between 575 and 777 hPa, 1.2 % (18 ppb) standard deviation for pressures between 441 and
575 hPa, and 1.6% (29 ppb) between 343 and 441 hPa. Xiong et al. (2015) also found a pressure-dependent bias, with a -25
ppb bias near the top of the troposphere, and a high 5 ppb bias near the mid-Troposphere.

5 Appendix A: Biases and standard deviations for different stations, campaigns, pressures, and surface types

We characterize the bias versus validation data by station, campaign, and pressure level. Table A.1 shows biases versus
validation data, after bias correction with Eq. 7. In the HIPPO comparisons, the biases are generally smaller than about 10
ppb. There is no overall pattern in the bias by season. The land data is biased higher than ocean for HIPPO comparisons (about
+20 ppb). However, note that the land observations versus HIPPO are primarily in Australia and New Zealand, whereas the

ocean comparisons are in the mid-Pacific.

The NOAA aircraft network comparisons are sorted by site. Many NOAA aircraft locations are at land/ocean interfaces,
allowing a more direct comparison of the land/ocean biases. On average, the AIRS land observations are 0-5 ppb higher than
AIRS ocean observations at the different pressures and pressure ranges. The overall bias of AIRS versus NOAA aircraft is
+7.1 ppb, whereas AIRS versus HIPPO is 4.4 ppb for the partial column matching the aircraft observations. This is consistent
with AIRS land having a high bias versus ocean of 0-5 ppb.

The standard deviation of the bias for the different campaigns is a useful quantity as it is an indication of systematic error. The

standard deviation of the bias varies from 4 ppb to 9 ppb for the different pressures and campaigns.

Table A.2 shows the mean bias for AIRS minus NOAA ESRL aircraft for land and ocean AIRS observations.s The different
rows extend the aircraft using the AIRS prior, the CarbonTracker model (from
https://www.esrl.noaa.gov/gmd/ccgg/carbontracker-ch4/ or the GEOS-Chem model (both are extended through 2018 using

2.5% secular increase). The goal of this table is to approximate the influence of the profile extension on the validation accuracy.

Table A.3 shows the standard deviation for AIRS observations minus validation data for land / ocean for different pressure
ranges for both single observations and AIRS averages. The mean bias at each site is subtracted prior to calculating the
standard deviation. This table shows the standard deviations for single observations and averaged quantities. The predicted
error for the daily average is the observation error divided by the square root of the number of observations, and is much
smaller than the actual standard deviation, indicating correlated errors. The predicted error for the monthly, 3-month, and
seasonal cycle averages is the daily standard deviation divided by the square root of the number of days averaged and ~agrees
with the actual standard deviation for the partial column. The location-dependent biases are subtracted from AIRS prior to

calculating the standard deviation in all but the last two rows. The last two rows shows the standard deviations without
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subtracting the location-dependent biases, which increases the partial column standard deviation from about 8 ppb to about 9

ppb.
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670 Table 1. Bias versus pressure with and without bias correction. The bias correction was developed on
HIPPO-4 and tested on HIPPO-4; HIPPO-1,2,3,5; and NOAA aircraft network.

Pressure AIRS minus After bias correction  After bias correction After bias

(hPa) aircraft. AK (HIPPO- (HIPPO-4) (ppb) (all HIPPO except  correction (all
4) (ppb) HIPPO-4) (ppb) ~ NOAA) (ppb)

1000 24 -1 -3 1

824 36 0 -4 1

681 48 1 -5 2

562 58 1 -4 2

464 60 -5 -3 3

383 67 -5 -2 2

316 81 1 4 -

261 86 1 4 -

215 89 1 3 -

161 - - 4 -
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675 Table A.1 Bias by campaign, station, land/ocean, and pressure.

Station/campaign Location Time Bias Bias Bias Bias Bias
period 700 500 300 column column
hPa hPa hPa matching above
(ppb)  (ppb)  (ppb)  aircraft 750 hPa

(ppb) (ppb)

HIPPO 1S Pacific Jan, 2009 -6.2 2.4 11.0 4.2 6.3
HIPPO 1IN Pacific Jan, 2009 -3.2 3.7 12.5 -0.1 4.8
HIPPO 2S Pacific Nov, 2009  -9.0 -0.4 9.8 -4.4 5.0
HIPPO 2N Pacific Nov, 2009  -4.3 -3.3 -3.1 -4.0 -4.0
HIPPO 3N Pacific Apr, 2010 -8.5 11 16.5 -2.6 2.6
HIPPO 4S Pacific Jun, 2011 -0.7 -2.0 9.5 1.8 10.2
HIPPO 4N Pacific Jul, 2011 8.7 11.8 0.7 8.7 7.3
HIPPO 5S Pacific Aug, 2011 1.2 7.6 13.3 4.5 9.3
HIPPO 5N Pacific Sep, 2011 -5.2 0.5 1.2 -2.0 2.2
HIPPO all land - - 10.9 18.2 17.8 16.1 14.8
HIPPO all ocean - - -5.2 -0.9 4.3 -1.7 3.1
HIPPO all (mean) - - -2.9 2.1 7.9 0.7 4.9
HIPPO all (stdev) - - 5.9 5.2 6.7 4.4 43
ACG 68N, 152W - 21.4 - - 18.6 26.7
ESP 49N, 126W - 9.7 - - 8.2 13.8
NHA 43N, 71W - 15.7 23.8 - 15.7 19.3
THD 41N, 124W - 13.6 21.7 - 14.0 21.2
CMA 39N, 74W - -0.2 5.7 - 0.9 3.6
TGC 28N, 97TW - 1.0 7.9 - 2.3 6.5
RTA 21S, 160W - 3.7 11.5 - 3.9 12.8
ESRL all land - - 9.2 16.8 - 94 14.3

ESRL all ocean - - 9.0 12.8 - 8.7 154
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ESRL all (mean) - - 9.3 14.1 - 9.1 14.8
ESRL all (stdev) - - 8.1 8.2 - 7.1 8.2
ATom 1S Pacific Aug, 2016 -0.2 4.5 7.7 2.0 3.5
ATom 1IN Atlantic Aug, 2016 0.2 3.2 13.2 2.8 6.9
ATom 2S Pacific Feb, 2017 -6.8 0.7 8.4 -2.5 5.2
ATom 2N Atlantic Feb, 2017 5.7 12.3 25.3 8.3 12.5
ATom 3S Pacific Oct, 2017 -2.5 3.0 9.1 0.9 5.9
ATom 3N Atlantic/Pacific Oct, 2017 6.5 13.0 21.9 9.3 13.8
ATom 4S Pacific April/May, -0.1 3.9 9.4 2.3 6.0
2018
ATom 4N Atlantic May, 2018 -14 5.9 23.4 34 13.2
ATom all land - - 16.7 23.6 26.2 17.0 18.2
ATom all ocean - - -3.2 2.4 13.4 0.6 6.5
ATom all (mean) - - 0.1 5.8 14.7 3.2 8.3
ATom all (stdev) - - 4.3 4.5 7.5 3.8 4.1
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680

Table A.2 Change in the mean bias of the partial column matching the aircraft observation using different

aircraft profile extensions from the top aircraft measurement to the top of the atmosphere.

Quantity Profile extension Bias 700 Bias500 Bias300 Bias Bias
hPa hPa hPa column column
(ppb) (ppb) (ppb) matching  above 750
aircraft hPa (ppb)
(Ppb)
Land ESRL CT 6.0 10.3 - 6.1 3.8
Ocean ESRL CT 4.5 5.7 - 4.3 4.0
Land ESRL prior 9.2 16.8 - 94 14.3
Ocean ESRL prior 9.0 12.8 - 8.7 154
Land ESRL GEOS-Chem 6.4 11.7 - 6.7 6.4
Ocean ESRL GEOS-Chem 4.4 7.7 - 4.5 6.4
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685

Table A.3 Standard deviation of AIRS minus validation for land / ocean observations and different

pressures / pressure ranges. Rows 1-2 show the standard deviation for single observation, rows 3-4 show

the predicted observation error, rows 5-8 show the standard deviation for daily averages, rows 9-10 show

the predicted error for daily averages (assuming random error), rows 11-12 show the standard deviation

for 3-month averages, rows 13-14 show the standard deviation for seasonal cycle averages (average the

same month of all years), rows 15-16 show the predicted error for the seasonal cycle averages, and rows

17-18 show the standard deviation without bias subtraction. The site-dependent biases from Table A.1

are subtracted prior to calculating the standard deviation.

Quantity Stdev Stdev Stdev Stdev Stdev
700 hPa 500 hPa 300 hPa column column
(ppb) (ppb) (ppb) matching above 750
aircraft  hPa (ppb)
(Ppb)
Land single 26 29 26 23 25
Ocean single 25 27 26 22 24
Land observation error 26 26 19 23 19
Ocean observation error 28 28 20 24 19
Land daily (>3 obs/day) 17 21 16 15 20
Ocean daily (>3 obs/day) 18 21 21 16 20
Land daily (>9 obs/day) 16 20 16 14 20
Ocean daily (>9 obs/day) 17 19 21 15 18
Land daily (=9 obs/day) pred. 9.7 9.9 5.7 8.5 7.0
Ocean daily (=9 obs/day) pred. 8.4 7.9 4.6 7.0 5.7
Land 3-month (>3 obs/day, >3 days) 9.5 13.3 - 8.8 12.9
Ocean 3-month (>3 obs/day, >3 days) 9.0 11.8 - 8.3 11.8
Land monthly (average all years) 8.3 11.8 - 7.7 10.7
Ocean monthly (average all years) 8.3 104 - 7.5 10.1
Land monthly (average all years) pred. 7.7 9.9 - 6.9 9.3
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690

Ocean monthly (average all years) pred. 8.0 9.8 7.2 9.5
Land monthly (average all years) without 9.9 13.7 9.1 12.2
bias subtraction

Ocean monthly (average all years) 10.4 12.3 94 11.6

without bias subtraction
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Figure 1: Location of aircraft profile measurements used for validation. The upside-down triangles show HIPPO, triangles show
695 ATom, and blue stars show NOAA ESRL aircraft validation locations.
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Figure 2: The rows of an averaging kernel for CH4 for a tropical scene. The colors help for visualization of the pressure levels for
each row of the averaging kernel. The diamonds indicate the pressure level corresponding to the row of the averaging kernel.
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Figure 3: Calculated errors for AIRS measurements shown in this paper.
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Figure 4: Simulated comparison between AIRS and Aircraft in which the LMDz model (top) and GEOS-Chem model (bottom) are

used for the simulation.
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710 Figure 5: Example of the effect of bias correction on the AIRS profile from averaged HIPPO-1,2,3,5. The blue lines shows the AIRS
methane profile before (dotted) and after (solid) bias correction. The black line shows the HIPPO measurements before (dotted)
and after averaging kernel is applied (solid).
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AIRS versus HIPPO observatlons (no bias correction)
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715 Figure 6: Comparison of AIRS methan aircraft for all HIPPO comparisons over the partial column range measured by the
aircraft. Blue shows AIRS ocean observations and green shows AIRS land observations.
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Figure 7: Same as Figure 6 but after bias correction
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Figure 8: Comparison of daily averaged AIRS to HIPPO measurements (left) and ATom measurements (right) for the partial column
observed by the aircraft. The different colors correspond to the campaigns shown in Fig. 1
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Figure 9: Comparison at TGC (27.7N, 96.9E). (Top) Comparison of AIRS and co- Iocated NOAA aircraft flights in SE Texas for the
partial column measured by the aircraft. Data are averaged over 1 day (a), 1 month (b), 90-days (c), and averaged over month from
all years (d). (Bottom) Difference from the aircraft. The predicted error for daily observations is the observation error (27 ppb)
divided by the square root of the number of observations. The predicted monthly or seasonal error is the mean daily error (11.5
ppb) divided by the square root of the number of days averaged.
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