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Abstract. We evaluate the uncertainties of methane optimal estimation retrievals from single footprint thermal infrared 

observations from the Atmospheric Infrared Sounder (AIRS).  These retrievals are primarily sensitive to atmospheric methane 

in the mid-troposphere through the lower stratosphere (~2 to ~17 km).  We compare to in situ observations made from aircraft 

during the Hiaper Pole to Pole Observations (HIPPO), the NASA Atmospheric Tomography Mission (ATom) campaigns, and 20 

from the NOAA ESRL aircraft network, between the surface and 5-13 km, across a range of years, latitudes between 60 S to 

80 N, and over land and ocean.  After a global, pressure dependent bias correction, we find that the land and ocean have similar 

biases and that the reported observation error (combined measurement and interference errors) of ~27 ppb is consistent with 

the standard deviation between aircraft and individual AIRS observations.  A single measurement has measurement (noise 

related) uncertainty of ~17 ppb, a ~20 ppb uncertainty from radiative interferences (e.g. from water, temperature, etc.), and ~ 25 

30 ppb due to “smoothing error”, which is partially removed when making comparisons to in situ measurements or models in 

a way that account for this regularization. We estimate a 16 ppb validation error because the aircraft typically did not measure 

methane at altitudes where the AIRS measurements have some sensitivity, e.g. the stratosphere. Daily averaged AIRS 

measurements of at least 9 observations over spatio-temporal domains of < 1 degree and 1 hour have a standard deviation of 

~17 ppb versus aircraft, likely because the observation errors from temperature and water vapor (for example) are only partly 30 

reduced through averaging. Seasonal averages can reduce this ~17 ppb uncertainty further to ~10 ppb, as determined through 

comparison with NOAA aircraft, likely because uncertainties related to radiative effects of temperature and water vapor can 

be reduced when averaged over a season. 
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1 Introduction 

Advances in remote sensing, global transport modeling, and an increasingly dense network of surface measurements have led 35 

to substantive advances in evaluating the components and error structure of the global methane budget and the processes 

controlling this budget. For example, Frankenberg et al. (2005, 2011) showed that total column methane estimates could be 

derived from near infrared (NIR) radiances at ~1.6 microns measured by the Scanning Imaging Absorption Spectrometer for 

Atmospheric Cartography (SCIAMACHY). Since then, methane retrievals have also been applied to NIR radiances from the 

Greenhouse Gases Observing Satellite (GOSAT) instrument (e.g. Parker et al., 2011; Schepers et al., 2012), launched in 2009 40 

with measurements, and the TROPOspeheric Monitoring Instrument (TROPOMI, e.g. Hu et al., 2018), launched in 2017. 

These data have sufficient accuracy to map regional surface methane enhancements (e.g. Kort et al., 2014; Wecht et al., 2014) 

and point source anomalies (Varon et al., 2019; Pandey et al., 2019). Estimates of the free-tropospheric methane concentrations 

from spaceborne measurements in the thermal infrared (TIR) at ~8 microns were demonstrated using radiances from the Aura 

Tropospheric Emission Spectrometer (TES, Worden et al., 2012; 2013b),  the Atmospheric Infrared Sounder (AIRS, e.g. Xiong 45 

et al., 2013), the Infrared Atmospheric Sounding Interferometers (IASI, e.g. Ravazi et al., 2009; De Wachter et al., 2017; 

Siddans et al., 2017), the Cross-Track Infrared Sounders (CrIS, e.g. Smith and Barnet, 2019) and TIR GOSAT measurements 

(de Lange and Landgraf, 2018). TIR methane measurements have been used to evaluate the role of fires (e.g. Worden et al., 

2013b; 2017a), Asian emissions and stratospheric intrusions (e.g. Xiong et al., 2009; 2013) on the global methane budget.    

The goal of this paper is to evaluate the uncertainties of new methane retrievals from AIRS single footprint, original (non-50 

cloud-cleared) radiances using aircraft measurements from the HIAPER Pole-to-Pole Observations (HIPPO) and Atmospheric 

Tomography Mission (ATom) campaigns and National Oceanic and Atmospheric Administration (NOAA) Earth System 

Research Laboratory (ESRL) aircraft network, taken between 2006 and 2017.  Evaluation of these uncertainties are needed to 

determine if AIRS methane data can characterize and improve errors in global chemistry transport models. For example, a 

recent paper by Zhang et al. (2018) combined synthetic CrIS and TROPOMI methane retrievals and a global inversion system 55 

to show that it would be possible to infer the north-south gradient of OH, the primary methane sink, to within 10%, and 

temporal variations of OH concentrations. However, knowing the accuracy of the methane data is important for inferring the 

uncertainty in the spatio-temporal variability of OH. Over decadal time scales, OH can vary by 3-5% (e.g. Turner et al., 2018a, 

2018b, 2019; Rigby et al., 2017).  Therefore, to be useful for understanding OH, monthly or seasonally averaged AIRS data 

should have an uncertainty that is less than 3-5% (55-99 ppb). 60 

In this paper we present an evaluation of methane retrievals derived from AIRS single footprint radiances. We follow an 

optimal estimation approach (Rodgers, 2000), based on the heritage of the Aura Tropospheric Emission Spectrometer (TES) 

algorithm (Bowman et al., 2006), now called the MUlti-SpEctra, MUlti-SpEcies, MUlti-Sensors (MUSES) algorithm (Worden 

et al., 2006, 2013b; Fu et al., 2013, 2016, 2018, 2019). MUSES uses radiances from one or multiple instruments to quantify 

and characterize geophysical parameters derivable from those radiances.  The optimal estimation method provides the vertical 65 

sensitivity (i.e., the averaging kernel matrix) and estimates of the uncertainties due to noise and to radiative interferences such 
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as temperature, N2O, and water vapor. We compare AIRS retrievals with corresponding aircraft data over a range of latitudes 

and longitudes in order to evaluate the calculated uncertainties over ocean and land.  Much of the description of the forward 

model and retrieval approach is provided in Worden et al. (2012, 2019). We therefore refer the reader to these papers for a 

more in depth description of the retrieval approach and only summarize aspects here that are relevant for comparing the AIRS 70 

methane retrievals to aircraft data.  

2 Datasets used in this paper 

The quantities of interest that we validate in this paper are a) the AIRS CH4 dry volume mixing ratio (VMR) at particular 

pressure values between 750 hPa and 300 hPa, or b) the AIRS CH4 dry VMR partial column covering the same pressure range 

that is measured by the aircraft.  We use aircraft profiles which span the pressure range that contains at least 0.20 degrees of 75 

freedom for the AIRS CH4 partial column. 

2.1 Description of AIRS 

The AIRS instrument is a nadir-viewing, scanning infrared spectrometer (Aumann et al., 2003; Pagano et al., 2003; Irion et 

al., 2018; DeSouza-Machado et al., 2018) that is onboard the NASA Aqua satellite and was launched in 2002.  AIRS measures 

the thermal radiance between approximately 3-12 microns with a resolving power of approximately 1200. For the 8 micron 80 

spectral range used for the HDO/H2O/CH4 retrievals, the spectral resolution is ~1 wavenumber (cm-1), with a gridding of ~0.5 

cm-1, and the signal-to-noise (SNR) ranges from ~400 to ~1000 over the 8 micron region for a typical tropical scene.  A single 

footprint has a diameter of ~15 km in the nadir; given the ~1250 km swath, the AIRS instrument can measure nearly the whole 

globe in a single day. The Aqua satellite is part of the “A-Train” that consists of multiple satellites and instruments, including 

TES, in a sun-synchronous orbit at 705 km with an approximately 1:30 am and 1:30 pm equator crossing-time.  In this paper, 85 

we use only daytime data to match the validation observations.   

1.2 Overview of Aircraft Data 

Measurements from the HIPPO and ATom aircraft campaigns (Wofsy et al., 2012) provide an excellent data set for satellite 

validation, due to the wide latitudinal coverage, the large vertical extent of the profiles (up to 9-12 km), and the availability of 

campaigns over a wide range of months.  Each of the five HIPPO campaigns flew south, then north over a period of weeks, 90 

often using a different path for the northern and southern legs, with campaign dates in 2009 - 2011.  Atmospheric methane 

concentrations were measured with a quantum cascade laser spectrometer (QCLS) at 1 Hz frequency with accuracy of 1.0 ppb 

and precision of 0.5 ppb (Santoni et al., 2014).  HIPPO methane data are reported on the WMO X2004 scale and have been 

used in several other studies to evaluate satellite retrievals of methane (e.g. Alvarado et al., 2015; Wecht et al., 2012; Crevoisier 

et al., 2013). Comparisons with NOAA flask data showed a mean positive bias of 0.85 ppb for the QCLS during the HIPPO 95 

campaigns, which is consistent with the estimated QCLS accuracy of 1.0 ppb (Santoni et al., 2014; Kort et al., 2011).  We used 
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396 QCLS CH4 profiles from the HIPPO campaigns.  Using coincidence criteria of ±9 hours, ±50 km, 22,271 AIRS 

observations were processed, of which 5537 passed quality flags.  The latitude of the matches ranges from 57S to 81N. 

 

We compare AIRS to observations from the ATom aircraft campaigns 1-4 (Wofsy et al., 2018).  This comparison provides 100 

validatation ~7 years after HIPPO, between 2016 and 2018.  Similar to HIPPO, these observations include observations in the 

Pacific Ocean, but ATom also includes observations in the Atlantic (as seen in Table A.1 and Fig. 1).  ATom methane data are 

reported on the WMO X2004A scale. We used 289 profiles from the ATom campaigns from the NOAA Picarro instrument 

(Karion et al., 2013).  For more information on the instrument, see 

https://espo.nasa.gov/sites/default/files/archive_docs/NOAA-Picarro_ATom1234_readme.pdf.  Using coincidence criteria of 105 

±9 hours, ±50 km, 21,225 AIRS observations were processed, of which 4913 passed quality flags.  The latitude of the matches 

ranges from 65S to 65N. 

 

The NOAA ESRL aircraft network observations (Cooperative Global Atmospheric Data Integration Project, 2019) are taken 

twice per month at fixed sites primarily in North America, and also Rarotonga (RTA) at 21S (Sweeney et al., 2015, 110 

http://dx.doi.org/10.1002/2014JD022591).  NOAA aircraft network methane data are reported on the WMO X2004A scale. 

Although HIPPO data are not reported on the same scale as ATom and NOAA aircraft network data, differences in values of 

calibration tanks used for HIPPO (Santoni et al., 2014) on the two different scales are < 1 ppb.  We match AIRS and aircraft 

observations between 2006 and 2017, with coincidence criteria of 50 km, 9 hours, finding ~43,000 matches, and 18,000 good 

quality matches following the retrieval, to 719 aircraft measurements, at sites ACG (67.7N, 164.6E, 401 matches), ESP (49.4N, 115 

126.5E, 2743 matches), NHA (43.0N, 70.6E, 2682 matches), THD (41.1N, 124.2E, 1551 matches), CMA (38.8N, 74.3E, 3269 

matches), TGC (27.7N, 96.9E, 1944 matches), and RTA (21.2S, 159.8E, 810 matches). 

 

Figure 1 shows the locations of all the aircraft data used for the comparisons described in this paper. Most of the ocean 

measurements are from the HIPPO and ATom campaigns that spans a range of latitudes, whereas most of the land 120 

measurements are taken over North America.. 

3 MUSES-AIRS Optimal Estimation of CH4 from single-footprint, original (non-cloud-cleared) AIRS radiances  

Worden et al. (2012, 2019) describe in detail the forward model and retrieval approach used for estimating methane from TES 

and AIRS radiances. The radiative transfer forward model used for this work is the Optimal Spectral Sampling (OSS) fast 

radiative transfer model (RTM) (Moncet et al., 2005, 2008, 2015).  In particular, radiances from the thermal infrared bands at 125 

8 and 12 microns are used to quantify profiles of atmospheric concentrations of CH4, HDO, H2O, N2O, as well as temperature, 

emissivity, and cloud properties. Since we use optimal estimation, or OE,  (e.g. Rodgers, 2000; Bowman et al., 2006) to 

estimate these quantities we can characterize the vertical resolution and uncertainties of these retrievals, which allows us to  
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compare them to models and independent data sets, while accounting for the regularization used for the retrieval.  We follow 

the OE approach for the Aura TES instrument (e.g. Bowman et al., 2006; Worden et al., 2006, 2012) but with some differences. 130 

First, methane retrievals using the TES radiances are obtained using only the 8 micron band, because of slight calibration 

differences between the detectors that measure the 12 and 8 micron bands (e.g. Shephard et al., 2008; Connor et al., 2011).  

For the AIRS retrievals, we use both the 8 and 12 micron bands in order to better constrain temperature in the troposphere and 

stratosphere. Secondly, the TES based retrieval uses the ratio of a jointly-retrieved N2O profile to the CH4 profile in order to 

help correct biases related to temperature variations in the (UTLS) upper-troposphere lower-stratosphere (Worden et al., 2012). 135 

However, the N2O correction is not used for the AIRS retrievals because we can jointly estimate temperature in the UTLS 

region using the 12 micron band.  We use similar quality flags as the TES retrievals such as checks on the 2, residual signal, 

and cloud optical depth as discussed in Kulawik et al. (2006a, 2006b), except that we screen out cloudy and low-sensitivity 

cases, resulting in about 1/4 of the data passing screening.  The specific flags used for AIRS CH4 are as follows: 

 140 

Good quality and sensitivity flagging for AIRS CH4: 

Radiance residual rms < 1.5.  This screens off the standard deviation of the radiance residual (the difference between 

the observed and fit radiance normalized by the NESR). 

|Radiance residual mean| < 0.15. This screens off the mean difference of the radiance residual. 

|KdotdL| < 0.23.  This screens off the dot product of the Jacobians and the radiance residual and indicates that there 145 

is little remaining information relative to the noise level about the surface and atmosphere in the retrieval 

TSUR < near-surface atmospheric temperature value + 30K.  This ensures that the thermal gradient is less than 30K. 

Cloudtop pressure > 90 hPa.  This ensures that the retrieved cloudtop is not above 90 hPa. 

Cloud OD < 0.3.  This ensures that the cloud is not opaque and there is sensitivity below the cloud. 

Cloud variability versus wavenumber < 1.5 * cloud OD.  This ensures that the cloud optical depth does not vary too 150 

much with wavenumber. 

Degrees of freedom > 1.1.  This ensures a minimum sensitivity. 

Tropospheric degrees of freedom > 0.7.  This ensures a minimum Tropospheric sensitivity. 

Stratospheric degrees of freedom < 0.5.  This ensures that there is not too much sensitivity in the stratosphere. 

Predicted error on the column above 750 hPa < 53 ppb.  This ensures that the predicted error is not too large. 155 

3.1 Retrieval Error Characteristics 

Detailed descriptions of the use of optimal estimation (OE) to infer trace gas profiles from remote sensing radiance 

measurements retrieval is included in numerous publications (e.g. Rodgers, 2000; Worden et al., 2006; Bowman et al., 2006). 

However, we present a partial description here as it is relevant for comparing the AIRS methane retrievals and aircraft profile 

measurements.  As discussed in Rodgers (2000), the estimate for a trace gas profile inferred (or inverted) from a radiance 160 

spectrum is described by the following linear equation: 

https://doi.org/10.5194/amt-2020-145
Preprint. Discussion started: 8 May 2020
c© Author(s) 2020. CC BY 4.0 License.



6 

 

 

�̂� = 𝒙 𝒂
+ 𝐀(𝐱 − 𝒙 𝒂

) + 𝐆𝐑 ∑ 𝐊𝐢
𝐛

𝒊 (𝐛𝒊 − 𝐛𝒊
𝒂) + 𝐆𝐧     (1) 

 

where x ̂_is the estimate of Log(VMR), 〖x_ 〗_a^  is the log of the a priori concentration profile used to regularize the 165 

inversion.  We split x into [x,y], where x is the quantity of interest, the methane profile, and y are the jointly estimated quantities 

(such as temperature, water vapor, clouds, and surface properties), which results in the cross-state error (Worden et al., 2004; 

Connor et al., 2008). 

 

�̂� = 𝒙 𝒂
+ 𝐀𝒙𝒙(𝐱 − 𝒙 𝒂

) + 𝐆𝐑 ∑ 𝐊𝐢
𝐛

𝒊 (𝐛𝒊 − 𝐛𝒊
𝒂) + 𝐀𝒙𝒚(𝐲 − 𝒚 𝒂

) + 𝐆𝐧   (2) 170 

For the AIRS (and TES) OE methane retrievals, xa comes from the MOZART atmosphere chemistry model (e.g. Brasseur et 

al., 1998).  The vector x is the “true state”, or in this case the (log) concentration profile. The matrix A is the averaging kernel 

matrix or 𝐀 =
𝝏�̂�

𝝏𝒙
 and describes the vertical sensitivity of the measurement. The matrix G relates changes in the radiance (L) 

to perturbations in x,  𝐆 =
𝝏𝒙𝝏𝑳

𝝏𝑳𝝏𝒙
.  The vector n is the noise vector, the matrix K is the sensitivity of the radiance to changes in 

(log) concentration 𝐊 =
𝝏𝑳

𝝏𝒍𝒐𝒈(𝒙)
=

𝝏𝑳

𝝏𝒍𝒐𝒈(𝑽𝑴𝑹)
, and the set of vectors bi represent interference errors not estimated from the 175 

observed radiances. The true state, noise vector, and interference errors as described here are the “true” values and are therefore 

not actually known but are represented in this form so that we can calculate how their uncertainties affect the estimate 𝒙 . An 

example averaging kernel matrix is shown in Figure 2 and shows that AIRS based estimates of methane are most sensitive to 

methane in the free-troposphere and lower-stratosphere as demonstrated previously for AIRS and other TIR based estimates 

of tropospheric methane (e.g. Xiong et al., 2016; de Lange and Landgraf, 2018).  180 

 

Finally, we look at the quantity of interest, �̂� =  hx.  The vector h combines all the necessary operations that maps the (log) 

concentration profiles to whatever quantity is needed such as selecting one particular pressure level (e.g. h= [0,0,0,1,0,0,0, …], 

selecting a column average, (h = pressure weighting function) – see Connor et al., 2008) or selecting the VMR mean (e.g. 

h=1/m, where m is the number of pressure levels to average).  185 

 

�̂� = 𝐡�̂�            (3a) 

�̂� = 𝐡𝐱 𝒂
+ 𝐡𝐀𝒙𝒙(𝐱 − 𝐱𝒂) + 𝐡𝐆𝐑 ∑ 𝐊𝐢

𝐛
𝒊 (𝐛𝒊 − 𝐛𝒊

𝒂) + 𝐡𝐀𝒙𝒚(𝐲 − 𝒚 𝒂
) + 𝐡𝐆𝐧      (3b) 

 

In Eq. 3a, the vector �̂�  (denoted in bold) is converted to the scalar of interest, �̂�  (non-bold, italic).  In our validation 190 

comparisons, h is used to select 1) a specific pressure level that is measured by the aircraft, 2) the partial column average over 

the pressure levels measured by the aircraft, and 3) the partial column above 750 hPa. 
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3.2 Approach for Comparing AIRS measurements to aircraft profiles 

A challenge in comparing the satellite-based AIRS measurements to aircraft data is that the aircraft will typically measure only 

a section of the atmosphere (e.g. the troposphere), whereas the AIRS measurements are sensitive, to varying degrees (see Fig. 195 

2), to the entire atmosphere. To account for these differences, we divide the atmosphere into two parts x = [xc,xs]: where xc is 

the part measured by the aircraft (denoted c for airCraft), and xs is the part not measured by the aircraft (denoted s for 

Stratospheric): 

 

�̂�𝒄 = 𝐡𝒄𝐱 𝒂
+ 𝐡𝒄𝐀𝒄𝒄(𝐱𝒄 − 𝒙 𝒂

𝒄 ) + 𝐡𝐆𝐑 ∑ 𝐊𝐢
𝐛

𝒊 (𝐛𝒊 − 𝐛𝒊
𝒂) + 𝐡𝒄𝐀𝒄𝒚(𝐲 − 𝒚 𝒂

) + 𝐡𝒄𝐀𝒄𝒔(𝐱𝒔 − 𝒙 𝒂
𝒔 )𝐀𝒄𝒔(𝐱𝒔 − 𝒙 𝒂

𝒔 ) + 𝐡𝒄𝐆𝐧 200 

         (4) 

 

where the term Acs is the cross-term in the averaging kernel that describes the partial derivatives of the aircraft-measured levels 

(e.g. the troposphere) to the un-measured levels (e.g. the stratosphere).  Equation 4 describes how the AIRS measurement �̂�𝒄 

responds to the true state [xc,xs].   205 

 

We compare our AIRS observation, �̂�𝒄 in Eq. 4, to our aircraft observation, 𝒙 𝒂𝒊𝒓𝒄𝒓𝒂𝒇𝒕
.  To compare directly to the aircraft 

observation (without accounting for AIRS sensitivity) we would compare to 𝒙 𝒂𝒊𝒓𝒄𝒓𝒂𝒇𝒕
𝒄 = 𝐡𝒄𝒙 

𝒂𝒊𝒓𝒄𝒓𝒂𝒇𝒕
.  However, the expected 

error would include smoothing error which is estimated to be 30 ppb.  In Equation 5a, we first apply the AIRS Averaging 

kernel to the aircraft measurement to account for the AIRS sensitivity: 210 

 

𝒙 𝒂𝒊𝒓𝒄𝒓𝒂𝒇𝒕
𝒄 = 𝐡𝒄𝐱 𝒂

+ 𝐡𝒄𝐀𝒄𝒄 (𝐱 𝒂𝒊𝒓𝒄𝒓𝒂𝒇𝒕
𝒄 − 𝒙 𝒂

𝒄 ) + 𝐡𝒄𝐀𝒄𝒔 (𝐱 𝒂𝒊𝒓𝒄𝒓𝒂𝒇𝒕
𝒔 − 𝒙 𝒂

𝒔 )     (5a) 

 

One issue is that we do not actually have aircraft observations in the “s” part of the atmosphere, 𝐱 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡
𝑠 , which is used in 

the second term of Eq. 5a.  We have aircraft observations in the “c” part of the atmosphere only, so we apply the Averaging 215 

Kernel to this part of the atmosphere only: 

 

𝒙 𝒂𝒊𝒓𝒄𝒓𝒂𝒇𝒕
𝒄 = 𝐡𝒄𝒙 𝒂

+ 𝐡𝒄𝐀𝒄𝒄 (𝒙 𝒂𝒊𝒓𝒄𝒓𝒂𝒇𝒕
𝒄 − 𝒙 𝒂

𝒄 )        (5b) 

 

Equation 5a accounts for the AIRS smoothing error, whereas Equation 5b (the equation used in this work) only accounts for 220 

the smoothing error from the part of the atmosphere measured by the aircraft profile.  The difference from Eqs. 5a and 5b is 

discussed in Section 3.3.   
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The expected difference between �̂�𝒄 (the measured AIRS value) and 𝒙 𝒂𝒊𝒓𝒄𝒓𝒂𝒇𝒕
𝒄

 (the aircraft value with the AIRS Averaging 

kernel applied) is calculated from Eqs. 4 and 5b: 225 

 

𝐄|| (�̂�𝒄 − 𝒙 𝒂𝒊𝒓𝒄𝒓𝒂𝒇𝒕
𝒄 )|| =  𝐡𝒄(𝐀𝐜𝐛𝐒𝐚

𝐛𝐛𝐀𝐜𝐛
𝐓 + 𝐀𝐜𝐲𝐒𝐚

𝐲𝐲
𝐀𝐜𝐲

𝐓 + 𝐀𝐜𝐬𝐒𝐚
𝐬𝐬𝐀𝐜𝐬

𝐓  + 𝐒𝐦
𝐜𝐜)𝐡𝒄

𝑻      (6) 

 

The matrix Sa term describes the a priori  uncertainty of methane, interferents, or systematic parameters, which propagate into 

the error in the first 3 terms: (1) 𝐀𝐜𝐛𝐒𝐚
𝐛𝐛𝐀𝐜𝐛

𝐓  describes systematic error, e.g. due to spectroscopy and calibration; these likely 230 

impart biases into the AIRS measurement which are characterized during validation, (2) 𝐀𝐜𝐲𝐒𝐚
𝐲𝐲

𝐀𝐜𝐲
𝐓  describes the “cross-state 

error”, the effect of jointly retrieved parameters like temperature onto methane, (3) 𝐀𝐜𝐬𝐒𝐚
𝐬𝐬𝐀𝐜𝐬

𝐓  describes the impact of the part 

of the atmosphere not covered by the aircraft on the measured section: this must be included because the AIRS measurement 

sees a combination of both  parts of the atmosphere and cannot completely disentangle them.  The final term,  𝐒𝐦
𝐜𝐜, is the 

measurement error, which is the propagation of radiance error into the retrieved parameters, and is 𝐆𝐜 𝐒𝐧 𝐆𝐜
𝐓, where 𝐆𝐜  is the 235 

gain matrix and 𝐒𝐧  is the covariance of the radiance error, in our case, a diagonal matrix.  The error covariances all represent 

fractional errors, in log(VMR).  The error in ppb is approximately the fractional error times the methane value in ppb. 

 

For the purpose of evaluating the AIRS methane measurement uncertainties and comparing the AIRS methane to aircraft in 

situ measurements we refer to the four terms on the right side of Eq. 6 as: 240 

 

1) 𝐒𝐛
𝒄𝒄 is the systematic error due to terms that are not accounted for in the retrieval state vector, such as spectroscopy 

and calibration; these terms are estimated by comparisons with the aircraft data.  A pressure-dependent bias 

correction, described in Section 3.4, of approximately -60 ppb is used to correct this systematic bias. 

2) 𝐀𝐜𝐲𝐒𝐚
𝐲𝐲

𝐀𝐜𝐲
𝐓 , the “cross-state”, which is included in the MUSES-AIRS methane estimate product files, and is the 245 

propagation of temperature, water vapor, and cloud errors into AIRS.  The errors in the retrieved temperature and 

water vapor at nearby location are correlated over short spatio-temporal scales, as described in Section 4, and so this 

error does not reduce with averaging nearby observations. However, monthly or seasonal averages reduces cross-

state error, because systematic errors from temperature / water / cloud can be assumed to vary pseudo-randomly 

over larger time scales.  We estimate this error as ~21 ppb (see next paragraph). 250 

3) 𝐀𝐜𝐧𝐒𝐚
𝐧𝐧𝐀𝐜𝐧

𝐓  is the “validation uncertainty” due to knowledge uncertainty of the stratosphere although this may also 

contain other levels that are also not measured by the aircraft.  This is the smoothing error which cannot be removed 

from the comparisons because the aircraft does not make measurements at the “n” (not measured) levels.  We 

estimate this validation error as ~16 ppb (see next section).   
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4)  𝐒𝐦
𝐜𝐜, the “measurement” error, which is included in the AIRS methane estimate product files. The measurement 255 

error is random and is expected to reduce as the inverse square root of the number of observations averaged.  We 

estimate this error as ~18 ppb (see next paragraph) 

 

Figure 3 shows the predicted errors for the AIRS partial column matching the aircraft measurements.  The measurement error 

(light green) is 18 ppb, the cross-state error is 21 ppb (red minus green in quadrature), and the total error for a single observation 260 

(including smoothing error) is 41 ppb.  The errors not shown in this plot are the validation error, estimated in the next section, 

and systematic error, which we remove with a bias correction in Section 3.4.  

3.3 Estimating validation error due to aircraft not measuring the stratosphere 

A typical aircraft profile will only measure part of the troposphere and rarely measure into the stratosphere. However, the 

AIRS methane profile measurements are sensitive to methane variations over the whole atmosphere as shown by the averaging 265 

kernel matrix in Figure 2.  Options for dealing with this are a) extending the true with the AIRS prior or b) extending the true 

with a model profile value.  Note that models in general have a positive bias in the extratropical stratosphere (Patra et al., 

2011).  In GEOS-Chem 4x5, the column bias is shown in Figure 2c of Turner et al. (2015) and further discussed in Maasakkers 

(2019), which finds a bias in the stratosphere. 

 270 

This section estimates this uncertainty by calculating the difference of 𝒙 𝒂𝒊𝒓𝒄𝒓𝒂𝒇𝒕
𝒄  for Eq. 5a minus Eq. 5b when extending the 

aircraft using  two different “true” profiles taken from two different global atmospheric chemistry models, the Laboratoire de 

Météorologie Dynamique (LMDz) model (e.g. Folberth et al., 2006) model and the Goddard Earth Observing System (GEOS-

Chem) model (e.g. Maasakkers et al., 2019).  So, if the model value equaled the AIRS prior in the stratosphere, this difference 

would be zero.   The differences for 𝒙 𝒂𝒊𝒓𝒄𝒓𝒂𝒇𝒕
𝒄  from LMDz model and GEOS-Chem are shown in Figure 4 for all HIPPO 275 

ocean and land data; these differences show that model/model differences in the stratosphere can contribute significantly to 

the differences between AIRS and aircraft validation. 

 

These differences provide an estimate for how knowledge error in the stratosphere projects to uncertainties in our methane 

retrievals. For example, this uncertainty varies with latitude, similar to the residual bias between the AIRS estimate and aircraft 280 

(next section). Furthermore, the variability over small latitudinal ranges of 10 degrees or less suggests that the random part of 

the stratospheric error is smaller than this latitudinal variability.  Our 16 ppb estimate for this error is similar to the 10 ppb 

estimate for the impact of stratospheric uncertainty on column estimates from aircraft profiles (Wunch et al., 2010).  Appendix 

A shows further analysis of mean differences of AIRS minus aircraft for different profile extension choices. 

https://doi.org/10.5194/amt-2020-145
Preprint. Discussion started: 8 May 2020
c© Author(s) 2020. CC BY 4.0 License.



10 

 

3.4 Bias Correction 285 

AIRS CH4 shows a persistent high bias of 25 to 90 ppb versus aircraft observations in Fig. 6.  Previous studies using remotely 

sensed measurements suggest that a bias correction to the AIRS methane profile measurement must account for the vertical 

sensitivity (e.g. Worden et al., 2011). For example, in the limit where the AIRS measurement is perfectly sensitive to the 

vertical distribution of methane, the bias correction could be a simple scaling factor. However, in the limit where the AIRS 

measurement is completely insensitive (e.g. DOFS = 0.0) then the bias correction is zero. We therefore use the bias correction 290 

approach described in Worden et al. (2011), which passes a bias correction through the averaging kernel to account for the 

AIRS sensitivity.   

 

We use HIPPO-4 observations to set a bias correction which we then evaluate with the other HIPPO campaigns and NOAA 

aircraft network data.  To set the bias, we use Eq. 5 to estimate the aircraft observation as seen by AIRS, then compare this to 295 

AIRS observations.  The result (by pressure level) is shown in Table 1.  Then a bias was applied to AIRS using Eq. 7, with the 

bias term 𝛿𝑏𝑖𝑎𝑠  in the form of Eq. 8. 

 

𝒍𝒏(𝒙𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅) = 𝒍𝒏(𝒙𝒐𝒓𝒊𝒈) + 𝐀(𝜹𝒃𝒊𝒂𝒔)          (7) 

 300 

Where ln() is the natural log, because the retrieved quantity is ln(VMR).  We fit a single bias function for all AIRS 

measurements by minimizing the difference between the AIRS and HIPPO-4 with δ_bias constrained to have a slope with 

pressure, and two pressure domains.  We specify that δ_bias cannot jump more than 0.05 (5%) between the two domains. 

 

𝛿𝑏𝑖𝑎𝑠 = 𝑐 + 𝑑𝑃 (P > Po) 305 

𝛿𝑏𝑖𝑎𝑠 = 𝑒 + 𝑓𝑃 (P < Po)           (8) 

 

where P is pressure in hPa.  The optimized bias correction parameters were: c = 0.0; d = - 6.1e-5; Po=400 hPa; e=-0.09; 

f=0.00018.  This bias correction results are shown for HIPPO-4; HIPPO-1,2,3,5; and NOAA observations in Table 1.  The 

remainder of the paper, unless specified, uses data bias-corrected by Eqs. 7 and 8.   310 

 

Figure 5 shows the effect of bias correction on the average of all HIPPO 1,2,3,5 AIRS profiles.  The bias correction improves 

the mean AIRS  / aircraft difference and improves the pressure-dependent skew in the bias (Table 1).  The HIPPO data is 

shown before and after the AIRS averaging kernel is applied (using Eq. 5), which has the effect of bringing the HIPPO 

observations towards the AIRS prior.  This is to match the imperfect sensitivity of satellite-based observations, which are 315 

similarly influenced by the prior. 
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4 Evaluation against aircraft data by latitude  

4.1 Comparison of aircraft observations with and without bias correction 

Figure 6 shows a comparison between all AIRS measurements within 50 km and 9h of an aircraft measurement for the partial 

column measured by the aircraft. There is a mean bias of 57 ppb overall, ~56 ppb for ocean and ~64 ppb for the land.  The 320 

RMS difference is ~27 ppb. Furthermore, there appears to be latitudinal variations in the bias. For example, the mean difference 

between the AIRS and aircraft over the ocean for latitudes less than 20 S is ~74 ppb and for latitudes between 20 S and 20 N 

this bias is ~ 56 ppb. 

 

Figure 7 shows the same comparisons as Fig. 6 after bias correction (described in Section 3.4).  The mean bias is 1 ppb, and 325 

the RMS difference is 24 ppb.  The overall land bias is 13 ppb, and the overall ocean bias is 1 ppb (shown in Table A.1).  Note 

that the HIPPO land observations are primarily in Australia, New Zealand, and North America, whereas the ocean comparisons 

are in the mid-Pacific, as seen in Fig. 1.  We expect the RMS difference to be similar to the observation error, as the terms that 

make up the observation error are the primary source of variability in the observations (e.g. Worden et al., 2017b).  The 

predicted observation error from Fig. 3, is 27 ppb, and is consistent with the RMS difference seen here, 24 ppb.  However, 330 

knowledge of the stratosphere / validation error is potentially a large component of the latitudinal variability in the difference 

seen in the bottom panel of Fig. 7.  

 

We also compare to NOAA aircraft network and ATom observations and find similar results as HIPPO.  Figure 8, discussed 

in Section 4.2, shows ATom results, and Figure 9, discussed in Section 4.2, shows comparisons to a NOAA aircraft time series.  335 

The biases for different pressure ranges, campaigns, and surfaces is shown in Table A.1.   Table A.3 shows the standard 

deviation of AIRS minus validation by pressure and surface type, for single observations, daily, and seasonal averages. 

4.2 Errors in averaged AIRS data 

Satellite data are typically averaged in order to improve the precision of a comparison between data and model. However, as 

shown in the previous figure, these data contain errors that vary with latitude.  For example, knowledge error of the true profile 340 

in the stratosphere as well as errors in the jointly retrieved AIRS temperature and water vapor retrievals have both a random 

and a bias component, both of which vary with latitude. The bias component is approximately the same for all AIRS methane 

measurements taken at roughly the same location and time as we do not expect large variations in temperature and water vapor 

errors over these scales. To quantify the component of the accuracy that cannot be reduced by averaging, we compare averages 

of AIRS measurements to HIPPO and ATom measurements.  We average the daily matches, which contain at least 9 AIRS 345 

observations matching a single HIPPO or ATom measurement, within +-50 km of the measurement.  The number of AIRS 

observations averaged ranges from 9 to 53 and averages 20.  We specify that there needs to be at least 9 AIRS observations 

for each comparison so that the systematic error, and not the precision (or measurement error) , is the dominant term. Figure 8 
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shows the average predicted error, assuming that the error is random, e.g. if 20 observations were averaged, this would equal 

24 / √20  ppb or ~ 5 ppb. The standard deviation between the averaged AIRS and HIPPO or ATom data is ~17 ppb.  Note that 350 

same-colored adjacent points (i.e. adjacent observations from the same campaign) often show similar biases.  Because this 

RMS difference is much larger than what is expected if the errors were purely random, this shows the presence of systematic 

errors, either in the AIRS data or in the validation error. We therefore report 17 ppb as the limiting error when averaging AIRS 

data within one-degree grids and 1 day for the purpose of comparing to models or other methane profiles. 

 355 

On the other hand, averaging AIRS data seasonally can reduce the error further because geophysical errors from as temperature 

and water vapor vary over longer time scales. We demonstrate this aspect of the AIRS uncertainties by comparing averaged 

AIRS data to the NOAA aircraft methane profiles taken off the coast near Corpus Christi, Texas (27.7N, 96.9W, site TGC).  

We screen for at least 3 observations per day, less than the 9 observations/day used for HIPPO / ATom daily averages in order 

to get enough daily averages to explore how the errors reduce with monthly and seasonal averages, since the aircraft make 1-360 

2 measurements per month.  Figure 9 shows daily, monthly, 90-day, and seasonal averages of the partial column matching the 

aircraft measured column at TGC.  The seasonal averages are created by converting all AIRS/aircraft matched pairs to 2012 

by adding 5.4 ppb per year multiplied by (year minus 2012), then averaging all values within each month.  Similarly to the 

findings for HIPPO and ATom, the daily error is much larger than predicted from the observation error with the assumption 

of randomness.  The standard deviation of AIRS minus aircraft at TGC is 24 ppb (for single AIRS observation, not shown), 365 

11.5 ppb (for daily AIRS average, (Figure 9a)).  The predicted error with the assumption that the error is random, is 6.0 ppb.  

Therefore, similarly to the ATom and HIPPO findings, the errors within small geophysical region are correlated and do not 

average as the square root of the number of observations.  However, next, we try averaging multiple days within 1 month, and 

find a standard deviation of for monthly averages of at least 2 days of 8.2 ppb (Figure 9b), and the standard deviation of 3-

month averages containing at least 3 days, 6.2 ppb (Figure 9c).  These agree with the predicted errors of 8.0 and 6.0 ppb, 370 

respectively, by taking the daily standard deviation (11.5 ppb) and dividing by the square root of the number of days averaged.  

The seasonal cycle average, which is a monthly average of all matched pairs from any year, has a standard deviation of 5.9 

ppb, whereas the predicted error, from the daily average divided by the square root of number of observations, is 4.2 ppb.  

 

Appendix A, Table A.3 shows the standard deviation for all NOAA ESRL stations, for ocean and land AIRS observations.  375 

The ocean vs. land observations show similar values, with land and ocean standard deviations within 2 ppb.  A single land 

observation has a standard deviation versus aircraft observations of 23 ppb for the partial column, in agreement with predicted 

observation error of 23 ppb.  The standard deviation for daily observations is 15.2 ppb, whereas the predicted error, using 23 

ppb divided by the square root of the number of observations averaged, is 5.9 ppb, indicated correlated errors when averaging 

nearby observations.  The monthly standard deviation is 10.9, in reasonable agreement with the predicted of 9.4 ppb, from the 380 

daily average standard deviation divided by the number of observations averaged.  The seasonal cycle average, which is a 

monthly average of all matched pairs from all years, has a standard deviation of 7.7 ppb, which is similar to the predicted error 
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of 6.9 ppb, from the daily average divided by the square root of number of observations.  We find that estimating the error as 

the daily standard deviation divided by the square root of the number of days averaged is a reasonable estimate of the actual 

error. 385 

5 Discussion and Conclusions  

We validate single-footprint AIRS methane by comparing 27,000 AIRS methane retrievals to 396 aircraft profiles from the 

HIPPO campaign, 719 profiles from the NOAA ESRL aircraft network, and 289 aircraft profiles from the ATom campaign, 

taken across a range of latitudes, longitudes, and times. The AIRS methane retrievals are derived using the MUSES optimal 

estimation algorithm that has previously been applied to Aura TES radiances (e.g. Fu et al., 2013).  After adjusting the aircraft 390 

profile to account for the AIRS sensitivity (using the averaging kernel and a priori  profile), we compare the mean methane 

value over the aircraft profile to the mean methane from the AIRS profile over the same altitude (or pressure) range. We use a 

subset of validation data to derive a pressure-dependent bias correction on the order of -60 ppb, and test this on an independent 

set of validation data.  After the bias correction, we report a bias of 0 +/- 10 ppb. The bias between AIRS and aircraft varies 

with pressure and location, as seen in Appendix A.   395 

 

After applying the bias correction, from Eq. 7 and 8, the RMS difference between the AIRS and aircraft data of the partial 

column matching the aircraft of ~22 ppb is consistent with the mean observation error, composed of random error from noise 

and the cross-state errors from jointly retrieved temperature, water vapor, clouds, and surface parameters that are projected 

onto the AIRS methane retrieval. The extent to which the aircraft profiles used here can be utilized as “truth” for the purposes 400 

of validation is limited by knowledge of the methane profile above the aircraft profile (referred to here as “validation error”, 

which limits our knowledge of “truth” to within about 16 ppb. This uncertainty is consistent with the location-dependent bias 

in the satellite/aircraft comparisons which can vary by ~10 ppb. 

 

We quantify the AIRS minus validation standard deviation for single observations, daily averages (within 50 km of the 405 

validation location), monthly averages, and seasonal averages for data bias corrected using Eqs. 7 and 8.  The AIRS minus 

validation standard deviations are:  24 ppb (single AIRS footprint), 17 ppb (daily AIRS averages within 1 degree latitude and 

longitude), 10 ppb (“monthly” AIRS averages), 9 ppb (3-month AIRS average), and 7 ppb (seasonal cycle average).  The errors 

on averaged AIRS data are likely an upper bound on the AIRS error, due to the uncertainty in the validation.  The single-

footprint and daily average standard deviations for different pressure ranges and surface types are shown in Appendix A.  We 410 

recommend using the standard deviations in this paragraph as the error budget for the specified averaged quantities.  

 

These results can be compared to AIRS v6 validation by Xiong et al. (2015), which validated AIRS CH4 retrieved from cloud-

cleared radiances on the 9-footprint 45 km field of regard.  Xiong et al. (2015) finds AIRS standard deviations versus HIPPO 
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of 0.9% (16 ppb) for pressures between 575 and 777 hPa, 1.2 % (18 ppb) standard deviation for pressures between 441 and 415 

575 hPa, and 1.6% (29 ppb) between 343 and 441 hPa.  Xiong et al. (2015) also found a pressure-dependent bias, with a -25 

ppb bias near the top of the troposphere, and a high 5 ppb bias near the mid-Troposphere. 

5 Appendix A:  Biases and standard deviations for different stations, campaigns, pressures, and surface types  

We characterize the bias versus validation data by station, campaign, and pressure level.  Table A.1 shows biases versus 

validation data, after bias correction with Eq. 7.  In the HIPPO comparisons, the biases are generally smaller than about 10 420 

ppb. There is no overall pattern in the bias by season.  The land data is biased higher than ocean for HIPPO comparisons (about 

+20 ppb). However, note that the land observations versus HIPPO are primarily in Australia and New Zealand, whereas the 

ocean comparisons are in the mid-Pacific. 

 

The NOAA aircraft network comparisons are sorted by site.  Many NOAA aircraft locations are at land/ocean interfaces, 425 

allowing a more direct comparison of the land/ocean biases.  On average, the AIRS land observations are 0-5 ppb higher than 

AIRS ocean observations at the different pressures and pressure ranges.  The overall bias of AIRS versus NOAA aircraft is 

+7.1 ppb, whereas AIRS versus HIPPO is 4.4 ppb for the partial column matching the aircraft observations.  This is consistent 

with AIRS land having a high bias versus ocean of 0-5 ppb. 

The standard deviation of the bias for the different campaigns is a useful quantity as it is an indication of systematic error.  The 430 

standard deviation of the bias varies from 4 ppb to 9 ppb for the different pressures and campaigns.  

 

Table A.2 shows the mean bias for AIRS minus NOAA ESRL aircraft for land and ocean AIRS observations.s  The different 

rows extend the aircraft using the AIRS prior, the CarbonTracker model (from 

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker-ch4/ or the GEOS-Chem model (both are extended through 2018 using 435 

2.5% secular increase).  The goal of this table is to approximate the influence of the profile extension on the validation accuracy. 

 

Table A.3 shows the standard deviation for AIRS observations minus validation data for land / ocean for different pressure 

ranges for both single observations and AIRS averages.  The mean bias at each site is subtracted prior to calculating the 

standard deviation.  This table shows the standard deviations for single observations and averaged quantities.  The predicted 440 

error for the daily average is the observation error divided by the square root of the number of observations, and is much 

smaller than the actual standard deviation, indicating correlated errors.  The predicted error for the monthly, 3-month, and 

seasonal cycle averages is the daily standard deviation divided by the square root of the number of days averaged and ~agrees 

with the actual standard deviation for the partial column.  The location-dependent biases are subtracted from AIRS prior to 

calculating the standard deviation in all but the last two rows.  The last two rows shows the standard deviations without 445 
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subtracting the location-dependent biases, which increases the partial column standard deviation from about 8 ppb to about 9 

ppb. 
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Table 1.  Bias versus pressure with and without bias correction.  The bias correction was developed on 670 

HIPPO-4 and tested on HIPPO-4; HIPPO-1,2,3,5; and NOAA aircraft network. 

Pressure 

(hPa) 

AIRS minus 

aircraft_AK (HIPPO-

4) (ppb) 

After bias correction 

(HIPPO-4) (ppb) 

After bias correction 

(all HIPPO except 

HIPPO-4) (ppb) 

After bias 

correction (all 

NOAA) (ppb) 

1000 24 -1 -3 1 

824 36 0 -4 1 

681 48 1 -5 2 

562 58 1 -4 2 

464 60 -5 -3 3 

383 67 -5 -2 2 

316 81 1 4 - 

261 86 1 4 - 

215 89 1 3 - 

161 - - 4 - 
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Table A.1 Bias by campaign, station, land/ocean, and pressure. 675 

Station/campaign Location Time 

period 

Bias 

700 

hPa 

(ppb) 

Bias 

500 

hPa 

(ppb) 

Bias 

300 

hPa 

(ppb) 

Bias 

column 

matching 

aircraft 

(ppb) 

Bias 

column 

above 

750 hPa 

(ppb) 

HIPPO 1S  Pacific Jan, 2009 -6.2 2.4 11.0 4.2 6.3 

HIPPO 1N  Pacific  Jan, 2009 -3.2 3.7 12.5 -0.1 4.8 

HIPPO 2S  Pacific  Nov, 2009 -9.0 -0.4 9.8 -4.4 5.0 

HIPPO 2N  Pacific  Nov, 2009 -4.3 -3.3 -3.1 -4.0 -4.0 

HIPPO 3N  Pacific  Apr, 2010 -8.5 1.1 16.5 -2.6 2.6 

HIPPO 4S  Pacific  Jun, 2011 -0.7 -2.0 9.5 1.8 10.2 

HIPPO 4N  Pacific  Jul, 2011 8.7 11.8 0.7 8.7 7.3 

HIPPO 5S  Pacific  Aug, 2011 1.2 7.6 13.3 4.5 9.3 

HIPPO 5N  Pacific  Sep, 2011 -5.2 0.5 1.2 -2.0 2.2 

HIPPO all land - - 10.9 18.2 17.8 16.1 14.8 

HIPPO all ocean - - -5.2 -0.9 4.3 -1.7 3.1 

HIPPO all (mean) - - -2.9 2.1 7.9 0.7 4.9 

HIPPO all (stdev) - - 5.9 5.2 6.7 4.4 4.3 

ACG 68N, 152W - 21.4 - - 18.6 26.7 

ESP 49N, 126W - 9.7 - - 8.2 13.8 

NHA 43N, 71W - 15.7 23.8 - 15.7 19.3 

THD 41N, 124W - 13.6 21.7 - 14.0 21.2 

CMA  39N, 74W - -0.2 5.7 - 0.9 3.6 

TGC 28N, 97W - 1.0 7.9 - 2.3 6.5 

RTA 21S, 160W - 3.7 11.5 - 3.9 12.8 

ESRL all land - - 9.2 16.8 - 9.4 14.3 

ESRL all ocean - - 9.0 12.8 - 8.7 15.4 
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ESRL all (mean) - - 9.3 14.1 - 9.1 14.8 

ESRL all (stdev) - - 8.1 8.2 - 7.1 8.2 

ATom 1S  Pacific Aug, 2016 -0.2 4.5 7.7 2.0 3.5 

ATom 1N  Atlantic Aug, 2016 0.2 3.2 13.2 2.8 6.9 

ATom 2S  Pacific Feb, 2017 -6.8 0.7 8.4 -2.5 5.2 

ATom 2N  Atlantic Feb, 2017 5.7 12.3 25.3 8.3 12.5 

ATom 3S  Pacific Oct, 2017 -2.5 3.0 9.1 0.9 5.9 

ATom 3N  Atlantic/Pacific Oct, 2017 6.5 13.0 21.9 9.3 13.8 

ATom 4S  Pacific April/May, 

2018 

-0.1 3.9 9.4 2.3 6.0 

ATom 4N  Atlantic May, 2018 -1.4 5.9 23.4 3.4 13.2 

ATom all land - - 16.7 23.6 26.2 17.0 18.2 

ATom all ocean - - -3.2 2.4 13.4 0.6 6.5 

ATom all (mean) - - 0.1 5.8 14.7 3.2 8.3 

ATom all (stdev) - - 4.3 4.5 7.5 3.8 4.1 

 

  

https://doi.org/10.5194/amt-2020-145
Preprint. Discussion started: 8 May 2020
c© Author(s) 2020. CC BY 4.0 License.



25 

 

Table A.2 Change in the mean bias of the partial column matching the aircraft observation using different 

aircraft profile extensions from the top aircraft measurement to the top of the atmosphere.  

Quantity Profile extension Bias 700 

hPa 

(ppb) 

Bias 500 

hPa 

(ppb) 

Bias 300 

hPa 

(ppb) 

Bias 

column 

matching 

aircraft 

(ppb) 

Bias 

column 

above 750 

hPa (ppb) 

Land ESRL CT 6.0 10.3 - 6.1 3.8 

Ocean ESRL CT 4.5 5.7 - 4.3 4.0 

Land ESRL prior 9.2 16.8 - 9.4 14.3 

Ocean ESRL prior 9.0 12.8 - 8.7 15.4 

Land ESRL GEOS-Chem 6.4 11.7 - 6.7 6.4 

Ocean ESRL GEOS-Chem 4,4 7.7 - 4.5 6.4 

 680 
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Table A.3 Standard deviation of AIRS minus validation for land / ocean observations and different 

pressures / pressure ranges.  Rows 1-2 show the standard deviation for single observation, rows 3-4 show 

the predicted observation error, rows 5-8 show the standard deviation for daily averages, rows 9-10 show 

the predicted error for daily averages (assuming random error), rows 11-12 show the standard deviation 685 

for 3-month averages, rows 13-14 show the standard deviation for seasonal cycle averages (average the 

same month of all years), rows 15-16 show the predicted error for the seasonal cycle averages, and rows 

17-18 show the standard deviation without bias subtraction.  The site-dependent biases from Table A.1 

are subtracted prior to calculating the standard deviation. 

Quantity Stdev 

700 hPa 

(ppb) 

Stdev 

500 hPa 

(ppb) 

Stdev 

300 hPa 

(ppb) 

Stdev 

column 

matching 

aircraft 

(ppb) 

Stdev 

column 

above 750 

hPa (ppb) 

Land single 26 29 26 23 25 

Ocean single 25 27 26 22 24 

Land observation error 26 26 19 23 19 

Ocean observation error 28 28 20 24 19 

Land daily (≥3 obs/day) 17 21 16 15 20 

Ocean daily (≥3 obs/day) 18 21 21 16 20 

Land daily (≥9 obs/day) 16 20 16 14 20 

Ocean daily (≥9 obs/day) 17 19 21 15 18 

Land daily (≥9 obs/day) pred. 9.7 9.9 5.7 8.5 7.0 

Ocean daily (≥9 obs/day) pred. 8.4 7.9 4.6 7.0 5.7 

Land 3-month (≥3 obs/day, ≥3 days) 9.5 13.3 - 8.8 12.9 

Ocean 3-month (≥3 obs/day, ≥3 days) 9.0 11.8 - 8.3 11.8 

Land monthly (average all years)  8.3 11.8 - 7.7 10.7 

Ocean monthly (average all years) 8.3 10.4 - 7.5 10.1 

Land monthly (average all years) pred. 7.7 9.9 - 6.9 9.3 

https://doi.org/10.5194/amt-2020-145
Preprint. Discussion started: 8 May 2020
c© Author(s) 2020. CC BY 4.0 License.



27 

 

Ocean monthly (average all years) pred. 8.0 9.8 - 7.2 9.5 

Land monthly (average all years) without 

bias subtraction 

9.9 13.7 - 9.1 12.2 

Ocean monthly (average all years) 

without bias subtraction 

10.4 12.3 - 9.4 11.6 

 690 
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Figure 1: Location of aircraft profile measurements used for validation. The upside-down triangles show HIPPO, triangles show 

ATom, and blue stars show NOAA ESRL aircraft validation locations. 695 
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Figure 2: The rows of an averaging kernel for CH4 for a tropical scene. The colors help for visualization of the pressure levels for 

each row of the averaging kernel. The diamonds indicate the pressure level corresponding to the row of the averaging kernel. 
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Figure 3: Calculated errors for AIRS measurements shown in this paper. 
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705 
Figure 4: Simulated comparison between AIRS and Aircraft in which the LMDz model (top) and GEOS-Chem model (bottom) are 

used for the simulation.  
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Figure 5: Example of the effect of bias correction on the AIRS profile from averaged HIPPO-1,2,3,5. The blue lines shows the AIRS 710 
methane profile before (dotted) and after (solid) bias correction.  The black line shows the HIPPO measurements before (dotted) 

and after averaging kernel is applied (solid). 

  

https://doi.org/10.5194/amt-2020-145
Preprint. Discussion started: 8 May 2020
c© Author(s) 2020. CC BY 4.0 License.



33 

 

 
Figure 6: Comparison of AIRS methane to aircraft for all HIPPO comparisons over the partial column range measured by the 715 
aircraft.  Blue shows AIRS ocean observations and green shows AIRS land observations. 

  

AIRS versus HIPPO observations (no bias correction) 
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Figure 7: Same as Figure 6 but after bias correction 
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AIRS versus HIPPO observations 
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Figure 8: Comparison of daily averaged AIRS to HIPPO measurements (left) and ATom measurements (right) for the partial column 

observed by the aircraft.  The different colors correspond to the campaigns shown in Fig. 1 
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Figure 9: Comparison at TGC (27.7N, 96.9E).  (Top) Comparison of AIRS and co-located NOAA aircraft flights in SE Texas for the 

partial column measured by the aircraft. Data are averaged over 1 day (a), 1 month (b), 90-days (c), and averaged over month from 

all years (d).  (Bottom) Difference from the aircraft.  The predicted error for daily observations is the observation error (27 ppb) 

divided by the square root of the number of observations.  The predicted monthly or seasonal error is the mean daily error (11.5 730 
ppb) divided by the square root of the number of days averaged. 

 

Daily averages Monthly averages 3-month averages Seasonal cycle 

(a) (b) (c) (d) 
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