
 
Anonymous Referee #1 
The latitudinal dependence of the fractional refractivity deviation on the choice of 
the parameter 𝛽𝛽 is an intriguing feature of the present analysis. In the subtropics at 
altitudes between 1 and 2 km the sensitivity (in particular for 3 < −10 km/rad) is 
larger compared to the latitude band −10°S to 10°N. An obvious question is if this 
latitudinal dependence is correlated with the latitudinal dependence of strong 
(horizontal) refractivity gradients extracted from ECMWF meteorological fields.  
 
Yes, as visible from the manuscript, the latitudinal dependence is correlated with 
strong horizontal gradients of refractivity both in the real atmosphere and in 
ECMWF meteorological fields. 
 
 
Second, I would suggest to improve the graphical representation of the results by 
splitting the right panel in Figs. 3 to 11 into two panels, one showing the CT2 results 
(𝛽𝛽 = 0 km/rad) and the other the difference between CT2A and CT2. 
 
Ok, we agree this improves the visual presentation of the results. We hence added 
one more panel with the CT2A–CT2 difference. 
 
 
Technical corrections: 
 
Page 2, line 46: 
"a short-wave asymptotical solution" → "a short-wave asymptotic solution" 
 
OK. 
 
 
Page 2, line 51: 
Gorbunov et al. (2004) probably should read Gorbunov and Lauritsen (2004b). 
 
OK. 
 
 
Page 3, line 69: 
"which is known the Bouger law" → "which is known as Bouguer's law" 
 
OK. 
 
 
Page 4, line 117: 
"although it may have multiple projections to the axis of time t," 



I would suggest instead "although it may not be single-valued with respect to time 
t," or similar. 
 
OK. 
 
 
Page 5, line 138: 
"instant frequency" → "instantaneous frequency" 
 
OK. 
 
 
Page 7, line 173: 
"This transform is performed under the application of the procedure of the 
stationarization of the transmitting satellite [...]" I suggest to rephrase this sentence. 
 
The sentence is rephrased as follows: “This transform is preceded by the 
stationarization…” 
 
 
Page 7, line 186: 
I assume here 𝑢𝑢�(𝜉𝜉) should read 𝑢𝑢�(𝜎𝜎) instead. 
 
Yes. 
 
 
Page 8, eqn. 18: A closing bracket is missing. 
 
OK. 
 
 
Page 9, line 226: 
[Gorbunov2004b] probably should read (Gorbunov and Lauritsen, 2004b). 
 
Ok, rectified. We had missed the LATEX citation command here. 
 
 
Page 10, line 263: 
"The difference in the results of the application of these WO methods is less 
significant than the difference coming from other parts of RO data processing 
systems, [...]" I suggest to add a reference. 
 
Ok, we added two references: 



Gorbunov, M. E.; Shmakov, A. V.; Leroy, S. S. & Lauritsen, K. B. (2011), 'COSMIC Radio 
Occultation Processing: Cross-center Comparison and Validation', J. Atmos. Oceanic Technol. 
28(6), 737--751. 
Gorbunov, M. E.; Benzon, H.-H.; Jensen, A. S.; Lohmann, M. S. & Nielsen, A. S. (2004), 
'Comparative analysis of radio occultation processing approaches based on Fourier integral 
operators', Radio Sci. 39(6), RS6004. 
 
 
Page 11, line 282: [Arnold1978] → (Arnold, 1978) 
 
Again rectified in LATEX. The LATEX citation command was inserted. 
 
 
Page 11, line 299 and page 12, line 304: [Gorbunov2019] is not listed in the 
reference section. 
 
It is, once again, a missing citation command. We carefully rechecked overall and 
found that further corrections of this type were needed for [Zou2019] and 
[Gorbunov2009a, Zou2019]. We hence also have corrected these. 
 
 
Page 19, line 407: 
"COSMC-ECMWF" → "COSMIC-ECMWF" 
 
OK. 
 
 
Page 21, line 476 and 478: “Intoduction” → “Introduction” 
We found this to have been a typo in our BIBTEX data base, which also has been 
corrected. 
 
 
 
Anonymous Referee #2 
"Here the difference metrics for 𝛽𝛽 = 0 and optimal 𝛽𝛽 cannot be directly compared, 
because they are evaluated over different statistical ensembles." 
This makes the interpretation of the results presented in Figures 3-11 extremely 
difficult. The penetration depth alone does not seem to be a strong argument, 
particularly when 𝛽𝛽 = 0 often provides more data above 1 km. It would be more 
useful to show the subset of refractivity values common to all retrievals. 
 
Following the suggestion of the Reviewer we performed some further study and 
found another important property of CT2A, as discussed below. 
 
 



In addition, the text says that the method mitigates systematic errors, but the metric 
shown in these figures combines systematic and random errors. I suggest that the 
systematic and random error estimates should be plotted separately. These points 
and the specific comments given below should be addressed before publication. 
 
The statement about the mitigation of the bias was made in a preliminary study, 
which was based on a much smaller volume of data. After the full study, we made a 
conclusion that it is the mean square difference between the RO and ECMWF 
refractivities that can be minimized by using the modified algorithm. Therefore, 
based on this additional finding, we refined the formulation in the abstract. 
 
 
Line 225: “don’t” should be “do not”. 
 
OK. 
 
 
Line 293: "The angular component of the momentum pd coincides with the ray 
impact parameter p, which is invariant in a spherically layered medium, but is 
perturbed by the horizontal gradients (Gorbunov and Lauritsen, 2009)". Healy 
(2001) also pointed this out. 
 
Healy (2001) refers to the technical report (Gorbunov, 1996), where the derivation 
of the impact parameter variation using the Hamiltonian form of ray trajectory 
equation was first presented. 
 
 
Line 299: [Gorbunov2019] not listed in references. Format of reference in text. 
The references appear to change format e.g., line 306 "[Zou2019]" and line 310 
"[Gorbunov2009a, Zou2019]". These should be (Zou et al., 2019) and (Gorbunov 
and Lauritsen, 2009). 
 
We corrected the references (cf. the similar remarks of Reviewer #1). That was 
related to technical corrections regarding the LATEX. 
 
 
Line 364: "co-located ECMWF refractivity profiles". It would be useful to give more 
detail here. For example, does this computation include the tangent point drift? Do 
you compute the refractivity directly from the ECMWF P, T and Q fields? Are they 
ECMWF forecasts or analyses? What resolution? 
 
We used ECMWF analyses at 1-degree latitudinal and 1-degree longitudinal 
resolution, with 91 vertical level covering the altitude range up to about 80 km. The 
refractivity was evaluated from pressure, temperature, and humidity fields. The 



tangent point drift was taken into account. We checked that this is also noted in the 
manuscript so that it is clear to the readers. 
 
 
Line 366: It would be useful to split this metric into to systematic and random errors 
instead of combining them, particularly if the transform is likely to improve 
systematic errors, as noted in the abstract. 
 
We preferred to correct the statement about the systematic errors. 
 
 
Line 373: "The CT2A algorithm also improves the penetration increasing the 
number of data in the altitude range below 0.5 km." 
This is correct, but 𝛽𝛽 = 0 appears to provide more data above 1 km. Why is this? 
Are you using the transformed amplitude to cut-off the data? Please explain. 
 
This is linked to the QC procedure and still needs further investigation that will be 
performed beyond the scope of this initial introduction study of the CT2A. 
 
 
Line 374: "Here the difference metrics for 𝛽𝛽 = 0 and optimal 𝛽𝛽 cannot be directly 
compared, because they are evaluated over different statistical ensembles.". 
This really makes it difficult for the reader to judge whether the new transform is an 
advantage or not in all the subsequent figures. Is it possible to present the results 
for a dataset common to all 𝛽𝛽 values to help the reader interpret the results? 
 
As noted above, we evaluated the statistics for the common dataset and found 
another important property of CT2A. The statistical differences between refractivity 
retrieved with 𝛽𝛽 = 0 and other values of 𝛽𝛽 is vanishingly small (never exceeding a 
level of 0.0005%), but increasing 𝛽𝛽 provide decreasing deviation from ECMWF and 
decreasing number of data. This indicates that CT2A allows the implementation of 
a QC procedure not involving any external data and only based on the internal 
properties of observed signals. This can be interpreted as follows. By extracting 
inversions that are common for different values of 𝛽𝛽 we look at the ray manifold in 
the phase space from different directions and only choose events, where the ray 
manifold structure is stable. We modified the abstract and the respective parts of the 
text accordingly. 
 
 



Generalized Canonical Transform method for radio occultation
sounding with improved retrieval in the presence of horizontal
gradients
Michael Gorbunov1,2, Gottfried Kirchengast3, and Kent B. Lauritsen4
1A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzevsky per. 3, 119017, Moscow, Russia
2Hydrometcenter of Russia, Bol. Prechistensky per. 11-13, 123242, Moscow, Russia
3Wegener Center for Climate and Global Change (WEGC) and Institute for Geophysics, Astrophysics, and
Meteorology/Institute of Physics, University of Graz, Brandhofgasse 5, 8010, Graz, Austria
4Danish Meteorological Institute, 2100, Copenhagen, Denmark

Correspondence:Michael Gorbunov (gorbunov@ifaran.ru)

Abstract. By now, a series of advanced Wave Optical (WO) approaches to the processing of Radio Occultation (RO) observa-

tions are widely used. In particular, the Canonical Transform (CT) method and its further developments need to be mentioned.

The latter include the Full Spectrum Inversion (FSI) method, the Geometric Optical (GO) Phase Matching (PM) method, and

the general approach based on the Fourier Integral Operators (FIOs), also referred to as the CT type 2 (CT2) method. The

general idea of these methods is the application of a canonical transform that changes the coordinates in the phase spacefrom5

time and Doppler frequency to impact parameter and bending angle. For the spherically symmetric atmosphere, the impact

parameter, being invariant for each ray, is a unique coordinate of the ray manifold. Therefore, the derivative of the phase of the

wave field in the transformed space is directly linked to the bending angle, as a single-valued function of the impact parameter.

However, in the presence of horizontal gradients, this approach may not work. Here we introduce a further generalization of

the CT methods in order to reduce the errors due to horizontalgradients. We describe, in particular, the modified CT2 method10

denoted CT2A, which complements the former with one more affine transform: a new coordinate that is a linear combination

of the impact parameter and bending angle. The linear combination coefficient is a tunable parameter. We derive the explicit

formulas for the CT2A and develop the updated numerical algorithm. For testing the method, we performed statistical anal-

yses based on COSMIC RO retrievals and (collocated) ECMWF analysis profiles. We demonstrate that it is possible to find

a reasonably optimal value of the new tunable CT2A parameterthat mitigatessystematicerrors
✿✿✿✿✿✿✿✿✿

minimizes
✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿✿✿

square15

✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

RO-retrieved
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

ECMWF
✿✿✿✿✿✿✿✿✿✿

refractivity in the lower troposphere and allows the practical realization

of the improved capability to cope with horizontal gradients
✿✿✿

and
✿✿✿✿✿

serve
✿✿

as
✿✿✿✿✿

basis
✿✿

of
✿

a
✿✿✿✿

new
✿✿✿

QC
✿✿✿✿✿✿✿✿✿

procedure.
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1 Introduction

The first step in the development of wave optical (WO) approach to the processing of radio occultation (RO) observations20

was made by Melbourne et al. (1994), who used the thin screen approximation for the atmosphere combined with the Back

Propagation (BP) technique. This approach was further developed under the name of Fresnel Inversion by Mortensen and Høeg

(1998). Although the accuracy of this approximation in lower troposphere was insufficient for the practical application, its basic

idea was correct. It consisted in the reduction of the influence of the diffraction by using the BP, which made the inversion

results independent from the observation distance and canceled the resolution restriction due to the Fresnel zone size.25

Later works (Gorbunov et al., 1996a; Karayel and Hinson, 1997; Gorbunov and Gurvich, 1998a, b) developed a different

understanding of the BP technique. The BP wave field evaluated in some plane was not considered as the actual wave field, but

as a representation of the original field observed at the Low Earth orbit (LEO): in this representation, the effects of diffraction

and multipath propagation were significantly reduced. This, in a straightforward way, allowed evaluation of the geometric

optical (GO) bending angle profile, which was inverted in theframework of the standard GO scheme (Ware et al., 1996;30

Kursinski et al., 1997).

The further development of the WO approach based on the representation view relied upon the concept of the Canonical

Transform (CT) originating from the classical mechanics (Arnold, 1978; Goldstein et al., 2014), generalized for the quantum

mechanics by Fock (1978), mathematically substantiated byEgorov (1985); Egorov and Shubin (1993). Further on this concept

obtained an extensive mathematical development (Treves, 1982a, b; Hörmander, 1985a, b). The correspondence between the35

quantum and classical mechanics is the same as the link between the wave optics and geometrical optics.

In both cases, there is a strict mathematical representation (quantum mechanics or wave optics) and its asymptotic solution

(classical mechanics or geometrical optics). While the evolution of de Broglie waves of probability or electromagneticwaves is

described by the Hamilton operator, the evolution of rays orclassical trajectories of particles is described by Hamilton system,

where the Hamilton operator is obtained by the substitute ofthe momentum operator instead of classical momentum. Accord-40

ingly, for the classical problem the phase space is introduced, the dimension of which equals doubled geometric dimension,

because to each geometrical coordinate we can conjugate thecorresponding momentum. For the wave problems momentum is

understood as the ray direction vector.

The canonical transforms arise, when we consider the class of the transforms of the phase space that conserve the canonical

form of the Hamilton dynamical system. It was first demonstrated by Fock (1978) that these transforms have a very simple45

implementation in the quantum mechanics: they correspond to linear transforms of the wave function. The kernel of this trans-

form is derived in classical terms, but, still, it describesa short-waveasymptotical
✿✿✿✿✿✿✿✿✿

asymptoticsolution of the wave problem.

This idea was later mathematically developed first by Egorov(1985); Egorov and Shubin (1993) and then by Treves (1982a,

b); Hörmander (1985a, b).

The application of the CT approach for the RO observation processing was pioneered by Gorbunov (2002), where it was com-50

bined with the BP. The idea of the CT without BP was first developed by Jensen et al. (2003, 2004) and later the general view at

these results in the framework of the CT approach was developed byGorbunov and Lauritsen (2004a); Gorbunov et al. (2004)
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✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Gorbunov and Lauritsen (2004a, b). Finally, it was recognized that the different methods: CT (Gorbunov, 2002), Full-Spectrum

Inversion (FSI) (Jensen et al., 2003), Phase Matching (PM) (Jensen et al., 2004), and CT of the 2nd type (CT2) (Gorbunov and Lauritsen,

2004a) were, in fact, different approximations of the same solution, for which Fourier Integral Operators (FIOs) provided the55

general transform approach (Gorbunov and Lauritsen, 2004a).

The idea of the CT approach is as follows. Given the observations or RO complex signalu(t) as function of timet, which

can be represented through its amplitudeA(t) and phaseφ(t), u(t) =A(t)exp(iφ(t)) . It is convenient to use eikonal, or

phase pathΨ(t) = φ(t)/k, wherek = 2π/λ is the wavenumber, andλ is the wavelength. Thus,u(t) =A(t)exp(ikΨ(t)) ,

andk is the large parameter. The signal is composed of multiple sub-signalsui (t) =Ai (t)exp(ikΨi (t)) corresponding to60

interfering rays. For each sub-signal it is possible to introduce the instantaneous frequencykΨ̇i = kσi. However, instantaneous

frequency cannot be introduced for their composition.

The multipath propagation problem consists in the de-composition of the signal equal to the sum or different sub-signals, to

retrieve the ray structure of the observed field. The solution of this problem discussed in the aforementioned papers consisted

in the transform of the observed wave fieldu(t) into a different representation. The new coordinates in thetransformed space65

were the ray impact parameterp and bending angleǫ. The transform(t,σ)→ (p,ǫ) is canonical (Gorbunov and Lauritsen,

2004a), which allows for writing the corresponding linear transformΦ̂2, where the subscript 2 indicates that it is a CT of the

2nd type (Arnold, 1978; Goldstein et al., 2014), that maps the original fieldu(t) to field in the impact parameter representation

û(p) = Φ̂2 [u(t)] (p). The idea of the choice of the ray impact parameter as the new coordinate is based on the fact that in

a spherically-symmetric medium, ray impact parameter is the ray invariant, which is knownthe Bouger
✿

a
✿✿✿✿✿✿✿✿

Bouger’s
✿

law. The70

locally spherically-symmetric medium is the basic approximation used in the inversion of RO data. For the real atmosphere

with horizontal gradients, the dynamic equation forp was derived by Gorbunov and Kornblueh (2001), who demonstrated

that derivative ofp with respect to the ray arc length is equal to the horizontal component of the refractivity gradient in the

occultation plane. Strong horizontal gradients may resultin the situation when dependenceǫ(p) becomes multi-valued (Healy,

2001; Gorbunov and Lauritsen, 2009), which was referred to as the impact
✿✿✿✿✿✿✿✿

parameter
✿

multipath (Zou et al., 2019).75

The idea explored in the present manuscript consists in the further development of the CT approach by using a generalized

transform with the coordinatep
′

= p+βǫ. Unlike the standard CT approach, where the form of the new coordinates in the

phase is known in advance, this transform has the tunable parameterβ that can take into account the statistical impact
✿✿✿✿✿✿✿✿

parameter

multipath effect.

The paper is organized as follows. In Section 2 we discuss thecanonical transform in wave optics and quantum mechanics in80

general terms, including brief review of FIOs. Based on thiscontext we discuss in Section 3 the application of the CT method

for RO and introduce the particular phase space and the specific choice of coordinates as well as the new generalization adding

an affine transform with a tunable parameter for improved thecoping capability with horizontal gradients. In Section 4 we

discuss the practical modifications needed to readily advance existing numerical implementations of the CT algorithm and

present results of our performance evaluation from processing real-observed COSMIC RO data, including how to find an85

optimal value of the tunable parameter minimizing the systematic errors in the lower troposphere. Section 5 finally provides

the summary and main conclusions of the paper.
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2 General concept of Canonical Transform in Wave Optics

We will start with a brief discussion of the Canonical Transform (CT). This concept originated from the classical mechanics

(Arnold, 1978; Goldstein et al., 2014), where it referred toa kind of transform of the coordinates and momenta that conserve90

the Hamiltonian form of the dynamical equation. Fock (1978)introduced the CT in the quantum mechanics. Note, the first

Russian edition of the monograph Fock (1978) appeared as early as in 1929. Because the relation between the classical and

quantum mechanics, on one side, and the relation between thegeometrical and wave optics, on the other side are the same, we

can immediately apply the approach introduced by Fock (1978).

We assume that the wave field is can be represented in the standard form:95

u(t) =A(t)exp(ikΨ(t)) , (1)

wheret is the observation time,Ψ(t) is the eikonal,k = 2π/λ is the wavenumber,λ is the wavelength,A(t) is the amplitude.

The timet can be associated with a specific spatial location of the observation, as it is the case in RO, butu(t) can also be

looked at as general signal.

The amplitudeA(t) and the derivative ofΨ(t) are assumed to be slowly changing within an oscillation period. In this case,100

the wave field is termed quasi-monochromatic with an instantamplitudeA(t) and frequencyω (t) = kΨ̇(t). Otherwise, more

generally, the field should be equal to a super-position of quasi-monochromatic components:

u(t) =
∑

j

A(j) (t)exp
(
ikΨ(j) (t)

)
, (2)

where the upper indexj enumerates the components,A(j) (t) are their amplitudes, andΨ(j) (t) are their eikonals. Each com-

ponent has its own instant amplitude and frequency.105

When discussing the CTs, it is necessary to bear in mind that most of the relations have an asymptotic nature, wherek is the

large parameter (orλ is the small parameter). The reason is as follows. Given measurements of wave field, each monochromatic

component can be interpreted in terms of wave fronts and rays. Each point has a single ray, and its direction is linked to the

normalized frequencyσ (t) = Ψ̇(t). To this end, it is also necessary to know the position of the transmitter and receiver, as it

takes place in RO observation. However, at this stage of the consideration of the problem, we can simply speak about instant110

tones of the signal.

Therefore, for a specific class of signals, including quasi-monochromatic ones and their superposition, it is possibleto

introduce a phase space(t,σ). Although the original signal is 1-D, this space is 2-D, and the structure of the signal can be

described in terms of the functionσ (t) which can be both single-valued for quasi-monochromatic signals, or multi-valued for

superpositions of such signals.115

Consider RO observations as an example. The original signalcorresponds to a range of rays starting at the transmitter and

the phase spaceσ (t) is a very smooth continuous line. As the signal propagates through the atmosphere its structure gets more

and more complicated. Still, in the phase space its topological structure remains the same: it is always a single continuous

line, although it mayhavemultiple projectionsto theaxis of
✿✿

not
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

single-valued
✿✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿

time t, which corresponds
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to multipath propagation (Gorbunov, 2002; Gorbunov and Lauritsen, 2004a). Such a line representing the signal structure is120

referred to as the ray manifold (Mishchenko et al., 1990).

The outstanding and, still, simple idea of Fock (1978) was that the classical canonical transforms correspond to linearintegral

transforms of the wave field with oscillating kernels. This class of transforms was later named Fourier Integral Operators (FIO)

(Egorov, 1985; Egorov and Shubin, 1993; Treves, 1982a, b; Hörmander, 1985a, b). The general form of such an operator first

discussed by Fock (1978) has the following form:125

û(p) =

√
−
ik

2π

∫
a2 (p,t)exp(ikS2 (p,t)) u(t)dt≡ Φ2 [u(t)] (p) , (3)

wherep is a new coordinate in the mapped space. We use notationΦ2 and, accordingly,a2 andS2, because this type of

operators was referred to as the FIO of the second type (Gorbunov and Lauritsen, 2004a), while the FIO of the first type is the

composition of a Fourier transform and a second-type FIO (Egorov, 1985; Egorov and Shubin, 1993). This type of operators

is linked to the corresponding type of the generating function (Arnold, 1978; Goldstein et al., 2014). Note, historically FIO of130

the second type appeared first, but in mathematical works it was FIO of the first type that were discussed first.

Considering nowu(t) as a quasi-monochromatic signal, we can derive the asymptotic form of transform (3) using the

stationary phase principle:

û(p) =

√
−
ik

2π

∫
a2 (p,t)A(t)exp(ik(S2 (p,t)+Ψ(t))) dt≡ Φ2 [u(t)] (p) , (4)

The stationary phase pointts (p) of this integral satisfies the equation:135

∂

∂t
S2 (p,t)+ Ψ̇(t) = 0. (5)

Accordingly, the transformed field, under the assumption that the Eq. (5) has a single solutionts (p), is also quasi-monochromatic

and can be written as follows:

û(p) =A
′

(p)exp
(
ikΨ

′

(p)
)

=A
′

(p)exp(ik (S2 (p,ts (p))+Ψ(ts (p)))) . (6)

Its instant
✿✿✿✿✿✿✿✿✿✿✿

instantaneous
✿

frequency equals:140

ξ (p) =
˙
Ψ

′

(p) =
d

dp
(S2 (p,ts (p))+Ψ(ts (p))) =

=
∂

∂p
S2 (p,ts (p))+

(
∂

∂t
S2 (p,ts (p))+

∂

∂t
Ψ(ts (p))

)
dts
dp

=

=
∂

∂p
S2 (p,ts (p)) , (7)

by virtue of Eq. (5). Recalling thaṫΨ(t) = σ, which is the original momentum, we have the following relation between the

canonical coordinates(t,σ) and(p,ξ), in the original and mapped spaces:145

∂S2

∂t
=−σ,

∂S2

∂p
= ξ, (8)
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Figure 1. Radio occultation observation geometry with relevant geometrical variables indicated (for description see Sect. 3.1)

which can be expressed in terms of the differentialdS2:

dS2 = ξdp−σdt. (9)

And, vice versa, the requirement that the right-hand part inEq. (9) should be equal to a full differentialdS2 of a function

S2 (p,t) is a necessary and sufficient condition for the transform(t,σ)→ (p,σ) to be canonical (Arnold, 1978; Goldstein et al.,150

2014). The functionS2 (p,t) is then termed the generating function of the canonical transform.

In terms of FIO,S2 (p,t) is referred to as its phase function, anda2(p,t) is its amplitude function. The phase function,

which specifies the canonical transform, is of primary importance, while the amplitude function is derived using the energy

conservation (Gorbunov and Lauritsen, 2004a). We see, therefore, that using the classical, or geometric optical concepts, it is

possible to write down the asymptotic form of the quantum, orwave optical operator implementing the transformation of the155

original signal into a different representation. If the structure of the original signal is represented as a ray manifold in the phase

plane, such a transform is applied to the coordinates in thisspace. In particular, it may be possible to find such a coordinate

system, where the ray manifold geometry will be exceptionally simple.

3 The Canonical Transform method for RO and its generalization

Here we discuss the application of the CT technique for the analysis of RO observations (Fig. 1) by first reviewing the different160

existing variants (3.1) and then introducing the new generalized CT method (3.2) and an application-relevant formulation for

readily updating existing algorithms (3.3).

3.1 Canonical Transform method in different existing variants

The RO observation geometry is schematically represented in Figure 1. The wave emitted by a transmitter Tx is received

by a receiver Rx on a low-Earth orbit. Transmitter is borne bya satellite belonging to one of the modern Global Navigation165
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Satellites Systems (GNSS), including GPS, GLONASS etc. Dueto the movement of the transmitter and receiver the ray

descends or ascends in the atmosphere, which allows the derivation of the atmospheric profiles from the bending anglesǫ(p)

(Ware et al., 1996; Kursinski et al., 1997). The CT techniqueis used for the retrieval of bending angle profile from the wave

field measurements.

The first approach of processing RO data, belonging to the class of CT, was the Back Propagation (BP) (Gorbunov et al.,170

1996a; Karayel and Hinson, 1997; Gorbunov and Gurvich, 1998a, b). In this technique the field was linearly transformed tobe

re-calculated to the BP plane locate at coordinatexB :

uB (y) =

√
ik

2π

∫
u(t)exp(−ik |rB (y)− rR (t)|)

|rB (y)−rR (t)|
1/2

|sinφ(ṙR (t) ,rB (y)−rR (t)) ṙR (t)|dt, (10)

where 2-D vectorrB (y) equals(xB ,y), φ(a,b) is the angle between vectorsa andb. This transform isperformedunderthe

applicationof theprocedureof the
✿✿✿✿✿✿✿

preceded
✿✿

by
✿✿✿

the
✿

stationarization of the transmitting satellite and projection of the satellite175

movement to the vertical plane. Note, the same procedure is commonly applied when using CT-like approaches. It is important

that the BP field is not the real field in the BP plane, because the BP procedure assumes the vacuum propagation. This procedure

results in some representation of the original wave field with reduced diffraction effects due to the reduction of the propagation

distance. The new coordinatey is more favorable for finding a unique projection of the ray manifold that disentangles the

multipath propagation. Still, this coordinate is not the best choice.180

A much better coordinate for the new representation should be the impact parameterp, because in a spherically-symmetric

medium it is an invariant for each ray due to the Bouger law, and thus it is unique for each ray. A dynamic equation for the

variation ofp along the ray as a function of the horizontal gradient of refractivity was obtained by Gorbunov and Kornblueh

(2001). The idea of complementing the BP technique with one more transform that maps the field to the impact parameter

representation was pioneered by Gorbunov (2002). It was thefirst application of the FIO of the first type, which is linked to185

the other type of the generating function (Arnold, 1978; Goldstein et al., 2014) and has the form

û(p) =

√
−
ik

2π

∫
a1 (p,σ)exp(ikS1 (p,σ)) ũ(σ)dσ ≡ Φ1 [u(t)] (p) , (11)

where the only difference with the second type operator is that it acts upon the Fourier-transformed fieldũ(ξ)
✿✿✿✿

ũ(σ). It can

be looked at as the composition of the Fourier transform, which itself is a second type FIO, and the other second type FIO.

Because the Fourier transform is a simple rotation of the phase space byπ/2: (t,σ)→ (σ,−t), the equation for the phase190

function takes the form:

dS1 = ξdp+ tdσ. (12)

Gorbunov (2002) applied this operator to the back-propagated field. To this end, using the normal vectorν =
(
η,
√
1− η2

)
to

the straight ray, we express the impact parameter:

p=−xη+ y
√
1− η2. (13)195
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Now it is necessary to find the canonical transform(y,η)→ (p,ξ). We look for the first type operator, apply the property of

2-D canonical transforms that conserve the volume element,which follows from Eq. (12):

∂ξ

∂η

∂p

∂y
−
∂ξ

∂y

∂p

∂η
= 1, (14)

and additional assumptionξ = ξ(η). Then, from Eq. 14, we readily derive:

∂ξ

∂η
=

(
∂p

∂y

)
−1

=
1√

1− η2
,200

ξ = arcsinη (15)

This results in the solution for the phase and amplitude functions:

S2 (p,η) = p arcsinη−x
√
1− η2,

a2 (p,η) =

√
∂2S

∂p∂η
=
(
1− η2

)
−1/4

. (16)

This defines the FIO, which is applied to the backpropagated wave fielduB (y) and produces the mapped field205

û(p) =A
′

(p)exp

(
ik

∫
ξ (p)dp

)
. (17)

The derivativeξ (p) of its eikonal is algebraically linked to the bending angle:

ǫ(p) =−ξ((p)− arcsin

(
xT p+ yT

√
r2T − p2

r2T

)
, (18)

where(xT ,yT ) = rT is the transmitter position in the occultation plane. Because the cross-term inS2, which depends both on

p andη, is linear with respect top, the integration over new coordinateξ = arcsinη turns it topξ and, therefore, the operator210

is reduced to the Fourier transform in combination with a non-linear change of coordinate. This indicates that this operator

allows a fast implementation. A similar idea will be appliedbelow.

The complicated nature of the BP+CT algorithm stimulated further studies (Gorbunov and Lauritsen, 2002, 2004b) where

the idea was expressed of applying the FIO directly to the observed wave fieldu(t), without intermediate and numerically

expensive steps like BP. Full-Spectrum Inversion (FSI) developed by Jensen et al. (2003) was the first solution of this type,215

although with some restrictive assumptions. However, the general solution was just one year away: the Phase Matching (PM)

was developed by Jensen et al. (2004) and then put in the context of the CT approach by Gorbunov and Lauritsen (2004a), who

also introduced an approach based on the linearized canonical transform that reduced the FIO to the composition of non-linear

coordinate changes and Fourier transform. This algorithm was termed the 2nd type CT, or CT2.

In order to arrive at the phase function of the FIO of the 2nd type, consider the expression for the derivative of the phase of220

the observed wave field:

Ψ̇ = σ(p,y) = pθ̇+
ṙT
rT

√
r2T − p2 +

ṙR
rR

√
r2R − p2, (19)
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Using Eq. (8), we derive the phase function:

S2 (p,t) =−

∫ (
pθ̇+

ṙT
rT

√
r2T − p2 +

ṙR
rR

√
r2R − p2

)
dy =

=−

∫ (
pdθ+

drT
rT

√
r2T − p2 +

drR
rR

√
r2R − p2

)
=225

=−pθ−
√
r2T − p2 + parccos

p

rT
−
√
r2R − p2 + parccos

p

rR
, (20)

whereθ, rT , andrR are functions of timet. Wedon’t
✿✿

do
✿✿✿

not reproduce here the derivation of the amplitude functiona2 (p,t),

which uses simple geometrical considerationsGorbunov2004b
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Gorbunov and Lauritsen, 2004a). This phase function, although

providing the accurate solution, has a disadvantage: its cross-term depending on bothp andt is, generally speaking, not reduced

to a form ofg1 (p)g2(t). The FIO, in the generic case, cannot be reduced to a Fourier transform in composition with non-linear230

coordinate changes. This is, however, possible in the particular case of circular orbits, when the phase function equalspθ, and

usingθ as a new coordinate instead of time reduces the operator to the Fourier transform. This method was referred to as FSI.

To find an approximate solution that significantly reduces the computational costs at an expense of an insignificant reduction

of accuracy, the representation of the approximate impact parameter was introduced. The impact parameterp is a function of

t,σ: p= p(t,σ). We introduce its approximatioñp:235

p̃(t,σ) = p0 (t)+
∂p0
∂σ

(σ−σ0 (t)) = f (t)+
∂p0
∂σ

σ,

f (t) = p0 (t)−
∂p0
∂σ

σ0 (t) =

= p0 −

(
dθ

dt
−
drG
dt

p0

rG
√
r2G − p20

−
drL
dt

p0

rL
√
r2L − p20

)
−1

σ0, (21)

whereσ0(t) is a smooth model of normalized Doppler frequency,p0(t) = p(t,σ0(t)), and∂p0/∂σ = ∂p/∂σ|σ=σ0(t). We now

parameterize the trajectory with the coordinateΥ=Υ(t). For brevity we use the notationu(Υ) instead ofu(t(Υ)). For the240

coordinateΥ and the corresponding momentumη we use the following definitions:

dΥ=

(
∂p0
∂σ

)
−1

dt=
∂σ

∂p0
dt,

η =
∂p0
∂σ

σ. (22)

Finally, we arrive at the following linear canonical transform (Υ,η)→ (p,ξ):

p̃= f(Υ)+ η,245

ξ =−Υ, (23)

The generating function of this canonical transform is easily computed from the differential equation

dS2 = ξdp̃− ηdΥ=−Υdp̃− (p̃− f(Υ)) dΥ

S2(p̃,Y ) =−p̃Y +

Y∫

0

f(Y
′

)dY
′

. (24)
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For the new coordinateΥ we have the following relation:250

dΥ= dθ−
drG
rG

p0√
r2G − p20

−
drL
rL

p0√
r2L − p20

. (25)

For circular orbits, this approximation, once again, reduces to FSI. To evaluate the bending angle, we use the fact that the

momentum of the field in the mapped space equals−Υ. We also evaluate the accurate impact parameterp as follows. Given

the dependenceΥ(p̃), it possible to find the corresponding timet(p̃). Using Eq. (21), we infer:

σ (p̃) = (p̃− p0 (t(p̃)))

(
∂p0
∂σ

)
−1

+σ0 (t(p̃)) ,255

p(p̃) = p(t(p̃) ,σ (p̃)). (26)

Finally, for each impact parameterp, we determine the coordinateΥ(p) =−ξ (p) and, therefore, the corresponding moment

of time t= t(Υ(p)), when this ray was observed, the bending angle is then evaluated from the geometrical relation:

ǫ(p) = θ (t(Υ(p)))− arccos
p

rT (t(Υ(p)))
− arccos

p

rR (t(Υ(p)))
. (27)

This method termed CT2 indicates both a high accuracy and numerical performance. This discourse leads us to the conclusion260

that there is a family of closely related WO methods that are based on the same principle. The observed wave field is subjected to

a linear integral operator with an oscillating kernel that transforms the field into a different representation. The representation is

chosen in such a way that the projection of the ray manifold tothe new coordinate axis is unique. The operation is also referred

to as unfolding multipath. Finally, such methods as CT, FSI,PM, and CT2 involve the evaluation of the same integral transform

under different assumptions and approximations. The difference in the results of the application of these WO methods isless265

significant than the difference coming from other parts of ROdata processing systems, including cut-off, filtering, andquality

control procedures
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Gorbunov et al. (2004, 2011).

3.2 Generalized Canonical Transform method

All the modifications of the CT approach discussed above relied upon impact parameterp as the unique coordinate of the ray

manifold. However, impact parameter is, generally speaking, not invariant for each ray, and its perturbations due to horizontal270

gradients may result in breaking the above condition. To seethis, consider the ray equations in the Hamilton form. The are

derived from the Hamilton function:

H (r,p) =
1

2

(
p2 −n2 (r)

)
, (28)

wherep is the momentum, andn(r) is the refractivity field. The Hamilton system has the following form:

ṙ=
∂H

∂p
, ṗ=−

∂H

∂r
, Ψ̇ = pṙ,275

ṙ= p, ṗ= n∇n, Ψ̇ = n2, (29)
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wherep is the classical momentum. Because|p|= |∇Ψ|= n, we arrive at the following differential relation between the

parameterτ of this system, the ray arc lengths, and the eikonal:

dτ =
ds

n
, dΨ= n ds. (30)

Equation (29) has a form that is specific for the Cartesian coordinates. Consider an arbitrary coordinate system with themetric280

tensorgij : ds2 = dxigijdx
j , wherexi are the components of vectorr, and we follow the Einstein tensor notation implying the

summation over each pair of upper and lower indexes of the same name. If we define the momentum by the relationpi = gij ẋ
j ,

the formp dr is invariant, the transform to the new coordinates
(
pi, xi

)
is canonical, and the canonical form of the Hamilton

system also remains invariantArnold1978
✿✿✿✿✿✿✿✿✿✿✿✿

(Arnold, 1978), provided that the Hamilton function is defined as follows:

H (r,p) =
1

2

(
pig

ijpj −n2 (r)
)
, (31)285

wheregij is the matrix inverse togij . This results in the following form of the ray equations:

ẋi =
∂H

∂pi
= gijpj , ṗi =−

∂H

∂xi
= n

∂n

∂xi
−

1

2
pk
∂gkj

∂xi
pj .

The 2-D approximation (Zou et al., 2002) allows treating rays as plane curves. Consider polar coordinates(r,θ) with the metric

tensor:

gij =


1 0

0 r2


 , gij =


1 0

0 r−2


 . (32)290

Then we have the following equations:

pθ = r2θ̇ = nr
rdθ

ds
= nrsinψ,

ṗθ = n
∂n

∂θ
,

ṗr = r̈ = n
∂n

∂r
+
p2

r3
. (33)

whereψ is the angle between vectorsṙ andr. The angular component of the momentumpθ coincides with the ray impact pa-295

rameterp, which is invariant in a spherically layered medium, but is perturbed by the horizontal gradients(Gorbunov and Lauritsen, 2009)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Gorbunov et al., 1996b; Gorbunov and Kornblueh, 2001; Healy, 2001; Gorbunov and Lauritsen, 2009).

The variations of the ray impact parameter seem to underminethe elegant idea of the CT approach. Now there is no

such a convenient invariant value ascribed to each ray. Still, the CT method can be applied using the same formulas, but

the coordinatep will now acquire a different meaning: it will be understood as the “effective impact parameter”, i.e. the300

impact parameter which would result in the observed Dopplerfrequency shift, if the atmosphere were spherically layered

Gorbunov2019
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Gorbunov et al., 2019). Accordingly, the evaluated bending angle will also be the “effective” bending angle.

The reason is that for the evaluation of the real bending angle, understood as the angle between the ray directions at the trans-

mitter and receiver, two corresponding values of the impactparameter are required, which cannot be derived from the single
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Figure 2. Impact
✿✿✿✿✿✿✿

parametermultipath, old coordinate (impact parameter) lines, and modified coordinate lines.

variable, the Doppler frequency. This, by itself, is not a significant problem, because the assimilation of bending angle profiles305

can be based on the effective valuesGorbunov2019
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Gorbunov et al., 2019), provided that the observation operator correctly

implements their evaluation.

More importantly, horizontal gradients may result in multi-valued ray manifold projections, when using the effectiveimpact

parameterp as the coordinate in the mapped space. This situation is termed “impactmultipath”Zou2019
✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿✿✿✿✿

multipath”

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Zou et al., 2019). Theoretically, for any ray manifold perturbation there always exists an unfolding coordinate transform. This310

follows from the fact that topologically the ray manifold isalways a continuous line without self-crossing. However, this

coordinate transform will now depend on the a priori unknownhorizontal gradients of refractivity.

Typical multi-valued bending angle profileGorbunov2009a,Zou2019
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Gorbunov and Lauritsen, 2009; Zou et al., 2019)is

shown in Figure 2. From numerical simulations, it can be inferred that there is a kind of asymmetry: impact
✿✿✿✿✿✿✿✿

parametermultipath

manifests itself mostly in ascending spikes, but hardly in descending spikes. Accodingly, in order to better unfold multipath, it315

must be possible to use another coordinate in such a way that the modified coordinate lines are sloped. Therefore, we modify

the transform (23) in order to use another coordinate:

p̃
′

= p̃+βΥ, (34)

whereβ is a tunable parameter and has a dimension of km/rad. Although the optimal value of this parameter should be different

for individual events, the aforementioned asymmetry results in the conclusion that the preferred value ofβ is expected to be320

negative. Therefore, it may be possible to find its optimal value that, in the statistical sense, will minimize errors dueto impact

✿✿✿✿✿✿✿✿

parametermultipath.
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The modified canonical transform (23) is written as follows:

p̃
′

= f (Υ)+βΥ+ η ≡ f
′

(Υ)+ η,

ξ =−Υ. (35)325

Using the modified functionf
′

(Υ) instead of the original one, we will obtain the expression for the modified FIÔΦ′

2. The

advantage of this approach is that it can be implemented by a very simple modification of the existing CT2 algorithm. Using

the numerical implementation of the modified CT will allow usto study its influence upon the RO inversion statistics in the

lower troposphere.

Denote the generalized FIÔΦ(β)
2 u(p̃)Consider the wave field in the impact parameter representation,û

(
β; p̃

′

)
= Φ̂

(β)
2 u

(
p̃

′

)
.330

The standard CT algorithm corresponds to the evaluation ofû(0; p̃) = Φ̂
(0)
2 u(p̃) with β = 0.

It is possible to arrive at a quantitative estimate ofβ based on (Gorbunov and Kornblueh, 2001; Gorbunov and Lauritsen,

2009; Zou et al., 2019). We expect that|β|. δp/δǫ, whereδp is the typical variation of impact parameter due to the horizontal

gradients, andδǫ is the corresponding bending angle variation. Assuming that δp≈ 0.1 km, andδǫ≈ 0.01 rad, we arrive at to

arrive at a first quantitative estimate ofβ ≈−10 km/rad.335

3.3 Affine transform for updating existing CT algorithms

Modification of existing numerical algorithms may not be so straightforward, as it follows from the above mathematical consid-

erations. In order to avoid this, it is possible to complement an existing implementation of any WO-based numerical algorithm

by an additional affine transform.

We will now derive the transform between̂u(0; p̃) and û
(
β; p̃

′

)
. We can write the following transform between these340

representations:

p̃
′

= p̃−β (ξ− ξ0) ,

ξ
′

= ξ, (36)

whereξ0 is the reference point. This is an affine transform in the(p̃, ξ) plane. This suggests the abbreviation CT2A for the new

generalized form, which stands for the CT2 complemented with the affine transform.345

The generating function of transform (36)S
(
p̃

′

, ξ
)

is defined by

dS(β) = ξdp̃
′

+ p̃dξ, (37)

which is equivalent to the following system:

∂S(β)

∂p̃
′

= ξ,

∂S(β)

∂ξ
= p̃= p̃

′

+ ξ (ξ− ξ0) . (38)350
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Figure 3. Statistics for latitude band 0◦–10◦. Left: number of data; right
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From this, we can conclude that

S(β)
(
p̃

′

,β
)
= p̃

′

(ξ− ξ0)−β
(ξ− ξ0)

2

2
. (39)

This phase function defines the FIO of the first type:

û
(
β; p̃

′

)
=

√
−
ik

2π

∫
exp

(
ikS(β)

(
p̃

′

, ξ
))

ũ(ξ)dξ ≡ Φ̂
′(β)
1 [u(t)] (p̃) (40)

Finally, we can write the operator relation:355

Φ̂
(β)
2 = Φ̂

′(β)
1 Φ̂

(0)
2 , (41)

which can be used for the modification of the existing versionof operator̂Φ(0)
2 .

The above derivation allows for one more generalization. Wecan considerβ = β (ξ). In this case, the phase function is

derived in a straightforward way:

S(β)
(
p̃

′

, ξ
)
= p̃

′

(ξ− ξ0)−

∫
β (ξ)(ξ− ξ0)dξ. (42)360

Usingβ (ξ) =
∑
βjξ

j results in a simple analytical expression forS(β) with a set of tuning parametersβj . In this work, we,

however, use a constantβ.

4 Implementation and numerical performance evaluation

Our implementation of the CT2A algorithm was based on the existing program code with addition of the parameterβ and using

the modified functionf
′

(Υ) as defined by Eq. (35). Practically, this only required modification of a few lines in the program365

code that implements the CT2 method, as well as the implementation of one more command line parameter.
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Figure 5.Statistics for latitude band 20◦–30◦. Left: number of data; right
✿

.
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Middle: total relative difference of refractivity COSMIC–ECMWF
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(NC −NE)
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/NE
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total
✿✿✿✿✿✿✿✿

difference
✿✿

of
✿✿✿✿✿✿✿✿
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✿✿✿✿✿✿✿✿✿
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All
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are functions of the parameter

β.

In our numerical validation, we retrieved COSMIC refractivity profilesNC , using COSMIC data from the year 2008, 1st and

15th day of every month, leading to a total of 24 days and altogether around 60000 RO events. We used collocated ECMWF

refractivity profilesNE , i.e., interpolated to the corresponding COSMIC RO event location, as the reference.
✿✿

To
✿✿✿

this
✿✿✿✿

end
✿✿✿

we

✿✿✿✿✿✿✿✿

employed
✿✿✿✿✿✿✿✿

ECMWF
✿✿✿✿✿✿✿

analyses
✿✿✿

at
✿✿✿✿✿✿✿

1-degree
✿✿✿✿✿✿✿✿✿

latitudinal
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

longitudinal
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿✿

with
✿✿✿

91
✿✿✿✿✿✿✿

vertical
✿✿✿✿

level
✿✿✿✿✿✿✿✿

covering
✿✿✿

the
✿✿✿✿✿✿✿

altitude370

✿✿✿✿

range
✿✿✿

up
✿✿

to
✿✿✿✿✿

about
✿✿✿

80
✿✿✿✿

km.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

refractivity
✿✿✿✿

was
✿✿✿✿✿✿✿✿

evaluated
✿✿✿✿

from
✿✿✿✿✿✿✿✿

pressure,
✿✿✿✿✿✿✿✿✿✿✿

temperature,
✿✿✿

and
✿✿✿✿✿✿✿✿

humidity
✿✿✿✿✿✿

fields.
✿✿✿

The
✿✿✿✿✿✿✿

tangent
✿✿✿✿✿

point

✿✿✿

drift
✿✿✿✿

was
✿✿✿✿✿

taken
✿✿✿

into
✿✿✿✿✿✿✿

account.
✿

We used the total relative difference of COSMIC from ECMWF (the difference metric), defined as√〈
(NC −NE)

2
〉
/NE

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

√〈
((NC −NE)/NE)

2
〉

, which includes both mean (systematic) and fluctuating (random) deviations.
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Figure 6.Statistics for latitude band 30◦–40◦. Left: number of data; right
✿
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Middle: total relative difference of refractivity COSMIC–ECMWF
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Figure 7.Statistics for latitude band 40◦–50◦. Left: number of data; right
✿

.
✿✿✿✿✿✿

Middle: total relative difference of refractivity COSMIC–ECMWF
√

〈

(NC −NE)
2
〉

/NE
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

√
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((NC −NE)/NE)
2
〉

. Both
✿✿✿✿

Right:
✿✿✿✿

total
✿✿✿✿✿✿✿✿

difference
✿✿

of
✿✿✿✿✿✿✿✿

refractivity
✿✿✿✿✿✿✿✿✿

CT2A–CT.
✿✿

All
✿

are functions of the parameter

β.

Figure 3 through 11 show the statistical values of

√〈
(NC −NE)

2
〉
/NE

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

√〈
((NC −NE)/NE)

2
〉

as function of latitude

and parameterβ. We averaged over 10◦ wide latitude bands including both South and North hemispheres. The parameterβ375

changed in the interval from−4 to−12 km/rad with the step of 1.

These results indicate that for latitudes 0◦–50◦, in the altitude range from 0.5 km to 1.9–2.5 km, the application of the CT2A

algorithm allows minimizing the total relative differenceof refractivity profiles COSMIC–ECMWF

√〈
(NC −NE)

2
〉
/NE

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

√〈
((NC −NE)/

The optimal value of parameterβ is found to be−6 to−8 km/rad. The CT2A algorithm also improves the penetration increas-
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Figure 8.Statistics for latitude band 50◦–60◦. Left: number of data; right
✿
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✿✿✿✿✿✿

Middle: total relative difference of refractivity COSMIC–ECMWF
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Figure 9.Statistics for latitude band 60◦–70◦. Left: number of data; right
✿

.
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Middle: total relative difference of refractivity COSMIC–ECMWF
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All
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β.

ing the number of data in the altitude range below 0.5 km. Herethe difference metrics forβ = 0 and optimalβ cannot be380

directly compared, because they are evaluated over different statistical ensembles.

✿✿

If,
✿✿✿✿✿✿✿✿

however,
✿✿✿

we
✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿✿✿

statistics
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿✿

datasets
✿✿✿✿✿✿✿✿

common
✿✿✿

for
✿✿✿✿✿

β = 0
✿✿✿

and
✿✿✿✿✿✿✿

current
✿✿✿✿✿

values
✿✿✿

of
✿✿

β,
✿✿✿✿

then
✿✿✿

we
✿✿✿✿✿

reveal
✿✿✿✿✿✿✿

another

✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿

property
✿✿

of
✿✿✿

the
✿✿✿✿✿

CT2A
✿✿✿✿✿✿✿✿✿

algorithm.
✿✿✿

The
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿

refractivity
✿✿✿✿✿✿✿

retrieved
✿✿✿✿

with
✿✿✿✿✿

β = 0
✿✿✿✿

and
✿✿✿✿

other
✿✿✿✿✿✿

values

✿✿

of
✿

β
✿✿

is
✿✿✿✿✿✿✿✿✿✿

vanishingly
✿✿✿✿✿

small
✿✿✿✿✿✿

(never
✿✿✿✿✿✿✿✿

exceeding
✿✿

a
✿✿✿✿

level
✿✿

of
✿✿✿✿✿✿✿✿✿

0.0005%),
✿✿✿

but
✿✿✿✿✿✿✿✿✿

increasing
✿✿

β
✿✿✿✿✿✿

provide
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿✿✿✿✿✿

deviation
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿

ECMWF

✿✿✿

and
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿

data
✿✿

as
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿✿

Figures
✿✿

12
✿✿✿

and
✿✿✿

13.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

indicates
✿✿✿

that
✿✿✿✿✿✿

CT2A
✿✿✿✿✿

allows
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿

of
✿✿

a
✿✿✿✿✿✿

quality385

✿✿✿✿✿✿

control
✿✿✿✿

(QC)
✿✿✿✿✿✿✿✿✿

procedure
✿✿✿

not
✿✿✿✿✿✿✿✿

involving
✿✿✿

any
✿✿✿✿✿✿✿

external
✿✿✿✿

data
✿✿✿

and
✿✿✿✿

only
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

properties
✿✿

of
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿

signals.
✿✿✿✿

This
✿✿✿✿

can
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Figure 10. Statistics for latitude band 70◦–80◦. Left: number of data; right .
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Middle: total relative difference of refractivity COSMIC–
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Figure 11. Statistics for latitude band 80◦–90◦. Left: number of data; right .
✿✿✿✿✿✿✿

Middle: total relative difference of refractivity COSMIC–

ECMWF
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difference
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All are functions of the
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✿✿

be
✿✿✿✿✿✿✿✿✿

interpreted
✿✿

as
✿✿✿✿✿✿✿

follows.
✿✿✿

By
✿✿✿✿✿✿✿✿

extracting
✿✿✿✿✿✿✿✿✿

inversions
✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿✿✿

common
✿✿✿

for
✿✿✿✿✿✿✿

different
✿✿✿✿✿

values
✿✿✿

of
✿

β
✿✿✿

we
✿✿✿✿

look
✿✿

at
✿✿✿

the
✿✿✿

ray
✿✿✿✿✿✿✿✿

manifold
✿✿

in
✿✿✿

the

✿✿✿✿✿

phase
✿✿✿✿

space
✿✿✿✿✿

from
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿

directions
✿✿✿

and
✿✿✿✿

only
✿✿✿✿✿✿

choose
✿✿✿✿✿✿

events,
✿✿✿✿✿✿

where
✿✿

the
✿✿✿✿

ray
✿✿✿✿✿✿✿

manifold
✿✿✿✿✿✿✿✿

structure
✿✿

is
✿✿✿✿✿

stable.
✿

5 Summary and conclusions

In this study we discussed the general idea of the Canonical Transform (CT) method and provided a new generalization390

adding more flexibility for application in RO processing. The idea came from quantum mechanics, where it was shown that the

canonical transforms as they are understood in classical mechanics (geometrical optics) are implemented in quantum mechanics
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(wave optics) by linear operators with oscillating kernels. Such operators are referred to as Fourier Integral Operators (FIOs).

During the past century, this approach acquired a solid theoretical basis. In numerous mathematical monographs, one finds the

advanced theory of FIOs. The central role in this theory is played by the concept of the ray manifold and its projections.395

The CT method has been applied for RO observations for a long time. Although there have been many modifications, like

original CT combined with Back Propagation (BP), Full-Spectrum Inversion (FSI), Phase Matching (PM), and CT of type 2

(CT2), there is no essential difference between these FIO-based methods. The difference consists in the approximationof the

phase function of the FIO, leading to the corresponding approximate representation of the impact parameter and bendingangle,
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and in the specific implementation (such as cut-off, filtering, and quality control procedures). All these methods map the wave400

field to the representation of the impact parameterp. The reason for this choice of the coordinate in the mapped space is that

in the case of a spherically-symmetric medium, the impact parameter is always a unique coordinate of the ray manifold.

Because the real atmosphere is not spherically-symmetric,this results in some aggravation. First, in the strict sense, there is

no such a quantity as the impact parameter as a unique variable any more. But it is still possible to operate with the effective

impact parameter, derived from Doppler frequency shift using the same relations as for a spherically-symmetric medium. This405

quantity can be implemented in the observation operator forthe variational assimilation of RO observation, cancelling errors

due horizontal gradients. However, the above property of the impact parameter, which is supposed to be the unique coordinate

of the ray manifold, does not always hold for the effective value. In some cases, the situation referred to as the impact
✿✿✿✿✿✿✿✿

parameter

multipath may occur, resulting in retrieval errors in atmospheric profiles derived from RO data.

In order to partially mitigate this fundamental shortcoming, we introduced a generalization of the CT approach. We used410

a generalized definition of the coordinate in phase space, defined as a linear combination of impact parameter and bending

angle. Because this can be understood as an affine transform of the phase space, we coined the abbreviation CT2A for the new

method. This transform has a parameterβ, which can be tuned to minimize the retrieval error.

To find such a value of the parameter by statistical performance evaluation under real RO observation conditions including

challenging horizontal gradients in the lower troposphere, we processed a large ensemble of COSMIC RO data for the year415

2008, 1st and 15th day of every month, adding up to a total of about 60000 RO events. We used the total relative difference of

COSMIC from collocated ECMWF analysis profiles over the lowertroposphere as the metric for this evaluation and the tuning

parameter estimation.

For latitudes 0◦–50◦, in the altitude range from 0.5 km to 1.9–2.5 km, the application of the CT2A algorithm was used to

statistically minimize theCOSMC–ECMWF
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

COSMIC–ECMWF
✿

difference metric and the optimal value of parameterβ is420

found to be−6 to −8. We found that the CT2A algorithm as well improves the penetration statistics of RO profile retrievals,

increasing the number of data in the altitude range below 0.5km.
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other
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hand,
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implementation
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any
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external
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information
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about
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the
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atmospheric
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refractivity,
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but
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✿✿

on
✿✿✿
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analysis
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structure
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To
✿✿✿✿

this

✿✿✿

end,
✿✿✿

we
✿✿✿✿✿✿✿✿

consider
✿✿✿✿✿✿✿✿

inversions
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that
✿✿✿
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common
✿✿✿

for
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allows
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for
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events
✿✿✿✿
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✿✿

a
✿✿✿✿✿✿✿✿✿✿

pronounced425

✿✿✿

ray
✿✿✿✿✿✿✿

manifold
✿✿✿✿✿✿✿✿

structure.
✿

Overall these results suggest that the CT2A method is not only theoretically an innovative generalization of the CT/FIO

class of methods but also practically a valuable advancement for RO processing in that it can improve the capability to cope

with challenging horizontal gradient conditions in the lower troposphere
✿✿✿

and
✿✿✿✿✿

serve
✿✿

as
✿✿✿✿✿

basis
✿✿

of
✿

a
✿✿✿✿

new
✿✿✿

QC
✿✿✿✿✿✿✿✿✿

procedure.

Data availability. The COSMIC data used in this study are freely available at CDAAC Web-site.430
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