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Abstract. By now, a series of advanced Wave Optical (WO) approachdeetprocessing of Radio Occultation (RO) observa-
tions are widely used. In particular, the Canonical Tramaef¢CT) method and its further developments need to be mesdio
The latter include the Full Spectrum Inversion (FSI) methitbd Geometric Optical (GO) Phase Matching (PM) method, and
the general approach based on the Fourier Integral OpsrétDs), also referred to as the CT type 2 (CT2) method. The
general idea of these methods is the application of a caalnansform that changes the coordinates in the phase &pace
time and Doppler frequency to impact parameter and bendigteaFor the spherically symmetric atmosphere, the impact
parameter, being invariant for each ray, is a unique coatdiof the ray manifold. Therefore, the derivative of thegghaf the
wave field in the transformed space is directly linked to teeding angle, as a single-valued function of the impactrpater.
However, in the presence of horizontal gradients, this @ggr may not work. Here we introduce a further generalinatio
the CT methods in order to reduce the errors due to horizgraaients. We describe, in particular, the modified CT2 weth
denoted CT2A, which complements the former with one moraatiiansform: a new coordinate that is a linear combination
of the impact parameter and bending angle. The linear caatibimcoefficient is a tunable parameter. We derive the eipli
formulas for the CT2A and develop the updated numericalrdlyn. For testing the method, we performed statisticalyana
ses based on COSMIC RO retrievals and (collocated) ECMWHsisgbrofiles. We demonstrate that it is possible to find a
reasonably optimal value of the new tunable CT2A parambsmhinimizes theoot mean square difference between the RO-
retrieved and the ECMWEF refractivity in the lower troposghand allows the practical realization of the improved cdjgb

to cope with horizontal gradients and serve as basis of a é\wrQcedure.

1 Introduction

The first step in the development of wave optical (WO) appndacthe processing of radio occultation (RO) observations
was made by Melbourne et al. (1994), who used the thin scneprogimation for the atmosphere combined with the Back
Propagation (BP) technique. This approach was furtherldeed under the name of Fresnel Inversion by Mortensen arsdj Hg
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(1998). Although the accuracy of this approximation in loweposphere was insufficient for the practical applicatits basic
idea was correct. It consisted in the reduction of the infteeof the diffraction by using the BP, which made the inversio
results independent from the observation distance ancetaththe resolution restriction due to the Fresnel zone size

Later works (Gorbunov et al., 1996a; Karayel and Hinson,71¥8orbunov and Gurvich, 1998a, b) developed a different
understanding of the BP technique. The BP wave field evaliatgome plane was not considered as the actual wave field, but
as a representation of the original field observed at the LarthEorbit (LEO): in this representation, the effects ofrdi€tion
and multipath propagation were significantly reduced. [Tims straightforward way, allowed evaluation of the geainet
optical (GO) bending angle profile, which was inverted in ftemework of the standard GO scheme (Ware et al., 1996;
Kursinski et al., 1997).

The further development of the WO approach based on theseptaion view relied upon the concept of the Canonical
Transform (CT) originating from the classical mechanicsn@d, 1978; Goldstein et al., 2014), generalized for thangum
mechanics by Fock (1978), mathematically substantiatdeoyov (1985); Egorov and Shubin (1993). Further on thiceph
obtained an extensive mathematical development (Tre@&24dl b; Hérmander, 1985a, b). The correspondence betleen t
guantum and classical mechanics is the same as the link &etive wave optics and geometrical optics.

In both cases, there is a strict mathematical representéiicantum mechanics or wave optics) and its asymptotidisalu
(classical mechanics or geometrical optics). While thewdiarh of de Broglie waves of probability or electromagnetaves is
described by the Hamilton operator, the evolution of rayslassical trajectories of particles is described by Hamiltystem,
where the Hamilton operator is obtained by the substituta@momentum operator instead of classical momentum. Alecor
ingly, for the classical problem the phase space is intreduthe dimension of which equals doubled geometric dinoensi
because to each geometrical coordinate we can conjugateriesponding momentum. For the wave problems momentum is
understood as the ray direction vector.

The canonical transforms arise, when we consider the cfabhe transforms of the phase space that conserve the cahonic
form of the Hamilton dynamical system. It was first demortetiieby Fock (1978) that these transforms have a very simple
implementation in the quantum mechanics: they correspordhéar transforms of the wave function. The kernel of this
transform is derived in classical terms, but, still, it déses a short-wave asymptotic solution of the wave probl&his
idea was later mathematically developed first by Egorov §)9Bgorov and Shubin (1993) and then by Treves (1982a, b);
Hoérmander (1985a, b).

The application of the CT approach for the RO observatiorcgssing was pioneered by Gorbunov (2002), where it was
combined with the BP. The idea of the CT without BP was firstettgyed by Jensen et al. (2003, 2004) and later the general
view at these results in the framework of the CT approach veasldped by Gorbunov and Lauritsen (2004a, b). Finally, it
was recognized that the different methods: CT (Gorbuno02p0Full-Spectrum Inversion (FSI) (Jensen et al., 200Bade
Matching (PM) (Jensen et al., 2004), and CT of the 2nd type2[GGorbunov and Lauritsen, 2004a) were, in fact, different
approximations of the same solution, for which Fourier dgn¢é Operators (FIOs) provided the general transform aggro
(Gorbunov and Lauritsen, 2004a).
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The idea of the CT approach is as follows. Given the obsemator RO complex signad (t) as function of time, which
can be represented through its amplituti¢) and phase (), u(t) = A(t)exp (i¢ (¢)) . It is convenient to use eikonal, or
phase pathl (¢t) = ¢ (t)/k, wherek = 27 /X is the wavenumber, antlis the wavelength. Thus, (¢t) = A (t) exp (ik¥ (1)) ,
andk is the large parameter. The signal is composed of multigbessgnalsu, (t) = A; (¢) exp (ik¥; (t)) corresponding to
interfering rays. For each sub-signal it is possible tadidtrce the instantaneous frequedy; = ko;. However, instantaneous
frequency cannot be introduced for their composition.

The multipath propagation problem consists in the de-caitipo of the signal equal to the sum or different sub-signial
retrieve the ray structure of the observed field. The sahutidhis problem discussed in the aforementioned papersisted in
the transform of the observed wave fiel(t) into a different representation. The new coordinates inrtiresformed space were
the ray impact parameterand bending angle The transforn{t,o) — (p,€) is canonical (Gorbunov and Lauritsen, 2004a),
which allows for writing the corresponding linear transfob,, where the subscript 2 indicates that it is a CT of the 2nd type
(Arnold, 1978; Goldstein et al., 2014), that maps the oggfield « (¢) to field in the impact parameter representatidp) =
o, [u(¢)] (p). The idea of the choice of the ray impact parameter as the nerdinate is based on the fact that in a spherically-
symmetric medium, ray impact parameter is the ray invariahich is knowna-as Bouger’s law. The locally spherically-
symmetric medium is the basic approximation used in thergiwa of RO data. For the real atmosphere with horizontal
gradients, the dynamic equation fprwas derived by Gorbunov and Kornblueh (2001), who demotestrtéhat derivative
of p with respect to the ray arc length is equal to the horizontahmonent of the refractivity gradient in the occultation
plane. Strong horizontal gradients may result in the simaivhen dependence(p) becomes multi-valued (Healy, 2001;
Gorbunov and Lauritsen, 2009), which was referred to asipact parameter multipath (Zou et al., 2019).

The idea explored in the present manuscript consists inutteer development of the CT approach by using a generalized
transform with the coordinate = p+ Be. Unlike the standard CT approach, where the form of the newdinates in the
phase is known in advance, this transform has the tunalderpers that can take into account the statistical impact parameter
multipath effect.

The paper is organized as follows. In Section 2 we discussahenical transform in wave optics and quantum mechanics in
general terms, including brief review of FIOs. Based on tloistext we discuss in Section 3 the application of the CT ogkth
for RO and introduce the particular phase space and thefpaudice of coordinates as well as the new generalizatioingd
an affine transform with a tunable parameter for improvedcthy@ing capability with horizontal gradients. In Section é w
discuss the practical modifications needed to readily amb/@xisting numerical implementations of the CT algorithmd a
present results of our performance evaluation from pracgsgal-observed COSMIC RO data, including how to find an
optimal value of the tunable parameter minimizing fystematiaetrievalerrors in the lower troposphere. Section 5 finally
provides the summary and main conclusions of the paper.

2 General concept of Canonical Transform in Wave Optics
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TheCanonicallransforms
(CTs)in the classical mechaniggrre
of transformsof the coordinates and mometitat-conserve, conservingthe Hamiltonian form of the dynamical equation
(Arnold, 1978, Goldstein et al., 2014jock (1978) introduced the CT in the quantum mechanicse Nlo¢ first Russian edition

of the monograph Fock (1978) appeared as early as in 1928uBecthe relation between the classical and quantum meshani

marea class

on one side, and the relation between the geometrical and wjtics, on the other sidare the same, we can immediately
apply the approach introduced by Fock (1978).
We assume that the wave field is can be represented in theastsfiodm:

u(t) = A(t)exp (k¥ (1)), @)

wheret is the observation timeV (¢) is the eikonalk = 27/ is the wavenumbep, is the wavelength4 () is the amplitude.
The timet can be associated with a specific spatial location of thergasen, as it is the case in RO, bu{t) can also be
looked at agieneral genericsignal.

The amplitudeA (¢) and the derivative ol (¢) are assumed to be slowly changing within an oscillationqeerin this case,
the wave field is termed quasi-monochromatic with an instamplitudeA (¢) and frequency (t) = kW (t). Otherwise, more
generally, the field should be equal to a super-position aégmonochromatic components:

u(t) = ZA(j) (t)exp (ik’\IJ(j) (t)) , @)

where the upper index enumerates the components;) (¢) are their amplitudes, anél?) (¢) are their eikonals. Each com-
ponent has its own instant amplitude and frequency.

When discussing the CTs, it is necessary to bear in mind that afidhe relations have an asymptotic nature, wliegethe
large parameter (oxis the small parameter). The reason is as follows. Given uneagents of wave field, each monochromatic
component can be interpreted in terms of wave fronts and-agshpeintdefinedn termsof instanttonesof thesignal At the
observatiorpoint at time momentt, eachcomponentas a single ray, and its direction is linked to the normadlizequency
o(t)=W(t)- [ it ' iti i i [ [

throughthe geometryof the observatiortrajectory.
Therefore, for a specific class of signals, including qumasirochromatic ones and their superposition, it is posgible

introduce a phase spa¢e o). Although the original signal is 1-D, this space is 2-D, ahd structure of the signal can be
described in terms of the functien(¢) which can be both single-valued for quasi-monochromagjonals, or multi-valued for
Consider RO observatioasan-example The original signal corresponds to a range of rays stainthe transmitter
and the phase spaeq(t) is a very smooth continuous line. As the signal propagatesugh the atmosphere its structure
gets more and more complicated. Still, in the phase spadegtsogical structure remains the same: it is always a sing|
continuous line, although it may not be single-valued wibkpect to time, which corresponds to multipath propagation
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(Gorbunov, 2002; Gorbunov and Lauritsen, 2004a). Suchearépresenting the signal structure is referred to as theeay-
fold (Mishchenko et al., 1990).

The outstanding and, still, simple idea of Fock (1978) was the classicatanenicalransfermsCTs correspond to linear
integral transforms of the wave field with oscillating kdmd his class of transforms was later named Fourier Intégper-
ators (FIO) (Egorov, 1985; Egorov and Shubin, 1993; Tre%682a, b; Hoérmander, 1985a, b). The general form of such an
operator first discussed by Fock (1978) has the followingfor

i0) =\~ 5r [ ax(ot)exp (kS (p.0) u(t)de = Ba[u 0] (1), €

wherep is a new coordinate in the mapped space. We use notétjoand, accordinglya, and.S,, because this type of
operators was referred to as the FIO of the second type (Bovband Lauritsen, 2004a), while the FIO of the first type & th
composition of a Fourier transform and a second-type FIQ{&g 1985; Egorov and Shubin, 1993). This type of operators
is linked to the corresponding type of t@d generating function (Arnold, 1978; Goldstein et al., 20INte, historically FIO
of the second type appeared first, but in mathematical wokkas FIO of the first type that were discussed first.

Considering now (t) as a guasi-monochromatic signal, we can derive the asyimftotn of transform (3) using the
stationary phase principle:

ik
i0) =\~ 5r [ a2 (00) A exp (K(Sa (0.0) + ¥ (1) de = B2 u(0) (), @
The stationary phase poiti(p) of this integral satisfies the equation:
) .
5252 (p,t) + ¥ (1) = 0. ©)

Accordingly, the transformed field, under the assumptiantine Eq. (5) has a single solutian(p), is also quasi-monochromatic
and can be written as follows:

i(p) = A" (p)exp (k¥ (0)) = A’ (p)exp (ik (S2 (p,ts (9)) + ¥ (£ () (6)

Its instantaneous frequency equals:

EB) =V (0) = = (Sa (pta () + ¥ (£ (1)) =

dp
9 9 0. dt,
= 87)52 (p,ts (p) + <87552 (pﬂfsp) + E‘I"I’ <t5p)> =t @) gy
0
= -52(p,ts (P)) @)

dp

by virtue of Eq. (5). Recalling thal (t) = o, which is the original momentum, we have the following riglatbetween the
canonical coordinate3, o) and(p,£), in the original and mapped spaces:

0S5 055
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Figure 1. Radio occultation observation geometry with relevant geometrical vasiaiécated (for description see Sect. 3.1)

which can be expressed in terms of the differentis]:
dSs = E&dp — odt. 9)

150 And, vice versa, the requirement that the right-hand paEdn (9) should be equal to a full differentidls; of a function
Sy (p,t) is a necessary and sufficient condition for the transf@rm) — (p, o) to be canonical (Arnold, 1978; Goldstein et al.,
2014). The functiorb (p,t) is then termed the generating function of the canonicabkfram.

In terms of FIO,S: (p,t) is referred to as its phase function, amg(p,t) is its amplitude function. The phase function,
which specifies the canonical transform, is of primary int@oce, while the amplitude function is derived using thergyne

155 conservation (Gorbunov and Lauritsen, 2004a). We seegftiver; that using the classical, or geometric optical cpts;ét is
possible to write down the asymptotic form of the quantumiyave optical operator implementing the transformatiorhef t
original signal into a different representation. If theusture of the original signal is represented as a ray mahifolhe phase
plane, such a transform is applied to the coordinates insigge. In particular, it may be possible to find such a coatdin
system, where the ray manifold geometry will be exceptigrample.

160 3 The Canonical Transform method for RO and its generalizaton

Here we discuss the application of the CT technique for tladyais of RO observations (Fig. 1) by first reviewing the eliéint
existing variants (3.1) and then introducing the new gdize@ CT method (3.2) and an application-relevant formatafor
readily updating existing algorithms (3.3).

3.1 Canonical Transform method in different existing variants

165 The RO observation geometry is schematically represemtddgure 1. The wave emitted by a transmitter Tx is received
by a receiver Rx on a low-Earth orbit. Transmitter is borneatsatellite belonging to one of the modern Global Navigation
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Satellites Systems (GNSS), including GPS, GLONAGSIileo, etc. Due to the movement of the transmitter and recegitier
ray descends or ascends in the atmosphere, which allowsthatibn of the atmospheric profiles from the bending amgle
e(p) (Ware et al., 1996; Kursinski et al., 1997). The CT techniguesed for the retrieval of bending angle profile from the
wave field measurements.

The first approach of processing RO data, belonging to thres d&CT, was the Back Propagation (BP) (Gorbunov et al.,
19964a; Karayel and Hinson, 1997; Gorbunov and Gurvich, 4988 In this technique the field was linearly transformebdo
re-calculated to the BP plane locate at coordinate

\/* / )exp ( Zk‘|I'B<)_I‘R(t)|) lsing (ir(t), 5 (y)—rr () tr (1) dt, (10)

It5 (y) —rr (8]

where 2-D vectorg (y) equals(zs,y), ¢(a,b) is the angle between vectossandb. This transform is preceded by the

stationarization of the transmitting satellite and proat of the satellite movement to the vertical plahate thesame
' i hedlt is important that the BP field is not the real field in the

BP plane, because the BP procedure assumes the vacuumaiopaghis procedure results in some representation of the
original wave field with reduced diffraction effects due ke treduction of the propagation distance. The new coorlinat

is more favorable for finding a unique projection of the raynifEd that disentangles the multipath propagation. Stilis
coordinate is not the best choice.

A much better coordinate for the new representation shoallithé impact parameter because in a spherically-symmetric
medium it is an invariant for each ray due to the Bouger law, #nus it is unique for each ray. A dynamic equation for the
variation ofp along the ray as a function of the horizontal gradient ofaetivity was obtained by Gorbunov and Kornblueh
(2001). The idea of complementing the BP technique with oneentransform that maps the field to the impact parameter
representation was ploneered by Gorbunov (2002). It waﬁrttteappllcatlon of the FIO of the first type, whiébinked-to
rethas the form

\/—ﬁ / 01 (p,0) exp (ikS: (p, 7)) (o) do = By [u (1)) (p), (11)

where the only difference with the second type operatorasittacts upon the Fourier-transformed figlfb). It can be looked

at as the composition of the Fourier transform, which itse second type FIO, and the other second type FIO. Becaese th
Fourier transform is a simple rotation of the phase space My (t,0) — (0, —t), the equation for the phase functiofithe

first typetakes the fornfArnold, 1978; Goldstein et al., 2014)
dSy = &dp+tdo. (12)

Gorbunov (2002) applied this operator to the back-propabfeld. To this end, using the normal vectoe (n, V1— 772) to
the straight ray, we express the impact parameter:

p(zw) =—an+yy1-n (13)
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Now it is necessary to find the canonical transfam) — (p, {)—Weleokforthefirsttypeoperatorapplythepropertyef,
whosecharacteristipropertyin the 2-D eanenicatransformdhateenservahecasds the conservatiorf thevolume element,

whieh-asfollows from Eq. (12):

0§ 0p O dp
ondy Oyon LL (14)

andadditionalassumptioft is enoughto considersolutionsé = £(n). Then, from Eqd4(14), we readily derive:
L
on dy V1—n2
& = arcsing (15)
This results in the solution for the phase and amplitudetfans:

S (p,n) = p arcsinn — xﬂ,

2
az (p,n) = || ;p;’ = (1—?) " (16)

This defines the FIO, which is applied to the backpropagateebvieldu s (y) and produces the mapped field

i =4 s (it [€wrap). )
The derivativef (p) of its eikonal is algebraically linked to the bending angle:

e(p) = =& (p) — arcsin (mTp+ yr Ve —p2> , (18)

2
TT

where(zr,yr) = rr is the transmitter position in the occultation plane. Beegthe cross-term iz, which depends both on
p andmn, is linear with respect tp, the integration over new coordinage= arcsinn turns it top¢ and, therefore, the operator
is reduced to the Fourier transform in combination with a-lioear change of coordinate. This indicates that this ajoer
allows a fast implementation. A similar idea will be appliselow.

The complicated nature of the BP+CT algorithm stimulatathier studies (Gorbunov and Lauritsen, 2002, 2004b) where
the idea was expressed of applying the FIO directly to theevlesl wave fieldu (), without intermediate and numerically
expensive steps like BP. Full-Spectrum Inversion (FSlettged by Jensen et al. (2003) was the first solution of tige,ty
although with some restrictive assumptions. However, #reegal solution was just one year away: the Phase Matchiy (P
was developed by Jensen et al. (2004) and theimguto the context of the CT approach by Gorbunov and Lauritsen4@0)0
whoalseintroduced an approach based on the linearized canonézedform that reduced the FIO to the composition of non-
linear coordinate changes and Fourier transform. Thisrign was termed the 2nd type CT, or CTBh importantadvantage

of the PM and CT2 methodsconsistsin the fact that they operatewith the real transmitterand receiverorbits, without the
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In order to arrive at the phase function of the FIO of the 2nmétyconsider the expression for the derivative of the phise o
the observed wave field:

U= o(py) =ph+ /13 —p?+ -2\ /12— p2, (19)
rr R

Using Eq. (8), we derive the phase function:

sutn=— [ (v T e
rr TR
d d
:_/ <pd9+w\/ﬂ+m /@%_p2>:
rT TR
:—pe—\/r%—p2+parccos£—\/r%—pQ—f—parccosﬁ, (20)
rT TR

whered, r, andr g are functions of time. We do not reproduce here the derivation of the amplitudetfana, (p,t), which
uses simple geometrical considerations (Gorbunov andtsaar 2004a). This phase function, although providingait®irate
solution, has a disadvantage: its cross-term dependingthrplandtis, generally speakingiotreducedo-aform-efcannote

decomposedsq (p) g2 (t)—FheFlO-inrthegeneriesase, andtheFIO cannot be reduced to a Fourier transform in composition

with non-linear coordinate changes. Thistoweverpessibleintheparticularcaseof-only possiblein someparticularcases,
e.g.for circular orbits, when the phase function equaisand using as a new coordinate instead of time reduces the operator

to the Fourier transform. This method was referred to as FSI.
To find an approximate solution that significantly reducesabmputational costs at an expense of an insignificant tieduc
of accuracy, the representation of the approximate impaeimeter was introduced. The impact paramgisra function of

t,o: p=p(t,o). We introduce its approximatiop

oy o _ 9po
p(to)=po(t) + 5= (0 —00(t)) = f(t) + 50,
B
T =po(t) = 5200 (t) =
-1
o (%0 _dre  p_dre o - (21)
At dt ro\/rL—p2  dt rp/rE—p2 ’

whereo, () is a smooth model of normalized Doppler frequengyt) = p(t,o0(t)), anddpe /0o = Op/ 00| —u,(+)- We now
parameterize the trajectory with the coordinate= Y (¢). For brevity we use the notatianY') instead ofu(¢(Y)). For the

coordinateY’ and the corresponding momentumve use the following definitions:

—1
dY = (8}90) dt = a—adt,

do dpo
9po
_9Po 22
=557 (22)
Finally, we arrive at the following linear canonical traosh (T, 7n) — (p,&):
p=f(X)+n,
£=-T, (23)
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The generating function of this canonical transform islgasimputed from the differential equation

dSy = &dp—ndY = —Ydp— (p— f(T)) dY
S2(pYT) = Y+ [ Top(r T vy’ (24)
For the new coordinat® we have the following relation:

ar=a9_ e __po dri. __po (25)

2 3 2 3"
TG TG =Py "L \TL D

For circular orbits, this approximation, once again, reduto FSI. To evaluate the bending angle, we use the facthbat t

momentum of the field in the mapped space equdls We also evaluate the accurate impact parameser follows. Given

the dependenc¥(p), it is possible to find the corresponding tirti@). Using Eqg. (21), we infer:

-1
7 = - m(e o) () +o0(e(),
p(P) =p(t(p),o (D)) (26)

Finally, for each impact parametgr we determine the coordinat®(p) = —¢(p) and, therefore, the corresponding moment
of timet =¢ (Y (p)), when this ray was observed, the bending angle is then ewedl@imm the geometrical relation:
e(p)=06(t(Y (p))) — arccos P arccos—— 2. (27)

rr (t(T (p))) rr (t(T(p)))
This method termed CT2 indicates both a high accuracy ancrioah performance. This discourse leads us to the comelusi
that there is a family of closely related WO methods that aseed on the same principle. The observed wave field is selj&xt
a linear integral operator with an oscillating kernel tlahsforms the field into a different representation. Theaggntation is
chosen in such a way that the projection of the ray manifottiémew coordinate axis is unique. The operation is alsorexfe
to as unfolding multipath. Finally, such methods as CT, PM, and CT2 involve the evaluation of the same integral fans
under different assumptions and approximations. Therdiffee in the results of the application of these WO methotksis
significant than the difference coming from other parts ofd&@a processing systems, including cut-off, filtering, guoélity

control procedur . ; orbunov et al., 2004, 2011)

3.2 Generalized Canonical Transform method

All the modifications of the CT approach discussed abovedelipon impact parametgras the unique coordinate of the ray
manifold. However, impact parameter is, generally spegkiot invariant for each ray, and its perturbations due tizbatal
gradients may result in breaking the above condition. Totkise consider the ray equations in the Hamilton form. Tree ar

derived from the Hamilton function:

H(r,p)=5 (p*—n’(r)), (28)

1
2

10



280

285

290

295

300

wherep is the momentum, and(r) is the refractivity field. The Hamilton system has the foliog/form:

oH . oH . .
- P=——F—, ¥Y=pr,
or

r=p, p=nVn, \i/:nz, (29)

wherep is the classical momentum. Becauge = |V¥| = n, we arrive at the following differential relation betweeret
parametet- of this system, the ray arc lengthand the eikonal:

dT:%, dV =n ds. (30)
Equation (29) has a form that is specific for the Cartesiamdinates. Consider an arbitrary coordinate system withnibgic
tensorg;;: ds*> = dxz'g;;dx’, wherez® are the components of vectarand we follow the Einstein tensor notation implying the
summation over each pair of upper and lower indexes of the seame. If we define the momentum by the relajipa- gijx'j,
the formp dr is invariant, the transform to the new coordina(ﬁs a:i) is canonical, and the canonical form of the Hamilton
system also remains invariant (Arnold, 1978), provided the Hamilton function is defined as follows:

H (r,p) = 5 (pig’p; —n*(v)), (31)

1
2
whereg* is the matrix inverse tg;;. This results in the following form of the ray equations:

i i oOH on 1 0gki
apl g pj7pz a (9x1 2pk7 317’ p]

x’b

The 2-D approximation (Zou et al., 2002) allows treatingsrag plane curves. Consider polar coordinéate®) with the metric

tensor:
1 0 iy 1 0
L= KO
i = o 2]’ 9" = 0 2 (32)
Then we have the following equations:
Do = r20 = nr@ = nrsiny,
ds
o
Po = 807
.. on p?

wherev is the angle between vectoisandr. The angular component of the momentggncoincides with the ray impact
parametep, which is invariant in a spherically layered medium, butéstprbed by the horizontal gradients (Gorbunov et al.,
1996b; Gorbunov and Kornblueh, 2001; Healy, 2001; GorbuamaVv Lauritsen, 2009).

The variations of the ray impact parametghich is no longeraninvariantcoordinatein theray spaceseem to undermine
the elegant idea of the CT approablewthereishosuchaconvenientnvariantvalueaseribedoeachray-Still, the CT method
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Figure 2. Impact parameter multipath, old coordinate (impact parameter) lindsnadified coordinate lines.

can be applied using the same formulas, but the coordnatd now acquire a different meaning: it will be understoosl a
the “effective impact parameter”, i.e. the impact parametieich would result in the observed Doppler frequency slift
the atmosphere were spherically layered (Gorbunov et@L9R Accordingly, the evaluated bending angle will alsathe
“effective” bending angle. The reason is that for the eviduneof the real bending angle, understood as the angle leetthe
ray directions at the transmitter and receiver, two cowadpng values of the impact parameter are required, whinhatzbe
derived from the single variable, the Doppler frequencysThy itself, is not a significant problem, because the asiion
of bending angle profiles can be based on the effective véteiedunov et al., 2019), provided that the observation aiper
correctly implements their evaluation.

More importantly, horizontal gradients may result in muttlued ray manifold projections, when using the effectimpact
parametep as the coordinate in the mapped space. This situation istefimpact parameter multipath” (Zou et al., 2019).
Theoretically, for any ray manifold perturbation there aji& exists an unfolding coordinate transform. This folldmsn the
fact that topologically the ray manifold is always a conting line without self-crossing. However, this coordinassmsform
will-newdependdependon the a priori unknown horizontal gradients of refractivit

Typical multi-valued bending angle profile (Gorbunov anditissen, 2009; Zou et al., 2019) is shown in Figdt€. From
numerical simulations, it can be inferred that there is @ kihasymmetry: impact parameter multipath manifestsfiteelstly
in ascending spikes, but hardly in descending spikesedinglyAccordingly, in order to better unfold multipath, it must
be possible to use another coordinate in such a way that tifietbcoordinate lines are sloped. Therefore, we modify the

transform (23) in order to use another coordinate:

P =p+pT, (34)

12
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whereg is a tunable parameter and has a dimension of km/rad. Alththeyoptimal value of this parameter should be different
for individual events, the aforementioned asymmetry tesunlthe conclusion that the preferred valuesaf expected to be
negative. Therefore, it may be possible to find its optiméleahat, in the statistical sense, will minimize errors tluampact
parameter multipath.

The modified canonical transform (23) is written as follows:

P =f(0)+BT+n=f (T)+n,
£=-T. (35)

Using the modified functiorf’ (T) instead of the original one, we will obtain the expressiontfe modified FIOE;/Q. The
advantage of this approach is that it can be implemented lyyasimple modification of the existing CT2 algorithm. Using
the numerical implementation of the modified CT will allow tasstudy its influence upon the RO inversion statistics in the
lower troposphere.

Denote the generalized F@ﬁ)u (p) Consider the wave field in the impact parameter represent@t(ﬁ;ﬁ/) = %;% (p").
The standard CT algorithm corresponds to the evaluatian@fp) = a;% (p) with 8 =0.

It is possible to arrive at a quantitative estimateSdbased on (Gorbunov and Kornblueh, 2001; Gorbunov and Lsaum;t
2009; Zou et al., 2019). We expect that < dp/de, wheredp is the typical variation of impact parameter due to the rwrial
gradients, ande is the corresponding bending angle variation. Assumingdha: 0.1 km, andde ~ 0.01 rad, we arrive at to

arrive at a first quantitative estimate @t —10 km/rad.
3.3 Affine transform for updating existing CT algorithms

Modification of existing numerical algorithms may not be saightforward, as it follows from the above mathematicaisid-
erations. In order to avoid this, it is possible to compleh@mnexisting implementation of any WO-based numerical réidgm
by an additional affine transform.

We will now derive the transform between(0;p) and 4 (ﬂ; ﬁ/). We can write the following transform between these

representations:

p=p
£ =¢, (36)
where¢ is the reference point. This is an affine transform in({€) plane. This suggests the abbreviation CT2A for the new

generalized form, which stands for the CT2 complementel thi affine transform.
The generating function of transform (36)(15/,5) is defined by

ds¥) = ¢dp + pde, (37)

13
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which is equivalent to the following system:

5583

ij — S

95 (8B) ,

55 —&). 38
o P P +&(E—%) (38)

From this, we can conclude that

2
99 (5.8) =5 (e~ &) - pE=20 (39

This phase function defines the FIO of the first type:

a(55) = \/Z Jeww (52 (7€) ) a(©)ds = 8 0] 5) (40)

Finally, we can write the operator relation:

R RIS (41)

which can be used for the modification of the existing versiboperatortf)éo).

The above derivation allows for one more generalization.cafe consides = 5 (€). In this case, the phase function is
derived in a straightforward way:

S (7.€) = (-0 - [ (@) (€~ 0)de. 42)

Using 8 (€) = Y 3;&7 results in a simple analytical expression &) with a set of tuning parameters. In this work, we,
however, use a constafit

4 Implementation and numerical performance evaluation

Our implementation of the CT2A algorithm was based on thsteg program code with addition of the parametend using
the modified functiory’ (T) as defined by Eq. (35). Practically, this only required modifbn of a few lines in the program
code that implements the CT2 method, as well as the impleatientof one more command line parameter.

In our numerical validation, we retrieved COSMIC refraityiyprofiles N, using COSMIC data from the year 2008, 1st and
15th day of every month, leading to a total of 24 days and ettugy around 60000 RO events. We used collocated ECMWF
refractivity profilesNg, i.e., interpolated to the corresponding COSMIC RO eveaation, as the reference. To this end
we employed ECMWF analyses at 1-degree latitudinal and fodigial resolution with 91 vertical level covering the alte
range up to about 80 km. The refractivity was evaluated froesgure, temperature, and humidity fields. The tangent daft
was taken into account. We used theaRMS relative difference of COSMIC from ECMWghedifferencemetric) AN g,

defined as\/ (((No~ Ni) /Np)? ), which includes botinear(systemati¢-andiuctuating(randor) systematiandrandom
deviations.

14
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Figure 3 through 11 show the statistical value > >3 AN¢p as function of latitude and parameter
5. We averaged over 20vide latitude bands including both South and North hemisgheThe parametegt changed in the

interval from—4 to —12 km/rad with the step of 1.

These results indicate that for latitud@s-56-in-the-altituderangefrom-0-5-kmto-1-:9—2-5km0°=30°, for the altitudes

2.5km, the application of the CT2A algorithmlewsminimizingthetotattogethemwith our Quality Control (QC) procedure

2

resultsin the reductionof the RMS relative difference of refractivity profiles COSMIC-ECM
Fheoptimalvalueofparamete\ N . Thenumberof datain thealtituderangebelow3 km thatpasghe QC slightly decreases
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Figure 6. Statistics for latitude ban®0°—46>30°—40°. Left: number of data. MiddlgstatRMS relative difference of refractivity COSMIC—
ECMWF /A {{tNe—Nr) NeYyANg . Right: tetatRMS relative difference of refractivitycF2A-ETCT2A-CT2 Al are functions of
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the parametes.

with increasinglis-founete-be—6-to—38-. Above the heightof about0.4 km, increasingvalueof 5 reducesA N . Below
0.4km, thereis anoptimalvalueof 3, in theintervalfrom —4 to —9 km/rad-Fhe-, dependingn the altitudeandlatitude.For

the latitudeshigherthan30°, the applicationof CT2A algerithmalseimprovesthe penetratio asing umberof-da

H—hewever,we-evaluateThe statisticsfor different resentedn the aboveFigures,was evaluatedndependentlyj.e.
the statisticalensemblesveredifferent. Figure 12 and 13 showthe statistics over the datasets commondet 0 and current
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The statistical differences between refractivity

values off3 we-rey
retrieved with3 = 0 and other values of is vanlshlngly small (never exceedlng a level of 0.00058@}rereasings-provide
iadi — Herethe reductionof

AN¢g is slightly morethanin Figures3 and4
This indicates that CT2Alewstheimplementatiorsfa-quality-contro{QC)-actsasa QC procedure not involving any
external data and only based on the internal properties sérobd signalsFhis-canbeinterpretedasfollowsBy-extracting

400 inversionsthatarecommonfor-differentvaluesef8-welook-OntheaverageCT2A providesa highercut-off height,whichis
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estimatedrom the CT amplitudeby correlatingit with the §-function Gorbunov et al. (2006 By looking at the ray manifold

in the phase space from different directias wheretheray-manifoldstructurdsiit is possibleto choose
ray manifold pieceswhereits structureils moststable.

5 Summary and conclusions

405 In this study we discussed the general idea of the Canoniaisiorm (CT) method and provided a new generalization

adding more flexibility for application in RO processi



410

Altitude, km
Atlitutde, km
Atlitutde, km

o) /Z S I SR S o) S E———
0 200 400 600 800 0.5

1
Number of data Total N diff., %

- TR
25 0.5 1 15
Total N diff. CT2A-CT2, %

Figure 11.Statistics for latitude ban80°—96>80°—90°. Left: number of data. MiddlestatRMSrelative difference of refractivity COSMIC—
ECMWF v; ({Ne—Np Ny YANg 5. Right: tetabRMS relative difference of refractivitycT2A-CTCT2A-CT2 All are functions of

the parametes.

2 2k 2
13 E T Er
E £ £
g g g
2 £ E
<[ ZJ ZJ
1 1 1
Cif' N qi‘ M IR . S NI C’\\\\I\\r\\"\\\l\\\\
0 1000 2000 5 2 25 3 35 -1 -0.5 0 0.5
Number of data Total N diff., % Total N diff. CT2A-CT2, %
Figure 12. Statistics for latitude bané*—16~0°—10° evaluated for subsets common for= 0 and each other value @f. Left: number of

data. MiddleztetatRMS relative difference of refractivity COSMIC—ECMW@Z&%—ALE%%%Q—}&]\&E. Right: tetalRMS relative
difference of refractivitycF2A—CTCT2A-CT2 All are functions of the paramete

thecanonicalransformsastheyareundersteodCTsin classical mechanics (geometrical optics) are impleggkint quantum

mechanics (wave optics) by linear operators with osailtakiernels. Such operators are referred to as Fourier bit@gerators
(F10s). During the past century, this approach acquiredid #woretical basis. In numerous mathematical monogaphe
finds the advanced theory of FIOs. The central role in thisrhis played by the concept of the ray manifold and its prijes.

observationderalengtime-In quantummechanicandwaveoptics, FIOswere

rocedurej.e. the constructionof the asymptoticquantum(quasi-or semi-classicalyolutions
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onthebasisof theclassicalgeometricoptical)ones.Theideaof the CT methodfor processindrO observationss inversethe
reconstructiorof the geometricoptical solutionfrom the waveopticalone,which canbereferredto asthe dequantization.

Although there have been many modifications, like originald@mbined with Back Propagation (BP), Full-Spectrum Iaver
sion (FSI), Phase Matching (PM), and CT of type 2 (CT2), there essential difference between these FIO-based methods
The difference consists in the approximation of the phasetfan of the FIO, leading to the corresponding approxinmejpee-
sentation of the impact parameter and bending angle, ame isgecific implementation (such as cut-off, filtering, andliy
control procedures). All these methods map the wave feelito the representation of the impact parameterhereaserfor
thisThis choice of the coordinate in the mapped spac&athasits reasonin the case of a spherically-symmetric medium,
the impact parameter is always a unique coordinate of thenaayifold.
in the real, non-spherically-symmetriatmospheregncounterssomedifficulties. First, in the strict sense, there is no such

a quantity as the impact parameter as a unique variable any. iat it is still possible to operate with the effective iagp
parameter, derived from Doppler frequency shift using #maesrelations as for a spherically-symmetric medium. Thangjty
can be implemented in the observation operator for the tanial assimilation of RO observatiosancellingcancelingerrors
due horizontal gradients. However, the above propertyeirtipact parameter, which is supposed téHsz@ unique coordinate

of the ray manifold, does not always hold for the effectiviigaln some cases, the situation referred to as the impeatyeter

multipath may occur, resulting in retrieval errors in atiplosric profiles derived from RO data.

In order topartiathy-mitigate this fundamental shortcoming, we introduced aegalization of the CT approach. We used a
generalized definition of the coordinate in phase spaceetbés a linear combination of impact parameter and bendiglg a
Because this can be understood as an affine transform of #se ghbace, we coined the abbreviation CT2A for the new method
This transform has a paramefgrwhich can be tuned terinimizetheretrievalerreoptimizethe algorithmperformance
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We implementedthe CT2A algorithm b
modifying our existingprogramcodefor the CT2 method.To evaluationits statisticalperformanceainder real RO observation

conditions including challenging horizontal gradientghie lower troposphere, we processed a large ensemble of COSM
RO data for the year 2008, 1st and 15th day of every monthngdg to a total of about 60000 RO events. We used the total
relative difference of COSMIC from collocated ECMWF anadyprofiles over the lower troposphere as the metric for this

evaluation and the tuning parameter estimation.

For latitudes)°—50>-in-thealtituderangefrom-0:-5kmto-1-9—-2:5km(0°—50°, for the altitudesbetweernd.4 and2.5 km, the
application of the CT2A algorithmrasusedtestatisticallyminimizedecreasethe COSMIC-ECMWEF difference metrigad

thewith increasingparametep. Forthealtitudesbelow0.4km, theoptlmal value of paramet$|sfound to be—6to—8-\We
d w y ing—4 to —9. This

wasachievedn accountof aslight decreasef the number of datar-thealtituderangebelowo5km-

Ontheeotherhand;passinghe whole retrievalchainincluding the QC. This indicatesthatthe CT2A algerithmalewsthe
implementatieritself implementsof a QC procedure that does not involve any external infoilomaabout the atmospheric

refractivity, but is only based on the analysis of the stuitebf the observed signalso-this-end,weconsidesnversionsthat

Overall these results suggest that the CT2A method is ngt thieloretically an innovative generalization of the CT/FIO
class of methods but also practically a valuable advancefoeiRO processing in that it can improve the capability tpeo
with challenging horizontal gradient conditions in the eavtroposphere and serve as basis of a new QC procedure.
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