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Abstract. By now, a series of advanced Wave Optical (WO) approachdeetprocessing of Radio Occultation (RO) observa-
tions are widely used. In particular, the Canonical Tramaef¢CT) method and its further developments need to be mesdio
The latter include the Full Spectrum Inversion (FSI) methitbd Geometric Optical (GO) Phase Matching (PM) method, and
the general approach based on the Fourier Integral OpsrétDs), also referred to as the CT type 2 (CT2) method. The
general idea of these methods is the application of a caalnansform that changes the coordinates in the phase &pace
time and Doppler frequency to impact parameter and bendigteaFor the spherically symmetric atmosphere, the impact
parameter, being invariant for each ray, is a unique coatdiof the ray manifold. Therefore, the derivative of thegghaf the
wave field in the transformed space is directly linked to teeding angle, as a single-valued function of the impactrpater.
However, in the presence of horizontal gradients, this @ggr may not work. Here we introduce a further generalinatio

the CT methods in order to reduce the errors due to horizgraaients. We describe, in particular, the modified CT2 weth
denoted CT2A, which complements the former with one moraatiiansform: a new coordinate that is a linear combination
of the impact parameter and bending angle. The linear caatibimcoefficient is a tunable parameter. We derive the eipli
formulas for the CT2A and develop the updated numericalrélyn. For testing the method, we performed statisticalyeees
based on COSMIC RO retrievals and (collocated) ECMWF argafysifiles. We demonstrate that it is possible to find a reason-
ably optimal value of the new tunable CT2A parameter thatmizes the mean square difference between the RO-retrieved
and the ECMWEF refractivity in the lower troposphere and afidine practical realization of the improved capability tpeo
with horizontal gradients and serve as basis of a new QC groee
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1 Introduction

The first step in the development of wave optical (WO) appndacthe processing of radio occultation (RO) observations
was made by Melbourne et al. (1994), who used the thin scrgproximation for the atmosphere combined with the Back
Propagation (BP) technique. This approach was furtherldeed under the name of Fresnel Inversion by Mortensen ard Hg
(1998). Although the accuracy of this approximation in lotveposphere was insufficient for the practical appliaatits basic
idea was correct. It consisted in the reduction of the infteeof the diffraction by using the BP, which made the inversio
results independent from the observation distance ancetzththe resolution restriction due to the Fresnel zone size

Later works (Gorbunov et al., 1996a; Karayel and Hinson,71¥8orbunov and Gurvich, 1998a, b) developed a different
understanding of the BP technique. The BP wave field evaliatsome plane was not considered as the actual wave field, but
as a representation of the original field observed at the LarthEorbit (LEO): in this representation, the effects ofrdi€tion
and multipath propagation were significantly reduced. ;Timsa straightforward way, allowed evaluation of the geamet
optical (GO) bending angle profile, which was inverted in ftemework of the standard GO scheme (Ware et al., 1996;
Kursinski et al., 1997).

The further development of the WO approach based on theseptation view relied upon the concept of the Canonical
Transform (CT) originating from the classical mechanicsn@d, 1978; Goldstein et al., 2014), generalized for thargum
mechanics by Fock (1978), mathematically substantiatdegmyov (1985); Egorov and Shubin (1993). Further on thiceph
obtained an extensive mathematical development (Tre@824l b; Hérmander, 1985a, b). The correspondence betlveen t
quantum and classical mechanics is the same as the link &etive wave optics and geometrical optics.

In both cases, there is a strict mathematical represent@icantum mechanics or wave optics) and its asymptotidisalu
(classical mechanics or geometrical optics). While thewgianh of de Broglie waves of probability or electromagnetaves is
described by the Hamilton operator, the evolution of rayslassical trajectories of particles is described by Hamilystem,
where the Hamilton operator is obtained by the substitutb@momentum operator instead of classical momentum. Aecor
ingly, for the classical problem the phase space is intreduthe dimension of which equals doubled geometric dinoensi
because to each geometrical coordinate we can conjugateittesponding momentum. For the wave problems momentum is
understood as the ray direction vector.

The canonical transforms arise, when we consider the cfabg transforms of the phase space that conserve the cahonic
form of the Hamilton dynamical system. It was first demortstiiaoy Fock (1978) that these transforms have a very simple
implementation in the quantum mechanics: they corresporthéar transforms of the wave function. The kernel of this
transform is derived in classical terms, but, still, it déses a short-wave asymptotic solution of the wave probl&his
idea was later mathematically developed first by Egorov §)9Bgorov and Shubin (1993) and then by Treves (1982a, b);
Hormander (1985a, b).

The application of the CT approach for the RO observatiorgssing was pioneered by Gorbunov (2002), where it was
combined with the BP. The idea of the CT without BP was firstetigyed by Jensen et al. (2003, 2004) and later the general
view at these results in the framework of the CT approach veasldped by Gorbunov and Lauritsen (2004a, b). Finally, it
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was recognized that the different methods: CT (Gorbuno@2p0~ull-Spectrum Inversion (FSI) (Jensen et al., 200Bz5e
Matching (PM) (Jensen et al., 2004), and CT of the 2nd type2[GGorbunov and Lauritsen, 2004a) were, in fact, different
approximations of the same solution, for which Fourier dgn¢é Operators (FIOs) provided the general transform aggro
(Gorbunov and Lauritsen, 2004a).

The idea of the CT approach is as follows. Given the obsemator RO complex signad () as function of time, which
can be represented through its amplituti¢) and phase (), u(t) = A(t)exp (i¢ (¢)) . It is convenient to use eikonal, or
phase pathl (t) = ¢ (t)/k, wherek = 27t/ X is the wavenumber, anilis the wavelength. Thus (¢t) = A (t)exp (ikP (2)) ,
andk is the large parameter. The signal is composed of multigbessgnalsu, (t) = A; (¢) exp (ik¥; (t)) corresponding to
interfering rays. For each sub-signal it is possible tadidtrce the instantaneous frequerdy; = ko;. However, instantaneous
frequency cannot be introduced for their composition.

The multipath propagation problem consists in the de-caitipo of the signal equal to the sum or different sub-signial
retrieve the ray structure of the observed field. The satutitthis problem discussed in the aforementioned papersisted
in the transform of the observed wave field) into a different representation. The new coordinates irtrédnesformed space
were the ray impact parametgrand bending angle. The transform(¢,o) — (p,¢) is canonical (Gorbunov and Lauritsen,
2004a), which allows for writing the corresponding lineaamisform®,, where the subscript 2 indicates that it is a CT of
the 2nd type (Arnold, 1978; Goldstein et al., 2014), that sndye original fieldu (¢) to field in the impact parameter rep-
resentation (p) = ® [u(¢)] (p). The idea of the choice of the ray impact parameter as the nendinate is based on the
fact that in a spherically-symmetric medium, ray impactapaeter is the ray invariant, which is known a Bouger’s lane Th
locally spherically-symmetric medium is the basic appneeiion used in the inversion of RO data. For the real atmagphe
with horizontal gradients, the dynamic equationgavas derived by Gorbunov and Kornblueh (2001), who demotestitat
derivative ofp with respect to the ray arc length is equal to the horizordedmonent of the refractivity gradient in the occulta-
tion plane. Strong horizontal gradients may result in theasion when dependeneép) becomes multi-valued (Healy, 2001;
Gorbunov and Lauritsen, 2009), which was referred to astipact parameter multipath (Zou et al., 2019).

The idea explored in the present manuscript consists inuttteer development of the CT approach by using a generalized
transform with the coordinate = p + Be. Unlike the standard CT approach, where the form of the newdinates in the
phase is known in advance, this transform has the tunalderpers that can take into account the statistical impact parameter
multipath effect.

The paper is organized as follows. In Section 2 we discussahenical transform in wave optics and quantum mechanics in
general terms, including brief review of FIOs. Based on tloistext we discuss in Section 3 the application of the CT ogeth
for RO and introduce the particular phase space and thefispauice of coordinates as well as the new generalizatidingd
an affine transform with a tunable parameter for improvedctby@ing capability with horizontal gradients. In Section é w
discuss the practical modifications needed to readily amb/axisting numerical implementations of the CT algorithmad a
present results of our performance evaluation from pracgsgal-observed COSMIC RO data, including how to find an
optimal value of the tunable parameter minimizing the systiic errors in the lower troposphere. Section 5 finally fifes
the summary and main conclusions of the paper.
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2 General concept of Canonical Transform in Wave Optics

We will start with a brief discussion of the Canonical Tramsfi (CT). This concept originated from the classical measan
(Arnold, 1978; Goldstein et al., 2014), where it referrectkind of transform of the coordinates and momenta that coase
the Hamiltonian form of the dynamical equation. Fock (19if8)joduced the CT in the quantum mechanics. Note, the first
Russian edition of the monograph Fock (1978) appeared dsaam 1929. Because the relation between the classical and
quantum mechanics, on one side, and the relation betwegetmeetrical and wave optics, on the other side are the saee, w
can immediately apply the approach introduced by Fock (1978

We assume that the wave field is can be represented in theastafiodm:

u(t) = A(t)exp (kT (t)), @

wheret is the observation timeV (¢) is the eikonalk = 27/ is the wavenumbep, is the wavelength4 (¢) is the amplitude.
The timet can be associated with a specific spatial location of thergagen, as it is the case in RO, bu{t) can also be
looked at as general signal.

The amplitudeA (¢) and the derivative ol (¢) are assumed to be slowly changing within an oscillationgakrin this case,
the wave field is termed quasi-monochromatic with an instamplitudeA () and frequency (t) = k¥ (¢). Otherwise, more

generally, the field should be equal to a super-position asgmonochromatic components:
u(t) =" A9 (t)exp (z‘k\If(j) (t)) , @)
J

where the upper indexenumerates the components;) (¢) are their amplitudes, anél?) (¢) are their eikonals. Each com-
ponent has its own instant amplitude and frequency.

When discussing the CTs, it is necessary to bear in mind that aiithe relations have an asymptotic nature, wieeethe
large parameter (o is the small parameter). The reason is as follows. Given aneagents of wave field, each monochromatic
component can be interpreted in terms of wave fronts and Esch point has a single ray, and its direction is linked & th
normalized frequency (t) = W (t). To this end, it is also necessary to know the position of thesmitter and receiver, as it
takes place in RO observation. However, at this stage ofdhsideration of the problem, we can simply speak aboutrinsta
tones of the signal.

Therefore, for a specific class of signals, including quasirochromatic ones and their superposition, it is posgible
introduce a phase spa¢e o). Although the original signal is 1-D, this space is 2-D, ahd structure of the signal can be
described in terms of the functien(¢) which can be both single-valued for quasi-monochromagjonals, or multi-valued for
superpositions of such signals.

Consider RO observations as an example. The original siggraésponds to a range of rays starting at the transmitter
and the phase spaeq(t) is a very smooth continuous line. As the signal propagatesugh the atmosphere its structure
gets more and more complicated. Still, in the phase spadeptdogical structure remains the same: it is always a sing|
continuous line, although it may not be single-valued wibkpect to time, which corresponds to multipath propagation
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(Gorbunov, 2002; Gorbunov and Lauritsen, 2004a). Suchearépresenting the signal structure is referred to as theeay-
fold (Mishchenko et al., 1990).

The outstanding and, still, simple idea of Fock (1978) wastthe classical canonical transforms correspond to liméegral
transforms of the wave field with oscillating kernels. THess of transforms was later named Fourier Integral OpexédO)
(Egorov, 1985; Egorov and Shubin, 1993; Treves, 1982a, bmidiider, 1985a, b). The general form of such an operator first
discussed by Fock (1978) has the following form:

i0) =~ 5r [ o2 (b t)exp (k52 (5.6) u(t)dt = B2 u(0)] (). 3

wherep is a new coordinate in the mapped space. We use notdtjoand, accordinglya, and.S,, because this type of
operators was referred to as the FIO of the second type (@ovband Lauritsen, 2004a), while the FIO of the first type & th
composition of a Fourier transform and a second-type FI{&g 1985; Egorov and Shubin, 1993). This type of operators
is linked to the corresponding type of the generating fumc{iArnold, 1978; Goldstein et al., 2014). Note, histofig&lIO of
the second type appeared first, but in mathematical workastmO of the first type that were discussed first.

Considering nowu (t) as a quasi-monochromatic signal, we can derive the asyimgtstn of transform (3) using the
stationary phase principle:

ik
i0) =~y [ o2(pt) AW exp (TK(S2 (p.1) + U (1)) dt = Do u(t) ). (4)
The stationary phase poitit(p) of this integral satisfies the equation:
9 .
55 0+ ¥ () =0. (5)

Accordingly, the transformed field, under the assumptiantine Eq. (5) has a single solutian(p), is also quasi-monochromatic

and can be written as follows:

i(p) = A" ()exp (k9 (p)) = A" (p)exp ik (S (p,ts (1) + ¥ (2 (1)) - 6)
Its instantaneous frequency equals:

/

EB) =V (0) = = (Sa (p.ts () + U (1 (1)) =

dp
= gy S0t )+ (S e )+ 000 ) =
= %SQ (p,ts (p))’ (7)

by virtue of Eq. (5). Recalling tha¥ (¢) = o, which is the original momentum, we have the following rielatbetween the
canonical coordinateg, o) and(p,£), in the original and mapped spaces:

89S 9S8,
W**Ua 871)75’ 8)
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Figure 1. Radio occultation observation geometry with relevant geometrical vasiaiécated (for description see Sect. 3.1)

which can be expressed in terms of the differentis]:
dSs = E&dp — odt. 9)

And, vice versa, the requirement that the right-hand paEdn (9) should be equal to a full differentidls; of a function
150 S» (p,t)is a necessary and sufficient condition for the transf@rim) — (p, o) to be canonical (Arnold, 1978; Goldstein et al.,
2014). The functiorb (p,t) is then termed the generating function of the canonicabkfram.

In terms of FIO,S: (p,t) is referred to as its phase function, amg(p,t) is its amplitude function. The phase function,
which specifies the canonical transform, is of primary int@oce, while the amplitude function is derived using thergyne
conservation (Gorbunov and Lauritsen, 2004a). We seeftivey;, that using the classical, or geometric optical cpts;et is

155 possible to write down the asymptotic form of the quantumiyave optical operator implementing the transformatiorhef t
original signal into a different representation. If thausture of the original signal is represented as a ray mahifolhe phase
plane, such a transform is applied to the coordinates insigge. In particular, it may be possible to find such a coatdin
system, where the ray manifold geometry will be exceptigrample.

3 The Canonical Transform method for RO and its generalizaton

160 Here we discuss the application of the CT technique for tladyais of RO observations (Fig. 1) by first reviewing the eliéint
existing variants (3.1) and then introducing the new gdize@ CT method (3.2) and an application-relevant formatafor
readily updating existing algorithms (3.3).

3.1 Canonical Transform method in different existing variants

The RO observation geometry is schematically represemtédgure 1. The wave emitted by a transmitter Tx is received
165 by a receiver Rx on a low-Earth orbit. Transmitter is borneatsatellite belonging to one of the modern Global Navigation
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Satellites Systems (GNSS), including GPS, GLONASS etc. Duthe movement of the transmitter and receiver the ray
descends or ascends in the atmosphere, which allows thetileni of the atmospheric profiles from the bending angles
(Ware et al., 1996; Kursinski et al., 1997). The CT technipuesed for the retrieval of bending angle profile from the vav
field measurements.

The first approach of processing RO data, belonging to tres d&CT, was the Back Propagation (BP) (Gorbunov et al.,
19964a; Karayel and Hinson, 1997; Gorbunov and Gurvich, 4988 In this technique the field was linearly transformebdo
re-calculated to the BP plane locate at coordinate

\/* / )exp ( Zk‘|I'B()_I‘R(t)|) Ising (ir (t),r5 (y) -1 (1) £r (1) dt, (10)

It5 (y) —rr (8]

where 2-D vectorg (y) equals(zs,y), ¢(a,b) is the angle between vectossandb. This transform is preceded by the

stationarization of the transmitting satellite and préat of the satellite movement to the vertical plane. Note same
procedure is commonly applied when using CT-like approscttés important that the BP field is not the real field in the
BP plane, because the BP procedure assumes the vacuumaiopaghis procedure results in some representation of the
original wave field with reduced diffraction effects due ke treduction of the propagation distance. The new coorlinat

is more favorable for finding a unique projection of the raynifEd that disentangles the multipath propagation. Stilis
coordinate is not the best choice.

A much better coordinate for the new representation shoallithé impact parameter because in a spherically-symmetric
medium it is an invariant for each ray due to the Bouger law, #nus it is unique for each ray. A dynamic equation for the
variation ofp along the ray as a function of the horizontal gradient ofaetivity was obtained by Gorbunov and Kornblueh
(2001). The idea of complementing the BP technique with ooneentransform that maps the field to the impact parameter
representation was pioneered by Gorbunov (2002). It wafirdieapplication of the FIO of the first type, which is linkeal t
the other type of the generating function (Arnold, 1978;d5tin et al., 2014) and has the form

= H / a1 (p0) exp (ikS: (p.0)) (o) do = @y [u (1)) (p). )

where the only difference with the second type operatorasittacts upon the Fourier-transformed figlfb). It can be looked
at as the composition of the Fourier transform, which itse second type FIO, and the other second type FIO. Becaese th
Fourier transform is a simple rotation of the phase space/Ry (t,0) — (o, —t), the equation for the phase function takes the

form:
dS1 =&dp+tdo. (12)

Gorbunov (2002) applied this operator to the back-propafeld. To this end, using the normal vectoe (n, V1— 772) to
the straight ray, we express the impact parameter:

p=—xn+yy/1-n% (13)
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Now it is necessary to find the canonical transfdwm,) — (p,£). We look for the first type operator, apply the property of
2-D canonical transforms that conserve the volume elemérith follows from Eq. (12):

o0& dp O dp
2> _q 14
ondy oyon 14)

and additional assumptign= £(n). Then, from Eq. 14, we readily derive:

()"
on Ay 1—n2

& = arcsing (15)

This results in the solution for the phase and amplitudetfans:

Sy (p,n) = p arcsing —z+/1— 1?2,

2
“2(’7’77):“5(15;7 = (1—?) " (16)

This defines the FIO, which is applied to the backpropagataevieldu s (y) and produces the mapped field

) =4 ey (it [€)ap). a7)
The derivativet (p) of its eikonal is algebraically linked to the bending angle:

€(p) = —€ (p) — arcsin (”p furyr p2> 7 (18)

Uy

where(zr,yr) = rp is the transmitter position in the occultation plane. Beegihe cross-term iz, which depends both on
p andn, is linear with respect tp, the integration over new coordinage= arcsinn turns it top¢ and, therefore, the operator
is reduced to the Fourier transform in combination with a-lioear change of coordinate. This indicates that this afoer
allows a fast implementation. A similar idea will be appliselow.

The complicated nature of the BP+CT algorithm stimulatathier studies (Gorbunov and Lauritsen, 2002, 2004b) where
the idea was expressed of applying the FIO directly to thewoes! wave field. (¢), without intermediate and numerically
expensive steps like BP. Full-Spectrum Inversion (FSlettged by Jensen et al. (2003) was the first solution of thpe,ty
although with some restrictive assumptions. However, #reegal solution was just one year away: the Phase Matchiy (P
was developed by Jensen et al. (2004) and then put in thextarfithe CT approach by Gorbunov and Lauritsen (2004a), who
also introduced an approach based on the linearized caldr@nsform that reduced the FIO to the composition of rinealr
coordinate changes and Fourier transform. This algoritta® termed the 2nd type CT, or CT2.

In order to arrive at the phase function of the FIO of the 2nmbtyconsider the expression for the derivative of the phase o

the observed wave field:

b =o(py)=p+ —yfr2—p2+ B\ 2 p2, (19)
rT TR
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Using Eqg. (8), we derive the phase function:

Sz(Pvt):_/ <p9+T\/7'%—p2+R\/r%g—p2) dy =
rT TR
" d d
:,/ <pd9+7’T a2 4 drm /,%}p)_
rT TR
:—p¢9—\/r%—pQ—&—parccosﬁ—\/r%—pQ—i—parccosﬁ, (20)
rT TR

whered, rr, andrg are functions of time. We do not reproduce here the derivation of the amplitudetfan as (p,t),
which uses simple geometrical considerations (Gorbundovanrritsen, 2004a). This phase function, although progdhe
accurate solution, has a disadvantage: its cross-terrmdaygeon bottp andt is, generally speaking, not reduced to a form of
91 (p) g2(t). The FIO, in the generic case, cannot be reduced to a Fotaiesform in composition with non-linear coordinate
changes. This is, however, possible in the particular cas&aular orbits, when the phase function equads and using as
a new coordinate instead of time reduces the operator todtedr transform. This method was referred to as FSI.

To find an approximate solution that significantly reducesabmputational costs at an expense of an insignificant tieauc
of accuracy, the representation of the approximate impaetrpeter was introduced. The impact paramgtsra function of
t,o: p=p(t,o). We introduce its approximatiop

R o _ 9po
p(t,o)=po(t) + 5= (0 —00(t)) = f(t) + 50,
B
FO)=p(t) = 5200 (t) =
-1
o (%0 _dre o dre o - (1)
At dt ro\/rL—p2 At rprE—p2 '

whereoy () is a smooth model of normalized Doppler frequengyt) = p(t,00(t)), anddpy /0o = Op/00 | 5=u,(r)- We now
parameterize the trajectory with the coordindte= Y'(¢). For brevity we use the notatian(Y) instead ofu(¢(Y)). For the
coordinateY" and the corresponding momentumve use the following definitions:

-1
dY = (apo) dt= 2% a

oo opy
_ Ipo
Finally, we arrive at the following linear canonical traosh (T,n) — (p,£):
p=f(0)+mn,
§=-T, (23)

The generating function of this canonical transform islgasimputed from the differential equation

dSy = &dp —ndY = =Tdp— (p— f(T)) dT

Y
Sy(p,Y) = —pY + / f(yHay'. (24)
0
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For the new coordinat® we have the following relation:

ar—dgg-Yre__po_dr_ b (25)

For circular orbits, this approximation, once again, reguto FSI. To evaluate the bending angle, we use the facttbat t

momentum of the field in the mapped space equadls We also evaluate the accurate impact parameter follows. Given
the dependenc¥(p), it possible to find the corresponding tirtig). Using Eq. (21), we infer:

7)==t (52 )+ out(),
p(p) =p(t(p),o (D)) (26)

Finally, for each impact parametgr we determine the coordinat(p) = —¢ (p) and, therefore, the corresponding moment

of timet = ¢ (Y (p)), when this ray was observed, the bending angle is then aedlfl]mm the geometrical relation:

e(p) =6 (t(Y (p))) — arccos P arccos——E . (27)

rr (T (p))) rr(t(T (p)))
This method termed CT2 indicates both a high accuracy ancrioah performance. This discourse leads us to the comiusi
that there is a family of closely related WO methods that ased on the same principle. The observed wave field is sedj&xct
a linear integral operator with an oscillating kernel tmabsforms the field into a different representation. Theaggntation is
chosen in such a way that the projection of the ray manifottiémew coordinate axis is unique. The operation is alsorezfe
to as unfolding multipath. Finally, such methods as CT, P8, and CT2 involve the evaluation of the same integral fans
under different assumptions and approximations. Therdiffee in the results of the application of these WO methotksis
significant than the difference coming from other parts of d@a processing systems, including cut-off, filtering, godlity
control procedures Gorbunov et al. (2004, 2011).

3.2 Generalized Canonical Transform method

All the modifications of the CT approach discussed abovedalpon impact parametgras the unique coordinate of the ray
manifold. However, impact parameter is, generally spegkiot invariant for each ray, and its perturbations due tizbatal
gradients may result in breaking the above condition. Totsise consider the ray equations in the Hamilton form. Tree ar
derived from the Hamilton function:

H(e,p) = 3 (07 (1)), (29)

wherep is the momentum, and(r) is the refractivity field. The Hamilton system has the foliog/form:

I'-faiH '7787]—[ ¥ = pr
= Bp’ pP= or = pr,

F=p, p=nVn, ¥=n? (29)

10



wherep is the classical momentum. Becauge = |[VU| =n, we arrive at the following differential relation betwedret
parametet- of this system, the ray arc lengthand the eikonal:

dr = §, dV =n ds. (30)
n

280 Equation (29) has a form that is specific for the Cartesiamdinates. Consider an arbitrary coordinate system withrtaic
tensorg;;: ds* = dx'g;;dz?, wherex" are the components of vectgrand we follow the Einstein tensor notation implying the
summation over each pair of upper and lower indexes of the seame. If we define the momentum by the relagipe- gijij,
the formp dr is invariant, the transform to the new coordina(ps :vi) is canonical, and the canonical form of the Hamilton
system also remains invariant (Arnold, 1978), provided tha Hamilton function is defined as follows:

285 H(r,p)= (pigijpj —n? (r)) , (31)

N =

whereg is the matrix inverse tg;;. This results in the following form of the ray equations:

OH . . OH  on 1 9gM
= = - L= ——— =N - — — —_—D..
ap;, PP ozi oz 2PF gpi 1

j;i

The 2-D approximation (Zou et al., 2002) allows treatingsrag plane curves. Consider polar coordinéte®) with the metric

tensor:
290 g;j = , g = ) (32)
0

Then we have the following equations:

. de
po =120 = il — nrsiny,

ds
-
pG_n89>
.. On p?
pr:T:nE—i—r—g. (33)

295 where is the angle between vectoirsandr. The angular component of the momentppmcoincides with the ray impact
parametep, which is invariant in a spherically layered medium, butestprbed by the horizontal gradients (Gorbunov et al.,
1996b; Gorbunov and Kornblueh, 2001; Healy, 2001; GorbwamaV Lauritsen, 2009).

The variations of the ray impact parameter seem to underthanelegant idea of the CT approach. Now there is no such a
convenient invariant value ascribed to each ray. StillGfienethod can be applied using the same formulas, but thelicabe

300 p will now acquire a different meaning: it will be understocsl the “effective impact parameter”, i.e. the impact paramet
which would result in the observed Doppler frequency sliiftie atmosphere were spherically layered (Gorbunov ¢2@i.9).
Accordingly, the evaluated bending angle will also be thiée'ttive” bending angle. The reason is that for the evatimatf
the real bending angle, understood as the angle betweenytttirections at the transmitter and receiver, two corredpg
values of the impact parameter are required, which canndebeed from the single variable, the Doppler frequencyisTh
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Figure 2. Impact parameter multipath, old coordinate (impact parameter) lindsnadified coordinate lines.

by itself, is not a significant problem, because the assiioileof bending angle profiles can be based on the effectilteesa
(Gorbunov et al., 2019), provided that the observation aoeicorrectly implements their evaluation.

More importantly, horizontal gradients may result in muttiued ray manifold projections, when using the effectimpact
parametep as the coordinate in the mapped space. This situation itbfimpact parameter multipath” (Zou et al., 2019).
Theoretically, for any ray manifold perturbation there ajs exists an unfolding coordinate transform. This folldwsn the
fact that topologically the ray manifold is always a conting line without self-crossing. However, this coordinagasform
will now depend on the a priori unknown horizontal gradiesftsefractivity.

Typical multi-valued bending angle profile (Gorbunov anditissen, 2009; Zou et al., 2019) is shown in Figure 2. From
numerical simulations, it can be inferred that there is @ kihasymmetry: impact parameter multipath manifestsfiteebktly
in ascending spikes, but hardly in descending spikes. Angbd in order to better unfold multipath, it must be possito
use another coordinate in such a way that the modified caaellmes are sloped. Therefore, we modify the transformif23

order to use another coordinate:

p =p+pT, (34)
whereg is a tunable parameter and has a dimension of km/rad. Alththegoptimal value of this parameter should be different
for individual events, the aforementioned asymmetry tssuolthe conclusion that the preferred valueSof expected to be
negative. Therefore, it may be possible to find its optiméleahat, in the statistical sense, will minimize errors tuampact

parameter multipath.
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The modified canonical transform (23) is written as follows:

P =f(0)+BT+n=f (T)+n,
£=-T. (35)

Using the modified functiorf’ (T) instead of the original one, we will obtain the expressiontfe modified FIOE;’Q. The
advantage of this approach is that it can be implemented lyyasimple modification of the existing CT2 algorithm. Using
the numerical implementation of the modified CT will allow tasstudy its influence upon the RO inversion statistics in the
lower troposphere.

Denote the generalized F@ﬂ)u (p) Consider the wave field in the impact parameter representm(ﬂ;ﬁ/) = 6;% (p").
The standard CT algorithm corresponds to the evaluatian@fj) = ®\"u (5) with 8 = 0.

It is possible to arrive at a quantitative estimatesdbased on (Gorbunov and Kornblueh, 2001; Gorbunov and Lsaum;t
2009; Zou et al., 2019). We expect that < dp/de, wheredp is the typical variation of impact parameter due to the rwnial
gradients, ande is the corresponding bending angle variation. Assumingdba: 0.1 km, andde ~ 0.01 rad, we arrive at to
arrive at a first quantitative estimate @t —10 km/rad.

3.3 Affine transform for updating existing CT algorithms

Modification of existing numerical algorithms may not be saightforward, as it follows from the above mathematicaisid-
erations. In order to avoid this, it is possible to completh@mnexisting implementation of any WO-based numerical réitlgm
by an additional affine transform.

We will now derive the transform between(0;p) and (5; ﬁ/). We can write the following transform between these

representations:

p=p
£ =¢, (36)
where¢ is the reference point. This is an affine transform in({€) plane. This suggests the abbreviation CT2A for the new

generalized form, which stands for the CT2 complementeld thi¢ affine transform.
The generating function of transform (36)(15/ ,5) is defined by

ds®) = ¢dp’ + pde, (37)

which is equivalent to the following system:
583
ij — S

() ,
e —P= HE(E— ). (39

13



350

355

360

Altitude, km
Atlitutde, km
Atlitutde, km

Ll
25

P R AR §

W94 V7 4 I W . Lo
0 500 1000 1500 2000 2500 9.5 35

2 25 3 50 05 1 15 2
Number of data Total N diff., % Total N diff. CT2A-CT2, %

Figure 3. Statistics for latitude band°610°. Left: number of data. Middle: total relative difference of refractiv@®SMIC-ECMWF
\/<((Nc — Ng) /NE)2>. Right: total difference of refractivity CT2A—CT. All are functions oktparametef.

From this, we can conclude that

2
O (5.8) =7 (6 ~&0) - pE 2L (39)

This phase function defines the FIO of the first type:

/ ik / ~
i(35) =5 [ew (is? (5.¢)) a©)de =, [u(t) () (40)
Finally, we can write the operator relation:

o)) =&, eD, (41)

which can be used for the modification of the existing versibaperato@éo).
The above derivation allows for one more generalization.cafe considers = 5 (€). In this case, the phase function is

derived in a straightforward way:

SO (7€) = (e~ &) - [ (e (€~ 0)de. 42)
Using 3(£) = Y 3;¢7 results in a simple analytical expression &) with a set of tuning parametefs. In this work, we,
however, use a constafit

4 Implementation and numerical performance evaluation

Our implementation of the CT2A algorithm was based on thstig program code with addition of the parametemnd using
the modified functiony’ (T) as defined by Eq. (35). Practically, this only required maodifon of a few lines in the program

365 code that implements the CT2 method, as well as the impleatientof one more command line parameter.
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Figure 4. Statistics for latitude band 162(0°. Left: number of data. Middle: total relative difference of refractiv@®SMIC-ECMWF
\/<((Nc — Ng) /NE)2>. Right: total difference of refractivity CT2A—CT. All are functions oktparametef.
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Figure 5. Statistics for latitude band 2630°. Left: number of data. Middle: total relative difference of refractiv@®@ SMIC-ECMWF
\/ (((N¢ = Ng) /N, E)2>. Right: total difference of refractivity CT2A—CT. All are functions oktparametef.

In our numerical validation, we retrieved COSMIC refraittivorofiles N, using COSMIC data from the year 2008, 1st and
15th day of every month, leading to a total of 24 days and ettugy around 60000 RO events. We used collocated ECMWF
refractivity profilesNg, i.e., interpolated to the corresponding COSMIC RO evecdtion, as the reference. To this end we
employed ECMWF analyses at 1-degree latitudinal and lodiiai resolution with 91 vertical level covering the altit
range up to about 80 km. The refractivity was evaluated froesgure, temperature, and humidity fields. The tangent poin
drift was taken into account. We used the total relativeedéhce of COSMIC from ECMWF (the difference metric), defined

as\/<((NC — Ng) /NE)2>, which includes both mean (systematic) and fluctuatingdoam) deviations.
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Figure 7. Statistics for latitude band 4650°. Left: number of data. Middle: total relative difference of refractiv@®@ SMIC-ECMWF
\/ (((N¢ = Ng) /N, E)2>. Right: total difference of refractivity CT2A—CT. All are functions oktparametef.

Figure 3 through 11 show the statistical valuesvé(((Nc - NE)/NE)2> as function of latitude and parametgr We
averaged over TOwide latitude bands including both South and North hemisgheThe parametet changed in the interval

375 from —4 to —12 km/rad with the step of 1.
These results indicate that for latitudés-80°, in the altitude range from 0.5 km to 1.9-2.5 km, the applicadf the CT2A

algorithm allows minimizing the total relative differencerefractivity profiles COSMIC—ECMWF\/<((NC — Ng) /NE)2>.
The optimal value of parametéris found to be—6 to —8 km/rad. The CT2A algorithm also improves the penetration in
creasing the number of data in the altitude range below 0.Here the difference metrics for= 0 and optimalg cannot be

380 directly compared, because they are evaluated over diffstatistical ensembles.
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Figure 8. Statistics for latitude band 8660°. Left: number of data. Middle: total relative difference of refractiv@®SMIC-ECMWF
\/<((Nc — Ng) /NE)2>. Right: total difference of refractivity CT2A—CT. All are functions oktparametef.
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Figure 9. Statistics for latitude band 8670°. Left: number of data. Middle: total relative difference of refractiv@@ SMIC-ECMWF
\/ (((N¢ = Ng) /N, E)2>. Right: total difference of refractivity CT2A—CT. All are functions oktparametef.

If, however, we evaluate the statistics over the datasetsyamn for/3 = 0 and current values of, then we reveal another
important property of the CT2A algorithm. The statisticéfletences between refractivity retrieved with= 0 and other values
of g is vanishingly small (never exceeding a level of 0.0005%j,ibcreasing? provide decreasing deviation from ECMWF
and decreasing number of data as shown in Figures 12 and iE3ndittates that CT2A allows the implementation of a qyalit
control (QC) procedure not involving any external data anl¢f based on the internal properties of observed signalis. dan
be interpreted as follows. By extracting inversions that@mmon for different values @f we look at the ray manifold in the

phase space from different directions and only choose syethiere the ray manifold structure is stable.
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Figure 10. Statistics for latitude band 7680°. Left: number of data. Middle: total relative difference of refractv@®SMIC-ECMWF
\/<((Nc — Ng) /NE)2>. Right: total difference of refractivity CT2A—CT. All are functions oktparametef.
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Figure 11. Statistics for latitude band 889(°. Left: number of data. Middle: total relative difference of refractv@®SMIC-ECMWF
\/ (((N¢ = Ng) /N, E)2>. Right: total difference of refractivity CT2A—CT. All are functions oktparametef.

5 Summary and conclusions

In this study we discussed the general idea of the Canonigadsiorm (CT) method and provided a new generalization
adding more flexibility for application in RO processing.€Tidea came from quantum mechanics, where it was shown #hat th
canonical transforms as they are understood in classiagiamécs (geometrical optics) are implemented in quantuchan@cs
(wave optics) by linear operators with oscillating kern&sch operators are referred to as Fourier Integral OpsréEtOs).
During the past century, this approach acquired a solidrétieal basis. In numerous mathematical monographs, ods fire
advanced theory of FIOs. The central role in this theoryayetl by the concept of the ray manifold and its projections.
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Figure 13. Statistics for latitude band 3840° evaluated for subsets common fér= 0 and each other value @f. Left: number of data.
Middle: total relative difference of refractivity COSMIC—ECMW{((NC — Ng) /NE)2>. Right: total difference of refractivity CT2A—
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395 The CT method has been applied for RO observations for a iomg fAlthough there have been many modifications, like
original CT combined with Back Propagation (BP), Full-Spem Inversion (FSI), Phase Matching (PM), and CT of type 2
(CT2), there is no essential difference between these k&dmethods. The difference consists in the approximafitme
phase function of the FIO, leading to the corresponding@pprate representation of the impact parameter and beadigig,
and in the specific implementation (such as cut-off, filtgriand quality control procedures). All these methods memisive

400 field to the representation of the impact paramgtéerhe reason for this choice of the coordinate in the mappadesjs that

in the case of a spherically-symmetric medium, the impadmpater is always a unique coordinate of the ray manifold.
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Because the real atmosphere is not spherically-symm#trscresults in some aggravation. First, in the strict sethsge is
no such a quantity as the impact parameter as a unique \@gaalglmore. But it is still possible to operate with the effect
impact parameter, derived from Doppler frequency shifbg$he same relations as for a spherically-symmetric mediunis
405 quantity can be implemented in the observation operatothivariational assimilation of RO observation, cancgliémrors
due horizontal gradients. However, the above propertyefrtipact parameter, which is supposed to be the unique catedi
of the ray manifold, does not always hold for the effectivieigaln some cases, the situation referred to as the impeateder
multipath may occur, resulting in retrieval errors in atiplosric profiles derived from RO data.
In order to partially mitigate this fundamental shortcogjiwe introduced a generalization of the CT approach. We used
410 a generalized definition of the coordinate in phase spadmedias a linear combination of impact parameter and bending
angle. Because this can be understood as an affine transfoine phase space, we coined the abbreviation CT2A for the new
method. This transform has a parametewhich can be tuned to minimize the retrieval error.
To find such a value of the parameter by statistical perfooaavaluation under real RO observation conditions inalgidi
challenging horizontal gradients in the lower troposphere processed a large ensemble of COSMIC RO data for the year
415 2008, 1st and 15th day of every month, adding up to a total ofis®0000 RO events. We used the total relative difference of
COSMIC from collocated ECMWEF analysis profiles over the loweposphere as the metric for this evaluation and the tuning
parameter estimation.
For latitudes -5, in the altitude range from 0.5 km to 1.9-2.5 km, the appiicabf the CT2A algorithm was used to
statistically minimize the COSMIC-ECMWF difference metaicd the optimal value of parameteis found to be—6 to —8.
420 We found that the CT2A algorithm as well improves the petiginestatistics of RO profile retrievals, increasing the tem
of data in the altitude range below 0.5 km.
On the other hand, CT2A algorithm allows the implementatiba QC procedure that does not involve any external infor-
mation about the atmospheric refractivity, but is only lobge the analysis of the structure of the observed signalthiend,
we consider inversions that are common for different vahbfes, which allows for choosing events with a pronounced ray
425 manifold structure.
Overall these results suggest that the CT2A method is ngt theloretically an innovative generalization of the CT/FIO
class of methods but also practically a valuable advancefoeRO processing in that it can improve the capability tpeo

with challenging horizontal gradient conditions in the Ewvtroposphere and serve as basis of a new QC procedure.

Data availability. The COSMIC data used in this study are freely available at CDAAC Web-site.
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