
Response to Referee #1 
 
We thank the Reviewer very much for taking the time to review our manuscript. Please find 
point-by-point responses to the Reviewer’s feedback below. 
 
Abstract, line 4: ’Like previous approaches’ - sounds confusing was trained -> was statistically 
trained 
 
We will adopt the proposed changes in the final version. 
 
Define ’cloud phase’ line 78 
 
We plan to amend “cloud particle phase (involving MODIS band 3.7um)”  to “cloud condensate 
phase (i.e. liquid, ice, or a mixture of both; involving MODIS band 3.7um)”.  
 
More general remarks: authors consider very simple radiative transfer models (two-stream, 
Eddington etc). Why not to use more accurate models, e.g. MOMO developed by the co-
authors? 
 
We would like to emphasize that two-stream theory was not used to simulate radiances. Of 
course, for radiative transfer simulations we would rely on more accurate methods, as the 
Reviewer suggested.  
In this study, we used the functional form of two-stream equations to linearly relate MODIS-
retrieved cloud properties with CERES-measured top-of-atmosphere (TOA) shortwave (SW) 
radiances.  
As seen in Fig. 1a, MODIS cloud optical thickness (or more precisely the parameter x, defined in 
Sec. 3.1) plotted against CERES radiance shows a sigmoidal shape. Because two-stream 
functions (Eq. 10-12) reproduce this sigmoidal shape, we could link MODIS properties in a linear 
manner to CERES radiances. Statistical optimization (Sec. 3.2.2) further improved our efforts to 
explain CERES-measured radiances. 
The use of higher-order schemes (e.g. four-stream functions) was not tested as two-stream 
theory produced a satisfactory outcome. 
 
To better emphasize the role of two-stream theory in our manuscript, we plan to make 
following changes: 

- l. 8: instead of “serving as a function of…” put “serving to statistically incorporate…” 
- l. 11: instead of “two-stream albedo” put “two-stream functional form” 
- l. 58: instead of “to explain cloud albedo based on” put “to statistically ingest” 
- l. 154: instead of “two-stream cloud albedo that uses cloud optical thickness and cloud 

micro-physical properties” put “two-stream equations as a function to ingest MODIS-
retrieved cloud optical thickness and cloud-top effective radius” 

 
 



Several cloud types are considered in the paper. Different cloud types have different 
expansion coefficients of the phase function. The differences are significant for high order 
expansion terms. Simplistic radiative transfer models hardly can capture them. I doubt that 
just asymmetry parameter is sufficient to describe different types of cloud models. In this 
regard, the choice of the two-stream model needs to be justified. Perhaps, authors could 
elaborate. 
 
We agree with the Reviewer that the asymmetry parameter (e.g. derived from Mie-theory, and 
a function of effective radius) is too simple to accurately capture radiance fluctuations for all 
cloud types and for all viewing-illumination geometries. Because of this limitation, we decided 
to also statistically optimize the asymmetry parameter (and its change with effective radius). 
We performed this optimization (Sec. 3.2.2) for each angular bin (i.e. each discrete bin of 
viewing-illumination geometry) and for each cloud phase (i.e. liquid and ice). For an exemplary 
angular bin, Fig. 2b presents Mie-calculated asymmetry parameters versus statistically 
optimized ones.  
We hope to have circumvented the limitations of a steady asymmetry parameter by using 
optimized asymmetry parameters. This allows us to have viewing-illumination-geometry-
dependent radiance changes for different effective radii (e.g. effects like the cloud bow and 
cloud glory). Fig. 5e shows that our approach plausibly produced such radiance changes with 
effective radius. 
 
To highlight the use of statistically optimized asymmetry parameters, we plan to make 
following changes: 
l. 9: after “…footprint.” add “Effective radius-dependent asymmetry parameters were obtained 
empirically and separately for each viewing-illumination geometry.” 
 
 
 
Response to Referee #2 
 
We thank the Referee very much for providing feedback to our manuscript. Please find point-
by-point responses listed below.  
 
Minor comments 
 
L13: I find these statistics alone are a bit misleading. After first reading these numbers, I was 
then slightly disappointed when reading the text and figures to see that some geometries are 
much worse, and improvements are often much more marginal. Instead of just stating “up 
to” values, I believe a more honest representation of the results in the abstract should also 
mention how frequently improvements are seen and/or typical improvements. 
 
We thank the Referee for this observation and for proposed solution. We plan on extending the 
abstract as follows: 
 



l. 12: change “most observer-geometries” to “most observer-geometries outside the sun-glint” 
l. 14: “…and 35.8% for footprints containing both cloud phases. Geometries affected by sun-
glint (constituting between 10% and 1% of the discretized upward hemisphere for solar zenith 
angles of 20 and 70, respectively), however, often showed weaker performance when handled 
with the new approach and had increased residuals by as much as 60% compared to the state-
of-the-art approach. Overall, uncertainties were reduced for liquid-phase and mixed-phase 
footprints by 5.76% and 10.81%, respectively, while uncertainties for ice-phase footprints 
increased in uncertainty by 0.34%. Tested for a variety of scenes..." 
 
The results (Section 4) will be amended as follows: 
 
l. 228: “…caused higher uncertainties in log-linear models, increasing with solar zenith angle 
and higher by up to 60% compared against the sigmoidal approach.” 
l. 247: “will be discussed in Sec. 5. Similar to liquid-phase clouds, angular geometries affected 
by sun-glint showed worse performance than the sigmoidal approach, increasing residuals by 
up to 30%.” 
l. 259: “…remained best captured by the sigmoidal approach, especially for SZA beyond 50 
where the semi-physical model produces up to 55% higher residuals.” 
 
And we introduce a summarizing paragraph where we calculate the median change in 
uncertainty for each of the state-of-the-art-defined cloud phases (i.e. for each of the three rows 
in Fig. 4): 
 
l. 265: “Across all solar and viewing geometries, we calculated the median change in 
uncertainty when using the log-linear model over the state-of-the-art approach to be -5.76% for 
liquid-phase clouds, +0.34% for ice-phase clouds, and -10.81% when both phases are present.” 
 
The conclusions (Section 5) will be changed as follows: 
 
l. 273: “…and to produce plausible radiance fields. Weaker performance than the state-of-the-
art approach was generally observed for solar zenith angles lower than 20 and for sun-glint 
affected geometries that constitute between 1 and 10% of the hemispheric radiance field.” 
 
L22-23: Is it correct that EarthCARE will use observation based fluxes in the closure 
assessment? My understanding is that EarthCARE will use observed radiances for this 
purpose. 
 
That is correct. The mission objective is defined in terms of TOA fluxes. More specifically, the 
radiative closure assessment is considered successful when observation-based versus simulated 
TOA fluxes agree within 10 W/m2 (Illingworth et al., 2015).  
 
L33: CERES ADMs are developed from years of observations, not months. This is actually 
mentioned later in the manuscript.  
 



We will correct this. 
 
L35-36: ERBE only defined 2 scene types containing cloud over ocean. There was also clear sky 
ocean (technically containing cloud cover up to 5%), and an overcast scene that did not 
separate surface types. I assume these are the 4 scene types the authors refer to here, but it 
is probably worth making this distinction. 
 
We thank the Referee for this remark and will adapt the text as proposed: 
 
l. 35-36: “and defined four scene types ranging in cloud coverage (including “clear ocean” that 
used a cloud cover up to 5%, two cloudy scene types over ocean, and “overcast” that blended 
all surface types).” 
 
Eq. 1: Best to define “g” explicitly since it is defined later as the asymmetry parameter. Is 
there a unit inconsistency in these equations? 
 
We thank the Referee for pointing this out and will define g explicitly. We double-checked 
equation 1, found the latter integral lacked a division by pressure p, and will correct this in the 
final version. 
 
L92: Why cut off SZA specifically at 82 deg? 
 
There are several reasons that motivate cutting off before a SZA of 90: less reliable MODIS 
cloud retrievals, a growing influence of twilight, and a progressively smaller influence of cloud 
micro-physical properties on upward-reflected radiance fields. To demonstrate the feasibility of 
the log-linear approach as much as possible while keeping computational cost at a minimum, 
we decided to cut off at 82. 
 
Fig 3: Can you comment on the asymmetry either side of the sun-glint? “Coakley-Chylek refl. 
Surface” gives smaller residuals at viewing zenith angles plotted to the left of the sunglint, 
but generally worse or comparable to the right. The opposite is true for Fig 6a 
 
We thank the Referee for highlighting this difference in performance.  
 
We generally found that liquid-phase clouds (shown in Fig. 3) benefitted from introducing the 
semi-physical approach, and especially so in the backscattering direction (i.e. left of the sun-
glint) where we expect the largest contribution of single-scattering events. We find this 
confirmed in Fig. 3.  
 
For mixed-phase clouds (shown in Fig. 6), we speculate that a different balance of advantages 
versus disadvantages of the log-linear model may cause a shift in geometries where the log-
linear model outperforms the state-of-the-art approach. Please find these advantages and 
disadvantages elaborated below. 
 



For mixed-phase clouds (shown in Fig. 6a), we can think of two additional sources of errors that 
may increase residuals of the log-linear model for any geometry compared to liquid-phase 
clouds. 
First, we used optimized asymmetry parameters from purely liquid-phase and ice-phase 
footprints for mixed-phase footprints, leaving only 3 parameters to optimize (i.e. A, B, and C 
from Eq. 4) while the sigmoidal approach used 5 (see Eq. 2) or more in case of sun-glint. We 
suspect that fewer degrees of freedom could lead to higher residuals in general. 
Second, another potential source for larger residuals could arise from determining above-cloud 
water vapor per footprint from a single cloud-top pressure (Eq. 1). When multiple cloud layers 
are present we decided to use the cloud-top pressure of the cloud layer with the larger cloud 
fraction. For mixed-phase footprints - having both ice and liquid phase clouds and, thus, 
presumably large pressure differences across cloud-tops within each footprint – we expect 
largest possible uncertainties to arise. 
 
On the other hand, a better performance of the log-linear model may, of course, be found 
where the intended effect is largest: within a mixed-phase footprint to be able to account for 
proportions of ice and liquid-phase clouds and, thus, their respective ability to reflect solar 
radiation (an ability the sigmoidal model loses by producing a footprint-effective cloud optical 
thickness).  
We expect the largest advantage of the log-linear approach for geometries where liquid-to-ice 
proportions varied the most (or showed most skewed distributions) and presume that this is 
the case for the forward-scattering direction in Fig. 6a (right of the sun-glint).  
Looking at Fig. 6c, we see how predicted radiances from the sigmoidal model can be associated 
with various ice-to-liquid proportions from the log-linear model along the principal plane: the 
nadir and forward-scattering direction are associated with ~75% ice fraction and 25% liquid 
fraction, while the backscattering direction is associated with 50-50 proportions. This could 
indicate a shifting distribution in liquid-to-ice proportions between both groups and allow log-
linear models to outperform the state-of-the-art approach in the former group. 
 
As derivatives from this question and its response we plan to make following changes: 
 
l. 91: include “For footprints consisting of multiple cloud layers, relying on a single cloud-top 
pressure may introduce uncertainty, especially for mixed-phase footprints (see Sec. 3) where 
the pressure difference between ice and liquid phase layers is exceptionally large.” 
 
ll. 261-262: change from “and that both approaches agree for 50% liquid and 50% ice cloud 
footprints.” to “and that both approaches agree for 50% liquid and 50% ice cloud footprints for 
the backscattering direction and 25% liquid and 75% ice cloud fractions for much of the forward 
scattering direction, indicating that sampled footprints shifted in liquid-to-ice proportions along 
the principal plane.”  
 
Fig 4: The meaning of the sign of the change should be noted in the caption. I worked out that 
negative change means the Log-Linear is better, but I had to read the text to get that. 
 



We thank the Referee for noting this shortcoming and will expand the caption of Fig. 4 
accordingly:  
 
Fig. 4: “…·100%. Consequently, negative values relate to a better performance of the log-linear 
model, while positive values mark a better performance by the state-of-the-art methodology. 
Solid lines…” 
 
L265-267: Similar to my second comment above about statistics in the abstract, I think these 
summary sentences over-clam the results somewhat. The proposed log-linear model 
sometimes outperformed the existing sigmoidal approach, but there were also many 
geometries when it did relatively badly. That should be acknowledged as part of these 
summary sentences.  
 
We agree with the Referee and - in addition to planned changes listed in the response to the 
first comment – amend Sec. 4 as follows: 
 
l. 266: Instead of “It produced lower uncertainties”, we put “For most geometries it produced 
lower uncertainties” 
l. 267: Adding: “Drawbacks were typically found for geometries affected by sun-glint.” 
 
 
Grammatical corrections  
 
L13-14: “radiance residuals”->”radiance residuals calculated against CERES observations”. It is 
worth mentioning in the abstract that they are residuals against observations. This may not 
be obvious to a reader who just picks up the abstract.  
 
We will adjust the text as proposed. 
 
L49: Given the importance of water vapor above cloud, I recommend “role of single 
scattering”->”role of solar absorption and single scattering”.  
 
We agree with the Referee and will change the text accordingly. 
 
L56: “semi-statistical”->”semi-physical”. Better to use consistent language throughout.  
 
We will adapt this as proposed. 
 
L80: “(“Note for cloud layer”)”. I do not understand the meaning of this.  
 
We plan to change the text as follows: 
 
l.80: Instead of “(“Note for cloud layer”)” we put “(using the parameter “Note for cloud layer” 
from the SSF dataset)” 



 
L86: “those” -> “whose” 
 
We will change this. 
 
Lastly, we would like to thank both Referees very much for their feedback and hope to have 
addressed all questions and comments. To acknowledge their time and effort we plan to 
expand the Acknowledgements as follows: 
 
l. 319: “We thank two anonymous referees very much for their feedback that helped to 
improve this manuscript substantially.” 
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Abstract. Shortwave (SW) fluxes estimated from broadband radiometry rely on empirically gathered and hemispherically re-

solved fields of outgoing top-of-atmosphere (TOA) radiances. This study aims to provide more accurate and precise fields of

TOA SW radiances reflected from clouds over ocean by introducing a novel semi-physical model predicting radiances per

narrow sun-observer geometry. Like previous approaches, This model was statistically trained using CERES-measured radi-

ances paired with MODIS-retrieved cloud parameters as well as reanalysis-based geophysical parameters. By using radiative5

transfer approximations as a framework to ingest above parameters, the new approach incorporates cloud-top effective radius

and above-cloud water vapor in addition to traditionally used cloud optical depth, cloud fraction, cloud phase, and surface wind

speed. A two-stream cloud albedo—serving as a function of to statistically incorporate cloud optical thickness and cloud-top

effective radius—and Cox-Munk ocean reflectance were used to describe an albedo over each CERES footprint. Effective

radius-dependent asymmetry parameters were obtained empirically and separately for each viewing-illumination geometry.10

A simple equation of radiative transfer, with this albedo and attenuating above-cloud water vapor as inputs, was used in its

log-linear form to allow for statistical optimization. We identified the two-stream cloud albedo functional form that minimized

radiance residuals calculated against CERES observations and outperformed the state-of-the-art approach for most observer-

geometries outside the sun-glint and solar zenith angles between 20◦ and 70◦, reducing median standard deviations of radiance

residuals per solar geometry by up to 13.2% for liquid clouds, 1.9% for ice clouds, and 35.8% for footprints containing both15

cloud phases. Geometries affected by sun-glint (constituting between 10% and 1% of the discretized upward hemisphere for

solar zenith angles of 20◦ and 70◦, respectively), however, often showed weaker performance when handled with the new

approach and had increased residuals by as much as 60% compared to the state-of-the-art approach. Overall, uncertainties

were reduced for liquid-phase and mixed-phase footprints by 5.76% and 10.81%, respectively, while uncertainties for ice-

phase footprints increased by 0.34%. Tested for a variety of scenes, we further demonstrated the plausibility of scene-wise20

predicted radiance fields. This new approach may prove useful when employed in Angular Distribution Models and may result

in improved flux estimates, in particular dealing with clouds characterized by small or large droplet/crystal sizes.
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1 Introduction

Radiative fluxes at top-of-atmosphere (TOA) inferred from satellite observations serve many purposes. Instantaneous flux

estimates paired with properties of underlying clouds, aerosols, atmospheric gases, and Earth’s surface may inform us about25

the radiative effect of each component of Earth’s radiation budget (e.g. Loeb and Manalo-Smith, 2005; Li et al., 2011; Thorsen

et al., 2018). TOA fluxes may also help to constrain uncertainties concerning cloud-aerosol-radiation interactions, which will be

tested in the EarthCARE satellite mission (Illingworth et al., 2015). In EarthCARE’s radiative closure assessment, observation-

based fluxes will be used to help continuously assess both active-passive retrievals of cloud and aerosol properties, and results

from radiative transfer simulations performed on them (Barker et al., 2011; Barker and Wehr, 2012). Integrals of estimated30

fluxes over large areas and long time spans (Loeb et al., 2018) help us understand the Earth-atmosphere system’s current

radiation budget (e.g. Stephens et al., 2012), thus helping to verify global climate models (e.g. Bender et al., 2006; Boucher

et al., 2013; Calisto et al., 2014; Nam et al., 2012).

Inferring fluxes from satellite-based radiometry involves a number of steps. The key challenge for solar fluxes, the gen-

eral focus of this paper, is that constituents such as clouds reflect solar radiation unevenly across the upward hemisphere and35

we need to assume how measurements from a subset of directions relate to radiances in directions not viewed. The inten-

tion is to adequately represent hemispheric distributions of radiances such that when integrated yield accurate flux estimates.

The solution to this challenge has been empirical angular distribution models (ADMs) that learn, via statistical approaches,

hemispherically-resolved radiance fields associated with atmospheric scenes using months years of satellite observations. For

clouds over ocean, the specific concern of this paper, early efforts (Suttles et al., 1988; Smith et al., 1986) worked with ERBE40

(Earth Radiation Budget Experiment) radiometry as well as GOES (Geostationary Operational Environmental Satellite) mea-

surements and defined four scene types ranging in cloud coverage (including “clear ocean” that used a cloud cover up to 5%,

two cloudy scene types over ocean, and “overcast” that blended all surface types). Observations were sorted to produce mean

radiances per observed angular ranges for each illumination geometry. Using CERES (Clouds and the Earth’s Radiant Energy)

and VIRS (Visible and Infrared Scanner) on the TRMM (Tropical Rainfall Measuring Mission) satellite, Loeb et al. (2003)45

refined this method and sorted observations into combinations of 12 cloud coverage classes and 14 cloud optical thickness

groups and treated ice and liquid phase clouds separately. Instead of a discrete scene type definition, Loeb et al. (2005) de-

fined a continuous description of scene type for the Terra mission, using a sigmoidal function to fit cloud optical thickness

and cloud fraction based on MODIS (Moderate Resolution Imaging Spectroradiometer) measurements with CERES-measured

TOA shortwave (SW) radiances. They treated footprints containing both ice and liquid phase clouds (throughout the paper50

referred to as “mixed phase”) separately from pure and ice and liquid cases. Much of their state-of-the-art methodology was

adapted for the Aqua mission (also hosting CERES and MODIS instruments) using improved cloud algorithms and longer data

records (Su et al., 2015).

A recent case study (Tornow et al., 2018) focused on marine Stratocumulus-like clouds of optical thickness τ̃ ≈ 10 and

identified additional parameters that influence ADMs: above-cloud water vapor ACWV and layer mean cloud-top effective55

radius Re. They showed that ignoring these parameters could cause deviations in instantaneous flux estimates of about 10
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Wm−2. This suggests the non-negligible role of solar absorption and single-scattering for determination of cloud reflectance

patterns. Features of single-scattering, such as the cloud bow and glory for liquid clouds or the specular reflection peak for

ice clouds, were generally visible in earlier ADMs (e.g. Loeb et al., 2005). These features – solely shaped by the particle

phase function that largely depends on particle shape and size – can occur for a wide range of cloud optical thicknesses. Using60

simulated radiance fields, Gao et al. (2013) demonstrated that scattering regimes, ranging from foremost single-scattering to

Lambertian-like multi-scattering mediums, are functions of the cloud optical thickness. For an intermediate regime, which

showed single-scattering features, Gao et al. speculated that the uppermost τ ≈ 1 of cloud is responsible for single-scattering

contributions.

This study presents a novel semi-statistical semi-physical model that predicts TOA SW radiances for cloudy scenes over65

ocean for narrow ranges of Sun-observer angles. Estimates are sensitive to Re and ACWV , and are compared to results from

the state-of-the-art methodology. This new approach used the two-stream approximation to explain cloud albedo based on

statistically ingest MODIS cloud properties and other geophysical auxiliary parameters. We began by finding the framework of

approximations that best explained CERES-observed radiance fluctuations and then demonstrated that semi-physical log-linear

models produced tenable radiance fields.70

Section 2 presents data from Aqua and Terra satellites used in the current study. Section 3 explains both the state-of-the-art

methodology for radiances estimation and the new approach. Section 4 identifies optimal solutions and assesses their properties.

Section 5 discusses results and conclusions.

2 Data

Measured TOA SW radiances paired with scene properties – including imager-based cloud properties and further geophysical75

auxiliary parameters – were obtained from the CERES Ed4SSF (Edition 4.0 Single Scanner Footprint) dataset of Aqua and

Terra satellite missions, primarily from days during years 2000-2005 when CERES instruments were measuring in rotating

azimuth plane scan mode to provide angular coverage for ADM construction.

We extracted parameters concerning CERES broadband radiometry. Apart from upwelling unfiltered TOA SW radiances

I∗, covering the spectral range of 0.4-4.5µm, and their angular geometry (i.e. solar zenith angle θ0, viewing zenith angle θv ,80

and relative azitmuth angle ϕ), we collected downwelling TOA SW fluxes F ↓ that incorporate each measurements‘ prevalent

Sun-Earth-distance which allowed normalization of gathered radiances via I = I∗ S0 cosθ0
F↓

, with solar constant S0 = 1361.0

Wm−2.

Collocated to each CERES footprint, the SSF dataset summarizes cloud property retrievals (Sun-Mack et al., 2018) on the

MODIS pixel level taking into account the CERES point spread function (PSF) (Wielicki et al., 1996) and reports properties85

for up to two cloud layers per footprint (given that both layer’s‘ cloud-top pressure differed by 50 hPa or more; Loeb et al.,

2003). We extracted layer cloud fraction f , several statistics on the retrieved field of cloud optical depth τ (layer average

of its logarithm τ̃ = elogτ , layer average τ̄ , and layer standard deviation σ(τ)), as well as layer mean values of cloud particle

condensate phase φ (i.e. liquid, ice, or a mixture of both; involving MODIS band 3.7µm), effective radii of water or ice particles
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Table 1. Number of CERES footprints obtained after screening for marine clouds. Number are shown in million; in total 1 711 937 663

footprints.

No. of CERES footprints (×106)

Year Terra Aqua Mode

(FM1 & FM2) (FM3 & FM4)

2000 164.02 / RAPS

2001 228.10 / RAPS

2002 236.74 84.39 RAPS

2003 236.60 203.30 RAPS

2004 243.53 245.65 RAPS

2005 6.05 63.56 RAPS

Re (using band 3.7µm), and cloud-top pressure pctop. A quality flag summarizing the retrieval confidence (using the parameter90

“Note for cloud layer” from the SSF dataset) was also collected.

Additional geophysical auxiliary parameters provided in the SSF dataset were extracted. We obtained a surface broadband

albedo αsurface, surface IGBP (International Geosphere-Biosphere Programme) types, and 10 m surface wind speed w10m. The

wind speed parameter stemmed from GEOS data assimilation version 5.4.1.

Lastly, to incorporate above-cloud water vapor ACWV into our analysis, we used layer mean cloud top pressure (of the95

layer with larger cloud fraction) and extracted from ERA-20C (ECMWF twentieth-century) reanalysis (Poli et al., 2016) four

dimensional fields those whose vertical profiles of relative humidity rh(p) and temperature T (p) that were nearest in time

and geolocation to the footprint center. For each CERES footprint we collocated the following vertical integral of mixing ratio

mr(p), with saturation vapor pressure es = 6.112e
17.67T
T+243.5 (using T in degree Celsius) (Bolton, 1980), gravitational acceleration

g, and molecular weights of water and dry air molh2o and molair respectively:100

ACWV =
1

g

0∫
pctop

mr(p,T,rh)dp=
1

g

0∫
pctop

es(T )

p

molh20

molair
rh(p)dp (1)

For footprints consisting of multiple cloud layers, relying on a single cloud-top pressure may introduce uncertainty, especially

for mixed-phase footprints (see Sec. 3) where pressure difference between ice and liquid-phase layers is exceptionally large.

For our analysis, we filtered the extracted dataset for samples with more than 95% water surface, more than 0.1% cloud

fraction, and solar zenith angles between 0◦ and 82◦. Table 1 lists the resulting subset of 1.7 billion samples.105
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3 Methods for Capturing Radiance Fluctuations

In order to provide hemispherically resolved fields of backscattered radiances to radiance-to-flux-converting ADMs, statistical

approaches capture observed radiances together with prevalent scene properties per narrow and discretized Sun-observer-

geometry. Following Su et al. (2015), solar zenith, viewing zenith, relative azimuth angles were discretized into 2◦ intervals,

referred to as θ∆
0 , θ∆

v , and ϕ∆, respectively. Combinations of θ∆
0 , θ∆

v , and ϕ∆ were denoted as angular bins and observations110

were sorted into bins for separate treatment. The following subsection presents the state-of-the-art methodology. Subsection 3.2

introduces a novel semi-physical approach that includes additional parameters.

3.1 State-of-the-Art Approach (Su et al., 2015)

An analytic sigmoidal function related TOA SW radiance with MODIS-based f and τ̃ .

I(θ∆
0 ,θ

∆
v ,ϕ

∆) = I0 +
a

[1 + e−
(x−x0)

b ]c
(2)115

Where x= logf τ̃ for a single cloud layer or x= log[(f1 + f2)e
f1 log τ̃1+f2 log τ̃2

f1+f2 ] for two layers and I0, a, b, c, and x0 were

free parameters. Optimization of sigmoidal parameters relied on mean radiances that were produced per x interval (every 0.02,

shown as black dots in Figure 1a).

Models were generated separately per cloud phase. A footprint’s cloud phase was determined via an effective phase, defined

as φeff = f1φ1+f2φ2

f1+f2
for two layers, and thresholds: liquid for 1< φeff < 1.01, mixed for 1.01≤ φeff ≤ 1.75, and ice for120

1.75< φeff ≤ 2.

To handle radiance fluctuations caused by sun-glint, a glint region was defined (sun glint angles < 20◦). Observations with

x > 6 in affected geometries remained captured by a sigmoid fit. For x≤ 6 on the other hand, a look-up-table approach stored

mean radiances per wind speed interval (0-2, 2-4, 4-6, 6-8, 8-10, and > 10 m s−1) and per x interval (<3.5, 3.5-4.5, 4.5-5.5,

5.5-6).125

Selected angular bin in Fig. 1 had a sun-glint angle of about 14◦ and shows how tabulated radiances (colors correspond to

wind speed intervals) and sigmoidal curve both covered observed radiances.

3.2 Novel Semi-Physical Approach

There are several ways one might incorporate additional variables Re and ACWV into a radiance-predicting statistical model.

One could divide each angular bin’s samples into classes of Re and ACWV and repeat sigmoidal fitting for each combination130

of classes (see Section 3.1). Some bins, however, contained too few samples or failed to cover the full spectrum of at least one of

the two parameters. As a viable alternative, we explored radiative transfer approximations as a way to ingest scene properties

(i.e. MODIS-based cloud properties and geophysical auxiliary parameters), and this allowed incorporating all samples in a

continuous manner.
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Figure 1. For an exemplary angular bin (θ0 ∈ [20◦,22◦], θv ∈ [6◦,8◦], ϕ ∈ [12◦,14◦]), we show how a state-of-the-art sigmoidal fit (a) and

proposed log-linear model (b) capture fluctuations of CERES-measured TOA SW radiances. As this angular bin is within Sun-glint region,

(a) shows the LUT-approach for x < 6 (as defined in Section 3.1; note that f1 and f2 are taken between 0-100 in (a) and between 0-1 in (b)).

Colors in (b) mark the amount of above-cloud water vapor. Statistics in both panels summarize each approach’s number of samples, bias,

and standard deviation of radiance residuals as well as relative deviations.

Working with cloudy atmospheres over ocean surfaces, we assumed that radiance fluctuations were mainly driven by the135

bidirectional reflection of clouds and water surfaces and by directional absorption through water vapor located above (highly

reflective) clouds. We initially set out with following simple equation of radiative transfer:

I(θ∆
0 ,θ

∆
v ,ϕ

∆)≈ So cosθ0 α e
−2ACWV (3)

with solar influx So cosθ0 and the albedo α of an Earth-atmospheric scene covered by the CERES footprint (hereafter referred

to as footprint albedo).140

In following subsection we present how footprint albedo was approximated. This then allowed us to use Eq. 3 in its log-linear

form and weight the contribution of reflection and absorption via ordinary least square with free parameters A, B and C.

logI(θ∆
0 ,θ

∆
v ,ϕ

∆)≈A+B logα+CACWV (4)

Like the state-of-the-art methodology (Section 3.1), we applied this approach per angular bin (resolved by 2◦ in θ0, θv , and

ϕ) allowing us to treat So cosθ0 as constant. We also separated by cloud phase but choose a different threshold to discriminate145

phase. As elaborated in more detail below, we rely on pure liquid and ice phases to, then, treat the mixed phase. Therefore, we
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consider a footprint as liquid phase for φ1/2 = 1, as ice for φ1/2 = 2, and as mixed for φ1 = 1 and φ2 = 2. φ1/2 were rounded

in case their values were neither 1 or 2.

3.2.1 Approximating CERES Footprint Albedo

To approximate the albedo within each CERES footprint by means of MODIS-based cloud properties and additional geophys-150

ical variables (αsurface, w10m, ACWV ), we separately handled clear and cloudy portions.

For clear portions within each footprint, we used the surface broadband albedo of underlying water bodies (referred to

αocean = αsurface, see Section 2). To capture sun-glint, i.e. the specular reflection at ocean‘s surface that alters as low-level

winds perturb the water surface and tilt reflective facets, we used a Cox-Munk reflectance (Cox and Munk, 1954), as formulated

in Wald and Monget (1983) with Fresnel reflection factor ρ(ω) for a perfectly smooth surface, and sun-observer-geometry per155

CERES footprint:

rSunGlint =
πρ(ω)P (θn,W10m)

4cosθ0 cosθv cos4 θn
(5)

where

P (θn,W10m) =
1

πσ2
exp

(
− tan2 θn

σ2

)
(6)

160

σ2 = 0.003 + 0.00512W10m (7)

θn = arccos

(
cosθv + cosθ0

2cosω

)
(8)

cos2ω = cosθv cosθ0 + sinθv sinθ0 cosϕ (9)165

To describe the albedo of cloudy portions, we explored the application of two-stream cloud albedo that uses cloud optical

thickness and cloud micro-physical properties equations as a function to ingest MODIS-retrieved cloud optical thickness τ̃

and cloud-top effective radius Re through asymmetry parameter g(Re) or backscattering fraction β(Re), This allowed us to

ingest MODIS-based τ̃ andRe through g(Re), as explained in more detail in the following subsection. The following solutions

are thoroughly described in Meador and Weaver (1980), which presents a unifying theoretical framework to a variety of two-170

stream cloud albedos based on coupled differential equations that describe upward and downward directed intensity fields. We

considered two cloud albedos that proved useful for a range of cloud optical thicknesses (King and Harshvardhan, 1986): the

Eddington approximation (Shettle and Weinman, 1970) and the Coakley-Chylek approximation (using solution I of Coakley

and Chylek, 1975).
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The Eddington approximation considered an incident flux explicitly in coupled equations and thus described diffuse intensity175

fields. Assuming conservative scattering (i.e. a single scattering albedo of 1), a perfectly absorbing lower boundary (αbottom =

0), and no further influx at TOA, the analytical solution for cloud albedo was as follows, where µ0 = cosθ0:

αTwoStream =
3
4 (1− g)τ̃ − 1

4 (1− 3µ0)(1− e−
τ̃
µ0 )

1 + 3
4 (1− g)τ̃

(10)

The Coakley-Chylek approximation excluded the incident flux in differential equations and thus its intensities referred

to total radiation fields (i.e. direct and diffuse). Assuming conservative scattering, a perfectly absorbing lower boundary180

(αbottom = 0) and only a solar influx at TOA, the analytical solution for cloud albedo was:

αTwoStream =
(1−g)τ̃

2

1 + (1−g)τ̃
2

(11)

where β was substituted with (1−g)
2 as done in textbook solutions (e.g. Bohren and Clothiaux, 2008). Using the Coakley-Chylek

approximation and a reflective lower boundary with albedo αbottom > 0 (in this study αbottom = αsurface), we produced

following cloud albedo:185

αTwoStream =
αocean + (1−αocean)(1−g)τ̃

2

1 + (1−αocean)(1−g)τ̃
2

(12)

Because it was unclear which solution could explain radiance fluctuations over narrow sun-observer-geometries most suc-

cessfully, we tested a variety of solutions in Section 4.

Both ocean and cloud albedos (for up to two cloud layers) were used to calculate the footprint albedo, using clear fraction

f0 and cloud fractions of layer 1 and layer 2, f1 and f2, respectively:190

α= f0(αocean + rSunGlint) + f1α
TwoStream
1 + f2α

TwoStream
2 (13)

where f0 + f1 + f2 = 1.

3.2.2 Statistical Optimization

Before comparing different two-stream approximations in Sec. 4, we performed two steps that ensured statistical optimization

for each approximation. Finding an optimal g(Re) was designed to best capture radiance fluctuations per angular bin. Higher195

weights to a subset of data per angular bin - homogeneous clouds that were well retrieved - was used to facilitate consistency

of radiances across bins. Both steps are explained in more detail below.

As shown in the previous subsection, we used two-stream cloud albedo to explain radiance fluctuations for narrow sun-

observer-geometries. Applied to all angular bins of an upward hemisphere, it was unclear which g(Re) to choose. Initial tests

that used a g(Re) from Mie theory (see Fig. 2b) for all geometries proved sub-optimal for some angular bins and left radiance200

residuals correlated to layer mean effective radius (not shown). We therefore decided to optimize g(Re) for each angular

bin and for each cloud phase (liquid and ice). Inspired by the shape of Mie-calculated g(Re), we approximated g(Re) via a

8



Figure 2. For the same angular bin as in Figure 1, we present details of the proposed model that highlight essential steps aside from log-linear

least-square fitting (Eq. 4). (a) shows the search for an optimal g(Re) (as described in Sec. 3.2): we plotted a two-dimensional slice (showing

b and c of Eq. 14) through the three-dimensional space (spanned by a, b, and c). Colors show standard deviations of radiance residuals and

point size relates to model bias. The star marks the combination of a, b, and c that produced smallest residual standard deviations and is

considered optimal for this bin. (b) compares the g(Re) of the determined optimal solution against Mie-calculations. (c) shows final radiance

residuals against cloud homogeneity (x-axis) and cloud optical depth (color). As described in Section 3.2.2., only homogeneous (ν > 10)

clouds which were well-retrieved (MODIS-reported portion> 90%) - marked as triangles in (c) - were conisidered for opimization of g(Re)

and least-square fitting. Statistcs and error metrics throughout the manuscript incorporate all samples.

Table 2. In search for optimal g(Re), we list the range (Minimum and Maximum) and step size for each parameter in Eq. 14.

Parameter Minimum Maximum Step

a -0.5 0.95 0.01

b -0.01 0.01 0.0003

c -0.00025 0.00025 0.000015

quadratic function:

g(Re) = a+ bRe + cRe
2

(14)

and searched a three-dimensional grid, spanned by a, b, and c, for combinations that minimized the standard deviation of205

radiance residuals. The search covered parameters a, b, and c as listed in Table 2. As shown in Fig. 2a, we usually found a

single optimum value that could minimize standard deviation of radiance residuals and that deviated from Mie calculations

(Fig. 2b).
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A second step aimed at using a subset of data that was consistent across angular bins. Looking into samples of individual

angular bins, we observed stark variability in radiances that could be attributed to cloud horizontal heterogeneity (cloud homo-210

geneity was approximated by ν = τ̄2

σ(τ)2 ; radiance residuals are shown in Fig. 2c). We suspected that clouds’ three-dimensional

structure caused tilted cloud facets that led to more or less reflective cloud portions (e.g. as accounted for in Scheck et al.,

2018). In order to avoid an uncontrollable impact of cloud heterogeneity onto final models, we decided to select homogeneous

samples only for statistical optimization. As a threshold of homogeneity, we used ν > 10 (e.g. Barker et al., 1996; Kato et al.,

2005). As shown in Tab. 3 per solar geometry, median homogeneity varied considerably across bins as well as cloud phase,215

and this resulted in ranging portions of data being selected. For optimization, we further limited selection to CERES footprints

with quality flags indicating a confident retrieval of 80% or more of all cloudy MODIS pixels within a CERES footprint. This

subset of samples served to optimize the above search for g(Re) and to find weights via least-square (Eq. 4). To compute error

metrics, we used all available samples. An example for the application of the log-linear model in shown in Fig. 1b.

4 Results220

Radiance-predicting statistical models that capture narrow sun-observer-geometries form the basis for empirical angular dis-

tribution models. And these statistical models fit observations from satellites, typically capturing how TOA SW radiances

measured by a broadband radiometer change with scene type (defined by surface conditions as well as cloud and aerosol

properties within the radiometer’s footprint area) retrieved using a multi-spectral imager (see Sec. 2). To investigate whether

a new approach, the proposed semi-physical log-linear model in Sec. 3.2, is a superior way to fit observations compared to225

the state-of-the-art approach, the sigmoidal fit described in Sec. 3.1, we took CERES Ed4SSF observations (Sec. 2) of liquid-

phase clouds along the principal plane of an exemplary solar geometry covering major scattering features of clouds and the

ocean surface. We applied the sigmoidal fit as well as a variety of log-linear models, each using a different analytic solution

of two-stream cloud albedo (Eqs. 10-12) that is used in this study as a framework to ingest MODIS-based cloud properties.

Looking at the standard deviation of radiance residuals per angular bin (in this study used as a measure of model uncertainty),230

the Coakley-Chylek approximation using a reflective lower boundary (Eq. 12) outperformed the sigmoidal fit for most bins

and by up to 1.5 W m−2 sr−1 (shown in Fig. 3). Only the central portion of sun-glint-affected geometries remained best ex-

plained by sigmoidal fits (and accompanied look-up-table approach as laid out in Section 3.1). In contrast, the Coakley-Chylek

approximation using a perfectly absorbing lower boundary (Eq. 11) or the Eddingtion approximation (Eq. 10) performed only

equally well or worse than sigmoidal fits.235

To ensure that the Coakley-Chylek approximation using a reflective lower boundary performed well for other Sun-observer-

geometries, we processed all angular bins that contained more than 100 samples. As Table 3 shows, this covered between 13

and 96% of all angular bins. We found that for liquid clouds (top panels of Fig. 4) and θ0 ∼ 20◦-70◦ more than half of the

bins were better explained by the log-linear approach and errors were reduced by up to 13.2%. For solar geometries θ0 > 40◦,

bins in sun-glint-affected geometries (constituting a portion of all bins in a hemisphere between 10% for a θ0 ∼ 20◦ and 1%240

for a θ0 ∼ 75◦) caused higher uncertainties in log-linear models, increasing with solar zenith angle and higher by up to 60%
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Table 3. Per solar geometry θ0 and per cloud phase (L - liquid, I - ice, M - mixed) as defined in Section 3.2, we show what portions of

the upward hemisphere were covered with observations, and how large the range of cloud homogeneity, above-cloud water vapor, cloud-top

effective radius was. The range lists minima and maxima of median values computed per angular bin within a hemisphere.

Angular Coverage ν ACWV (kg m−2) Re (µm)

θ∆
0 (in ◦) L I M L I L I L I

6-8 0.13 0.01 0.16 2.3-4.4 5.2-12.2 11.10-16.52 0.03-0.04 11.4-14.5 39.8-45.7

8-10 0.23 0.05 0.25 1.7-4.8 4.3-10.4 9.29-16.85 0.02-0.05 11.5-13.5 38.6-47.8

10-12 0.35 0.12 0.35 2.3-10.9 3.7-15.8 9.39-17.37 0.02-0.06 10.2-13.3 38.5-49.6

12-14 0.59 0.20 0.58 2.4-9.4 3.0-17.1 7.76-16.79 0.02-0.06 10.1-15.2 38.7-47.5

14-16 0.75 0.34 0.77 2.3-7.5 3.2-22.4 6.31-18.78 0.02-0.08 9.9-18.3 36.7-74.3

16-18 0.83 0.61 0.85 1.8-7.2 3.4-24.9 7.17-21.15 0.02-0.06 9.6-20.5 36.3-47.3

18-20 0.88 0.71 0.89 2.0-8.5 3.1-20.2 7.68-19.19 0.02-0.07 9.5-20.0 37.4-47.2

20-22 0.91 0.76 0.93 2.0-9.1 3.0-16.2 6.77-19.97 0.02-0.06 10.0-19.5 39.1-49.9

22-24 0.93 0.79 0.95 2.0-9.1 3.5-16.1 7.00-18.79 0.02-0.06 10.0-19.4 38.6-49.0

24-26 0.94 0.81 0.96 2.1-8.0 3.6-15.5 7.26-18.18 0.02-0.07 9.8-18.8 40.1-61.0

26-28 0.94 0.82 0.97 1.9-8.3 3.2-15.5 7.23-16.98 0.02-0.06 10.3-16.9 40.2-51.9

28-30 0.95 0.83 0.97 2.0-11.0 3.3-15.8 6.72-20.07 0.02-0.07 10.8-16.2 39.5-51.6

30-32 0.95 0.83 0.98 1.9-10.0 3.4-16.4 7.04-17.02 0.02-0.08 11.2-17.2 40.7-73.2

32-34 0.95 0.83 0.98 2.0-8.8 3.1-17.0 7.06-17.99 0.02-0.10 11.6-16.9 41.0-55.5

34-36 0.96 0.83 0.98 2.0-8.8 3.5-17.2 6.44-18.76 0.02-0.11 11.8-16.0 41.9-52.8

36-38 0.96 0.83 0.98 1.9-6.9 3.9-18.8 6.66-18.18 0.02-0.13 11.9-15.8 42.2-56.6

38-40 0.95 0.83 0.98 2.0-7.7 4.4-20.0 6.61-16.88 0.02-0.13 11.7-15.8 42.2-54.8

40-42 0.95 0.83 0.98 1.9-7.7 5.4-20.6 5.55-19.06 0.03-0.14 11.5-16.3 43.6-55.8

42-44 0.94 0.82 0.98 2.0-7.1 5.0-20.3 5.94-15.28 0.03-0.16 11.6-16.5 43.0-62.8

44-46 0.94 0.83 0.98 2.1-8.1 5.7-20.5 5.90-12.69 0.04-0.15 11.5-16.4 43.7-74.4

46-48 0.94 0.83 0.97 2.1-7.9 6.0-19.4 5.37-12.45 0.03-0.15 11.6-15.6 44.3-78.2

48-50 0.93 0.83 0.97 2.0-7.3 6.1-17.9 4.97-12.23 0.04-0.16 11.7-15.0 45.3-76.1

50-52 0.92 0.83 0.97 2.0-7.3 5.7-18.1 4.55-10.34 0.05-0.16 11.6-14.8 44.6-80.0

52-54 0.91 0.83 0.96 2.2-7.5 5.6-16.6 4.09-9.76 0.00-0.17 11.8-15.0 46.1-77.0

54-56 0.90 0.83 0.96 2.1-7.0 5.5-14.9 3.88-8.67 0.04-0.16 11.0-15.7 46.1-78.6

56-58 0.89 0.83 0.96 3.0-7.4 5.2-13.3 3.30-8.88 0.05-0.15 10.8-15.0 45.0-76.2

58-60 0.88 0.83 0.96 3.1-8.8 4.6-12.4 2.99-8.77 0.05-0.15 10.7-15.1 44.0-76.9

60-62 0.87 0.84 0.95 2.8-8.7 4.8-11.7 3.24-10.05 0.05-0.14 11.2-15.2 43.8-76.8

62-64 0.86 0.83 0.95 3.4-8.7 4.5-13.3 2.74-7.62 0.04-0.15 11.5-14.9 44.1-76.2

64-66 0.85 0.84 0.94 3.5-9.6 3.9-11.7 2.32-7.73 0.04-0.15 11.5-14.7 42.9-79.5

66-68 0.85 0.84 0.94 3.5-9.3 3.5-10.6 2.37-8.56 0.05-0.15 11.6-15.2 44.1-82.2

68-70 0.84 0.84 0.93 3.8-11.2 3.2-10.1 2.30-9.00 0.05-0.15 11.5-15.3 41.0-75.6

70-72 0.83 0.83 0.93 3.9-11.6 2.7-10.2 2.45-7.02 0.05-0.16 11.7-15.1 42.3-76.1

72-74 0.82 0.82 0.92 3.8-12.7 2.2-9.1 2.05-6.44 0.06-0.15 11.8-15.8 40.6-86.2

74-76 0.80 0.81 0.91 4.0-10.9 1.8-10.0 1.98-7.46 0.04-0.15 11.1-16.1 40.0-76.6

76-78 0.79 0.79 0.90 3.8-13.0 1.5-8.8 1.87-9.36 0.06-0.15 11.6-15.8 39.2-88.6

78-80 0.78 0.77 0.90 3.5-13.2 1.1-8.0 1.50-9.97 0.04-0.14 11.5-15.9 35.9-88.6

80-82 0.75 0.75 0.89 3.4-11.7 1.2-8.2 1.60-8.82 0.04-0.13 11.5-15.1 29.5-88.5
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Figure 3. Applied to angular bins of the principal plane for θ0 ∈ [20◦,22◦], we test a variety of two-stream solutions for cloud albedo

(Eqs. 10-12) as input to log-linear models as presented in Eq. 4. This plot shows standard deviations of resulting residuals and compares

against the state-of-the-art sigmoidal fit (black line). As labelled, grey dashed lines mark position of sun-glint and direct backscatter.

compared against the sigmoidal approach. For solar geometries θ0 < 20◦, on the other hand, we found bins outside the sun-

glint – i.e. mostly slant observation angles – were best treated with the sigmoidal approach. Few footprints (indicated by circle

size) of the top row were treated as mixed in the log-linear model and will be evaluated further below. With these limitations

in mind, we use the Coakley-Chylek approximation using a reflective lower boundary standard as two-stream cloud albedo for245

the remainder of this study.

To determine whether the log-linear approach predicted plausible radiance fields, we tested it on a variety of scenarios. When

applied to a range of cloud optical thicknesses, we found a similar radiance response compared to sigmoidal fit (Fig. 5b). Setting

cloud fraction to zero (f1 = f2 = 0) and using a range of 10 m wind speeds, log-linear and sigmoidal models produced again

comparable radiance fields (Fig. 5c). This shows that the sensitivities of the state-of-the-art approach were captured by log-250

linear models. When varying cloud-top effective radius – a newly added sensitivity – we found radiances grow as droplet

size increased (leaving cloud optical thickness constant; shown in Fig. 5e). With a focus on single-scattering features, we

found the cloud glory (centered around the direct backscatter) to widen and the cloud glory (positioned about 20◦ away from

the backscatter) to shift towards the direct backscatter as effective radii became smaller. This observation is corroborated by

Mie-calculations of scattering phase functions (e.g. Fig. 1 in Tornow et al., 2018). The newly introduced concept of bin-wise255

optimized asymmetry parameters (Sec. 3.2.2) made changing cloud bow and glory possible and g(Re) exhibited a symmetry
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Figure 4. Using all observed angular bins within θ0 ∈ [6◦,82◦], we show how radiance residuals from proposed log-linear models compare

against state-of-the-art sigmoidal fits. Results are presented by CERES-defined cloud phase (vertically), by newly-defined phase (colors),

and by whether the angular geometry is affected by sun-glint (left) or free of sun-glint (right). We show relative change in model uncertainty:

δ = [σ(∆ILogLinear)−σ(∆ISigmoidal)]/σ(∆ISigmoidal) · 100%. Consequently, negative values relate to a better performance of the log-linear

model, while positive values mark a better performance by the state-of-the-art methodology. Solid lines and dots mark 50th percentile and

shades show the interquartal range between 25th and 75th percentiles. Point size relates to the average number of observations per angular

bin. The dashed black line marks zero change.
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left and right of the direct backscatter between θv of -50◦ and 0◦ (Fig. 5f). For a range of above-cloud water vapor (Fig. 5d)

– another newly added sensitivity - we observed that smaller loads produced higher radiances and found a slight increase in

sensitivity with larger θv .

We also tested log-linear models on observations of ice-phase clouds. We found that model uncertainties outside the sun260

glint were of similar magnitude as sigmoidal fits (Fig. 4, bottom panels). Possible reasons will be discussed in Sec. 5. Similar

to liquid-phase clouds, angular geometries affected by sun-glint showed worse performance when using log-linear models,

increasing residuals by up to 30%. Like the liquid-phase, predicted radiances increased with smaller ice crystal radii. However,

distinct scattering features were absent (not shown); possibly a result of ice clouds’ rich variety of crystal shapes (e.g. Zhang

et al., 1999; Baum et al., 2005) that was unaccounted for. The response to above-cloud water vapor was consistent and covered265

much of the lower levels (0.03-0.17 kg m−2, see Table 3).

Roughly 50% of all CERES footprints cover both a liquid and an ice cloud and have been treated separately as “mixed-

phase”. The proposed log-linear approach allows us to handle mixed-phase cases fundamentally differently. Instead of a

footprint-effective optical depth (as used in Equ. 2), we can produce a footprint-effective albedo (Equ. 13) and account not

only for cloud macro-physical (f1/2, τ̃1/2) but also for microphysical (Re1/2) changes. Optimized asymmetry parameters from270

pure liquid and pure ice cases (Fig. 6b) were reused to describe the cloud albedo of respective cloud phase within each mixed-

phase CERES footprint. Hence only A, B, and C from Eq. 4 needed to be estimated. Fig. 6a illustrates the reduction in model

uncertainty for many bins and of up to 2.5 W m−2 sr−1 when using the log-linear approach. Once again, the center of sun-glint

remained best captured by the sigmoidal approach, especially for SZA beyond 50◦ where semi-physical models produce up to

55% higher residuals. Using a cloud-phase-specific albedo allowed us to account for radiance changes with varying amount275

of liquid versus ice fraction within a footprint. Fig. 6c shows radiance predictions for different liquid-ice-proportions (which

could not be captured by the state-of-the-art approach) and that both approaches agree for 50% liquid and 50% ice cloud

footprints for the backscattering direction and 75% liquid and 25% ice cloud fractions for much of the forward scattering

direction. indicating that sampled footprints shifted in liquid-to-ice proportions along the principal plane.. Fig. 6d shows the

sigmoidal fit’s sensitivity to ranging cloud optical depth was captured by the log-linear approach. Looking at all available sun-280

observer-geometries (Fig. 4, middle panels) for solar geometries between θ0 ∼ 20◦-70◦, we found model uncertainty of most

bins reduced by as far as 35.8%.

Across all solar and viewing geometries, we calculated the median change in uncertainty when using the log-linear over the

state-of-the-art approach to be -5.76% for liquid-phase clouds, +0.34% for ice-phase clouds, and -10.81% when both phases

were present.285

In summary, we showed that the proposed log-linear model had the ability to outperform the existing sigmoidal approach

in capturing CERES radiance fluctuations per angular bin. It For most geometries it produced lower uncertainties, added

new radiance sensitivities, and allowed to treat mixed-phase footprints in a fundamentally different manner. Drawbacks were

typically found for geometries affected by sun-glint.
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Figure 5. For angular bins along the prinicipal plane for θ0 ∈ [20◦,22◦] containing liquid-phase footprints, we present error metrics and

sensitivities of proposed log-linear versus state-of-the-art sigmoidal fits. (a) shows standard deviations of residuals; colors mark the type

of fit. (b) displays the optimal g(Re) for three Re (by color). (c), (d), and (e) demonstrate predicted radiances by both fits for varying

cloud optical thickness (c), cloud-top effective radius (d), and above-cloud water vapor (e). Predictions from log-linear fits are colored while

predictions from sigmoidal fits are shown in black. (f) presents the response of both fits to a variety of surface wind-speeds. Properties held

constant in (c), (d), (e), and (f) are listed in the each panel’s top-right corner.
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Figure 6. For angular bins along the principal plane for θ0 ∈ [20◦,22◦], we show details for mixed-phase footprints. (a) presents standard

deviations of residuals (colors mark the type of fit). (b) shows optimal g(Re) from pure ice and liquid-phase footprints employed for mixed-

phase cases (colors mark liquid and ice particle effective radius). (c) and (d) show predicted radiances for liquid cloud fraction (c) and

cloud-optical thickness (d). In both (c) and (d), we show log-linear fits in color and sigmoidal fits in black. Quantities left constant are shown

in the bottom-left corner.
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5 Conclusions290

Statistical models that capture measurements of TOA SW radiances as a function of corresponding scene type for narrow

sun-observer-geometries are the basis for Angular Distribution Models. In this study, we introduced a new alternative that

incorporated additional parameters – namely cloud-top effective radius and above-cloud water vapor – via a semi-physical log-

linear approach. We found this new approach to better explain radiance fluctuations for the majority of observed geometries and

to produce plausible radiance fields. Weaker performance than the state-of-the-art approach was generally observed for solar295

zenith angles lower than 20◦ and for sun-glint-affected geometries that constitute between 1% and 10% of the hemispheric

radiance field.

Incorporating additional parameters that help explain radiance fluctuations may have minimized sampling bias. Ranges in

effective radius or above-cloud water vapor varied across bins and ignoring this variation can cause a radiance bias in individual

angular bins. Even accounting for parameters that may not affect TOA anisotropy, such as cloud horizontal heterogeneity, has300

the potential to minimize sampling biases. We found varying portions of heterogeneous samples across bins and suspect that

their variation in radiance (cf. Fig. 2c) failed to cancel out. Thus, giving higher (or all) weight to homogeneous samples during

regression, as done in this study, should eliminate any sampling bias.

The inclusion of cloud-top effective radius and above-cloud water vapor was successful as evidenced by reduced radiance

residuals and credible radiance fields. We failed to reduce radiance residuals for ice-phase clouds and made the following305

observations looking at ice cloud samples. First, among collected observations, we found footprints to mostly contain homo-

geneous ice clouds. Second, ice clouds had only small loads of water vapor aloft. Lastly, there was an absence of distinct

single-scattering features. We suspect that these are characteristics that drive potential reduction of radiance residuals and that

liquid clouds samples, having near asymmetric properties (few homogeneous samples, large loads of water vapor aloft, distinct

scattering features), benefitted especially from this new approach.310

We successfully used a theoretic framework – inspired by radiative transfer approximations designed for hemispheric aver-

ages – and applied it to narrow sun-observer-geometries. A derived byproduct, the asymmetry parameter g(Re|θ∆
0 ,θ

∆
v ,ϕ

∆),

captured observer-specific multi-scattering. Could this byproduct contain information that allows inference on multi-scattering

properties? Monte-Carlo radiative transfer simulations may help in answering this. Future work should simulate radiances, de-

rive simulation-based g(Re|θ∆
0 ,θ

∆
v ,ϕ

∆) and extract additional properties, such as photon path length or number of scattering315

events.

Statistical models allow finding scene properties that produce similar radiative responses (often referred to as similarity

conditions). Like the state-of-art-approach, where different combinations of cloud fraction and cloud optical thickness produced

similar radiances, the new semi-physical approach added cloud particle size and above-cloud absorber mass to parameter

combinations. A similarity condition explaining albedo through adjusted optical thickness, (1− g)τ̃ , was found earlier using320

simulations (e.g. van de Hulst, 1996). To our knowledge, this is the first time adjusted optical thickness (here employed in the

framework of two-stream albedo) has been used to capture similarities of observed radiances.
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The proposed semi-physical approach can easily be applied to land surfaces. Imager-based bidirectional reflectance dis-

tribution function (BRDF) products, such as MCD43GF (MODIS BRDF/albedo/nadir BRDF-adjusted reflectance Climate

Modeling Grid gap-filled; Moody et al., 2008), could provide land surface albedo and surface bi-directional reflectance in325

order to determine each observation’s footprint albedo. Future efforts should test if this application over land can compete

with CERES’ separate treatment by latitude-longitude boxes. Recent efforts that demonstrated circumvention of this regional

separation for clear-sky ADMs by using MCD43GF instead indicated a positive outcome (Tornow et al., 2019).

Lastly, we hope this new log-linear approach will form the basis of future angular distribution models. In particular, we

expect that cloudy scenes of microphysical extremes (i.e. clouds consisting of very small or very large droplets) observed330

from the backscattering direction will benefit from radiance-to-flux conversion using new models. More accurate estimates of

instantaneous fluxes should benefit EarthCARE’ studies of cloud-radiative processes regarding both water and energy fluxes.

We are currently examining this impact on instantaneous fluxes as well as the propagation of updated flux estimates into daily

and monthly flux products.
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