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Abstract. Shortwave (SW) fluxes estimated from broadband radiometry rely on empirically gathered and hemispherically re-

solved fields of outgoing top-of-atmosphere (TOA) radiances. This study aims to provide more accurate and precise fields of

TOA SW radiances reflected from clouds over ocean by introducing a novel semi-physical model predicting radiances per nar-

row sun-observer geometry. Like previous approaches, this model was trained using CERES-measured radiances paired with

MODIS-retrieved cloud parameters as well as reanalysis-based geophysical parameters. By using radiative transfer approxi-5

mations as a framework to ingest above parameters, the new approach incorporates cloud-top effective radius and above-cloud

water vapor in addition to traditionally used cloud optical depth, cloud fraction, cloud phase, and surface wind speed. A two-

stream cloud albedo—serving as a function of cloud optical thickness and cloud-top effective radius—and Cox-Munk ocean

reflectance were used to describe an albedo over each CERES footprint. A simple equation of radiative transfer, with this

albedo and attenuating above-cloud water vapor as inputs, was used in its log-linear form to allow for statistical optimization.10

We identified the two-stream cloud albedo that minimized radiance residuals and outperformed the state-of-the-art approach for

most observer-geometries and solar zenith angles between 20◦ and 70◦, reducing median standard deviations of radiance resid-

uals per solar geometry by up to 13.2% for liquid clouds, 1.9% for ice clouds, and 35.8% for footprints containing both cloud

phases. Tested for a variety of scenes, we further demonstrated the plausibility of scene-wise predicted radiance fields. This

new approach may prove useful when employed in Angular Distribution Models and may result in improved flux estimates, in15

particular dealing with clouds characterized by small or large droplet/crystal sizes.

1 Introduction

Radiative fluxes at top-of-atmosphere (TOA) inferred from satellite observations serve many purposes. Instantaneous flux

estimates paired with properties of underlying clouds, aerosols, atmospheric gases, and Earth’s surface may inform us about

the radiative effect of each component of Earth’s radiation budget (e.g. Loeb and Manalo-Smith, 2005; Li et al., 2011; Thorsen20

et al., 2018). TOA fluxes may also help to constrain uncertainties concerning cloud-aerosol-radiation interactions, which will be
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tested in the EarthCARE satellite mission (Illingworth et al., 2015). In EarthCARE’s radiative closure assessment, observation-

based fluxes will be used to help continuously assess both active-passive retrievals of cloud and aerosol properties, and results

from radiative transfer simulations performed on them (Barker et al., 2011; Barker and Wehr, 2012). Integrals of estimated

fluxes over large areas and long time spans (Loeb et al., 2018) help us understand the Earth-atmosphere system’s current25

radiation budget (e.g. Stephens et al., 2012), thus helping to verify global climate models (e.g. Bender et al., 2006; Boucher

et al., 2013; Calisto et al., 2014; Nam et al., 2012).

Inferring fluxes from satellite-based radiometry involves a number of steps. The key challenge for solar fluxes, the general fo-

cus of this paper, is that constituents such as clouds reflect solar radiation unevenly across the upward hemisphere and we need

to assume how measurements from a subset of directions relate to radiances in directions not viewed. The intention is to ade-30

quately represent hemispheric distributions of radiances such that when integrated yield accurate flux estimates. The solution

to this challenge has been empirical angular distribution models (ADMs) that learn, via statistical approaches, hemispherically-

resolved radiance fields associated with atmospheric scenes using months of satellite observations. For clouds over ocean, the

specific concern of this paper, early efforts (Suttles et al., 1988; Smith et al., 1986) worked with ERBE (Earth Radiation Budget

Experiment) radiometry as well as GOES (Geostationary Operational Environmental Satellite) measurements and defined four35

scene types ranging in cloud coverage. Observations were sorted to produce mean radiances per observed angular ranges for

each illumination geometry. Using CERES (Clouds and the Earth’s Radiant Energy) and VIRS (Visible and Infrared Scanner)

on the TRMM (Tropical Rainfall Measuring Mission) satellite, Loeb et al. (2003) refined this method and sorted observations

into combinations of 12 cloud coverage classes and 14 cloud optical thickness groups and treated ice and liquid phase clouds

separately. Instead of a discrete scene type definition, Loeb et al. (2005) defined a continuous description of scene type for40

the Terra mission, using a sigmoidal function to fit cloud optical thickness and cloud fraction based on MODIS (Moderate

Resolution Imaging Spectroradiometer) measurements with CERES-measured TOA shortwave (SW) radiances. They treated

footprints containing both ice and liquid phase clouds (throughout the paper referred to as “mixed phase”) separately from pure

and ice and liquid cases. Much of their state-of-the-art methodology was adapted for the Aqua mission (also hosting CERES

and MODIS instruments) using improved cloud algorithms and longer data records (Su et al., 2015).45

A recent case study (Tornow et al., 2018) focused on marine Stratocumulus-like clouds of optical thickness τ̃ ≈ 10 and

identified additional parameters that influence ADMs: above-cloud water vapor ACWV and layer mean cloud-top effective

radius Re. They showed that ignoring these parameters could cause deviations in instantaneous flux estimates of about 10

Wm−2. This suggests the non-negligible role of single-scattering for determination of cloud reflectance patterns. Features

of single-scattering, such as the cloud bow and glory for liquid clouds or the specular reflection peak for ice clouds, were50

generally visible in earlier ADMs (e.g. Loeb et al., 2005). These features – solely shaped by the particle phase function that

largely depends on particle shape and size – can occur for a wide range of cloud optical thicknesses. Using simulated radiance

fields, Gao et al. (2013) demonstrated that scattering regimes, ranging from foremost single-scattering to Lambertian-like multi-

scattering mediums, are functions of the cloud optical thickness. For an intermediate regime, which showed single-scattering

features, Gao et al. speculated that the uppermost τ ≈ 1 of cloud is responsible for single-scattering contributions.55
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This study presents a novel semi-statistical model that predicts TOA SW radiances for cloudy scenes over ocean for narrow

ranges of Sun-observer angles. Estimates are sensitive toRe andACWV , and are compared to results from the state-of-the-art

methodology. This new approach used the two-stream approximation to explain cloud albedo based on MODIS cloud properties

and other geophysical auxiliary parameters. We began by finding the framework of approximations that best explained CERES-

observed radiance fluctuations and then demonstrated that semi-physical log-linear models produced tenable radiance fields.60

Section 2 presents data from Aqua and Terra satellites used in the current study. Section 3 explains both the state-of-the-art

methodology for radiances estimation and the new approach. Section 4 identifies optimal solutions and assesses their properties.

Section 5 discusses results and conclusions.

2 Data

Measured TOA SW radiances paired with scene properties – including imager-based cloud properties and further geophysical65

auxiliary parameters – were obtained from the CERES Ed4SSF (Edition 4.0 Single Scanner Footprint) dataset of Aqua and

Terra satellite missions, primarily from days during years 2000-2005 when CERES instruments were measuring in rotating

azimuth plane scan mode to provide angular coverage for ADM construction.

We extracted parameters concerning CERES broadband radiometry. Apart from upwelling unfiltered TOA SW radiances

I∗, covering the spectral range of 0.4-4.5µm, and their angular geometry (i.e. solar zenith angle θ0, viewing zenith angle θv ,70

and relative azitmuth angle ϕ), we collected downwelling TOA SW fluxes F ↓ that incorporate each measurements‘ prevalent

Sun-Earth-distance which allowed normalization of gathered radiances via I = I∗ S0 cosθ0
F↓ , with solar constant S0 = 1361.0

Wm−2.

Collocated to each CERES footprint, the SSF dataset summarizes cloud property retrievals (Sun-Mack et al., 2018) on the

MODIS pixel level taking into account the CERES point spread function (PSF) (Wielicki et al., 1996) and reports properties75

for up to two cloud layers per footprint (given that both layer’s‘ cloud-top pressure differed by 50 hPa or more; Loeb et al.,

2003). We extracted layer cloud fraction f , several statistics on the retrieved field of cloud optical depth τ (layer average of its

logarithm τ̃ = elogτ , layer average τ̄ , and layer standard deviation σ(τ)), as well as layer mean values of cloud particle phase φ

(involving MODIS band 3.7µm), effective radii of water or ice particles Re (using band 3.7µm), and cloud-top pressure pctop.

A quality flag summarizing the retrieval confidence (“Note for cloud layer”) was also collected.80

Additional geophysical auxiliary parameters provided in the SSF dataset were extracted. We obtained a surface broadband

albedo αsurface, surface IGBP (International Geosphere-Biosphere Programme) types, and 10 m surface wind speed w10m. The

wind speed parameter stemmed from GEOS data assimilation version 5.4.1.

Lastly, to incorporate above-cloud water vapor ACWV into our analysis, we used layer mean cloud top pressure (of the

layer with larger cloud fraction) and extracted from ERA-20C (ECMWF twentieth-century) reanalysis (Poli et al., 2016)85

four dimensional fields those vertical profiles of relative humidity rh(p) and temperature T (p) that were nearest in time and

geolocation to the footprint center. For each CERES footprint we collocated the following vertical integral of mixing ratio
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Table 1. Number of CERES footprints obtained after screening for marine clouds. Number are shown in million; in total 1 711 937 663

footprints.

No. of CERES footprints (×106)

Year Terra Aqua Mode

(FM1 & FM2) (FM3 & FM4)

2000 164.02 / RAPS

2001 228.10 / RAPS

2002 236.74 84.39 RAPS

2003 236.60 203.30 RAPS

2004 243.53 245.65 RAPS

2005 6.05 63.56 RAPS

mr(p), with saturation vapor pressure es = 6.112e
17.67T
T+243.5 (using T in degree Celsius) (Bolton, 1980) and molecular weights

of water and dry air molh2o and molair respectively:

ACWV =
1
g

0∫

pctop

mr(p,T,rh)dp=
1
g

0∫

pctop

es(T )
molh20

molair
rh(p)dp (1)90

For our analysis, we filtered the extracted dataset for samples with more than 95% water surface, more than 0.1% cloud

fraction, and solar zenith angles between 0◦ and 82◦. Table 1 lists the resulting subset of 1.7 billion samples.

3 Methods for Capturing Radiance Fluctuations

In order to provide hemispherically resolved fields of backscattered radiances to radiance-to-flux-converting ADMs, statistical

approaches capture observed radiances together with prevalent scene properties per narrow and discretized Sun-observer-95

geometry. Following Su et al. (2015), solar zenith, viewing zenith, relative azimuth angles were discretized into 2◦ intervals,

referred to as θ∆
0 , θ∆

v , and ϕ∆, respectively. Combinations of θ∆
0 , θ∆

v , and ϕ∆ were denoted as angular bins and observations

were sorted into bins for separate treatment. The following subsection presents the state-of-the-art methodology. Subsection 3.2

introduces a novel semi-physical approach that includes additional parameters.
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Figure 1. For an exemplary angular bin (θ0 ∈ [20◦,22◦], θv ∈ [6◦,8◦], ϕ ∈ [12◦,14◦]), we show how a state-of-the-art sigmoidal fit (a) and

proposed log-linear model (b) capture fluctuations of CERES-measured TOA SW radiances. As this angular bin is within Sun-glint region,

(a) shows the LUT-approach for x < 6 (as defined in Section 3.1; note that f1 and f2 are taken between 0-100 in (a) and between 0-1 in (b)).

Colors in (b) mark the amount of above-cloud water vapor. Statistics in both panels summarize each approach’s number of samples, bias,

and standard deviation of radiance residuals as well as relative deviations.

3.1 State-of-the-Art Approach (Su et al., 2015)100

An analytic sigmoidal function related TOA SW radiance with MODIS-based f and τ̃ .

I(θ∆
0 ,θ

∆
v ,ϕ

∆) = I0 +
a

[1 + e−
(x−x0)

b ]c
(2)

Where x= logf τ̃ for a single cloud layer or x= log[(f1 + f2)e
f1 log τ̃1+f2 log τ̃2

f1+f2 ] for two layers and I0, a, b, c, and x0 were

free parameters. Optimization of sigmoidal parameters relied on mean radiances that were produced per x interval (every 0.02,

shown as black dots in Figure 1a).105

Models were generated separately per cloud phase. A footprint’s cloud phase was determined via an effective phase, defined

as φeff = f1φ1+f2φ2
f1+f2

for two layers, and thresholds: liquid for 1< φeff < 1.01, mixed for 1.01≤ φeff ≤ 1.75, and ice for

1.75< φeff ≤ 2.

To handle radiance fluctuations caused by sun-glint, a glint region was defined (sun glint angles < 20◦). Observations with

x > 6 in affected geometries remained captured by a sigmoid fit. For x≤ 6 on the other hand, a look-up-table approach stored110
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mean radiances per wind speed interval (0-2, 2-4, 4-6, 6-8, 8-10, and > 10 m s−1) and per x interval (<3.5, 3.5-4.5, 4.5-5.5,

5.5-6).

Selected angular bin in Fig. 1 had a sun-glint angle of about 14◦ and shows how tabulated radiances (colors correspond to

wind speed intervals) and sigmoidal curve both covered observed radiances.

3.2 Novel Semi-Physical Approach115

There are several ways one might incorporate additional variables Re and ACWV into a radiance-predicting statistical model.

One could divide each angular bin’s samples into classes of Re and ACWV and repeat sigmoidal fitting for each combination

of classes (see Section 3.1). Some bins, however, contained too few samples or failed to cover the full spectrum of at least one of

the two parameters. As a viable alternative, we explored radiative transfer approximations as a way to ingest scene properties

(i.e. MODIS-based cloud properties and geophysical auxiliary parameters), and this allowed incorporating all samples in a120

continuous manner.

Working with cloudy atmospheres over ocean surfaces, we assumed that radiance fluctuations were mainly driven by the

bidirectional reflection of clouds and water surfaces and by directional absorption through water vapor located above (highly

reflective) clouds. We initially set out with following simple equation of radiative transfer:

I(θ∆
0 ,θ

∆
v ,ϕ

∆)≈ So cosθ0 α e
−2ACWV (3)125

with solar influx So cosθ0 and the albedo α of an Earth-atmospheric scene covered by the CERES footprint (hereafter referred

to as footprint albedo).

In following subsection, we present how footprint albedo was approximated. This then allowed us to use Eq. 3 in its log-

linear form and weight the contribution of reflection and absorption via ordinary least square with free parameters A, B and

C.130

logI(θ∆
0 ,θ

∆
v ,ϕ

∆)≈A+B logα+CACWV (4)

Like the state-of-the-art methodology (Section 3.1), we applied this approach per angular bin (resolved by 2◦ in θ0, θv , and

ϕ) allowing us to treat So cosθ0 as constant. We also separated by cloud phase but choose a different threshold to discriminate

phase. As elaborated in more detail below, we rely on pure liquid and ice phases to, then, treat the mixed phase. Therefore, we

consider a footprint as liquid phase for φ1/2 = 1, as ice for φ1/2 = 2, and as mixed for φ1 = 1 and φ1 = 2. φ1/2 were rounded135

in case their values were neither 1 or 2.

3.2.1 Approximating CERES Footprint Albedo

To approximate the albedo within each CERES footprint by means of MODIS-based cloud properties and additional geophys-

ical variables (αsurface, w10m, ACWV ), we separately handled clear and cloudy portions.

For clear portions within each footprint, we used the surface broadband albedo of underlying water bodies (referred to140

αocean = αsurface, see Section 2). To capture sun-glint, i.e. the specular reflection at ocean‘s surface that alters as low-level

6
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winds perturb the water surface and tilt reflective facets, we used a Cox-Munk reflectance (Cox and Munk, 1954), as formulated

in Wald and Monget (1983) with Fresnel reflection factor ρ(ω) for a perfectly smooth surface, and sun-observer-geometry per

CERES footprint:

rSunGlint =
πρ(ω)P (θn,W10m)
4cosθ0 cosθv cos4 θn

(5)145

where

P (θn,W10m) =
1
πσ2

exp
(
− tan2 θn

σ2

)
(6)

σ2 = 0.003 + 0.00512W10m (7)

150

θn = arccos
(

cosθv + cosθ0

2cosω

)
(8)

cos2ω = cosθv cosθ0 + sinθv sinθ0 cosϕ (9)

To describe the albedo of cloudy portions, we explored the application of two-stream cloud albedo that uses cloud optical

thickness and cloud micro-physical properties through asymmetry parameter g or backscattering fraction β. This allowed us to155

ingest MODIS-based τ̃ andRe through g(Re), as explained in more detail in the following subsection. The following solutions

are thoroughly described in Meador and Weaver (1980), which presents a unifying theoretical framework to a variety of two-

stream cloud albedos based on coupled differential equations that describe upward and downward directed intensity fields. We

considered two cloud albedos that proved useful for a range of cloud optical thicknesses (King and Harshvardhan, 1986): the

Eddington approximation (Shettle and Weinman, 1970) and the Coakley-Chylek approximation (using solution I of Coakley160

and Chylek, 1975).

The Eddington approximation considered an incident flux explicitly in coupled equations and thus described diffuse intensity

fields. Assuming conservative scattering (i.e. a single scattering albedo of 1), a perfectly absorbing lower boundary (αbottom =

0), and no further influx at TOA, the analytical solution for cloud albedo was as follows, where µ0 = cosθ0:

αTwoStream =
3
4 (1− g)τ̃ − 1

4 (1− 3µ0)(1− e− τ̃
µ0 )

1 + 3
4 (1− g)τ̃

(10)165

The Coakley-Chylek approximation excluded the incident flux in differential equations and thus its intensities referred

to total radiation fields (i.e. direct and diffuse). Assuming conservative scattering, a perfectly absorbing lower boundary

(αbottom = 0) and only a solar influx at TOA, the analytical solution for cloud albedo was:

αTwoStream =
(1−g)τ̃

2

1 + (1−g)τ̃
2

(11)

7

https://doi.org/10.5194/amt-2020-149
Preprint. Discussion started: 22 April 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 2. For the same angular bin as in Figure 1, we present details of the proposed model that highlight essential steps aside from log-linear

least-square fitting (Eq. 4). (a) shows the search for an optimal g(Re) (as described in Sec. 3.2): we plotted a two-dimensional slice (showing

b and c of Eq. 14) through the three-dimensional space (spanned by a, b, and c). Colors show standard deviations of radiance residuals and

point size relates to model bias. The star marks the combination of a, b, and c that produced smallest residual standard deviations and is

considered optimal for this bin. (b) compares the g(Re) of the determined optimal solution against Mie-calculations. (c) shows final radiance

residuals against cloud homogeneity (x-axis) and cloud optical depth (color). As described in Section 3.2.2., only homogeneous (ν > 10)

clouds which were well-retrieved (MODIS-reported portion> 90%) - marked as triangles in (c) - were conisidered for opimization of g(Re)

and least-square fitting. Statistcs and error metrics throughout the manuscript incorporate all samples.

where β was substituted with (1−g)
2 as done in textbook solutions (e.g. Bohren and Clothiaux, 2008). Using the Coakley-Chylek170

approximation and a reflective lower boundary with albedo αbottom > 0 (in this study αbottom = αsurface), we produced

following cloud albedo:

αTwoStream =
αocean + (1−αocean)(1−g)τ̃

2

1 + (1−αocean)(1−g)τ̃
2

(12)

Because it was unclear which solution could explain radiance fluctuations over narrow sun-observer-geometries most suc-

cessfully, we tested a variety of solutions in Section 4.175

Both ocean and cloud albedos (for up to two cloud layers) were used to calculate the footprint albedo, using clear fraction

f0 and cloud fractions of layer 1 and layer 2, f1 and f2, respectively:

α= f0(αocean + rSunGlint) + f1α
TwoStream
1 + f2α

TwoStream
2 (13)

where f0 + f1 + f2 = 1.

3.2.2 Statistical Optimization180

Before comparing different two-stream approximations in Sec. 4, we performed two steps that ensured statistical optimization

for each approximation. Finding an optimal g(Re) was designed to best capture radiance fluctuations per angular bin. Higher
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Table 2. In search for optimal g(Re), we list the range (Minimum and Maximum) and step size for each parameter in Eq. 14.

Parameter Minimum Maximum Step

a -0.5 0.95 0.01

b -0.01 0.01 0.0003

c -0.00025 0.00025 0.000015

weights to a subset of data per angular bin - homogeneous clouds that were well retrieved - was used to facilitate consistency

of radiances across bins. Both steps are explained in more detail below.

As shown in the previous subsection, we used two-stream cloud albedo to explain radiance fluctuations for narrow sun-185

observer-geometries. Applied to all angular bins of an upward hemisphere, it was unclear which g(Re) to choose. Initial tests

that used a g(Re) from Mie theory (see Fig. 2b) for all geometries proved sub-optimal for some angular bins and left radiance

residuals correlated to layer mean effective radius (not shown). We therefore decided to optimize g(Re) for each angular

bin and for each cloud phase (liquid and ice). Inspired by the shape of Mie-calculated g(Re), we approximatedg(Re) via a

quadratic function:190

g(Re) = a+ bRe + cRe
2

(14)

and searched a three-dimensional grid, spanned by a, b, and c, for combinations that minimized the standard deviation of

radiance residuals. The search covered parameters a, b, and c as listed in Table 2. As shown in Fig. 2a, we usually found a

single optimum value that could minimize standard deviation of radiance residuals and that deviated from Mie calculations

(Fig. 2b).195

A second step aimed at using a subset of data that was consistent across angular bins. Looking into samples of individual

angular bins, we observed stark variability in radiances that could be attributed to cloud horizontal heterogeneity (cloud homo-

geneity was approximated by ν = τ̄2

σ(τ)2 ; radiance residuals are shown in Fig. 2c). We suspected that clouds’ three-dimensional

structure caused tilted cloud facets that led to more or less reflective cloud portions (e.g. as accounted for in Scheck et al.,

2018). In order to avoid an uncontrollable impact of cloud heterogeneity onto final models, we decided to select homogeneous200

samples only for statistical optimization. As a threshold of homogeneity, we used ν > 10 (e.g. Barker et al., 1996; Kato et al.,

2005). As shown in Tab. 3 per solar geometry, median homogeneity varied considerably across bins as well as cloud phase,

and this resulted in ranging portions of data being selected. For optimization, we further limited selection to CERES footprints

with quality flags indicating a confident retrieval of 80% or more of all cloudy MODIS pixels within a CERES footprint. This

subset of samples served to optimize the above search for g(Re) and to find weights via least-square (Eq. 4). To compute error205

metrics, we used all available samples. An example for the application of the log-linear model in shown in Fig. 1b.
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Table 3. Per solar geometry θ0 and per cloud phase (L - liquid, I - ice, M - mixed) as defined in Section 3.2, we show what portions of

the upward hemisphere were covered with observations, and how large the range of cloud homogeneity, above-cloud water vapor, cloud-top

effective radius was. The range lists minima and maxima of median values computed per angular bin within a hemisphere.

Angular Coverage ν ACWV (kg m−2) Re (µm)

θ∆
0 (in ◦) L I M L I L I L I

6-8 0.13 0.01 0.16 2.3-4.4 5.2-12.2 11.10-16.52 0.03-0.04 11.4-14.5 39.8-45.7

8-10 0.23 0.05 0.25 1.7-4.8 4.3-10.4 9.29-16.85 0.02-0.05 11.5-13.5 38.6-47.8

10-12 0.35 0.12 0.35 2.3-10.9 3.7-15.8 9.39-17.37 0.02-0.06 10.2-13.3 38.5-49.6

12-14 0.59 0.20 0.58 2.4-9.4 3.0-17.1 7.76-16.79 0.02-0.06 10.1-15.2 38.7-47.5

14-16 0.75 0.34 0.77 2.3-7.5 3.2-22.4 6.31-18.78 0.02-0.08 9.9-18.3 36.7-74.3

16-18 0.83 0.61 0.85 1.8-7.2 3.4-24.9 7.17-21.15 0.02-0.06 9.6-20.5 36.3-47.3

18-20 0.88 0.71 0.89 2.0-8.5 3.1-20.2 7.68-19.19 0.02-0.07 9.5-20.0 37.4-47.2

20-22 0.91 0.76 0.93 2.0-9.1 3.0-16.2 6.77-19.97 0.02-0.06 10.0-19.5 39.1-49.9

22-24 0.93 0.79 0.95 2.0-9.1 3.5-16.1 7.00-18.79 0.02-0.06 10.0-19.4 38.6-49.0

24-26 0.94 0.81 0.96 2.1-8.0 3.6-15.5 7.26-18.18 0.02-0.07 9.8-18.8 40.1-61.0

26-28 0.94 0.82 0.97 1.9-8.3 3.2-15.5 7.23-16.98 0.02-0.06 10.3-16.9 40.2-51.9

28-30 0.95 0.83 0.97 2.0-11.0 3.3-15.8 6.72-20.07 0.02-0.07 10.8-16.2 39.5-51.6

30-32 0.95 0.83 0.98 1.9-10.0 3.4-16.4 7.04-17.02 0.02-0.08 11.2-17.2 40.7-73.2

32-34 0.95 0.83 0.98 2.0-8.8 3.1-17.0 7.06-17.99 0.02-0.10 11.6-16.9 41.0-55.5

34-36 0.96 0.83 0.98 2.0-8.8 3.5-17.2 6.44-18.76 0.02-0.11 11.8-16.0 41.9-52.8

36-38 0.96 0.83 0.98 1.9-6.9 3.9-18.8 6.66-18.18 0.02-0.13 11.9-15.8 42.2-56.6

38-40 0.95 0.83 0.98 2.0-7.7 4.4-20.0 6.61-16.88 0.02-0.13 11.7-15.8 42.2-54.8

40-42 0.95 0.83 0.98 1.9-7.7 5.4-20.6 5.55-19.06 0.03-0.14 11.5-16.3 43.6-55.8

42-44 0.94 0.82 0.98 2.0-7.1 5.0-20.3 5.94-15.28 0.03-0.16 11.6-16.5 43.0-62.8

44-46 0.94 0.83 0.98 2.1-8.1 5.7-20.5 5.90-12.69 0.04-0.15 11.5-16.4 43.7-74.4

46-48 0.94 0.83 0.97 2.1-7.9 6.0-19.4 5.37-12.45 0.03-0.15 11.6-15.6 44.3-78.2

48-50 0.93 0.83 0.97 2.0-7.3 6.1-17.9 4.97-12.23 0.04-0.16 11.7-15.0 45.3-76.1

50-52 0.92 0.83 0.97 2.0-7.3 5.7-18.1 4.55-10.34 0.05-0.16 11.6-14.8 44.6-80.0

52-54 0.91 0.83 0.96 2.2-7.5 5.6-16.6 4.09-9.76 0.00-0.17 11.8-15.0 46.1-77.0

54-56 0.90 0.83 0.96 2.1-7.0 5.5-14.9 3.88-8.67 0.04-0.16 11.0-15.7 46.1-78.6

56-58 0.89 0.83 0.96 3.0-7.4 5.2-13.3 3.30-8.88 0.05-0.15 10.8-15.0 45.0-76.2

58-60 0.88 0.83 0.96 3.1-8.8 4.6-12.4 2.99-8.77 0.05-0.15 10.7-15.1 44.0-76.9

60-62 0.87 0.84 0.95 2.8-8.7 4.8-11.7 3.24-10.05 0.05-0.14 11.2-15.2 43.8-76.8

62-64 0.86 0.83 0.95 3.4-8.7 4.5-13.3 2.74-7.62 0.04-0.15 11.5-14.9 44.1-76.2

64-66 0.85 0.84 0.94 3.5-9.6 3.9-11.7 2.32-7.73 0.04-0.15 11.5-14.7 42.9-79.5

66-68 0.85 0.84 0.94 3.5-9.3 3.5-10.6 2.37-8.56 0.05-0.15 11.6-15.2 44.1-82.2

68-70 0.84 0.84 0.93 3.8-11.2 3.2-10.1 2.30-9.00 0.05-0.15 11.5-15.3 41.0-75.6

70-72 0.83 0.83 0.93 3.9-11.6 2.7-10.2 2.45-7.02 0.05-0.16 11.7-15.1 42.3-76.1

72-74 0.82 0.82 0.92 3.8-12.7 2.2-9.1 2.05-6.44 0.06-0.15 11.8-15.8 40.6-86.2

74-76 0.80 0.81 0.91 4.0-10.9 1.8-10.0 1.98-7.46 0.04-0.15 11.1-16.1 40.0-76.6

76-78 0.79 0.79 0.90 3.8-13.0 1.5-8.8 1.87-9.36 0.06-0.15 11.6-15.8 39.2-88.6

78-80 0.78 0.77 0.90 3.5-13.2 1.1-8.0 1.50-9.97 0.04-0.14 11.5-15.9 35.9-88.6

80-82 0.75 0.75 0.89 3.4-11.7 1.2-8.2 1.60-8.82 0.04-0.13 11.5-15.1 29.5-88.5
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4 Results

Radiance-predicting statistical models that capture narrow sun-observer-geometries form the basis for empirical angular dis-

tribution models. And these statistical models fit observations from satellites, typically capturing how TOA SW radiances

measured by a broadband radiometer change with scene type (defined by surface conditions as well as cloud and aerosol210

properties within the radiometer’s footprint area) retrieved using a multi-spectral imager (see Sec. 2). To investigate whether

a new approach, the proposed semi-physical log-linear model in Sec. 3.2, is a superior way to fit observations compared to

the state-of-the-art approach, the sigmoidal fit described in Sec. 3.1, we took CERES Ed4SSF observations (Sec. 2) of liquid-

phase clouds along the principal plane of an exemplary solar geometry covering major scattering features of clouds and the

ocean surface. We applied the sigmoidal fit as well as a variety of log-linear models, each using a different analytic solution215

of two-stream cloud albedo (Eqs. 10-12) that is used in this study as a framework to ingest MODIS-based cloud properties.

Looking at the standard deviation of radiance residuals per angular bin (in this study used as a measure of model uncertainty),

the Coakley-Chylek approximation using a reflective lower boundary (Eq. 12) outperformed the sigmoidal fit for most bins

and by up to 1.5 W m−2 sr−1 (shown in Fig. 3). Only the central portion of sun-glint-affected geometries remained best ex-

plained by sigmoidal fits (and accompanied look-up-table approach as laid out in Section 3.1). In contrast, the Coakley-Chylek220

approximation using a perfectly absorbing lower boundary (Eq. 11) or the Eddingtion approximation (Eq. 10) performed only

equally well or worse than sigmoidal fits.

To ensure that the Coakley-Chylek approximation using a reflective lower boundary performed well for other Sun-observer-

geometries, we processed all angular bins that contained more than 100 samples. As Table 3 shows, this covered between 13

and 96% of all angular bins. We found that for liquid clouds (top panels of Fig. 4) and θ0 ∼ 20◦-70◦ more than half of the225

bins were better explained by the log-linear approach and errors were reduced by up to 13.2%. For solar geometries θ0 > 40◦,

bins in sun-glint-affected geometries (constituting a portion of all bins in a hemisphere between 10% for a θ0 ∼ 20◦ and 1%

for a θ0 ∼ 75◦) caused higher uncertainties in log-linear models. For solar geometries θ0 < 20◦, on the other hand, we found

bins outside the sun-glint – i.e. mostly slant observation angles – were best treated with the sigmoidal approach. Few footprints

(indicated by circle size) of the top row were treated as mixed in the log-linear model and will be evaluated further below. With230

these limitations in mind, we use the Coakley-Chylek approximation using a reflective lower boundary standard as two-stream

cloud albedo for the remainder of this study.

To determine whether the log-linear approach predicted plausible radiance fields, we tested it on a variety of scenarios. When

applied to a range of cloud optical thicknesses, we found a similar radiance response compared to sigmoidal fit (Fig. 5b). Setting

cloud fraction to zero (f1 = f2 = 0) and using a range of 10 m wind speeds, log-linear and sigmoidal models produced again235

comparable radiance fields (Fig. 5c). This shows that the sensitivities of the state-of-the-art approach were captured by log-

linear models. When varying cloud-top effective radius – a newly added sensitivity – we found radiances grow as droplet

size increased (leaving cloud optical thickness constant; shown in Fig. 5e). With a focus on single-scattering features, we

found the cloud glory (centered around the direct backscatter) to widen and the cloud glory (positioned about 20◦ away from

the backscatter) to shift towards the direct backscatter as effective radii became smaller. This observation is corroborated by240
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Figure 3. Applied to angular bins of the principal plane for θ0 ∈ [20◦,22◦], we test a variety of two-stream solutions for cloud albedo

(Eqs. 10-12) as input to log-linear models as presented in Eq. 4. This plot shows standard deviations of resulting residuals and compares

against the state-of-the-art sigmoidal fit (black line). As labelled, grey dashed lines mark position of sun-glint and direct backscatter.

Mie-calculations of scattering phase functions (e.g. Fig. 1 in Tornow et al., 2018). The newly introduced concept of bin-wise

optimized asymmetry parameters (Sec. 3.2.2) made changing cloud bow and glory possible and g(Re) exhibited a symmetry

left and right of the direct backscatter between θv of -50◦ and 0◦ (Fig. 5f). For a range of above-cloud water vapor (Fig. 5d)

– another newly added sensitivity - we observed that smaller loads produced higher radiances and found a slight increase in

sensitivity with larger θv .245

We also tested log-linear models on observations of ice-phase clouds. We found that model uncertainties outside the sun

glint were of similar magnitude as sigmoidal fits (Fig. 4, bottom panels). Possible reasons will be discussed in Sec. 5. Like

the liquid-phase, predicted radiances increased with smaller ice crystal radii. However, distinct scattering features were absent

(not shown); possibly a result of ice clouds’ rich variety of crystal shapes (e.g. Zhang et al., 1999; Baum et al., 2005) that was

unaccounted for. The response to above-cloud water vapor was consistent and covered much of the lower levels (0.03-0.17 kg250

m−2, see Table 3).

Roughly 50% of all CERES footprints cover both a liquid and an ice cloud and have been treated separately as “mixed-

phase”. The proposed log-linear approach allows us to handle mixed-phase cases fundamentally differently. Instead of a

footprint-effective optical depth (as used in Equ. 2), we can produce a footprint-effective albedo (Equ. 13) and account not

only for cloud macro-physical (f1/2, τ̃1/2) but also for microphysical (Re1/2) changes. Optimized asymmetry parameters from255
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Figure 4. Using all observed angular bins within θ0 ∈ [6◦,82◦], we show how radiance residuals from proposed log-linear models compare

against state-of-the-art sigmoidal fits. Results are presented by CERES-defined cloud phase (vertically), by newly-defined phase (colors),

and by whether the angular geometry is affected by sun-glint (left) or free of sun-glint (right). We show relative change in model uncertainty:

δ = [σ(∆ILogLinear)−σ(∆ISigmoidal)]/σ(∆ISigmoidal) ·100%. Solid lines and dots mark 50th percentile and shades show the interquartal range

between 25th and 75th percentiles. Point size relates to the average number of observations per angular bin. The dashed black line marks

zero change.
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Figure 5. For angular bins along the prinicipal plane for θ0 ∈ [20◦,22◦] containing liquid-phase footprints, we present error metrics and

sensitivities of proposed log-linear versus state-of-the-art sigmoidal fits. (a) shows standard deviations of residuals; colors mark the type

of fit. (b) displays the optimal g(Re) for three Re (by color). (c), (d), and (e) demonstrate predicted radiances by both fits for varying

cloud optical thickness (c), cloud-top effective radius (d), and above-cloud water vapor (e). Predictions from log-linear fits are colored while

predictions from sigmoidal fits are shown in black. (f) presents the response of both fits to a variety of surface wind-speeds. Properties held

constant in (c), (d), (e), and (f) are listed in the each panel’s top-right corner.
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Figure 6. For angular bins along the principal plane for θ0 ∈ [20◦,22◦], we show details for mixed-phase footprints. (a) presents standard

deviations of residuals (colors mark the type of fit). (b) shows optimal g(Re) from pure ice and liquid-phase footprints employed for mixed-

phase cases (colors mark liquid and ice particle effective radius). (c) and (d) show predicted radiances for liquid cloud fraction (c) and

cloud-optical thickness (d). In both (c) and (d), we show log-linear fits in color and sigmoidal fits in black. Quantities left constant are shown

in the bottom-left corner.
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pure liquid and pure ice cases (Fig. 6b) were reused to describe the cloud albedo of respective cloud phase within each mixed-

phase CERES footprint. Hence only A, B, and C from Eq. 4 needed to be estimated. Fig. 6a illustrates the reduction in model

uncertainty for many bins and of up to 2.5 W m−2 sr−1 when using the log-linear approach. Once again, the center of sun-glint

remained best captured by the sigmoidal approach. Using a cloud-phase-specific albedo allowed us to account for radiance

changes with varying amount of liquid versus ice fraction within a footprint. Fig. 6c shows radiance predictions for different260

liquid-ice-proportions (which could not be captured by the state-of-the-art approach) and that both approaches agree for 50%

liquid and 50% ice cloud footprints. Fig. 6d shows the sigmoidal fit’s sensitivity to ranging cloud optical depth was captured by

the log-linear approach. Looking at all available sun-observer-geometries (Fig. 4, middle panels) for solar geometries between

θ0 ∼ 20◦-70◦, we found model uncertainty of most bins reduced by as far as 35.8%.

In summary, we showed that the proposed log-linear model had the ability to outperform the existing sigmoidal approach in265

capturing CERES radiance fluctuations per angular bin. It produced lower uncertainties, added new radiance sensitivities, and

allowed to treat mixed-phase footprints in a fundamentally different manner.

5 Conclusions

Statistical models that capture measurements of TOA SW radiances as a function of corresponding scene type for narrow

sun-observer-geometries are the basis for Angular Distribution Models. In this study, we introduced a new alternative that270

incorporated additional parameters – namely cloud-top effective radius and above-cloud water vapor – via a semi-physical log-

linear approach. We found this new approach to better explain radiance fluctuations for the majority of observed geometries

and to produce plausible radiance fields.

Incorporating additional parameters that help explain radiance fluctuations may have minimized sampling bias. Ranges in

effective radius or above-cloud water vapor varied across bins and ignoring this variation can cause a radiance bias in individual275

angular bins. Even accounting for parameters that may not affect TOA anisotropy, such as cloud horizontal heterogeneity, has

the potential to minimize sampling biases. We found varying portions of heterogeneous samples across bins and suspect that

their variation in radiance (cf. Fig. 2c) failed to cancel out. Thus, giving higher (or all) weight to homogeneous samples during

regression, as done in this study, should eliminate any sampling bias.

The inclusion of cloud-top effective radius and above-cloud water vapor was successful as evidenced by reduced radiance280

residuals and credible radiance fields. We failed to reduce radiance residuals for ice-phase clouds and made the following

observations looking at ice cloud samples. First, among collected observations, we found footprints to mostly contain homo-

geneous ice clouds. Second, ice clouds had only small loads of water vapor aloft. Lastly, there was an absence of distinct

single-scattering features. We suspect that these are characteristics that drive potential reduction of radiance residuals and that

liquid clouds samples, having near asymmetric properties (few homogeneous samples, large loads of water vapor aloft, distinct285

scattering features), benefitted especially from this new approach.

We successfully used a theoretic framework – inspired by radiative transfer approximations designed for hemispheric aver-

ages – and applied it to narrow sun-observer-geometries. A derived byproduct, the asymmetry parameter g(Re|θ∆
0 ,θ

∆
v ,ϕ

∆),
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captured observer-specific multi-scattering. Could this byproduct contain information that allows inference on multi-scattering

properties? Monte-Carlo radiative transfer simulations may help in answering this. Future work should simulate radiances, de-290

rive simulation-based g(Re|θ∆
0 ,θ

∆
v ,ϕ

∆) and extract additional properties, such as photon path length or number of scattering

events.

Statistical models allow finding scene properties that produce similar radiative responses (often referred to as similarity

conditions). Like the state-of-art-approach, where different combinations of cloud fraction and cloud optical thickness produced

similar radiances, the new semi-physical approach added cloud particle size and above-cloud absorber mass to parameter295

combinations. A similarity condition explaining albedo through adjusted optical thickness, (1− g)τ̃ , was found earlier using

simulations (e.g. van de Hulst, 1996). To our knowledge, this is the first time adjusted optical thickness (here employed in the

framework of two-stream albedo) has been used to capture similarities of observed radiances.

The proposed semi-physical approach can easily be applied to land surfaces. Imager-based bidirectional reflectance dis-

tribution function (BRDF) products, such as MCD43GF (MODIS BRDF/albedo/nadir BRDF-adjusted reflectance Climate300

Modeling Grid gap-filled; Moody et al., 2008), could provide land surface albedo and surface bi-directional reflectance in

order to determine each observation’s footprint albedo. Future efforts should test if this application over land can compete

with CERES’ separate treatment by latitude-longitude boxes. Recent efforts that demonstrated circumvention of this regional

separation for clear-sky ADMs by using MCD43GF instead indicated a positive outcome (Tornow et al., 2019).

Lastly, we hope this new log-linear approach will form the basis of future angular distribution models. In particular, we305

expect that cloudy scenes of microphysical extremes (i.e. clouds consisting of very small or very large droplets) observed

from the backscattering direction will benefit from radiance-to-flux conversion using new models. More accurate estimates of

instantaneous fluxes should benefit EarthCARE’ studies of cloud-radiative processes regarding both water and energy fluxes.

We are currently examining this impact on instantaneous fluxes as well as the propagation of updated flux estimates into daily

and monthly flux products.310
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