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Abstract. Atmospheric aerosols have been known to be a major source of uncertainties in CO2 concentrations retrieved from

space. In this study, we investigate the added value of multi-angle polarimeter (MAP) measurements in the context of the Coper-

nicus candidate mission for anthropogenic CO2 monitoring (CO2M). To this end, we compare aerosol-induced XCO2 errors

from standard retrievals using spectrometer only (without MAP) with those from retrievals using both MAP and spectrometer.

MAP observations are expected to provide information about aerosols that is useful for improving XCO2 accuracy. For the5

purpose of this work, we generate synthetic measurements for different atmospheric and geophysical scenes over land, based

on which XCO2 retrieval errors are assessed. We show that the standard XCO2 retrieval approach that makes no use of auxil-

iary aerosol observations returns XCO2 errors with an overall bias of 1.12 ppm, and a spread (defined as half of the 15.9th to

the 84.1th percentile range) of 2.07 ppm. The latter is far higher than the required XCO2 accuracy (0.5 ppm) and precision (0.7

ppm) of the CO2M mission. Moreover, these XCO2 errors exhibit a significantly larger bias and scatter at high aerosol optical10

depth, high aerosol altitude, and low solar zenith angle, which could lead to a worse performance in retrieving XCO2 from

polluted areas where CO2 and aerosols are co-emitted. We proceed to determine MAP instrument specifications in terms of

wavelength range, number of viewing angles, and measurement uncertainties that are required to achieve XCO2 accuracy and

precision targets of the mission. Two different MAP instrument concepts are considered in this analysis. We find that for either

concept, MAP measurement uncertainties on radiance and degree of linear polarization should be no more than 3% and 0.003,15

respectively. A retrieval exercise using MAP and spectrometer measurements of the synthetic scenes is carried out for each

of the two MAP concepts. The resulting XCO2 errors have an overall bias of -0.004 ppm and a spread of 0.54 ppm for one

concept, and a bias of 0.02 ppm and a spread of 0.52 ppm for the other concept. Both are compliant with the CO2M mission

requirements; the very low bias is especially important for proper emission estimates. For the test ensemble, we find effectively

no dependence of the XCO2 errors on aerosol optical depth, altitude of the aerosol layer, and solar zenith angle. These results20

indicate a major improvement in the retrieved XCO2 accuracy with respect to the standard retrieval approach, which could lead

to a higher data yield, better global coverage, and a more comprehensive determination of CO2 sinks and sources. As such,

this outcome underlines the contribution of, and therefore the need for, a MAP instrument onboard the CO2M mission.
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1 Introduction

Carbon dioxide is the most important greenhouse gas in our atmosphere. It accounts for 76% of the total anthropogenic green-25

house gas emissions in 2010, according to the latest assessment report (2014) of IPCC (Intergovernmental Panel on Climate

Change). In an international effort to mitigate climate change, 195 countries signed the Paris agreement (United Nations Frame-

work Convention on Climate Change, 2015) that aims to limit global temperature rise to less than 2 degrees Celcius above the

pre-industrial levels by reducing greenhouse gas emissions. To achieve this goal, quantifications of CO2 emissions on a national

scale with adequate temporal and spatial resolution, and a global coverage are necessary for the implementation and evaluation30

of carbon reduction policies (Ciais et al., 2014). Space-based observations have the capacity to perform such task and will

therefore play an important role in complementing and reinforcing CO2 inventories (Ciais et al., 2015; Pinty et al., 2017). For

this reason, the European Commission and the European Space Agency (ESA) proposed the Anthropogenic Carbon Dioxide

Monitoring (CO2M) satellite mission as a part of a larger-scale CO2 initiative within Europe’s Earth observation programme

Copernicus to monitor and verify man-made CO2 emissions and their trends (Pinty et al., 2017).35

The CO2M mission is designed as a constellation of up to 3 satellites with imaging capabilities, providing a global coverage

with a revisit time of 5 days. Each satellite carries a primary sounder, that is a nadir-looking spectrometer that will deliver

measurements of column-averaged dry-air mole fraction of carbon dioxide XCO2 , defined as the ratio of the total column of

CO2 to that of dry air. As opposed to currently operational CO2 missions that are designed to observe natural CO2 fluxes, with

the exception of OCO-3 (Basilio et al., 2019), the CO2M mission is intended to measure anthropogenic emissions (Pinty et al.,40

2017). With fossil CO2 emissions primarily concentrated in urban areas, industrial sites, and point sources such as power plants

and refineries, it is important to detect and localize these hotspots. Auxiliary measurements of NO2 that are co-emitted with

CO2 plumes are proposed to help the mission distinguish anthropogenic from biospheric CO2 signals (Kuhlmann et al., 2019).

To further resolve and quantify these emissions, Ciais et al. (2015); Crisp et al. (2018) suggest that XCO2 images should have

a spatial resolution of about 4 km2, an XCO2 precision ≤ 0.7 ppm, with XCO2 systematic errors of 0.5 ppm or less (Meijer45

et al., 2019). Such XCO2 accuracy requirement becomes a challenge when aerosols and thin clouds are not properly taken into

account in the retrieval.

Scattering by aerosols and cirrus has long been identified as one of the main sources of uncertainties in retrieving XCO2 from

solar backscattered radiation (e.g. Kuang et al. (2002); Houweling et al. (2005); Frankenberg et al. (2012); Jung et al. (2016)).

The presence of aerosols can shorten or lengthen the light path, depending on the altitude of the aerosol layer and on the50

reflection properties of the underlying surface. In effect, this alters the depth of CO2 absorption features in that they appear

shallower/deeper, which can be falsely interpreted as lower/higher atmospheric CO2 concentration. Depending on the observed

atmospheric scene and surface albedo, neglecting scattering in the retrieval can lead to substantial XCO2 errors, which are

often higher than 1% (about 4 ppm) (Aben et al., 2007; Butz et al., 2009). Methods to correct or compensate for the light path

modification typically include explicit parametrization of aerosols and clouds in the XCO2 retrieval as proxies to the actual55

scattering (e.g. Kuang et al. (2002); Oshchepkov et al. (2008); Butz et al. (2011); Morino et al. (2011); Reuter et al. (2017);

Nelson and O’Dell (2019)). This approach usually involves adding one or more types of scattering particles in the forward
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model and retrieving their properties while using data limited to radiometric observations. The resulting XCO2 uncertainties

are in most cases still larger than about 1 ppm (e.g. Butz et al. (2009)). Frankenberg et al. (2012) use multi-angle measurements

of high spectral-resolution radiances to decrease XCO2 uncertainties due to aerosol interference and demonstrate that the errors60

on the retrieved CO2 column could be reduced down to about 1 ppm. Despite the advancement introduced by the various

methods, the XCO2 uncertainties are still above the CO2M error requirements.

In this paper, we explore the potential of having auxiliary aerosol-dedicated measurements alongside the CO2M spectrom-

eter measurements to help achieve the required XCO2 accuracy. Here, we utilize the capability of a Multi-Angle Polarimeter

(MAP), which measures radiance and degree of linear polarization (DLP) simultaneously at multiple wavelengths and at mul-65

tiple viewing angles. The proper interpretation of such observations are currently considered the most advanced aerosol remote

sensing approach and provide the most comprehensive information about aerosol properties (Dubovik et al., 2019). There is

a large variety of orbital MAP instruments, which can be broadly classified into two instrument concepts considered for the

CO2M mission, referred to here as MAP-mod and MAP-band concepts. A MAP-mod instrument employs spectral polariza-

tion modulation technique such that the polarization information is encoded in the modulation pattern of the radiance spectrum70

(Snik et al., 2009). On the other hand, a bandpass polarimeter (MAP-band) measures radiance and polarization at specific

spectral channels. Most MAP instruments fall into the MAP-band category, including the series of POLDER instruments (De-

schamps et al., 1994; Tanré et al., 2011), the future 3MI instrument (Fougnie et al., 2018) on EUMETSAT Polar System -

Second Generation, Multi-Angle Imager for Aerosols (MAIA) (Diner et al., 2018), and Hyper-Angular Rainbow Polarimeter-2

(HARP2) (Martins et al., 2018). Linear error analysis is part of our study, to derive the optimal instrument specification for75

each of the two MAP concepts with regard to wavelength range, number of viewing angles and the measurement uncertainties.

We investigate the added value of a MAP instrument as part of the CO2M mission, by comparing aerosol-induced XCO2 errors

from retrievals using spectrometer data only with the errors from retrievals using the combined spectrometer and MAP mea-

surements. For the retrieval input we generate synthetic measurements that correspond to an ensemble of atmospheric and

geophysical scenes over land. The MAP instrument for which the synthetic measurements are generated is tailored to the80

precision and accuracy requirements of the CO2M mission.

In the next section, we present the generic instrument description of the spectrometer and the two MAP instrument concepts

used in this study. Section 3 details our three approaches to evaluate aerosol-induced XCO2 errors, i.e. a joint retrieval method

that enables a synergistic use of MAP and spectrometer measurements, a linear error analysis which is employed to derive MAP

instrument requirements, and a spectrometer-only retrieval method which is applied to a standard XCO2 retrieval without the85

auxiliary MAP observations. Section 4 describes the ensemble of 500 scenes for which synthetic measurements are generated;

these are used in the retrieval exercises that follow. In Section 5, we perform XCO2 retrievals using only spectrometer measure-

ments and present the results. Section 6 is dedicated to the MAP requirement study in which we apply the linear error analysis

to determine the baseline setup for two MAP instrument concepts. In section 7, we adopt one of the baseline MAP setups

and implement XCO2 retrievals assuming both MAP and spectrometer measurements are available. The retrieved XCO2 are90

assessed in the same way as in the spectrometer-only approach and the comparison between the resulting XCO2 uncertainties
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is discussed here. The final section summarizes the paper. The main body of this paper focuses on XCO2 retrievals and we

place the discussion on the retrieved aerosol properties in Appendix B.

2 Instruments

For the CO2M mission, a 3-band spectrometer is envisaged to be the main instrument that provides measurements necessary95

for the XCO2 retrieval. The 3 bands comprise a NIR band at 765 nm and two shortwave infrared bands at 1.6 µm (SWIR1) and

2.0 µm (SWIR2). The NIR band, as well as the strong CO2-absorption band in the SWIR2 contain information about aerosols

and cirrus. We adopt here the spectrometer spectral properties as proposed for the CO2M mission, given in Table 1. Noise

on radiance I is calculated from SNR = anoiseI /
√

(anoiseI + bnoise), in which anoise and bnoise are constants specific to each

spectral window. The anoise and bnoise values (B. Sierk, private communication) are provided in Table 1 as well.100

Table 1. Setup of the CO2M spectrometer

Band spectral spectral spectral anoise bnoise

ID range [nm] resolution [nm] sampling ratio [photons−1cm2 s nm sr]

NIR 747-773 0.12 3 2.0× 10−8 19600

SWIR1 1590-1675 0.30 3 1.32× 10−7 202500

SWIR2 1990-2095 0.35 3 1.54× 10−7 202500

In our study, we consider two MAP instrument concepts, i.e. MAP-mod and MAP-band. Here, the MAP-mod instrument

inherits from the SPEXone instrument (Hasekamp et al., 2019), which will fly on the NASA PACE mission, scheduled to

launch in 2022. SPEXone will provide measurements in the visible between 385-770 nm at 5 viewing angles. In the MAP-mod

concept, the polarimetric spectral resolution, which derives from the modulation period, becomes coarser at longer wavelengths

while the radiance measurements can be obtained at the intrinsic spectral resolution of the instrument (Rietjens et al., 2015).105

Unlike a MAP-mod instrument that measures a continuous spectrum, a MAP-band instrument measures radiance and polariza-

tion at discrete spectral bands. Here, the spectral bands are specified close to the 3MI VNIR channels where both radiance and

polarization are measured (Fougnie et al., 2018).

3 Methods

3.1 Joint MAP and spectrometer retrieval110

To enable XCO2 retrievals using MAP and spectrometer measurements in a synergistic way, we developed a joint retrieval

algorithm. It is built upon an existing aerosol retrieval algorithm (Hasekamp et al., 2011; Fu and Hasekamp, 2018; Fu et al.,

2020) to include features related to trace gas retrieval, with some spectrometer-specific functionalities incorporated in it. The
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joint retrieval tool can be used with either the MAP-mod or the MAP-band design. The algorithm is capable to simultaneously

retrieve aerosol properties and the trace gas total columns.115

In this retrieval, the concept of inverse modeling applies, in which state vector x is updated until it produces modeled

measurements that fit the measurement vector y well enough. The modeled measurements or forward model F relates the state

and measurement vectors via

y = F(x,b) + εy + εF, (1)

where the terms εy and εF represent the measurement error and forward model error, while b constitutes auxiliary parameters120

needed to compute the forward model but are not retrieved. The y vector consists of the MAP and spectrometer measurements.

3.1.1 Forward model

The forward model computes the Stokes vector, which describes the radiance and polarization state of light, at a certain

wavelength and at a certain viewing angle for a specific atmospheric and geophysical scene. Degree of linear polarization

(DLP) is then derived from the first three components of the vector I,Q,U , i.e. DLP =
√
Q2 +U2/I , where I constitutes125

the radiance. We consider both aerosols and trace gases in the model atmosphere. First, optical properties of molecules and

aerosols are calculated. Aerosol optical properties are derived from the microphysical properties using tabulated kernels for a

mixture of spheroids and spheres (Dubovik et al., 2006). The complex refractive index of aerosols is computed as a function of

MAP wavelengths, but is assumed constant with wavelength inside a spectrometer window. Optical thickness due to molecular

scattering is determined from the Rayleigh scattering cross section (Bucholtz, 1995). In the three spectrometer windows,130

molecular absorption features correspond to O2 in the NIR band, H2O,CO2 in the two SWIR bands, and CH4 in the SWIR1

band. Molecular absorption optical thickness is computed from the absorption cross-section values, which are pre-calculated

from the latest spectroscopic databases (Tran et al., 2006; Rothman et al., 2009; Scheepmaker et al., 2013) and stored in a

look-up table as a function of pressure, temperature and wavenumber.

Stokes parameters are computed from the optical properties via the radiative transfer model based on the work of Landgraf135

et al. (2001); Hasekamp and Landgraf (2002); Hasekamp and Landgraf (2005). For the polarimeter, Stokes parameters are

calculated at each MAP wavelength. These modeled radiances and DLP directly represent the simulated MAP observations.

To create spectrometer synthetic observations, optical thickness due to molecular and aerosol scattering and absorption and

the radiance spectra are computed on a finely-sampled wavelength grid within each spectrometer window. Multiple scattering

contribution to the radiances is approximated by the linear-k approach (Hasekamp and Butz, 2008) to reduce computational140

time. The radiances are simulated by convolving the modeled radiances on the fine spectral grid with the instrument spectral

response function, with random noise added afterwards. The instrument response function is modeled as a Gaussian with a

Full Width at Half Maximum set to the spectral resolution listed in Table 1 and the noise follows the SNR defined in section 2.

The model atmosphere consists of 15 predefined height layers. Atmospheric vertical profiles of temperature, H2O,CO2, and

CH4 are provided as input. Aerosols consist of two modes, referred to as the fine and the coarse mode. The size distribution of145

each mode is quantified by a lognormal distribution (see Appendix A). To describe the vertical distribution of aerosols in the
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atmosphere, we adopt a Gaussian shape such that the number density of each aerosol mode at layer k is given by

N0,k =Naerh(zk)∆zk, (2)

where

h(zk) =Aexp

(
−4(zk − zaer)

2 ln2

w2
aer

)
. (3)150

Naer is the vertically integrated column number density, A is a normalization constant, zk is the height of layer k, waer is the

width of the aerosol height distribution and zaer is the aerosol mean height (Butz et al., 2009, 2010).

The refractive index of each aerosol mode is defined by a linear combination of two aerosol types, such that the complex

refractive index of a mode as a function of wavelength becomes

m(λ) =

2∑
l=1

clml(λ) (4)155

with 0.0≤ cl ≤ 1.0. ml(λ) is a wavelength-dependent complex refractive index for a certain aerosol type l, i.e. dust, inorganic

matter (inorg), or black carbon (BC). The model size distribution and composition per mode do not vary with height. The

aerosol particles are assumed to be a mixture of spheroids and spheres, where the proportion of the latter is characterized by

the fraction of spheres (fsphere).

To account for the reflection and polarization properties of the surface, the retrieval algorithm employs semi empirical160

bidirectional reflectance distribution function (BRDF) and bidirectional polarization distribution function (BPDF) models. The

BRDF is characterized by the surface total reflectances RI that are modeled using a linear combination of kernels in the form

RI(λ,θν ,θ0,∆φ) = kλ[1 + kgeofgeo(θν ,θ0,∆φ) + kvolfvol(θν ,θ0,∆φ)] (5)

(Litvinov et al., 2011), where θν ,θ0 are the viewing and solar zenith angles, and ∆φ is the relative azimuth angle. We use

the Ross-thick kernel for volumetric scattering kernel fvol, and the Li-sparse kernel as geometric-optical scattering kernel fgeo165

(Wanner et al., 1995). The BPDF is modeled according to the linear one-parameter model proposed by Maignan et al. (2009),

with α being the only free parameter.

3.1.2 State vector

Although our main focus in this retrieval is XCO2 , we also retrieve aerosol properties, together with surface attributes, and the

total columns of CH4 and H2O. We take the input vertical profiles of the trace gases as a given and retrieve the total columns170

via scaling factors. Here, the prior and first guess of the scaling factor for each gas species are always 1.0, corresponding to

the input total column. Regarding the surface attributes, kλ at every measured MAP wavelength and for every spectrometer

window, kvol,kgeo, and α are considered the unknowns and are therefore state variables. The majority of aerosol properties

are included in the state vector; there are only 4 aerosol parameters that are not retrieved, i.e. fsphere, zaer of the fine-mode

aerosol, and waer for both modes. In our retrievals with synthetic data here, the four parameters are fixed to the true values.175
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Table 2. State variables in the joint retrieval

State parameter Prior Prior error

CO2 scaling factor 1.0 1.0

trace gas H2O scaling factor 1.0 1.0

CH4 scaling factor 1.0 1.0

reff [µm] 0.2 0.1

fine-mode veff 0.2 0.05

aerosol c1 (inorg) 0.9 0.1

c2 (BC) 0.1 0.1

τ at 550 nm 0.2 1.0

reff [µm] 1.5 1.0

veff 0.6 0.1

coarse-mode c1 (dust) 0.5 0.1

aerosol c2 (inorg) 0.5 0.1

τ at 550 nm 0.05 0.2

fsphere 0.05 0.5

zaer [m] 6500 4000

kgeo 0.0 0.25

surface kvol 0.0 1.0

properties multiple kλ 0.0 0.5

α 1.0 2.0

fsphere of the fine mode is not fitted because non-spherical particles mostly relate to mineral dust which is predominantly in

the coarse mode. The choice not to fit zaer of the fine mode is appropriate for a situation with industrial aerosol (fine mode) in

the boundary layer and an elevated dust layer (coarse mode). For other scenarios, this choice may not be optimal. For instance,

it may be better to fit one value for zaer that corresponds to both fine and coarse modes (Wu et al., 2016) in the case of biomass

burning plumes. An investigation into how different choices of aerosol state variables could affect the retrieved XCO2 errors180

is outside the scope of this paper and a subject of further study. The complete list of the state variables, along with the prior

values and prior uncertainties, is given in Table 2.

3.1.3 Inversion procedure

The goal of the retrieval is to find x which would result in F(x,b) that best matches y. This is achieved by minimizing the

cost function185

x̂ = argmin
x

(‖Sy
− 1

2 (y−F(x,b))‖2 + γ2‖W(x−xa)‖2) (6)
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xa is the prior state vector, W is a weight matrix, while γ is the Phillips-Tikhonov regularization parameter (Phillips, 1962;

Tikhonov, 1963). Regularization is needed to obtain a stable solution since the inverse problem is ill-posed. The weight matrix

W is constructed in such a way that it brings all state vector elements to the same order of magnitude; it is also used in

the inversion to give more freedom to some state vector parameters, for which the prior information is assumed less reliable190

compared to the others. Here, W = S
− 1

2
a such that for γ = 1, Eq. (6) reduces to the Optimal Estimation cost function.

Due to the non-linearity of the forward model, the minimization problem is solved in an iterative manner. At every iteration

step, F(x) is linearized such that at iteration n:

F(xn+1,b)≈ F(xn,b) +K(xn+1−xn). (7)

K is the Jacobian matrix containing partial derivatives of forward model element Fi with respect to state variable xj , i.e.195

Kij =
∂Fi(xn)

∂xj
. (8)

The linearization in Eq. (7) modifies the optimization problem to

x̃n+1 = argmin
x

(‖ỹ+ K̃x̃n− K̃x̃‖2 + γ2‖x̃− x̃a‖2), (9)

with

x̃ = Wx, (10)200

ỹ = Sy
− 1

2 (y−F(xn)), (11)

K̃ = Sy
− 1

2KW−1. (12)

The solution is found using an iterative Gauss-Newton method and expressed in terms of the departure ∆x̃ from x̃n (Rodgers,

2000). Given that the forward model is highly non linear, the retrieval could diverge when the current x̃n is far from the solution.

To avoid that, we reduce the step size ∆x̃ by applying the Λ factor, i.e.205

x̃n+1 = x̃n + Λ(∆x̃), (13)

with

∆x̃ = (K̃
T
K̃+ γ2I)

−1
[K̃

T
ỹ− γ2(x̃n− x̃a)] (14)

At each iteration step, we compute a fast and simplified forward model using a combination of 5 possible γ and 10 possible

Λ values. γ is varied from 0.1 to 5 whereas Λ is varied from 0.1 and 1.0. The combination of γ and Λ that delivers the best210

match to the measurements, via χ2 assessment, is adopted in Eq. (14) to compute the step size. The iteration in the inversion

starts with a first guess x̃1 that is generated via a look-up table retrieval.
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3.2 Linear error analysis

Linear error analysis allows XCO2 errors to be derived in a way that mimics as close as possible an iterative retrieval method

and so is particularly useful in performing the MAP requirement study. Linear error analysis delivers an aerosol-induced215

XCO2 error 〈∆XCO2〉 that is representative in the statistical sense. It is impractical to derive this error using iterative retrieval

method, given the large number of scenarios and instrument setups that we evaluate in the requirement study. The basic

principles of the error analysis that we employ can be found in Rodgers (2000). Here we describe the mathematical formalism

of the analysis.

In order to estimate 〈∆XCO2〉 , the error analysis follows a two-step approach. Splitting the analysis in two steps helps220

to illustrate how the uncertainties in the aerosol properties contribute to XCO2 errors. The first step (step 1) corresponds to

the aerosol retrieval using MAP. Here the uncertainties on aerosol parameters are derived. The second step (step 2) repre-

sents XCO2 retrieval using spectrometer measurements where the aerosol uncertainties from step 1 are propagated to result in

〈∆XCO2〉 . In both steps, aerosols are parametrized in the same way as in the section 3.1.1. As in section 3.1.2, we do not

retrieve waer of both modes, zaer and fsphere of the fine mode, which leaves us with 12 aerosol parameters in the state vector.225

We compute for each scenario two Jacobian matrices. One of the Jacobians is associated to retrieval step 1 with a given

MAP setup (KMAP), and the other belongs to retrieval step 2 (Kspc). State variables in step 1 comprise aerosol and surface

parameters (see section 3.1.1 for details). Measurement variables of step 1 consist of radiances and DLP; their composition

depends on the MAP instrument setup being used. State vector of retrieval step 2 follows that used in the spectrometer-only

retrieval described in section 3.3, with the exception of the aerosol parameters, i.e. here we use the bimodal lognormal model230

(Eq. A1) and fit 12 parameters (Table 2). Both Kspc and KMAP are calculated at the true state vector values and each of them

contains derivatives of the corresponding measurements with respect to 12 aerosol parameters.

Errors on the retrieved aerosol properties from step 1 comprise the smoothing errors and the MAP-measurement-noise-

induced error (retrieval noise). The smoothing error is formulated as

Ssm
MAP = (GMAPKMAP− I)Sa,MAP(GMAPKMAP− I)

T
, (15)235

whereas the retrieval noise reads

Sns
MAP = GMAPSy,MAPG

T
MAP. (16)

Sa,MAP is a MAP prior error covariance matrix, which is a diagonal matrix containing squared prior errors. The values

of prior errors that we use here for the aerosol and surface variables are the same as those stated in Table 2. Sy,MAP is a

measurement error covariance matrix containing squared values of MAP measurement errors along the diagonal axis. The240

individual radiometric and polarimetric measurements are assumed uncorrelated, so the off-diagonal elements are set to zero.

GMAP is the gain matrix that relates the MAP measurement errors with the noise in MAP state parameters and it follows that

GMAP = (KT
MAPS

−1
y,MAPKMAP +S−1

a,MAP)−1KT
MAPS

−1
y,MAP. (17)
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The total aerosol (posterior) error covariance matrix is then

Stot
MAP = Sns

MAP +Ssm
MAP. (18)245

Cropping Stot
MAP to keep only variances and covariances of the 12 aerosol parameters (i.e. excluding the surface parameters)

results in Stot
aer ∈ R12×12.

The matrix Stot
aer, which represents the total uncertainties in aerosol parameters retrieved from MAP measurements, is then

passed on to the second part of the error analysis. At this stage, the aerosol errors are mapped into spectrometer measurement

errors using Kspc. The spectrometer measurement errors are in turn propagated into the errors of the step-2 state variables250

using the spectrometer gain matrix Gspc. The mathematical expression for this propagation chain in step 2 is

Saer
spc = GspcK

aer
spcS

tot
aer (Kaer

spc)T GT
spc, (19)

where

Gspc = (KT
spcS

−1
y,spcKspc + γ2W)−1KT

spcS
−1
y,spc. (20)

Kaer
spc is a subset of Kspc containing derivatives with respect to aerosol properties only. The regularization term γ2W is adjusted255

accordingly to arrive at the typical degrees of freedom between 2 and 3 for aerosol parameters (Guerlet et al., 2013; Wu et al.,

2019). S−1
y,spc is a diagonal matrix containing the squared values of the spectrometer measurement noise.

Finally, 〈∆XCO2〉 is obtained from

〈∆XCO2〉=
√

Saer
spc[1,1], (21)

where the first diagonal element Saer
spc[1,1] is the variance of the CO2 total column. Note that 〈∆XCO2〉 includes the error260

contribution from the MAP noise, but not from the spectrometer noise.

3.3 Spectrometer-only retrieval

To perform XCO2 retrievals using spectrometer measurements only, we employ the RemoTeC algorithm which was designed

for greenhouse gas retrievals using satellite observations (Butz et al., 2009, 2010). The forward modelling adopts the latest

version developed for TROPOMI (Hu et al., 2016) and the inversion procedure largely follows Butz et al. (2012). In what265

follows, we highlight aspects that are specific to this work.

As in the joint retrieval, we retrieve the total column of CO2 , along with the total columns of two other trace gases i.e. H2O

and CH4, via scaling factors. Prior values of the total columns are derived from the input profiles, i.e. corresponding to scaling

factors of 1. The input profiles of temperature, pressure and the gases are the same as those used in the joint retrieval.

With only spectrometer data available, we resort to a simplifed approximation of aerosols in the retrieval. In the forward270

model, aerosols are described by a simple model where the size distribution is parametrized by a monomodal power-law
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function. The power-law distribution is prescribed in Mishchenko et al. (1999) and it reads:

n(r) =


B, if r < r1.

B(r/r1)−β , if r1 < r ≤ r2.

0, if > r2.

(22)

B is the normalization constant and r is the aerosol particle radius. r1 is fixed to 0.1 µm and r2 to 10 µm. The height distribution

follows Equations (2) and (3) with waer set to 2 km. The real and imaginary refractive indices are kept constant at 1.4 and275

−0.003, respectively, in all three spectral windows. Aerosol properties that are retrieved include the optical depth τ at 765 nm

(prior=0.1), the size distribution parameter β (prior=4.0), and the mean height zaer (prior=3000 m). This simplified aerosol

model is adopted by e.g. Butz et al. (2009); Butz et al. (2012); Hu et al. (2016); Wu et al. (2019, 2020) as the standard approach

to account for aerosol effects on the retrieved XCO2 and XCH4.

The reflection at the Earth surface is assumed to be Lambertian. Surface reflectance is included in the state vector via the280

albedo and its wavelength dependence in each window, which are modelled as a first-order polynomial. The prior for the albedo

is the Lambertian-equivalent albedo corresponding to the maximum radiance measured in the retrieval window in question.

The slope of the polynomial (wavelength dependence of the albedo) is given a prior of 0.0. Additionally, for each spectral

window a spectral shift parameter is retrieved with a prior of 0.0. In total, the state vector consists of 15 variables, i.e. the total

columns of three trace gases (CO2,CH4,H2O), 3 aerosol properties, and for each spectral window 2 albedo parameters and 1285

spectral shift parameter.

4 Ensemble of synthetic scenes

We construct an ensemble of 500 synthetic scenes, characterized by different combinations of trace gas and aerosol content,

surface albedo, and solar zenith angle (SZA). Every scene is generated by randomly varying those atmospheric and geophysical

properties. The random value is drawn from a uniform distribution within a specific interval. Vertical profiles of pressure,290

temperature, water vapor, and trace gases are adopted from the AFGL atmospheric profiles (Shettle and Fenn, 1979), with CO2

scaled up such that the total column is 400 ppm.

Given the spectral windows of the CO2M spectrometer, the radiance spectra include absorption features due to CO2, H2O,

and CH4. In this ensemble, the vertical profile of the individual gas is fixed and we vary the total column, which is represented

by the scaling factor. The scaling factors of CO2, H2O, and CH4 are varied by 5%, 3%, and 6%, corresponding to the intervals295

[0.95,1.05], [0.97,1.03], and [0.94,1.06], respectively. A scaling factor of 1.0 means that the total column is obtained from

vertically integrating the column number density given in the atmospheric input profile, which for CO2 amounts to 400 ppm.

Given that the scaling factors in the scenes are randomized, the true total columns are by intention different from the prior

values in our retrieval exercises.

Aerosols in every scene are constructed to consist of the fine and the coarse mode. The size distribution of each mode300

is quantified by a lognormal distribution (Eq. A1). The vertical distribution of an aerosol mode in the atmosphere follows a
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Gaussian shape (Eq. 3). The refractive index of each aerosol mode is defined by Eq. (4) where the coarse mode is composed

of the dust and inorganic types, while the fine mode is made up of inorganic matter and black carbon. The fine mode is set

up to consist entirely of spheres, i.e. fraction of spheres fsphere = 1.0, for which the Mie theory applies. The coarse-mode

particles are described by a mixture of spheroids and spheres, following Dubovik et al. (2006). Aerosol size distribution and305

composition of each mode are constant with height. Most of the aerosol parameters are varied randomly, while a few are held

fixed. Table 3 provides the complete list of the aerosol properties and the corresponding intervals from which random values

are drawn, or the corresponding values for the fixed parameters.

Table 3. Aerosol properties in the ensemble. The numbers in square brackets specify the interval from which a random value is drawn,

whereas a single number indicates a fixed value.

Aerosol parameters fine mode coarse mode

reff [µm] [0.1,0.3] [0.65,3.4]

veff [0.1,0.3] [0.45,0.65]

c1 [0.887,0.975] (inorg) [0.439,0.512] (dust)

c2 [0.0,0.05] (BC) [0.439,0.512] (inorg)

τ at 765 nm [0.002,0.52] [0.0048,0.32]

fsphere 1.0 [0.0,0.5]

zaer [m] 1000 [1000,8500]

waer [m] 2000 2000

Solar zenith angle is allowed to take any value between 10 and 70 degrees. Surface albedo ρ is determined from the combi-

nation of albedos of two surface types, i.e. soil and vegetation. More specifically,310

ρ= fρsoil + (1− f)ρveg, (23)

in which ρsoil and ρveg are provided in a tabular form as a function of wavelength, and f is varied between 0 and 1.

The simulated spectra for the spectrometer-only retrieval (sections 3.3 and 5) are not identical to the simulated spectrometer

measurements for the joint retrieval (sections 3.1 and 7). This is because the surface descriptions used in the two retrieval

approaches differ. To isolate aerosol-induced errors, we use the same surface model in the forward simulation as in the retrieval.315

Consequently, we use the Lambertian surface assumption to generate spectra for the spectrometer-only retrieval, where ρ at

765, 1600, and 2000 nm are assigned as the albedo in NIR, SWIR1 and SWIR2 windows, respectively. Albedo within a

spectral window is not wavelength dependent. For the joint retrieval exercise, synthetic spectra of both the polarimeter and the

spectrometer are generated by employing the BRDF and BPDF models (Eq. 5, section 3.1.1), with kvol = 1.0, kgeo = 0.1, and

α= 1.0 (non-Lambertian surface). The values of kλ are set to ρ at 765, 1600, and 2000 nm for the three spectral windows (kλ320

is fixed within a spectrometer window) and to ρ at each MAP wavelength.

Finally, we add random realizations of the instrument noise to the synthetic measurements. It is this noisy spectra that are

given as input data for the retrievals. For the spectrometer, the noise follows the formulation in section 2. For MAP, the noise
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on radiance is typically a few percent, while the noise on DLP is of the order of 10−3 (the determination of the appropriate

noise level is a part of the requirement study in section 6).325

5 XCO2 retrieval using CO2M spectrometer measurements only

Here we present the results of RemoTeC iterative retrievals (section 3.3) of XCO2 on 500 synthetic scenes described in sec-

tion 4, using only spectrometer observations (section 2). The goodness-of-fit of the retrieval results is evaluated via χ2 =

1
Nmeas

∑Nmeas

i=1

(
yi−Fi

ei

)2

. Nmeas is the total number of measurements, yi, Fi, ei represent the (synthetic) measurements, the

forward model, and the measurement uncertainties, respectively. Since we use noisy synthetic measurements, we expect that330

a successful and converged retrieval would have a χ2 of around 1. Here, we impose a χ2 criterion by applying a threshold of

1.5. Only for converged retrievals with χ2 ≤ 1.5 do we assess the retrieval error ∆XCO2 and how it depends on some aerosol,

surface properties and SZA. ∆XCO2 is the residual XCO2 , i.e the retrieved minus the true total column, so it represents the

combined effect of aerosol-induced and spectrometer-noise-induced errors on the retrieved XCO2 .

Figure 1. Residual XCO2 from the converged retrievals using spectrometer measurements only, shown as a function of total aerosol optical

depth τ , coarse-mode aerosol height, SZA, and albedo. The input spectra are generated according to the ensemble of synthetic scenes

(Section 4). The three dashed horizontal lines indicate ∆XCO2 at -0.86, 0, and 0.86 ppm.

Out of 500 retrievals, 343 converge and meet the χ2 criterion (convergence rate of 69%). Figure 1 plots ∆XCO2 of the335

343 retrievals as a function of true aerosol optical depth, aerosol height, SZA, and albedo. As a side remark, scatter plots

13



of ∆XCO2 against the retrieved τ , aerosol height, and albedo show similar trends. ∆XCO2 is evidently sensitive to the

changes in aerosol optical depth, aerosol height and the SZA. In what follows, we use the median value of ∆XCO2 to de-

scribe the bias. For τ < 0.07, ∆XCO2 are relatively unbiased and confined to within ±1.5ppm. Starting τ ∼ 0.1, the scatter in

∆XCO2 becomes much larger with an overall bias of∼ 1.9 ppm at τ ∼ 0.5. Beyond τ of 0.6, there are notably fewer converged340

retrievals; almost all of them have positive ∆XCO2 . Like the optical depth, aerosol height is fitted in the retrieval. For scenes

with a true coarse-mode aerosol height up to 1700 m, ∆XCO2 is found between -2.7 and +2.6 ppm with a relatively small

positive bias of 0.3 ppm. However, as the true coarse-mode aerosol height increases, so do the scatter and the bias in XCO2 .

At heights > 7000 m, ∆XCO2 is distributed between -5.9 and +7.5 ppm with a bias of 1.1 ppm. An opposite trend is seen

for SZA where the highest bias is observed for the lowest SZA between 10◦and 30◦. There, the median value of ∆XCO2 is345

1.7 ppm. Between SZA of 60◦and 70◦, the retrieval bias is the smallest at 0.6 ppm. ∆XCO2 scatter shows a slight reduction

with increasing SZA. Dependency of ∆XCO2 on the surface albedo at 2000 nm is not apparent in our ensemble; there is a an

overall positive bias without any noteworthy correlation. The same can be said about the behaviour of ∆XCO2 with respect to

albedo in the other two spectral windows and about the behaviour of ∆XCO2 as a function of blended albedo (following the

definition in Wunch et al. (2011)).350

The trends of ∆XCO2 that we see here are largely consistent with those in Butz et al. (2009). In their 3-band noise-free

retrieval exercise, they observed a positive bias in the residual XCO2 error distribution, that the scatter in XCO2 errors increased

with aerosol optical thickness, and that the XCO2 errors did not show a pronounced dependence on surface albedo. For most

of the cases with τ ≤ 0.5, their XCO2 errors were confined to less than 1%. Our results reflect all of those findings. Butz et al.

evaluated their ensemble at two SZA values, i.e. 30◦and 60◦, and they found that a positive bias in samples with SZA=60◦was355

stronger than for samples with SZA=30◦. This may seem to contradict our result that shows a diminishing positive bias with

increasing SZA, but one should note the use of different statistical samplings in our and their analyses, which prevents a direct

comparison.

To minimize outlier effects on the statistics, we choose to evaluate the bias and the spread of the ∆XCO2 distribution using

percentiles. We adopt the median (the 50th percentile) as a measure of the bias and PSD = 0.5× (P (84.1)−P (15.9)) as a360

measure of the spread, where P(15.9) and P(84.1) are the 15.9th and the 84.1th percentiles. For a normal distribution, PSD

reduces to the standard deviation, within which ∼68% of the instances fall. From the 343 retrievals, the median ∆XCO2 is

found at 1.12 ppm and PSD is equal to 2.07 ppm. Our median value is in between the 3-band retrievals of Butz et al. (2009)

for SZA=30◦(0.42 ppm) and SZA=60◦(1.2 ppm), while our PSD is above the standard deviation found by Butz et al. (1.29

for SZA=30◦and 1.42 ppm for SZA=60◦). Our higher PSD could be attributed, at least partially, to the additional instrument365

noise in the simulated measurements since Butz et al. used synthetic measurements without noise. If we filter out converged

retrievals with retrieved τ (at 765 nm) > 0.3, only 232 retrievals are retained with a bias and PSD of 1.13 ppm and 1.95 ppm.

Lowering the τ threshold further to 0.2 means only 136 retrievals are selected with a slightly smaller bias and PSD (0.9 and

1.66 ppm).

As mentioned above, the accuracy and precision requirements of the CO2M mission are 0.5 and 0.7 ppm, respectively. The370

quadratic sum amounts to a total XCO2 uncertainty of 0.86 ppm. With aPSD above 2 ppm (without τ filtering), XCO2 retrievals
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based on only spectrometer measurements do not meet the mission requirements by a very wide margin. For real data, it is

certainly possible to decrease XCO2 errors to within the mission requirements through heavy post-retrieval filtering and bias

corrections, but this would mean a significant reduction in data volume. In section 7, we investigate the improvement in

XCO2 accuracy and precision when a MAP instrument is flown aboard the CO2M satellite.375

6 MAP requirement analysis

Before we can assess the contribution of a MAP instrument in improving the XCO2 retrieval performance, we first deter-

mine the required specifications for such an instrument given the precision and accuracy threshold of the CO2M mission.

As stated in section 2, two alternative MAP instrument concepts are being considered, i.e. MAP-mod and MAP-band. For

each concept, we look into multiple instrument configurations to search for the optimal one that meets the CO2M mission re-380

quirement by performing linear error analyses (section 3.2). A linear error analysis delivers 〈∆XCO2〉 that represents aerosol-

induced XCO2 errors, which consist of both systematic and random components. The MAP instrument noise is included in

〈∆XCO2〉 but the spectrometer noise is not accounted for. For a total error budget of 0.86 ppm (quadratic sum of the CO2M

accuracy and precision requirements), here we assume equal error contributions from the MAP and from the spectrometer. This

means we allocate 0.6 ppm for 〈∆XCO2〉 and leave 0.6 ppm for other error sources, e.g. spectrometer noise (the quadratic385

sum of 0.6 ppm and 0.6 ppm is 0.85 ppm).

We evaluate the performance of MAP instrument setups with respect to three aspects, i.e. radiance and polarization measure-

ment uncertainties, number of viewing angles and the wavelength range. For this purpose, the linear error analysis is applied

to a generic set of study scenarios involving a variety of aerosol and surface properties. Below, we define the study cases,

followed by the requirement analysis for the MAP-mod concept, which results in the MAP-mod baseline setup. Afterwards,390

we present the baseline setup for the MAP-band concept that we determine through a separate error analysis similar to that for

the MAP-mod.

6.1 Study cases

We introduce three aerosol cases that form the basis of the scenarios used to derive the requirements. They are referred to as

’case 1’, ’case 2’, and ’case 3’. In all cases, the aerosols are modeled according to the bimodal lognormal size distribution,395

Gaussian height distribution, and the linear superposition of complex refractive index (Equations A1, 2-4), i.e. the same as the

parametrizations used to build the ensemble of synthetic scenes (section 4). The fine mode aerosol is always located at 1 km

height in all cases. Case 1 is designed to mimic boundary layer aerosols where the fine and coarse mode aerosols coincide at 1

km. In case 2, the coarse mode represents an elevated layer at 8 km. Case 3 is a mid-troposphere case where the coarse mode

is located at 4 km. All fine mode particles are spherical and non-absorbing, whereas the coarse mode constitute dust particles400

with fsphere = 0.05. To account for the effects of aerosol load on XCO2 retrieval, the aerosol optical depth τ of either the fine

or the coarse mode is varied to 5 different values in each case. The summary of the aerosol properties for each case is given in

Table 4.
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Table 4. Aerosol properties adopted in the study cases

Aerosol Case1 Case 2 / 3

parameters fine mode coarse mode fine mode coarse mode

reff [µm] 0.12 1.6 0.12 / 0.2 1.6

veff 0.2 0.6 0.2 0.6

fsphere 1.0 0.05 1.0 0.05

c1 1.0(inorg) 1.0(dust) 1.0(inorg) 1.0(dust)

c2 0.0(BC) 0.0(inorg) 0.0(BC) 0.0(inorg)

zaer [m] 1000 1000 1000 8000 / 4000

waer [m] 2000 2000 2000 2000

τ at 765 nm

0.05,0.1 0.02,0.04

0.15,0.25 0.02 0.2 0.06,0.10,

0.5 0.15

We consider two types of land surface, i.e. soil and vegetation. These are the basic surface types used to create the 500 syn-

thetic scenes (section 4). Albedo values at 765 nm, 1600 nm, 2000 nm for the soil are 0.139,0.298,0.259, and for the vegetation405

type 0.450,0.230,0.063. We perform the error analysis for two solar zenith angles 30◦and 60◦. In total, the combination of 2

surface types, 2 SZA values and 15 aerosol variations results in 60 scenarios.

6.2 MAP-mod instrument

6.2.1 Radiometric and polarimetric uncertainties

To examine the sensitivity of XCO2 estimates to MAP radiometric and polarimetric uncertainties, we vary Sy,MAP in Equations410

(16) and (17) and perform the error analysis. As a starting point, we adopt a setup that is similar to SPEXone (Hasekamp

et al., 2019). For this exercise, we assume 5 viewing angles at 0, ±40, ±60 degrees. The spectral range extends from 385 to

765 nm with a fixed radiance spectral resolution of 5 nm, and a DLP spectral resolution of 15 nm at 395 nm and 30nm at

765 nm. This spectral arrangement corresponds to 77 radiance and 19 DLP measurements. With 5 viewing angles, the total

number of measurements becomes 480. For each scenario, we compute 〈∆XCO2〉 that corresponds to each combination of 4415

values of radiance uncertainties ∆I/I and 11 different values of DLP uncertainties ∆DLP . ∆I/I ranges from 1% to 4% and

∆DLP ranges from 0.001 to 0.05.

Figure 2 shows examples of 〈∆XCO2〉 for all combinations of ∆I/I and ∆DLP that we investigate. We present different

sets of surface type, SZA, and τ that deliver among the largest 〈∆XCO2〉 in each aerosol case. The figure demonstrates that

XCO2 uncertainties increase, as expected, with increasing DLP and radiance errors, and that holds true in all other scenarios420

as well. 〈∆XCO2〉 can be as high as 2.52 ppm for the highest ∆I/I and ∆DLP considered here. It can be seen that the
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Figure 2. 〈∆XCO2〉 as a function of ∆I/I and ∆DLP , shown for scenarios where the errors are among the largest for each individual case

1,2, and 3. Here, τ indicates the sum of the fine- and the coarse-mode aerosol optical depth at 765 nm.

measurement errors that correspond to the allocated 〈∆XCO2〉 of 0.6 ppm are a combination of ∆I/I of about 2-3% and

∆DLP of around 0.003.

Figure 3 presents 〈∆XCO2〉 for all study scenarios when ∆DLP is fixed to 0.003, and compares the retrieval performance

between ∆I/I =2% and ∆I/I =3%. Generally speaking, the difference in 〈∆XCO2〉 for both ∆I/I values is relatively small.425

When radiance and DLP errors are not greater than 2% and 0.003, respectively, 〈∆XCO2〉 does not get higher than 0.6 ppm ex-

cept for 3 scenarios; in most cases, 〈∆XCO2〉 is around or lower than 0.5 ppm. For ∆I/I of 3%, coupled with ∆DLP =0.003,

〈∆XCO2〉 increases beyond 0.6 ppm in a few scenarios by a relatively small margin. Among these scenarios, the highest

〈∆XCO2〉 is found for the case-1,vegetation,SZA= 60◦,τ =0.52 scenario where it is just under 0.8 ppm; for the other sce-

narios, 〈∆XCO2〉 varies between 0.6-0.7 ppm. Given that the improvement in ∆I/I from 3% to 2% is a major technical430

challenge while the reduction in XCO2 uncertainty is only marginal, we adopt the more relaxed requirement here (∆I/I =3%

and ∆DLP =0.003).

6.2.2 Number of viewing angles

If we change the number of viewing zenith angles (VZAs), we effectively add or remove measurements and this would certainly

influence the aerosol and hence the XCO2 retrievals. A number of studies suggest that 5 viewing angles are sufficient for435

aerosol retrieval (Hasekamp and Landgraf, 2007; Wu et al., 2015; Xu et al., 2017; Hasekamp et al., 2019). Here, we vary the

number of viewing angles from 3 to 8, while keeping the spectral range and resolution the same as in section 6.2.1, resulting

in 6 instrument setups to evaluate. For each scenario and each setup, KMAP is computed. Sy,MAP is fixed, corresponding to

∆I/I =3% and ∆DLP =0.003. Table 5 lists the viewing angles and the corresponding number of measurements.

The resulting 〈∆XCO2〉 as a function of number of viewing angles is displayed in Figure 4. It shows that 〈∆XCO2〉 drops440

most sharply from 3 to 4 viewing angles in most cases. Cases 2 and 3 with SZA=60◦show also a significant decline in

〈∆XCO2〉 from 4 to 5 viewing angles. Having more viewing angles beyond 5 lowers the aerosol-induced errors only marginally.

17



0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8
XC

O 2
 [p

pm
]

0.225 0.250 0.275 0.300 0.325 0.350

0.2

0.4

0.6

0.8

XC
O 2

 [p
pm

]

0.225 0.250 0.275 0.300 0.325 0.350

0.2

0.4

0.6

0.8

XC
O 2

 [p
pm

]

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

XC
O 2

 [p
pm

]

0.225 0.250 0.275 0.300 0.325 0.350

0.2

0.4

0.6

0.8

XC
O 2

 [p
pm

]
0.225 0.250 0.275 0.300 0.325 0.350

0.2

0.4

0.6

0.8

XC
O 2

 [p
pm

]

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

XC
O 2

 [p
pm

]

0.225 0.250 0.275 0.300 0.325 0.350

0.2

0.4

0.6

0.8
XC

O 2
 [p

pm
]

0.225 0.250 0.275 0.300 0.325 0.350

0.2

0.4

0.6

0.8

XC
O 2

 [p
pm

]
0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

XC
O 2

 [p
pm

]

0.225 0.250 0.275 0.300 0.325 0.350

0.2

0.4

0.6

0.8

XC
O 2

 [p
pm

]

I/I=2% I/I=3%

0.225 0.250 0.275 0.300 0.325 0.350

0.2

0.4

0.6

0.8

XC
O 2

 [p
pm

]

SOIL,
SZA30

SOIL,
SZA60

VEG,
SZA30

VEG,
SZA60

CASE 1 CASE 2 CASE 3

Figure 3. 〈∆XCO2〉 as a function of total aerosol optical depth at 765 nm for all 60 study scenarios. The two lines in each panel show

〈∆XCO2〉 for two different ∆I/I values, as computed for the MAP-mod concept with 5 viewing angles, where ∆DLP = 0.003 is assumed.

The MAP-mod spectrum for each scenario extends from 385 to 765 nm.

For instance, having 8 viewing angles does not reduce 〈∆XCO2〉 to 0.6 ppm for the case-1,vegetation,SZA=60◦,τ =0.52 sce-

nario.

An odd number of viewing angles is preferred over an even number to allow for symmetry and to include a nadir view.445

Strictly speaking, a minimum of 7 viewing angles are required to have 〈∆XCO2〉 below 0.6 ppm for all study scenarios.

However, 5 viewing angles deliver very similar 〈∆XCO2〉 and therefore meets our target aerosol-induced error for a vast

majority of the study scenarios. Here we adopt 5 viewing angles as the required number of viewing angles.
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Table 5. List of the viewing angles in the evaluated MAP-mod setups

Number of VZAs VZAs Total number of measurements

3 0, ±60 288

4 ±19, ±57 384

5 0, ±40, ±60 480

6 ±12, ±36, ±60 576

7 0, ±20, ±40, ±60 672

8 ±8, ±25, ±42, ±60 768

6.2.3 Spectral range

Looking at heritage missions with different spectral coverage, we assess the effect of varying spectral range on the retrieved450

XCO2 . Here we examine four options, i.e. (i) the same spectral range as in sections 6.2.1 and 6.2.2 (’default’), (ii) the default

range including UV wavelengths down to 350nm (’with UV’), (iii) the default range without wavelengths shorter than 490 nm

(’no UV’), (iv) the default range with 2 additional SWIR wavelengths 1640 and 2250 nm, at which both radiance and DLP

measurements are taken (’with SWIR’) . For each option, we assume 5 viewing angles at 0,±40,±60 degrees. For setups (i),

(ii), and (iii), the spectral resolutions for radiance and DLP are the same as those adopted in section 6.2.1, and the uncertainties455

are fixed to ∆I/I =3% and ∆DLP =0.003. Table 6 summarizes the four setups.

Table 6. List of the 4 options for the MAP-mod spectral range

Setup Spectral Number of radiance Number of DLP Total number of

range measurements measurements measurements

default 385-765 77 19 480

with UV 350-765 84 22 530

no UV 490-765 56 12 340

with SWIR 385-2250 79 21 500

Figure 5 compares 〈∆XCO2〉 for the four spectral range options as a function of total aerosol optical depth. Compared to

the default setup, it is apparent that adding more measurements in the UV leads to little gain in performance and that removing

UV measurements altogether results in a considerably higher 〈∆XCO2〉 . Without UV measurements, half of the scenarios

fail to meet the target 0.6 ppm; in some case-3,vegetation scenarios, 〈∆XCO2〉 even exceeds 1 ppm. The contribution of the460

two SWIR channels, as compared to the default spectral range, is most significant for case 1 scenarios in which a drop of

〈∆XCO2〉 up to∼ 0.3 ppm can be seen. For the other scenarios, the SWIR channels have only marginal effects. Given that for

case 1 the default spectral range is already very close to the requirement, we conclude that the ’default’ range (385-765 nm) is

sufficient.
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Figure 4. 〈∆XCO2〉 as a function of number of viewing angles for all 60 study scenarios. The 5 lines in each panel represent different

values of total aerosol optical depth at 765 nm. 〈∆XCO2〉 is computed for the MAP-mod concept with ∆I/I =3% and ∆DLP =0.003. The

MAP-mod spectrum for each scenario extends from 385 to 765 nm.

Following the assessment above, we adopt the default setup as the MAP-mod baseline setup. For clarity, we summarize this465

setup in Table 7.

6.3 MAP-band instrument

For the MAP-band instrument, we consider 6 spectral bands from 410 to 865 nm, close to the 3MI VNIR polarized bands

(Fougnie et al., 2018), and we perform requirement analyses similar to those for MAP-mod. The study of Hasekamp and

Landgraf (2007) suggests that there is a strong overlap in angular and spectral information for aerosol retrieval, i.e. as long as470

the total number of measurements is the same and there are at least 5 viewing angles, instruments with different number of
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Figure 5. 〈∆XCO2〉 as a function of total aerosol optical depth at 765nm. The 4 lines in each panel represent 4 possible setups with different

spectral range. 〈∆XCO2〉 is computed for the MAP-mod concept with 5 viewing angles, ∆I/I =3% and ∆DLP =0.003.

angles and wavelengths yield similar retrieval capability. This implies that the MAP band instrument with 40 viewing angles

can deliver a similar performance to MAP-mod, because the total number of measurements of the two concepts would then be

the same. The details of our proposed baseline setup for the MAP-band concept is provided in Table 8.

Figure 6 displays the performance of a MAP-band setup (40 viewing angles, 6 spectral bands, ∆I/I =3%, ∆DLP =0.003)475

and the MAP-mod baseline setup. For most scenarios, 〈∆XCO2〉 delivered by both concepts are comparable, confirming what

is suggested in Hasekamp and Landgraf (2007). MAP-band fares somewhat poorly for scenarios with vegetation surface and

SZA=60◦in cases 2 and 3. To maintain aerosol-induced errors at 0.6 ppm or lower for these scenarios, we find that the MAP-

band measurement uncertainties have to be unfeasibly low, i.e. ∆I/I must be 1% or less for a ∆DLP of 0.003, or alternatively,

∆DLP must be less than 0.002 for a ∆I/I of 3%.480
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Table 7. MAP-mod baseline setup

Features Baseline setup

Number of VZAs 5

Viewing angles [degrees] 0,±40,±60

Spectral range 385-765 nm

Radiance spectral resolution 5 nm

DLP spectral resolution 15 at 395nm, 30 at 765nm

Number of radiance measurements 77

Number of DLP measurements 19

Total number of measurements 480

Radiance uncertainty 3%

DLP uncertainty 0.003

Table 8. MAP-band baseline setup

Features Baseline setup

Number of VZAs 40

Viewing angles [degrees] ±2, ±5, ±8, ±11, ..., ±54, ±57, ±60

Wavelengths [nm]† 410, 440, 490, 550, 669.9, 863.4

Number of radiance measurements 240

Number of DLP measurements 240

Total number of measurements 480

Radiance uncertainty 3%

DLP uncertainty 0.003

† In the official baseline setup for the MAP-band instrument, the list of spectral

bands includes 753 nm. The channel is added for calibration purposes, owing

to its overlap with the NIR band of the CO2M spectrometer. Only radiance

measurements are taken in this channel, therefore we do not consider it in our

analysis.

7 XCO2 retrieval using MAP and CO2M spectrometer measurements

The linear error analysis provides reliable XCO2 error estimates assuming that the inversion problem has been succesfully

solved and the global minimum has been found. However, actual retrievals may have difficulties in achieving that and the

minimization procedure may get trapped in a local minimum. In this case, the real performance of the iterative retrievals would

be worse than that expected from the linear error analysis. For this reason, here we evaluate the retrieval capability of the485

combined spectrometer and MAP measurements using a full iterative approach (described in section 3.1) on a more diverse set
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Figure 6. 〈∆XCO2〉 as a function of total aerosol optical depth at 765nm. The two lines in each panel represent the baseline setups of

MAP-mod (orange, solid) and MAP-band (black, dashed).

of synthetic scenes. We adopt the baseline setup of the MAP-mod and MAP-band concepts and we consider the ensemble of

500 simulated scenes (as outlined in section 4) for this joint retrieval exercise.

We apply the same χ2 filtering as in section 5 to the joint retrieval results. ∆XCO2 is evaluated only in the case of conver-

gence, i.e. χ2 ≤ 1.5. For the spectrometer and MAP-mod joint (joint-mod) retrievals, 349 out of the 500 scenes (70%) fulfill490

this criterion, while for spectrometer and MAP-band combination (joint-band) the number stands at 390 (78%). Higher con-

vergence rates can potentially be achieved with further refinements of the iterative scheme and a better approach to select the

first guess state vector. As in section 5, ∆XCO2 is the difference between the retrieved and the true XCO2 . Since random

instrument errors are added to the simulated spectra, ∆XCO2 here is a combination of aerosol-induced errors (which include

MAP instrument noise) and spectrometer-noise-induced errors.495
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Figure 7. Residual XCO2 from the converged joint retrievals using spectrometer and MAP-mod measurements, shown as a function of total

aerosol optical depth τ , coarse-mode aerosol height, SZA, and albedo. The input spectra are generated according to the ensemble of synthetic

scenes (Section 4). The three dashed horizontal lines indicate ∆XCO2 at -0.86, 0, and 0.86 ppm.

Figure 7 plots ∆XCO2 for the 349 converged joint-mod retrievals as a function of the true values of aerosol optical depth

and height, SZA, and albedo. The same plots for the joint-band retrievals are displayed in Figure 8. Between the two figures,

no significant difference is seen with respect to the statistical distribution of ∆XCO2 . Excluding a few obvious outliers, the

general trends are as follows. As the aerosol optical depth gets higher, the scatter of ∆XCO2 increases only mildly with no signs

of significant overestimation or underestimation of the retrieved XCO2 . With respect to the aerosol altitude, ∆XCO2 scatter is500

practically unchanged with almost no bias visible at any height. As for the SZA, a slightly larger scatter of ∆XCO2 is observed

starting SZA∼ 60◦with no particular collective offset across the whole range of SZA. For the albedo, the scatter of ∆XCO2 is

maintained over the range considered here.

The key outcome of this exercise is the stark contrast in the ∆XCO2 distribution between the joint, regardless of the MAP-

concept, and the spectrometer-only retrievals in Figure 1. There is a substantial reduction in ∆XCO2 scatter and an absence of505

strong XCO2 bias when MAP measurements are included in the retrievals. As done for the spectrometer-only retrieval results,

we again choose to adopt the median and PSD as a measure of the retrieval bias and the spread of ∆XCO2 distribution. From

the 349 converged joint-mod retrievals, the bias is -0.004 ppm and the spread is 0.54 ppm. From the 390 converged joint-band

retrievals, the bias and PSD are 0.02 and 0.52 ppm, respectively. Both PSD values from joint-mod and joint-band are consistent

with what we expect from the linear error analysis for the MAP baseline setups (see Figure 6). More importantly, they lie510
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Figure 8. Same as Figure 7, but for the converged joint retrievals using spectrometer and MAP-band measurements.

well within the CO2M total error budget (0.86 ppm) and therefore compliant with the mission requirements. Given the similar

performance, either one of the joint-mod or joint-band setup is suitable for the CO2M mission.

Compared to the statistics of the spectrometer-only retrievals, the joint retrieval results obviously represent a major improve-

ment in the accuracy and precision of the retrieved XCO2 . The retrieval bias is reduced by at least a factor of 50 and the

scatter is lowered by almost a factor of 4. The smaller bias and scatter imply that a higher number of observed scenes can be515

processed into reliable estimates of XCO2 . Moreover, the absence of ∆XCO2 correlations with aerosol optical depth, aerosol

height, and SZA means there is a minimal risk of regional biases in the L2-products, driven by variations in aerosol properties

and SZA. Altogether, such improvements will lead to a higher data yield, better global coverage and a more comprehensive

determination of CO2 sinks and sources.

Deployment of a MAP instrument would additionally offer a better insight into the surface reflection properties, which are520

important factors in simulating the radiation at the top of atmosphere, especially for retrievals over land. In section 5, the

simulated spectrometer spectra and the eventual retrieval are based on a Lambertian description of the surface. In reality, the

Lambertian assumption does not hold and this would likely lower the XCO2 accuracy of the spectrometer-only retrievals even

further, particularly for cases with larger aerosol optical depth because of multiple light scattering between the surface and

aerosol particles. In line with the CO2M mission priority, this work focuses on land surfaces and does not address water bodies525

or glint measurements. For the glint geometry, direct light dominates the light path distribution so we expect less atmospheric
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scattering and less aerosol interference. Glint-mode performance with the MAP instrument on board CO2M will be the topic

of future research.

It should be noted that besides the aerosol-induced errors studied here, there are also other error sources that affect the final

performance, most notably due to imperfect spectroscopy (Miller et al., 2005; Hobbs et al., 2020). Such errors can be reduced530

by improved gas spectroscopic measurements in the laboratory. From a retrieval experiment point of view, past studies have

shown that retrieval performance on synthetic data, with focus on aerosol-induced errors (Butz et al., 2009) reflect quite well

the actual performance on real data from GOSAT and OCO-2 (Guerlet et al., 2013; Wu et al., 2018, 2020).

8 Summary

In the context of ESA’s CO2M mission, we investigated the need for an aerosol-dedicated instrument (multi-angle polarime-535

ter or MAP) in support of the CO2M spectrometer to achieve the required XCO2 accuracy and precision. We estimated

aerosol-induced XCO2 errors from two XCO2 retrieval approaches on an ensemble of 500 synthetic scenes over land. The

first approach represents a custom way to account for aerosol effects on the retrieved XCO2 using only measurements of a

3-band spectrometer. The second strategy incorporates MAP and spectrometer measurements in a synergistic way to retrieve

XCO2 (joint retrieval).540

In the ensemble of synthetic scenes, aerosol size distribution is described by a bimodal lognormal function, where each mode

follows a Gaussian height distribution. The trace gas total column, aerosol and surface properties, and the solar zenith angle

are randomly varied within certain limits to generate 500 atmospheric and geophysical scenes.

For the standard retrieval exercise using only spectrometer data, we employed the RemoTeC algorithm that has been widely

used for greenhouse gas retrievals from space. In RemoTeC, a simple aerosol model is used, i.e. aerosol size distribution is545

retrieved following a monomodal power-law parametrization. Out of 500 retrievals, 69% meet our χ2 convergence criterion.

The median value of the residual XCO2 (∆XCO2 ) from the converged retrievals is 1.12 ppm and the spread is 2.07 ppm.

Given that the total XCO2 error budget of the CO2M mission is 0.86 ppm (the quadratic sum of the required XCO2 accuracy

of 0.5 ppm and the required XCO2 precision of 0.7 ppm), the results show that the standard retrieval approach is greatly

inadequate and does not comply with the mission requirements. Furthermore, the retrieval performance is markedly degraded550

at high aerosol optical depth, high aerosol altitude and low SZA. This may lead to biases in determining CO2 emissions from

polluted areas where CO2 and aerosols are co-emitted.

Prior to performing the joint retrieval, we conducted a requirement analysis to construct a baseline setup for each of the two

alternative MAP concepts being considered for the CO2M mission, i.e. MAP-mod and MAP-band. The MAP-mod concept is

based on a spectral modulation technique where polarization information is encoded in the modulation pattern of the radiance555

spectrum, while the MAP-band instrument acquires radiance and polarization measurements at specific discrete spectral bands.

The MAP-mod instrument inherits from SPEXone and the MAP-band wavelength channels inherit from 3MI polarized VNIR

bands. The optimal baseline setups for the MAP-mod and for the MAP-band instrument designs are found through a linear

error analysis that is formulated to mimic a joint retrieval. In particular, we investigated three aspects of a MAP instruments,
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i.e. the measurement uncertainties, number of viewing angles, and wavelength range. For the MAP-mod concept, the baseline560

setup includes 5 viewing angles (±60◦,±40◦,0◦), 77 radiance measurements (with ∆I/I =3%) and 19 DLP measurements

(with ∆DLP =0.003) ranging from 385 nm to 765 nm. The baseline setup for the MAP-band concept requires 40 viewing

angles (from -60◦to 60◦), 6 spectral bands between 410 and 865 nm at which both radiances and DLP are measured, with the

same radiometric and polarimetric uncertainty requirements as for the MAP-mod baseline. The baseline setups of MAP-mod

and MAP-band have generally similar performance.565

To implement the joint retrieval, we further developed an existing aerosol retrieval algorithm to include features related

to the spectrometer measurements and to the derivation of trace gas total columns. With this tool and using the combined

spectrometer and MAP-mod (MAP-band) measurements, 70% (78%) of the 500 retrievals reach convergence according to our

χ2 criterion. Of the converged ones, the median ∆XCO2 is found at -0.004 (0.02) ppm, and the spread stands at 0.54 (0.52)

ppm, consistent with what is expected from the linear error analysis for the MAP-mod (MAP-band) baseline setup. More570

importantly, 0.54 (0.52) ppm fits well within the CO2M XCO2 error budget of 0.86 ppm and therefore is compliant with the

CO2M requirements. There is not any appreciable correlation in our test ensemble between ∆XCO2 with the aerosol optical

depth, aerosol height, solar zenith angle, or albedo.

The results of the joint retrieval (for either of the two MAP concepts) represent a significant improvement in the retrieved

XCO2 accuracy with respect to the standard retrieval approach using a 3-band spectrometer only. The bias and the scatter575

of ∆XCO2 are much smaller in the joint retrieval, which would ultimately translate to better estimates of CO2 sinks and

sources. Figure 9 concisely sums up the main results of this study. It shows the benefit of having MAP observations to sup-

port XCO2 retrieval. It shows that MAP observations are indispensable in minimizing aerosol-induced XCO2 errors and in

achieving the XCO2 precision and accuracy required by the CO2M mission.

Appendix A: Lognormal distribution580

The lognormal distribution is used in this paper to describe the size distribution n(r) of each aerosol mode. It reads as follows:

n(r) =
1

r ln sg
√

2π
exp

[
− (lnr− lnrm)2

2(ln sg)2

]
, (A1)

with r, rm and sg being radius, median radius and the geometric standard deviation. Here, we use effective radius reff and

effective variance veff in place of rm and sg , where585

veff = exp((ln sg)
2)− 1, (A2)

reff = rm(1 + veff)2.5. (A3)
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Figure 9. Boxplot of ∆XCO2 from retrievals on the synthetic scenes using 3-band spectrometer measurements only (’without MAP’) versus

those from retrievals using the combined MAP-mod and spectrometer data (’with MAP-mod’), and those from the combined MAP-band and

spectrometer data (’with MAP-band’). The rectangles are outlined by the 15.9th and the 84.1th percentiles (P(15.9) and P(84.1)) with the

50th percentile (median) indicated by a vertical line inside the rectangles. The length of the whiskers are set to the difference between P(84.1)

and P(15.9). The circles indicate retrievals with ∆XCO2 beyond the extent of the whiskers. The three dotted vertical lines mark -0.86, 0,

and 0.86 ppm.

Appendix B: Retrieved aerosol properties

In all of our retrieval exercises, aerosol properties are fitted alongside XCO2 and some surface parameters. Here we discuss the

retrieved aerosol properties in our experiments. In the main body of the paper, we compare the XCO2 retrieval performance of590

the joint MAP-spectrometer and the spectrometer-only setup. However, it is interesting to also look into the retrieval perfor-

mance with respect to the inferred aerosol properties. For this reason, we carry out the classical MAP-only retrieval using the

aerosol retrieval algorithm (Hasekamp et al., 2011; Fu and Hasekamp, 2018; Fu et al., 2020), from which the joint retrieval tool

originates. This means the forward model, state variables, and the inversion procedure described in section 3.1 also apply here,

only without trace gases in the state vector and without spectrometer-related aspects. As input, the MAP-only retrieval uses595

the same MAP synthetic measurement as in the joint retrieval (section 4; Table 3). Given the performance similarity between

MAP-mod and MAP-band (Figures 6,7,8), we arbitrarily choose to adopt the MAP-mod concept (Table 7) for this exercise.

We begin by comparing aerosol optical depth estimates from the three retrieval approaches, i.e spectrometer-only, MAP-only,

and the joint MAP(mod)-spectrometer setups. Because spectrometer-only retrieval relies on a simpler aerosol parameterization,

the total τ is the only aerosol property from the 3 retrieval types that we can directly compare. Figure B1 shows scattter plots of600

τ at 765 nm for the spectrometer-only, MAP-only, and joint retrievals with the corresponding RMSE provided. For the MAP-

only and joint retrievals, the τ constitutes the sum of the fine- and the coarse-mode optical depths. Only the converged retrievals

are included in the figure, i.e. 343, 349, and 495 data points from the spectrometer-only, joint, and MAP-only retrievals,
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respectively. It is plain to see that τ retrieval is severely compromised in the absence of MAP data. Compared to MAP-only

retrieval, having spectrometer measurements on top of MAP data decreases the RMSE.605

Figure B1. Aerosol optical thickness from spectrometer only (left), MAP-only (middle), and joint (right) retrievals compared to the true

values. The diagonal solid lines outline the one-to-one correspondence.

To help us gain a better insight into the overall retrieval system, Figures B2 and B3 display the MAP-only and the joint

retrieval performance for each aerosol property in the state vector (Table 2). As in the previous figure, the RMSE is given

in every panel in the right bottom corner. Both retrieval appraoches exhibit similar performance, where aerosol properties

are generally well retrieved. On a closer look, the largest performance difference between the two retrieval approaches are610

found for reff , zaer, and τ of the coarse mode. The retrieval of these coarse-mode parameters benefit from the spectrometer

measurements because the SWIR spectral range adds sensitivity to coarse-mode aerosols.
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Figure B2. Aerosol properties retrieved using MAP-only measurements compared to the truth. In each panel, the letter ’c’ or ’f’ in parentheses

behind the aerosol variable name indicates the aerosol mode, i.e. coarse or fine. The RMSE for each parameter is given in the bottom right

corner. τ550 is the aerosol optical depth at 550 nm. The diagonal solid lines outline the one-to-one correspondence.
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Figure B3. Same as Figure B2 but for the joint retrieval.
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