
1 Referee #1 responses

Thank you very much for the useful feedback on the manuscript.

Major comments:

1. We agree with the assessment. We have implemented the following:

• Removed detailed written results, example figures / tables and discussion points on specific radar
systems that are not necessary to goal #1

• Computed and created maps equivalent to Fig. 13 for each radar system and included in the manuscript

• Clarified the remaining written results on specific radar systems with respect to goal #1

• Clarified the conclusions with respect to goal #1

• Added two appendices that provide analytical support for choices regarding planar arrays and phase
offsets

• Performed consequence-based revisions due to the previous points

2. Such simulations have been performed and some discussions on these results and considerations were
added as a subsection called ”Impact of phase offsets” and a small appendix called ”Impact of known phase
offsets on ambiguities”. Most of these simulation were assuming measured and known phase offsets. Only
two small simulations were performed to test the impact of unknown phase offsets. We believe it is outside
the scope of this study to further examine the impact of unknown phase offsets on ambiguities as this would
greatly extend the length of the study.

3. We created maps equivalent to Fig. 13 for each radar system to overlay the selected source DOA’s
on these maps to motivate the choice of source DOA according to the ”low, middle, high” selection as well
as a wide range of elevations. These considerations were added to the beginning of the results section.

Minor comments:

• Line 41-42: ’by radar systems’ → ’with interferometry whose base line is longer than half the wave-
length’ Fixed!

• Figure 3: There are only 7 circles shown for MAARSY radar. A small circle at the center of the
antenna seems to be missing. the 8th circle is the one around the entire array!

• Lines 466-470: ’Input 1-5’ are defined only in figure captions, but not in the main text. Fixed, noted
in the text and defined in a summary table at the end.

• In general, figure captions tend to contain important information not described in the main text.
Authors should consider to move those from captions to the main text. We have moved information
from several figure captions to the main text.

• P.38-43: ’Conclusions’ should be restricted to summarizing already presented results and ideas, and
thus should not introduce new materials and discussions as presented here. It is very difficult to see
what is the main conclusion of this paper. We have rewritten the conclusions to reflect the results
presented previously in the text.

• Figure layouts: A new section should not be started before all figures concerning the previous section
have been shown. For example, Figs. 22-24 should be presented before Section 5.4 starts, and Figs.
27-32 should be presented before ’Conclusions’ starts. We have moved figure placeholders in the LaTeX
file so that they appear earlier in the compilated pdf version of the text. The final placement of figures
will be done by the Copernicus copy-writer.
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• Line 20: ’then’ → ’than’ - Fixed

• Line 35: ’ecos’ → ’echoes’ (two places) - Fixed

• Line 52: ’were’ → ’where’ - Fixed

• Line 80: ’then’ → ’than’ - Fixed

• Line 406: ’19 subarrays’ → ’a single subarray’ or ’19 elements’ - Good catch! Fixed!

• Line 415: ’incoherents’ → ’incoherent’ - Fixed

• Line 501: ’the the’ → ’that the’ - Fixed (in multiple places)

• Line 582: ’trough’ → ’through’ - Fixed

• Line 614: ’then’ → ’than’ - Fixed

• Line 620: ’then’ → ’than’ - Fixed

• Line 648: ’unreasonable’ → ’unreasonably’ - Fixed

• Line 674: ’then’ → ’than’ - Fixed

• Line 693: ’algorith’ → ’algorithm’ - Fixed

• Line 709: ’then’ → ’than’ - Fixed

• There are numerous errors regarding ’third-person singular -s’. Fixed in as many places as we could
find

2 Referee #2 responses

Thank you very much for the helpful comments and suggestions!

Major comments:

1.
To avoid any misunderstanding, what is discussed here is ”a constant phase rotation applied to all elements”.
In other words, the same phase is added to all elements. Thus, such a phase-shift can be extracted from
the vector representing radar channels and be written as Φ(k)eiθ where θ is the phase-shift. Such an added
phase is practically equal to the temporal component of any received signal. A temporal component is a
constant phase added over all spatial locations but that changes in time equally everywhere. As a DOA can
be determined from a measured signal at any point in time, such a constant phase should NOT affect the
results, which is exactly the case for the definition in Eq. 6. This is also why all (to our knowledge) DOA
determination algorithms uses phase-differences between antennas rather then the direct phases as measured
by the antennas. The phase difference is used to eliminate this ”constant phase” added over all antennas.
Therefore, invariance to such a phase is not a problem but rather a desirable property. The conventional
framework mentioned that uses the inner product uses a beam-forming approach to DOA determination of
a measured signal x where 〈Φ(k),x〉 is maximized. The inner product will be affected by the addition of a
constant phase to all elements as 〈Φ(k1)eiθ,Φ(k2)eiθ〉 = 〈Φ(k1),Φ(k2)〉e−iθeiθ = 〈Φ(k1),Φ(k2)〉. I.e, it is
invariant to it. We realize that the section surrounding the definition of Eq. 6 does not discuss these implied
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dynamics or alternative implementation enough, thereby giving rise the the concern. To address this, we
have added a small discussion along these lines on this topic to that section and clarify the choice we made
(to minimize rather then maximize).

2-1.
We agree that the relationships are hard to grasp from only text and the suggestion of a illustrative diagram
sounds great! We have attempted to simplify the section by adding a flowchart to the manuscript and clar-
ified the explanations in the text.

2-2.
We did consider the impact of the limited number of MC samples (due to limited computational resources)
but they were not included in the original text. These considerations have now been added to the manuscript
under the subsection ”Discretising the problem”!

We have modified the sentence to cover the conditions that are needed for it to be true. We have also added a
clarification to the manuscript in place of the previous sentence on the possible checking of erroneous models!

2-3.
We have replaced the old formulation with the traditional Bayes theorem form P (x|D) = P (D|x)P (x)

P (D) and

clarified its description. Originally, we intended to make the section easy to follow for someone not familiar
with Bayesian probability (from personal experience, the P (D) and P (D|x) has proven difficult to explain
in text). Hopefully, it is now resolved.

2-4.
Unfortunately that sentence was slightly confusing. If we have such a sample k0 that we assume comes
from the meteor: then yes, the statement is true if we assume that the modeling performed to generate Ω is
representative of the DOA determination behaviour. The true location must be contained in Ω(k0) because
only members of this set as an input to the DOA determination algorithm can generate an output at k0

with high enough probability by definition. That sentence has be replaced with an short discussion on this
topic with disclaimers for when it is applicable.

3.
Yes, as mentioned, this was an attempt at introducing the concept quickly to someone without prior statis-
tical knowledge but we realize that is was counterproductive. We have modified this passage to conform to
standard statistical nomenclature and put more effort into a seamless introduction of the concept.

Minor comments:

• L. 14: Fixed!

• L. 101: Fixed in this and several other locations so that j is consistently used as a channel indicator.

• L. 129: Yes, it is a set of initial wave vectors. This has been clarified.

• Eq. 9: As we are not considering a difference between models for DOA calculation and SNR calculation
this should be Phi not Psi! It has been changed everywhere accordingly.

• L. 310: Changed all instances of minimize to minimise.

• L. 422: Ooops, the word ”instead” should not be there! It has been removed.

• Figure 5, etc: An explanation on the scale of the color map has been added to the figure captions (it
is a direct consequence of the definition of Eq.6, largest length between two points on a N -dimensional
unit sphere).

• L. 431: In our ”Author Comment #1” to Reviewer #1 this topic was extensively discussed and we
have covered these edits in the above review response.
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Abstract. Meteors and hard targets produce coherent radar echoes. If measured with an interferometric radar system, these

echoes can be used to determine the position of the target through finding the Direction Of Arrival (DOA) of the incoming

echo onto the radar. If the DOA of meteor trail plasma drifting with the ambient atmosphere is determined, the neutral wind at

the observation altitude can be calculated. Specular meteor trail radars have become widespread scientific instruments to study

atmospheric dynamics. Meteor head echo measurements also contribute to studies of the atmosphere as the meteoroid input of5

extraterrestrial material is relevant for a plethora of atmospheric phenomena. Depending on the spatial configuration of radar

receiving antennas and their individual gain patterns, there may be an ambiguity problem when determining the DOA of an

echo. Radars that are theoretically ambiguity free are known to still have ambiguities that depend on the total radar Signal

to Noise Ratio (SNR). In this study we investigate robust methods which are easy to implement to determine the effect of

ambiguities on any hard target DOA determination by interferometric radar systems. We apply these methods specifically to10

simulate four different radar systems measuring meteor head and trail echoes using the multiple signal classification (MUSIC)

DOA determination algorithm. The four radar systems are the middle and upper atmosphere (MU) radar in Japan, a generic

Jones 2.5λ specular meteor trail radar configuration, the Middle Atmosphere Alomar Radar System (MAARSY) radar in

Norway and the The Program of the Antarctic Syowa Mesosphere Stratosphere Troposphere Incoherent Scatter (PANSY)

radar in the Antarctic. We also examined a slightly perturbed Jones 2.5λ configuration used as a meteor trail echo receiver for15

the PANSY radar. All the results are derived from simulations and their purpose is to grant understanding of the behaviour

of DOA determination. General results are: there may be a region of SNRs where ambiguities are relevant; Monte Carlo

simulation determines this region and if it exists; the MUSIC function peak value is directly correlated with the ambiguous

region; a Bayesian method is presented that may be able to analyse echoes from this region; the DOA of echoes with SNRs

larger then
::::
than this region are perfectly determined; the DOA of echoes with SNRs smaller then

:::
than

:
this region completely20

fail to be determined; the location of this region is shifted based on the total SNR versus the channel SNR in the direction of

the target; asymmetric subgroups can cause ambiguities even for "ambiguity free" radars. For a DOA located at the zenith,

the end of the ambiguous region is located at 17 dB SNR for the MU radar and 3 dB SNR for the PANSY radar. The Jones

radars are usually used to measure specular trail echoes far from zenith. The ambiguous region for a DOA at 75.5◦ elevation

and 0◦ azimuth ends at 12 dB SNR. Using the Bayesian method it may be possible to analyse echoes down to 4 dB SNR for25

the Jones configuration, given enough data points from the same target. The PANSY meteor trail echo receiver did not deviate
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significantly from the generic Jones configuration. The MAARSY radar could not resolve arbitrary DOAs sufficiently well

to determine a stable region. However, if the DOA search is restricted to 70◦ elevation or above by assumption, stable DOA

determination occurs above 15 dB SNR.

Copyright statement. TEXT30

1 Introduction

Radar systems are a vital part of current research infrastructure. They are used for a wide variety of novel, (e.g Sato et al., 2014; Kero et al., 2012b; McCrea et al., 2015)
::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Sato et al., 2014; Kero et al., 2012b; McCrea et al., 2015),

and routine remote sensing observations (e.g Hocking, 2005, and references therein)
:::::::::::::::::::::::::::::::::::
(e.g. Hocking, 2005, and references therein).

One subset of these observations are objects and phenomena in the atmosphere that produce coherent radar echos
:::::
echoes. Me-

teor head and trail echoes, satellite and space debris echos
::::::
echoes, polar mesospheric echos

::::::
echoes, field aligned irregularities35

and many more phenomena fall under this category. However, to discern the position and motion of these radar targets, inter-

ferometric or multi-static radar systems must be used.

When determining the position of an object by interferometry, there is an ambiguity problem (Schmidt, 1986). The position

is determined by finding the Direction Of Arrival (DOA) of the incoming echo onto the radar. Depending on the spatial

configuration of the receiving antennas and their individual gain patterns, the voltage response can be the same for several40

different plane wave DOA’s, thereby making it impossible to determine the correct direction. This problem is general to all

DOA determinations made by radar systems
:::
with

::::::::::::
interferometry

::::
base

:::::
lines

:::::
longer

::::
than

::::
half

:
a
::::::::::
wavelength. In this study it is put

in the context of meteor head- and trail echo observations.

Every day the Earth’s atmosphere is bombarded by billions of dust-sized particles and larger pieces of material from space.

This incoming material gives us a unique opportunity to examine the motion and population of small bodies in the solar sys-45

tem (e.g Vaubaillon et al., 2005a, b; Kastinen and Kero, 2017)
::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Vaubaillon et al., 2005a, b; Kastinen and Kero, 2017). Ob-

jects with sizes between 100 microns and 1 metre moving in interplanetary space are called meteoroids. Meteoroids originate

from comets and asteroids, they are abundant and can have high velocities (Whipple, 1951). When meteoroids enter the atmo-

sphere they burn up causing a phenomenon called a meteor (Ceplecha et al., 1998). The meteor itself can be divided into two

parts that function as hard targets: the dense plasma co-moving with the ablating meteoroid and the trail of diffusing plasma50

left in the atmosphere. These generate the meteor head and trail echoes.

Meteor trail plasma drifts with the ambient atmosphere. The drift velocity is therefore a measure of the neutral wind at the

observation altitude. The typical ablation altitude were
:::::
where meteor phenomena occur lie between 70 and 130 km. This region

is characterized by variability driven by atmospheric tides as well as planetary and smaller scale gravity waves. Specular meteor

trail radars have become widespread scientific instruments to study atmospheric dynamics deployed at locations covering55

latitudes from Antarctica to the Arctic Svalbard (Kero et al., 2019). To calculate the neutral wind, the DOA of the specular

echo must be determined.
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Due to the altitude distribution of meteor phenomena, the far field approximation is almost always valid, which means

that an incoming echo can be modeled as a plane wave (Kildal, 2015). The only exception is the Arecibo radio telescope

due to its 300 m diameter large spherical reflector at a 430 MHz operating frequency. Using an interferometric radar sys-60

tem to determine
::
the

:
DOA of a meteor head echo as a function of time allows the construction of a meteoroid trajectory

(e.g Kero et al., 2012b; Jones et al., 2005; ?; Szasz et al., 2008; Chau and Woodman, 2004; Close et al., 2000)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Kero et al., 2012b; Jones et al., 2005, 1998; Szasz et al., 2008; Chau and Woodman, 2004; Close et al., 2000).

This trajectory is the base for computing the meteor position and meteoroid velocity, radar cross section, and for reconstructing

the original meteoroid solar system orbit.

There are analytic methods to determine all the ambiguities present in a radar system, although these scale poorly and have65

several restrictions (Kastinen, 2018; Schmidt, 1986). Systems that have no theoretical ambiguities also suffer from ambiguous

DOA solutions due to noise (Kastinen, 2018; ?)
::::::::::::::::::::::::::::
(Kastinen, 2018; Jones et al., 1998). These so-called noise-induced ambiguities

are not multiple solutions to the DOA determination. Instead, the DOA determination output becomes a stochastic variable

that is no longer centered on the true DOA but is spread out between several different DOA solutions with similar radar

responses. Thus, when determining the DOA of a noisy signal there is a probability of miss-classifying the DOA. This miss-70

classification probability is separate from the DOA error introduced by the noise that is usually the focus in measurement

pipelines (Kero et al., 2012b) and depends on the Signal to Noise Ratio (SNR) of the received signal.
::
In

:::::
these

:::::
cases

:::::
Point

::::::
Spread

::::::::
Functions

::::::
(PSFs)

:::::
have

::
be

:::::
used

::
to

::::::::
determine

::::
the

::::::::::
morphology

::
of

::::::::
expected

:::::::::::
ambiguities.

::::::::
However,

:::::
these

::
do

::::
not

:::::
relate

::::
SNR

::
to

:::::
DOA

:::::::::::::::
miss-classification

:::::::::::
probabilities

:::::::::::::::::::::
(Chau and Clahsen, 2019).

::::
The

::::::::::
morphology

::
of
:::

the
::::
PSF

::::
may

::::
also

::::::
depend

:::
on

:::
the

::::
input

:::::
DOA

::::
itself

:::::::
(further

::::::::
discussed

::
in

:::::::::
Appendix

:::
B).75

The existence of head echo events such as the one illustrated in Fig. 1 is the reason that prompted this study. This meteor

is seemingly jumping from place to place in the sky even though the range and line of sight velocity was well determined.

This was a special case among thousands of other successful and validated measurements using the same analysis and system.

Hence, the goal of this study is to understand enough about DOA determination behaviour to investigate these types of events,

especially today when analysis is automated and databases can contain millions of events (Campbell-Brown, 2019). If even a80

small fraction of these events stand out as interesting but are the result of ambiguities or other artifacts, consequent research can

be negatively influenced. On the other hand, given strange results, large portions of data may be discarded when in fact some

are not a consequence of ambiguities or algorithmic errors (Schult et al., 2013). Having a good understanding of DOA deter-

mination behaviour may also allow us to analyse events with lower SNR then currently (?)
::::
than

::::::::
currently

:::::::::::::::
(Jones et al., 1998).

There are no methods, to our knowledge, to resolve noise-induced ambiguities in DOA determinations or to determine the85

probability of miss-classification. We have therefore extended upon the study performed in Kastinen (2018).

In Sect. 2 we present a numerical method for determining the DOA ambiguities, which works irrespective of whether the

ambiguities are noise-induced or not. The method can be applied on arbitrary radar systems and experience no large scaling

problems with system complexity. It also allows for arbitrary receiver models to be used.

Section 3 provides an overview of how we have applied the the multiple signal classification (MUSIC) algorithm. The90

MUSIC method allows for an arbitrary sensor response model and can thus be applied on any radar system.
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Figure 1. Example meteor head event measured with the MU radar which seem ambiguous. The upper left panel is the one way range, the

upper right panel is the line of sight velocity, and the bottom panel is the normalized wave vector ground projection. The wave vector +y-axis

is aligned with North and the +x-axis with the East. The SNR varied between 8-16 dB for this event. The goal of this paper is to understand

enough about DOA determination behaviour to investigate these types of events.

We have focused on radars measuring the meteor phenomena. However, the analysis methods applied are usable on any kind

of interferometric hard-target detections made by radars. The radars that we have applied these techniques on are described in

Sect. 4 and the results are presented in Sect. 5. The results for each system is also discussed in its respective subsection. Finally

we conclude the results and discuss the overall results in Sect. 6.95

2 Method

2.1 Ambiguities

To find the ambiguities present when determining the DOA, we need a radar sensor response model Φ. A model for a radar

with antennas at locations ri::
rj , with individual complex gain functions gi(k)

:::::
gj(k), receiving a plane wave of amplitude A is

described by100

Φ(k) =


Ag1(k)e−i〈k,r1〉R3

...

AgN (k)e−i〈k,rN 〉R3

 . (1)
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Here k is the wave-vector of the incoming plane wave. We denote the inner product of a space X by 〈·, ·〉X , i.e. 〈·, ·〉R3 is the

real 3-dimensional inner product. In the case of radar systems with sub-arrays, the gi(k)
:::::
gj(k) functions can be defined as

gj(k) =

Nj∑
l=1

γjl(k)e−i〈k,rj−ρjl〉R3 , (2)

where γjl(k) are the antennas’ individual gain functions and ρjl are the sub-array antenna locations. In this case the ri ::
rj105

locations are the geometric centers of the sub-arrays, i.e. the phase centers. In all radar systems we consider, the same type

of antennas are used throughout the system.
:::::
Also,

:::
we

:::
are

:::
not

:::::
aware

::
of

::::
any

::::::
studies

::::
that

:::
find

:::::::::
variability

::
in

:::::::::
individual

:::::::
antenna

:::
gain

:::::::
patterns

::::
due

::
to

::::::
effects

:::
like

:::::::
mutual

:::::::
coupling

:::
for

:::
the

:::::
radar

:::::::
systems

:::
we

::::
have

:::::::::::
investigated. As such, we can use a common

function for all antennas γjl(k) = γ(k).

Usually, the wave amplitude A is unknown and the DOA determination algorithm should therefore be invariant of signal110

amplitude |Φ(k)|. As such, our definition of an ambiguity should also be invariant of signal amplitude.

In the pursuit of an analytical solution, Kastinen (2018) was unable to include the variable gain patterns gi of the radar

channels in the formula for finding ambiguities. The calculation method presented there scaled badly with the number of

channels in the system and was not invariant to signal amplitude. We have resolved these issues, thereby allowing for any

model Φ to be used, by numerically finding ambiguities on a case by case basis.115

Ambiguities are formed when

Φ(k0)

|Φ(k0)|
≈ Φ(k)

|Φ(k)|
: k0 6≈ k. (3)

Exactly what the conditions "approximate to" and "not approximate to" mean in this definition needs to be decided on a case

by case basis as explained further below. The normalized sensor response model is written as

Φ(k)

|Φ(k)|
= Φ̂(k). (4)120

Equation 3 is invariant to the individual antenna gain γ(k). Thus, we may define γ(k) = 1 for all examined radar systems.

We call an ambiguity perfect, i.e. unambiguous DOA determination is impossible even at infinite SNR, if Φ̂(k0) = Φ̂(k) :

k0 6= k.

We define a set of ambiguities to k0 as the vectors k that fulfill Eq. 3, i.e.

Ω(k0) = {k : Φ̂(k0)≈ Φ̂(k) : k0 6≈ k}. (5)125

It is important to note that it is not sufficient to calculate the set of ambiguities for only one k0, as this set may not display the

same pattern as the set for another direction k1.

Following the definition in Eq. 3, an indicator function of ambiguities is the normalized sensor response distance

d(k) =
∣∣∣Φ̂(k0)− Φ̂(k)

∣∣∣ . (6)
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:::::
There

:::
are

::::::
several

:::::
other

:::::
ways

::
to

:::::
define

:::::::::::
ambiguities.

::::
The

::::::::::
requirement

::
is

::::
that

:::
the

::::::::
definition

::
is
::::::::
invariant

::
of

::::::
sensor

::::::::
response130

::::
norm

::::
and

::
to

:
a
::::::::
constant

:::::
phase

:::::
offset

::
in

::
all

:::::::::::
dimensions.

:::
One

:::
of

:::
the

:::::::
possible

:::::
other

::::::::::
formulations

::
is
:::::
using

:::
the

:::::
inner

:::::::
product.

::::
The

::::::::
definition

:::::
would

::::
then

::
be

:::::::::::::::::::::::
d(k) =

〈
Φ̂(k0),Φ̂(k)

〉
CN

.
::::
This

:::::::
equation

::::
and

:::
Eq.

:
6
::::::
would

:::::::
produce

::::::::
equivalent

::::::::
solutions

::::
sets

::::
given

:::
an

::::::::
ambiguity

::::::
search.

::::
The

::::
only

:::::::::
difference

::
is

:::
that

:::::
when

:::::
using

:::
the

:::::
inner

:::::::
product,

:::
the

:::::
search

::::::
would

::::::::
maximize

::::::
rather

::::
then

::::::::
minimize

::
the

::::::::
function.

:::::
Both

:::::::::
definitions

:::::::
produce

:::
the

:::::
same

:::::::::
qualitative

::::::::::
information,

::::
but

:::::::::::
quantitatively

::::::::
different.

::::
We

::::
have

::::::
elected

::
to
::::

use

:::
Eq.

:
3
::
to

::::::
define

::
an

:::::::::
ambiguity

::
as

:
it
::
is

:::::
more

::::::::::::
straightforward

::::
due

::
to

::
its

:::::
literal

::::::::::
translation:

::::
"the

:::::::::
normalized

::::::
sensor

:::::::
response

::
of

:::
k0::

is135

::::::::::::
approximately

::::
equal

::
to
:::
the

::::::::::
normalized

:::::
sensor

::::::::
response

::
of

::
k

:::::
where

:::
k0::

is
:::
not

::::
close

::
to
:::
k".

:

If the set Ω(k0) is finite, the distance function d must have valleys with a single point bottom at every k in Ω(k0). These

valleys k are separated from k0 and have a depth d that are used to decide if they are included in the ambiguity set Ω(k0) or

not. As the valleys identify ambiguities, we have implemented a scattered gradient descent method to determine the ambiguity

set Ω for a given k0. The step by step method is as follows:140

1. Define a source wave direction k0:
.

2. Generate a set of n start points
::::
wave

::::::
vectors

:
{ai} distributed (e.g

:
. uniformly) on the hemisphere

:
.

3. For each start point
:::::
wave

:::::
vector

::
ai, do a gradient descent search using the gradient of Eq. 6,∇d(k).

4. Collect the valley locations {bi} and valley depths {d(bi)}

5. Remove duplicate results yielding the set of all ambiguities and their depths {kj ,d(kj)} :::::::::
{ki,d(ki)}.145

This method can be used with any sensor response model to find ambiguities. After the set {kj ,d(kj)}::::::::::
{ki,d(ki)} is

acquired, it is necessary to filter the set based on what is deemed approximate and not approximate as per Eq. 5. This is

done based on some maximum valley depth εd and some minimum separation from k0. The filtering prevents the inclusion

of ambiguities that only appear at unrealistically low SNR’s. We will from here on denote this filtered set of ambiguities by

Ω(k0) = {kj} :::::::::::
Ω(k0) = {ki}.150

An important factor to note is that these ambiguities are not necessarily transitive relations. They are only transitive when

the distance is 0, i.e. they occupy the same point in sensor response space. The non-transitive relationship means that for d > 0,

if k1 is ambiguous with k2 and k2 is ambiguous with k3, k1 does not have to be ambiguous with k3.

2.2 Noise

All the radar systems considered in this study have operating frequencies in the Very High Frequency (30–300 MHz) range. In155

this range, the galactic background radiation dominates the noise (e.g Bianchi and Meloni, 2007)
::::::::::::::::::::::::::
(e.g. Bianchi and Meloni, 2007).

This noise can be well modeled (e.g Polisensky, 2007)
::::::::::::::::::
(e.g. Polisensky, 2007). When measured by an antenna, the noise is mod-

eled as a circularly-symmetric complex normal random variable. Such a distribution is defined as CN (µ = 0,Σ,C = 0) where

µ is the complex mean vector, Σ is the covariance matrix and C is the relation matrix. We assume that the noise dynamics is

the same for every channel of a N channel radar system. We can thus use N random variables in a one-dimensional complex160
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space instead of an N dimensional complex space. Furthermore, since the distribution is circularly-symmetric we define the

controlling variable to be the variance of a single component, i.e. the real or imaginary variance σ2
c . The covariance matrix then

becomes Σ = 2σ2
c . The sensor noise is defined as

ξ =


ξ1
...

ξN

 , (7)

ξi ∼ CN (0,2σ2
c ,0). (8)165

In pseudo code the noise can now be simulated as xi = (rand_normal(N) + i*rand::::::::
1i*rand_normal(N))*sigma_c.

2.3 Signal to Noise ratio

In order to relate results from simulations to measured data, the noise-controlling variable σc needs to be related to a measured

SNR. We have chosen to use an SNR that is calculated after coherently integrating over all radar channels. The noisy signal

power is then defined as170

P =

∣∣∣∣∣
N∑
i=1

ΨΦ
: i + ξi

∣∣∣∣∣
2

. (9)

If we propagate the stochastic variables using standard properties of complex normal distributions we find that

Nσ2
cP ∼ χ2(λ,2), (10)

where χ2(λ,2) is the non-central chi-squared distribution of order 2 with λ parameter

λ=
1

N

(
AG(k)

σc

)2

. (11)175

The order of a non-central chi-squared distribution is equal to the number of squared normal distributions that are summed,

while the lambda parameter is related to their mean values. Here A is the signal amplitude and G(k) describes the one-

directional gain in the source direction, i.e

G(k) =

∣∣∣∣∣
N∑
i=1

1

A
ΨΦ

: i(k)

∣∣∣∣∣ . (12)

The expected value of the power is then180

E[P ] = (AG(k))
2

+ 2Nσ2
c . (13)

Setting A= 0 gives the noise power E[Pn] = 2Nσ2
c and setting σc = 0 gives the signal power E[Ps] = (AG(k))2. SNR is

defined as the ratio between the the signal power and the noise power, i.e.

SNR =
E[Ps]

E[Pn]
=

E[P ]

E[Pn]
− 1 =

1

2N

(
AG(k)

σc

)2

. (14)
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Assuming we have two measurements, one of the noise power E[Pn] and one of the noisy signal power E[P ], an SNR that is185

equivalent to that used in our simulations can be calculated for any detected signal. Using Eq. 14, an appropriate σc for a given

SNR can be chosen for a simulation.

2.4 Direct Monte Carlo

Given a sensor response model and a noise model we can perform a direct Monte Carlo (MC) on any DOA determination

algorithm. Given a true direction kj ::
ki, the theoretical noisy sensor response model is Ψ(kj) + ξ

::::::::
Φ(ki) + ξ. Then, a DOA190

determination algorithm F can find an estimation of the source direction as,

F (Φ(kji) + ξ) = k̃. (15)

Thus, the estimated source direction k̃ also becomes a distribution. We can sample this DOA determination output distribution

by sampling the noisy signal distribution Ψ(kj) + ξ
::::::::
Φ(ki) + ξ

:
and applying the DOA determination algorithm F on each

sample. An example MC sampling of such a DOA output distribution is illustrated in Fig. 2. This example was generated195

using the generic Jones 2.5λ sensor response model further described in Sect. 4.1. This radar model does not contain any

perfect ambiguities, yet at this SNR the DOA output is scholastically clustered around noise-induced ambiguities. The DOA

determination was made using the multiple signal classification (MUSIC) algorithm described in Sect. 3. The interesting aspect

that will allow qualitative evaluation of measurement data is how the DOA output behaviour evolves as a function of SNR, true

DOA, sensor response model, and DOA determination algorithm. In Sect 5 we examine the first three of these components200

while keeping the DOA determination algorithm fixed.

2.5 Discretising the problem

The example MC DOA determination simulation in Fig. 2 contain apparent noise-induced ambiguities alongside the spread of

the DOA estimation around the input direction and its ambiguities. This sampling of k̃ represents a continuous distribution that

contains information about both the DOA determination accuracy and possible ambiguities. There are many works that describe205

the error distribution of MUSIC for DOA determination in radars (e.g Kangas et al., 1994, 1996; Ferreol et al., 2006)
::::::::::::::::::::::::::::::::::::::::::
(e.g. Kangas et al., 1994, 1996; Ferreol et al., 2006).

However, we focus on the probability of ambiguous DOA output and general algorithm stability. Therefore we discretise the

problem by using the set of known ambiguities ki ∈ Ω(k0) described in Sect. 2.1. To account for a limited DOA determination

accuracy, we choose an inclusion distance s in the wave vector ground projection plane. This distance determines the region

around all ambiguities, as well as the true direction, within which we consider that particular ambiguity "chosen" by the al-210

gorithm. Thus, in the discretisation process, outputs will be considered as associated to either an ambiguity or the true DOA,

otherwise they have no association.

Practically, if

(kix− k̃x)2 + (kiy − k̃y)2 < s2, (16)
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Figure 2. Example MC DOA determination simulation with 500 samples. The generic Jones 2.5λ radar model as described by Eq. 30 was

used to simulate the raw data. Noise was introduced to an equivalent SNR of 10 dB. The simulated noisy raw data was analysed using the

two-step MUSIC algorithm (Sect. 3). The Input DOA was located at 0◦ azimuth and 75.5◦ elevation. At this SNR, noise-induced ambiguities

are clearly visible. The probability that the output is associated with the input is 79%.

Ambiguity indicator

d(k,k0) =
∣∣∣Φ̂(k0)− Φ̂(k)

∣∣∣ Set of local minima

Ω(k0) = {. . . ,ki, . . .}= ΩX

Observed ambiguous set

Oobs = {kobs−l : l ∈ [1,Nobs]}

Set of possible outputs

ΩY =
⋃

kj∈ΩX

Ω(kj)

Only locations from these sets

can appear as outputs

(excluding algorithm failure)

Given that an element of

ΩX is the true k then

all of Oobs is

contained in ΩY

(excluding algorithm failure)

Minimum search

over k

Choose a k0 using Oobs

E.g. mean of largest cluster

True k ∈ ΩX

but is unknown

Figure 3.
:::::::
Overview

::
of

::::::
relation

:::::::
between

:::::::
ambiguity

::::
sets.

then the sample k̃ is counted towards the probability Pi for output point ki assuming true input k0. The samples which cannot215

be associated with any inclusion region are considered as algorithm failures, i.e. Pf = 1−
∑
iPi.

We are interested in the misclassification and algorithm failure probability. We examine this by regarding the source as a

variable j and constructing a discrete probability Pij :::::::::
conditional

:::::::::
probability

:::::::::::::::::::::
P(output i|input j) = Pij:as a function of both

source and output location.
:
,
:::
i.e.

::::
only

:::
the

::::
rows

:
i
::::
sum

::
to

::
1.

:
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Even though ambiguities are not necessarily transitive relations, as mentioned in Sect. 2.1, there may still be some overlap220

in the inclusion regions when we define them as ki ∈ Ω(kj). We therefore need to spend some thought on how to practically

discretise the problem. If we consider the usage of the simulations as a tool for evaluating observations, it can be assumed
:
a
:::
set

::
of

:::::::::
ambiguous

:::::::::::
observations

::::::::::::::::::::::::::
Oobs = {kobs−l : l ∈ [1,Nobs]}.:::::

Then
:::
one

:::
can

:::::::
choose

:
a
:::
k0:::::

using
:::
this

:::
set

::
of

::::::::::::
observations,

::
by

::::
e.g.

::::::
picking

::::
the

:::::
mean

::
of

:::
the

::::::
largest

::::::
cluster

::
or

::::::
picking

:::
the

::::::
kobs−l::::

with
:::
the

::::::
largest

:::::
SNR.

::::::::
Assuming

:
that we have an observed k0. We then know that

::::::
chosen

::
an

::::
echo

::::
from

:::
the

:::::
target

:::
and

::::
our

::::::
models

:::
are

::::::::::::
representative,225

:::
then

:
either k0 or one of its ambiguities Ω(k0) is the

:::
true

:
source. Consider that an ambiguity ki ∈ Ω(k0) would have an

ambiguity kh ∈ Ω(ki) which is not part of our original set kh /∈ Ω(k0). The probability that kh is the source is zero as it could

not have generated our observation k0. Following this line of reasoning, discretisation can be based on the members of the set

Ω(k0) only. However, this poses a problem when

::
To

:::::::
provide a set of multiple observations from the same radar target are available that are not gathered around one point:230

which of the observed clusters should be used as k0?

To circumvent this problem, we form
::::
input

:::
and

::::::
output

:::::
wave

::::::
vectors

:::
that

::::::::
accounts

:::
for

::
all

::::::::
possible

:::
true

:::
k, two separate sets

of points ΩX and ΩY . ΩX is the set of points used as sources j in the simulation, and the
:::::
should

::
be

:::::::
formed.

::::
The

::::::
process

:::
of

::::::::::
constructing

:::::
these

:::
sets

::
is

::::::::
illustrated

:::
in

:::
Fig.

::
3.
::::
This

::
is
::::::
useful

:::::
when

:::::::::::
quantitatively

:::::::::
evaluating

::::::::::::
measurements

::
as

:::
the

:::::
same set ΩY

is used as
::
of output regions i . The set

::
can

:::
be

::::
used

:::
for

::
all

:::::::::
simulation

::::::
inputs

:
j
::::
from

:::
the

:::
set

:
ΩX is the ambiguity set of any of the235

observed points, ΩX = Ω(k0). We know that given an observation, the true source has to be contained in this set. Assuming

all observations are from the same event, the choice of k0 does not matter. The set ΩY is then chosen as the collected set

of all ambiguities to the simulated sources, i.e. ΩY =
⋃
j

Ω(kj) : kj ∈ ΩX . This approach is more tailored towards analysing

observations rather then just classifying the ambiguity situation given a certain true source. If there are no

:::::::::
Practically,

:::::::
consider

::::::
several

:::
sets

:::
of

:::::::::
ambiguous

::::::::::::
measurements

::::
from

::::::::::
independent

::::::
events,

::::::::::::::::::
Oobs−i,Oobs−i+1, . . . :::::::

analysed
:::::
using240

::
the

::::::::
methods

::::::::
proposed

:::::
here.

::
If

:::
the

:
individual ambiguity sets that includes all groups

:::::
Ω(kj)::::::::::

consistently
:::
do

:::
not

:::::::
explain

:::
the

::::::
clusters

:
of measured output points,

::::
wave

:::::::
vectors,

:::::
there

::
is

::
a

::::
high

::::::::::
probability

:::
that

::::::
either

:::
the

:::::::
applied

::::::
models

:::
are

::::::
wrong

:::
or

other effects are influencing the DOA determination. These effects could be radar phase calibration issues (e.g. Chau et al.,

2014), antenna malfunctions or erroneous phenomena models (e.g. multiple simultaneous signals, signal interference, wave

diffraction).245

There are some practical consideration when implementing the construction of ΩX and ΩY : duplicate locations should not

be included in ΩY . These are handled by removal based on closeness in relation to the inclusion radius. The ordering of the

sets ΩX and ΩY are so that the first elements of ΩY correspond to the elements of ΩX for clarity when examining simulation

results.

Using the definitions for ΩX and ΩY we can represent the probability Pij as a matrix, excluding all non-relevant association250

probabilities. Taking a second look at Fig. 2, we can imagine how a column of this matrix would be constructed. For each

DOA in ΩY we count the outputs that are inside its inclusion radius. This number divided by the total number of samples is

the probability Pij . For the particular example in Fig. 2 the probability that the output is associated with the true input is 79%.
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The columns of the matrix Pij describe different DOA inputs for the simulation and its rows describe the probability that the

DOA determination algorithm outputs a location as the result. The most desirable form of this matrix would be a diagonal unit255

matrix, i.e., given true input j the DOA algorithm always finds the corresponding location as the output. Unfortunately, this is

not always the case as this probability matrix is a function of the SNR, Pij(SNR).

:::
The

::::
error

:::
of

::
the

::::::::::
probability

:::::
matrix

:::
Pij::::::::::

estimations
:::
can

::
be

::::::::::
determined

:::::
using

::::::::
Bernoulli

::::::::::
distributions.

::::
The

:::::::::::
discretization

:::
can

:::
be

::::::
viewed

::
as

:
a
:::
set

::
of

::::::::
Bernoulli

::::::::::
distributions

::::
that

::::::
defines

:
a
:::::::
success

:::
as:

:::
"the

::::::
output

:::::
DOA

:::
fall

:::
into

:::
the

::::::::
inclusion

::::::
region"

::::
and

:
a
::::::
failure

::
as

::
"it

:::
did

::::
not".

:::::
Then,

:::
we

:::
can

:::::::
measure

:::
the

::::::::::
probability

::::::::
parameter

:::
Pij:::

for
:::::
region

::::
and

::::::::
Bernoulli

:::::::::
distribution

:
i
:::::
given

:::::
input

:
j
:::::::
through260

::
the

:::::::
fraction

:::
of

:::::::
samples

:::::
inside

::::
that

:::::
region

::::
out

::
of

:::
all

:::::::
samples,

:::
i.e.

::::
P̃ij .::::

This
::::::::::
estimator’s

:::::::
variance

::::::::
var(P̃i),

:::
i.e.

:::
the

:::::::
accuracy

:::
of

:::::::::
estimation,

:::
can

:::
be

:::::::::::
approximated

:::
by

::::::::::
substituting

:::
the

::::::::::
distribution

:::::::
variance

::::
with

:::
the

::::::::
measured

::::::::
Bernoulli

::::::::
variance

:::
and

::::::::
applying

::
the

::::::
central

:::::
limit

:::::::
theorem

var(P̃ij)≈
P̃ij(1− P̃ij)

Ns
,

::::::::::::::::::::

(17)

:::::
where

:::
Ns ::

is
::
the

:::::::
number

::
of

::::::::
samples.

::::
This

:::::::
estimator

::::::::
variance

:::
has

::
an

:::::
upper

::::
limit

::::::
where

:::
the

:::::::
parabola

::
is

::::::::
maximum

::
at

::::::::
P̃i = 0.5.

:::
As265

::::
such,

:::
the

::::::
largest

::::::::
estimator

:::::::
standard

::::
error

::
is
::::::::

√
( 0.25
Ns

).
:::::
Using

:::::
1000

:::::::
samples,

:::
the

::::::
largest

::::
error

::
in

::::::::::
probability

:
is
:::::::::::::::

√
( 0.25
1000 )≈ 1.6%.

:

2.6 Bayesian inference

It is generally not advisable to use data that is ambiguous. To quantitatively describe what
:::::::::::
Quantitatively

:::::::::
describing

:::::
when

::::
data

is "too ambiguous" for further usage is one of the goals of this study. For example, as illustrated in Fig. 2, which represents a

simulation of a measured event, the event could be analysed given that enough independent echoes were measured. The reason270

why the event is usable is that the simulation shows that the true direction has by far the highest output probability. This means

that one can pick the largest "cluster" of output DOAs and conclude that this probably represents the true DOA. However, for

more complex radar systems and other input DOAs, the situation would look different. This line of reasoning also does not

give us a quantitative confidence in our choice of true DOA.

If there is a need to analyse ambiguous data we suggest a Bayesian approach. As an example, let us return again to the275

simulation presented in Fig. 2. We argued using the simulation results that given enough independent measurements of such

an event, the measurements could be used to infer the true DOA of the target. Bayesian inference generalizes this type of

argumentation by optimally using all available information to assign probabilities to all possible true input DOAs.

Given a model with parameters x that represents an event which has generated some observationsD, Bayesian inference can

be used to find the probability distribution of possible model parameters
::::
given

:::
the

:::::::
observed

:::::
data,

:::
i.e.

:::::::
P(x|D). This distribution280

is called the posteriorP(x)
:
.
::::
Here

:
|
::::::::
indicates

:::::::::
conditional

::::::::::
probability,

:::
i.e.

:::::::
P(A|B)

::
is

::::
read

::
as

::::
"the

:::::::::
probability

::
of

::
A

:::::
given

:::
B". The

posterior also includes
::
is

::::::::
calculated

:::::::
through

:::
the

:::
use

::
of

::::::
Bayes’

::::::::
theorem,

:

P(x|D) =
P(D|x)P(x)

P(D)
.

::::::::::::::::::::

(18)
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:::
The

:::::
P(x)

::::
term

::
is
::::::
called a prior probabilityθ(x), i.e.

:
it
::::::::
describes

:
what we think the distribution

:::::::::
probability

:::::::::
distribution

:::
of

:::::::
possible

:::::
model

:::::::::
parameters

:
is before any observations. The observed data is used to update

:::
One

::::
can

::::
view

:::
Eq.

:::
18

::
as

::::::::
updating285

the prior distribution by use of a likelihood function L. This likelihood function determines
:::::::
including

:::
the

::::::::::
knowledge

::::::
gained

::::
from

:::
the

::::
new

::::::::::
observations

:::
D.

::::
The

:::::::
P(D|x)

::::
term

::::::::
describes

:
how probable the observed data is given the model parameters x.

The relationship between the prior θ, likelihood L and posterior P is given by Bayes’ theorem,

P(x) =
L(D|x)θ(x)∫
L(D|x)θ(x)dx

.

Here | indicates conditional probability, i. e. L(D|x) is read as "the likelihood of observing D given the parameters x"
:
,290

:::::::::
commonly

:::::
called

:::
the

:::::::::
likelihood

:::::::
function

::
in
::::

the
::::::::
Bayesian

::::::::
inference

::::::::::
community.

:::::::
Finally,

:::
the

::::
term

:::::
P(D)

::::
can

::
be

:::::::
viewed

::
as

::
a

:::::::::::
normalization

::::::::
constant.

:
It
::
is
:::::::::
commonly

:::::::
refereed

::
to

::
as

:::
the

:::::
prior

::::::::
predictive

::::::::::
distribution,

::
as

::
it

::::::::
describes

:::
the

:::::::::
probability

::
of

:::
the

::::
data

::::
prior

::
to

:::::::
updating

::::
our

:::::
belief.

This approach is compatible with the problem at hand. Assuming the matrix of probabilities Pij is calculated and known,

the probability of observing ki given the input kj is exactly given by Pij . Therefore,295

LP(D|x) = P
::::::::::

(ki|kj) = Pij . (19)

For the first observed DOA, the prior is uniform over all kj , i.e.

θP
:

(kj) =
1

NI
, (20)

where NI is the number of columns in Pij , i..e the size of ΩX . If we observe i= a1 as the first calculated DOA we can find

the posterior as300

P1(kj) =
Pa1 j

NI∑
j=1

Pa1 j

. (21)

If subsequent DOA’s are observed, we update the probability distribution over the model parameters by setting the last posterior

as our prior and applying the same formula,

Px(kj) =
Pax jPx−1(kj)

NI∑
j=1

Pax jPx−1(kj)

. (22)

If the observations ax are done at different SNRs, the Pij matrix should be allowed to change for every update x as Pij(SNRx).305

This method may be able to infer the true direction even in very ambiguous data. At the very least, this method provides a

probability distribution over the possible directions, as exemplified in Sect 5.
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2.7 Ambiguous measurement simulation

A method to investigate whether the Bayesian approach makes a significant improvement on analysis is measurement sim-

ulation. The matrix Pij describes the probability of the DOA determination generating the output indexed i given a noisy310

measurement of the true input DOA indexed j. We can thus simulate measurements as a multinomial distribution where the

distribution probabilities are given by a column j of the Pij matrix. Sampling this multinomial distribution will give a set of n

simulated measurements as a list of location indices (i.e. output DOAs). Given this list of indices, Eq. 22 can be applied to cal-

culate the most probable input given the simulated data without running the DOA determination algorithm. We can repeat this

process to get a simulated distribution for the posterior Px(kj). This distribution is what we would expect to see as inference315

results from a measurement series of n points given some true input. This distribution is useful for evaluating both the method

itself and the radar system as it contains the probability of Bayesian inference finding the true input. This information can thus

also provide the minimum SNR and measurement number needed to achieve a desired success rate in DOA determination,

assuming the Pij matrices accurately model reality.

2.8
::::::
Impact

::
of

:::::
phase

::::::
offsets320

::::::
Effects

:::
like

::::::
mutual

:::::::::
coupling,

:::::
errors

::
in

:::::
cable

:::::::
lengths,

:::
and

:::::
other

::::::::
hardware

::::::
related

::::::
issues

:::
can

::::::::
introduce

::::::
phase

:::::
errors

::
in

::::::
radars

:::::::::::::::::::::
(Chau and Clahsen, 2019).

:::
In

::::::::
Appendix

:::
A

:::
we

:::::
show

::::
that

:::::
phase

::::::
offsets

:::
on

:::
the

:::::
radar

:::::::
channel

::::
level

:::
do

::::
not

:::::
affect

:::::::::
ambiguity

::::::::
dynamics

::
if

:::::
taken

::::
into

:::::::
account

::
in

:::
the

:::::
DOA

::::::::
analysis.

::
If
::::::

phase
::::::
offsets

:::
are

::::::::
unknown

::::
they

::::::
affect

:::
the

::::::::
accuracy

::
of

::::
the

:::::
DOA

:::::::::::
determination

:::
and

:::
the

:::::::::
ambiguity

:::::::::
dynamics.

:::::
There

:::
has

::::
been

::::::::
extensive

::::
work

::::
done

::
to
:::::::::
determine

:::::
phase

:::::
offsets

::
as

::
a

:::::
whole

::
on

:::::
radar

:::::::
channels

:::::::::::::::::::::::::::::::::::::::::::
(e.g. Chau et al., 2014; Chau and Clahsen, 2019) but325

::
we

:::::
have

:::::
found

::
no

:::::
work

::::
that

:::
has

:::::::::
empirically

:::::::::
measured

::
or

:::::::
modeled

:::
the

:::::
phase

::::::
offsets

::
of

:::::::::
individual

::::::::
antennas

:::::
within

::
a
::::::::
subgroup

::
for

:::
the

::::::
radars

::::::::
examined

::::
here.

::::::::
Therefor

:::
we

::::::
cannot

:::::::
simulate

:
a
:::::::
realistic

::::::::::
distribution

::
of

:::::
phase

:::::
errors

::::::
within

:::::::::
subgroups.

::
To

:::::::
examine

:::
the

::::::
impact

:::
of

:::::
phase

:::::
errors

:::
on

:::
the

:::::::
antenna

::::
level

::::::
within

:::::::::
subgroups,

:::
we

:::::::::
performed

:
a
::::
pair

::
of

::::
MC

::::::::::
simulations

:::
for

::
the

::::
MU

:::::
radar

::::::::
subgroup

::::::
model.

:::
As

:::::
inputs

:::
the

::::
ΩX:::

set
:::
for

:::
kI ,

::
as

:::::
given

::
in
::::

Sec.
::
5,
::::

was
:::::
used.

:::
For

:::::
each

::::::
antenna

::
a
:::::::
random

:::::
phase

::::
error

:::::::
between

::::
-45◦

:::
and

::::
45◦

:::
was

::::::::::
introduced.

:::::
Then,

:
a
::::
MC

:::::::::
simulation

::
at

::
an

:::::
SNR

::
of

:
3
:::
dB

::::
was

:::::::::
performed

::
for

::::
both

:::
the

:::::
phase

:::::
error330

:::::
model

:::
and

:::
the

:::::::
standard

::::::
model.

::::
The

:::::::::
probability

::::::
matrix

:::
for

::::
each

::
of

::::
these

::::::::::
simulations

::::
were

:::::::::
calculated

:::
and

:::
the

:::::::::
difference

:::::::
between

::::
them

::::::::::
examined.

:::::
There

:::
was

:::::::::
practically

:::
no

::::::::
difference

:::
in

::
the

::::::::::
probability

::::::::
matrices.

:
It
::::::
should

:::
be

:::::
noted

::::
that

::
in

::::
this

:::
test

:::
the

::::::
phase

::::::
offsets

:::
that

:::::::::
generated

:::
the

:::::::::
simulated

:::::
noisy

:::::
signal

:::::
were

::::
also

:::::::
included

:::
in

:::
the

::::::
MUSIC

:::::::
analysis

::::::
model.

:::::::
Finally,

:::
we

:::
ran

::::
two

:::
MC

::::::::::
simulations

::
at

::
5

:::
dB

::::
SNR

:::
for

:::
the

::::
MU

::::::::
subgroup

::::::
model,

:::::
using

::
kI::::

and
:::
kII:::

as

::::
input

::::::
DOAs.

::
In

:::::
these

:::::::::
simulations

:::
the

:::::
noisy

:::::
signal

::::
was

::::::::
generated

::::
with

:::::::
channel

:::::
phase

:::::
offsets

::::::::
measured

:::::
using

::
a

::::::::
technique

::::::
similar335

::
to

::
the

::::
one

::::::::
presented

::
in

:::::::::::::::::::::::
Chau and Clahsen (2019) but

::::::::
analysed

:::::
using

::
no

:::::
phase

::::::
offsets.

:::
For

:::::
these

:::
two

:::::
cases,

:::
the

::::::::::
uncorrected

:::::
phase

:::::
offsets

:::
did

:::
not

::::::
impact

:::
the

:::::::::
ambiguity

:::::::::
dynamics,

:::
but

:
it
:::
did

::::::::
introduce

::
a
:::::
small

::::
error

::
in

:::
the

:::::
DOA

:::::::::::
determination

::::::::
accuracy.

:::
As

:::::
such,

::
the

::::::
results

:::::::::
presented

::::
here

:::
are

::::::::
applicable

:::
in

::::::
general

:::::
when

:::::
phase

:::::
errors

::::
are

::::::::
measured

::
or

::::::::
modeled

:::
and

:::::::
possibly

:::::
even

:::::
when

:::
not

::::::::
measured

::
or

::::::::
modeled.

::::::
Further

:::::::::::
examination

::
of

:::
the

::::::
impact

::
on

::::::::::
ambiguities

::
of

::::::::
unknown

::::::
phase

:::::
errors

::
is

:::::::
desirable

:::
but

:::::::
outside

:::
the

:::::
scope

::
of

:::
the

::::::
current

:::::
study.

:
340
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3 DOA determination

For the purpose of consistency and simplicity we have used the same DOA determination method for all radar systems exam-

ined: the MUSIC algorithm (Schmidt, 1986). This method allows for an arbitrary sensor response model Ψ
::
Φ and can thus be

applied on all systems. MUSIC is practically equivalent to beam forming DOA methods but with reduced variance due to the

subspace approach. We here give a short overview of how we have applied the MUSIC method.345

We define a measured sensor response as the complex vector x ∈ CN . The sensor response model in Eq. 1 refers to a so called

decoded signal. The decoded signal is the signal coherently integrated over all temporal samples of a radar pulse. However,

the lowest level of raw data also contains these temporal samples of the radar pulse. Given M temporal samples of the coded

pulse, the measurement matrix then consists of of N rows and M columns as

X =

x1 x2 . . . xM

 . (23)350

The correlation matrix R of our measurements is calculated using matrix algebra as

R=
1

M
XX†. (24)

The correlation matrix consists of coherently integrated channel-to-channel phase differences over the temporal samples. The

eigenvalues of the correlation matrix correspond to signal powers and the eigenvectors corresponding to the largest eigenvalues

span the signal subspace (Schmidt, 1986). If there is noise, the eigenspace spans the entire sensor configuration space, otherwise355

it only spans the signal subspace. First, we extract the eigenvectors Pi and eigenvalues λi of the correlation matrix using

standard linear algebra methods. Then, assuming one signal subspace dimension, i.e. one signal from one direction, we define

the noise subspace as the column space of

Q=
(
. . . Pj−1 Pj+1 . . .

)
, (25)

where Pj corresponds to the largest eigenvalue λj = max({λi : i ∈ [1,M ]}). This eigenvector represents the signal subspace.360

MUSIC is a multiple signal classification method. If there are multiple signals present in the data, the second eigenvector and

eigenvalue is associated with the second strongest signal, etc. As the column vectors of Q form an orthonormal basis, consider

the space

Q = span{P1, . . . ,Pj−1,Pj+1, . . . ,PM} . (26)

The scalar projection function P into this linear subspace Q is365

PQ(x)2 =

M∑
i=1,i6=j

〈Pi,x〉2CM = |Q†x|2. (27)

The space Q represents the noise, thus any space orthogonal to Q is a signal. The projection of a vector onto an orthogonal

space is zero, thus we are searching for vectors x that minimizes
::::::::
minimises

:
PQ(x).
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We write the projection function in terms of matrix operations as

PQ(x)2 = |Q†x|2 = (Q†x)†(Q†x) = x†QQ†x. (28)370

Normalizing the projection with respect to the input vector norm and inverting, we maximise instead of minimize
:::::::
minimise,

and find the familiar MUSIC function. As we have a model for x as a function of DOA, we set x = Ψ(k) and find
::::::::
x = Φ(k)

:::
and

::::
find

f(k) =

PQ(Ψ(k))2

|Ψ(k)|2
PQ(Φ(k))2

|Φ(k)|2
:::::::::

−1 =
Ψ(k)†Ψ(k)

Ψ(k)†QQ†Ψ(k)

Φ(k)†Φ(k)

Φ(k)†QQ†Φ(k)
::::::::::::::

, (29)

which is the form usually recited in literature. This function needs to be maximized by an appropriate method to find the sensor375

response Ψ(k)
::::
Φ(k) that best matches the detected signal, thereby also determining the DOA, k, of the signal.

We have chosen to apply a two-step maximization method. First, a finite grid search over all possible k was applied. Then,

the maximum found during this grid search was used as an initial condition for a gradient ascent applied on ∇f(k) to find the

peak point. Finally, the peak value is used as output, i.e. as the determined DOA of the signal.

However, there is no guarantee that the initial grid search will always be able to identify the correct slope as an initial380

condition for the gradient ascent. If the peak width is smaller then the grid size any slope may be found instead. To solve this

problem we also implemented an option of running multiple gradient ascents in parallel. When this option is enabled, instead

of using only the maximum point from the grid search as a start value, the N largest values that are separated from each other

by at least δX in kx,ky space are used. The separation condition ensures that no two start points are located on the same slope.

These N start points are explored by a gradient ascent and the largest peak among them is chosen as the algorithm output.385

4 Radar systems

The sensor response for all radars covered in this study were modeled using two different models, a simplified model

Φ(k) =


An1e

−i〈k,r1〉R3

...

AnNe
−i〈k,rN 〉R3

 , (30)

where ni is the number of antennas summed to that radar channel. And a model using the subgroup gain patterns

Φ(k) =


Ag1(k)e−i〈k,r1〉R3

...

AgN (k)e−i〈k,rN 〉R3

 , (31)390

gj(k) =

Nj∑
l=1

e−i〈k,rj−ρjl〉R3 i〈k,rj−ρjl〉R3
:::::::::

. (32)
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Figure 4. The different radars considered in the DOA determination study. For the radars which consists of subgroups of antennas the

subgroup centers are colored radar-specific while antennas and subgroup borders are always grey and black. The Jones 2.5λ radars are single

antenna channel radars so here colored markers indicate antennas.

The exceptions are the Jones type radar systems where there are no subgroups but only single antennas. As previously men-

tioned, in these models ri indicate the locations of individual antennas or the geometric centers of the sub-arrays, i.e. the phase

centers.

In this study we have assumed that the antennas have omnidirectional gain. This is of course not the case, as mentioned395

in Sect. 2, but this assumption has no impact on the current study. As all radar systems examined have the same antennas

throughout the system, the individual gain function for an antenna cancels in any algorithm that is invariant to signal amplitude.

However, in the implementation of a data analysis pipeline it is important to implement the individual antenna gain pattern γ

and the subgroup generated gain patterns in the sensor response model to be able to determine the radar cross section correctly.

We hereafter refer to the model in Eq. 30 as the phase center model and the model in Eq. 31 as the subgroup model.400

In Fig. 4 the antenna positions of all examined radars are illustrated so that their individual configurations and sizes can be

compared.
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4.1 Jones 2.5λ radar

Radar systems designed for studying meteor trail echoes commonly consist of a wide angle (all-sky) transmitter system and an

interferometric receiver system (e.g. ?Hocking et al., 2001)
::::::::::::::::::::::::::::::::::::
(e.g. Jones et al., 1998; Hocking et al., 2001).405

The receiver system design is beset by two problems (?)
:::::::::::::::
(Jones et al., 1998): that antenna spaced more than λ/2 apart give

rise to ambiguities in the DOA, and that antennas spaced less than λ/2 apart give rise to strong mutual impedance. The so-

called Jones 2.5λ radar configuration is an elegant solution suggested by ?
:::::::::::::::
Jones et al. (1998) as a remedy to the situation. The

solution consists of using five antennas, one central antenna and two spaced by 2.5λ and 2.0λ in each of the two perpendicular

cardinal directions (cf. Fig. 4).410

As described by ?
:::::::::::::::
Jones et al. (1998), the phase measurements at the outer antennas relative to the central antenna can ideally

be used to calculate an unambiguous determination of the echo DOA, taking advantage of the fact that the internal antenna

distances to the central antenna differs by λ/2. Furthermore, the phase difference of antennas with 4.5λ spacing is used to give

better angular precision at the cost of ambiguous DOA, the most probable solution of which is then selected using the λ/2

phase difference.415

Holdsworth (2005) investigated the Jones antenna configuration and found that the usage of 2.5, 3 and 5.5λ spacings could

produce more accurate echo DOA. Younger and Reid (2017) developed the concept further and presented a solution which

utilise all possible antenna pairs of a meteor radar antenna configuration, similarly to the DOA calculations using MUSIC in this

paper. In addition to providing results in excellent agreement with the original interfermetric algorithm by ?
::::::::::::::
Jones et al. (1998),

the method presented by Younger and Reid (2017) as well as the MUSIC algorithm allows for different layouts.420

The Jones antenna configuration has remained predominant in meteor radar installations and is often referred to as removing

(in principle) any angular ambiguities (Hocking et al., 2001). However, as was pointed out already by ?
::::::::::::::
Jones et al. (1998), the

determination is sensitive to noise and only unambiguous if the SNR is large enough. The original simulations by ?
::::::::::::::::
Jones et al. (1998) showed

that the method started to produce incorrect apparent echo directions for elevations greater than 30◦ when the SNR was below

17 dB, but that at the same time the fraction of these was small down to about 10 dB. The standardized SKiYMET software425

meteor detection data contains an ambiguity level classification. If the ambiguity parameter is equal to 1, the data was deter-

mined to be unambiguous, and if it is greater than 1 there is a possibility that the meteor was wrongly
:::::::::
erroneously

:
located

(Hocking et al., 2001).

To our knowledge, there are no further quantitative investigations of the Jones 2.5λ radar configuration performance except

for the studies mentioned above and references therein. The results of applying the method presented in this paper on the Jones430

2.5λ radar to quantify noise-induced ambiguities are given in section 5.1. As the mentioned studies on ambiguities already

exists, simulating a Jones 2.5λ radar also provides a good reference simulation for validation of the methods presented in

Sect. 2.
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4.2 MU radar

The 46.5 MHz Middle and Upper atmosphere (MU) radar near Shigaraki, Japan (34.85◦N, 136.10◦E) has a nominal peak435

transmitter power of 1 MW and a maximum beam duty cycle of 5%. The present setup of the MU radar hardware comprises

a 25 channel digital receiver system. It was upgraded from the original setup (Fukao et al., 1985) in 2004 and is described

by Hassenpflug et al. (2008). After the upgrade, the MU radar always transmit right-handed circular polarization and receive

left-handed circular polarization, with a phase accuracy of 2◦. The output of each digital channel is the sum of the received

radio signal from a subgroup of 19 Yagi antennas. The whole array consists of 475 antennas, evenly distributed in a 103 m440

circular aperture, with a main lobe maximum gain of 34 dB and a minimum half power beam width of 3.6◦. A schematic view

of the array and the subgroups is given in Fig. 4.

Early meteor head echo measurements using the original setup with four receiver channels (Nishimura et al., 2001) are not

investigated further in this study. The focus is instead on the current 25-channel setup, which has been used more extensively

for hard targets such as meteors (e.g. Kero et al., 2011, 2012a, b, 2013; Fujiwara et al., 2016; Kastinen and Kero, 2017).445

4.3 MAARSY radar

The new Middle Atmosphere Alomar Radar System (MAARSY) was constructed in 2009/2010 on the Norwegian island

Andøya (69.30◦N, 16.04◦E) following similar design principles as the MU radar. It is a monostatic radar operated at 53.5 MHz

with an active phased array antenna consisting of 433 Yagi antennas (Latteck et al., 2010). The antennas are, similarly to the

MU radar, arranged in an equilateral triangle grid with 0.7λ (4 m) spacing, forming a 90 m circular aperture. This results in a450

rather symmetric radar beam with a maximum directive gain of 33.5 dB and a minimum half power beam width of 3.6◦. Each

individual antenna is connected to a transceiver with independent phase control and output power up to 2 kW, enabling flexible

beam forming, beam steering and approximately 800 kW peak transmitter power with 5% duty cycle.

The smallest MAARSY subarray unit consists of seven antennas distributed in a hexagonal pattern as illustrated in Fig. 5.

The receiver system currently allows for 16 separate channels. Early meteor head echo observations with MAARSY used eight455

channels which were defined according to Fig. 4, where seven of the channels consisted of the combined input from seven

subarrays (i.e. 49 antennas) and the eighth channel contained the combined input from all antennas (Schult et al., 2013). Later

meteor head echo observations have made use of the alternative MAARSY configuration vizualised in Fig. 5 (Schult et al.,

2017).

The radiation pattern of MAARSY have been studied and validated through observations of cosmic radio sources (Renkwitz460

et al., 2012, 2013), scattering of a sounding rocket’s payload (Renkwitz et al., 2015) and meteor head echoes (Renkwitz et al.,

2017). Methods have also been developed to calibrate and validate the measured phases of the individual channels using cosmic

radio noise and meteor head echoes (Chau et al., 2014).
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Figure 5. An alternative configuration of MAARSY subgroups used as radar channels to the one illustrated in Fig. 4. In this configuration

15 channels are used instead of 8 as to include the information from smaller but closely located hexagonal groups. Thus producing shorter

baselines for less ambiguous interferometry (Schult et al., 2017).

4.4 PANSY radar

The Program of the Antarctic Syowa MST/IS radar (PANSY) is a Mesosphere–Stratosphere–Troposphere/Incoherent Scatter465

(MST/IS) radar located at the Japanese Syowa Station (69.01◦S, 39.59◦E) in the Antarctic (Sato et al., 2014). The first subarrays

of the PANSY radar were installed in 2011. The first continuous observations of Polar mesospheric summer echoes were made

with 19 subarrays
:
a

:::::
single

:::::::
subarray

:
in January-February 2012. Due to snow accumulation in the originally symmetric antenna

field consisting of 1045 crossed Yagi antennas summed into 55 channels, several of the subarrays were moved to higher ground

as illustrated in Fig. 4. This is the antenna configuration we have used in the simulations.470

PANSY operates on a center frequency of 47 MHz and with a peak power of 500kW and 5% duty cycle. The radar is a

challenge for DOA determinations as the subgroups are located at different altitudes and partially disjoint, and have to be

moved or intermittently be disconnected from the system depending on snow accumulation conditions. Even the antennas

within subgroups are elevated non-symmetrically. Currently the antennas are distributed in altitudes ranging between -2 and

+8 meters from the reference plane.475

In 2017, a peripheral antenna array for detecting field-aligned irregularities (FAI) were installed (Hashimoto et al., 2019).

This has enabled suppression of FAI echoes and increased the number of power profiles usable for incoherents
:::::::::
incoherent

scatter measurements of the polar ionosphere by more than 20%. In this paper we do not investigare the peripheral FAI array.

4.5 PANSY meteor radar

The PANSY radar has recently been complemented by a meteor trail echo interferometric receiver system (Taishi Hashimoto,480

personal communications). The antenna configuration is displayed in Fig. 4. Since the operating frequency of PANSY (47 MHz)

differs from meteor radar systems (typically 35 MHz), the configuration is more compact when displayed in units of metres
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even though the number of wavelengths are the same. The main difference between the PANSY meteor radar receiver and the

Jones 2.5λ radar is instead that the prior is not a planar array but that the antennas are displaced in the vertical (z) direction

with up to 0.8 m, corresponding to ∼ 0.12λ.485

5 Results
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Figure 6.
::::
Map

:
of
:::::
worst

::::::::
ambiguity

::
as

:
a
::::::
function

::
of

::::
input

::::
DOA

:::
for

:::
the

:::
MU

::::
radar

:::::::
subgroup

:::::
model,

:::
the

::::::::::::
MAARSY-15ch

::::
radar

:::::::
subgroup

::::::
model,

::
the

:::::::
PANSY

:::::::
subgroup

:::::
model

:::
and

:::
the

::::
2.5λ

::::::
receiver

::::::
model.

:::
For

::::
each

::
k0::

an
::::::::

ambiguity
::::::

search
:::
over

::
k
::
of

:::::::
d(k,k0),

::
as
::::::

defined
::

in
:::

Eq.
::

6,
::::

was

::::::::
performed.

:::
The

:::::
result

::::
from

:::
the

:::::::
ambiguity

::::::
search

::::
yields

::::::
Ω(k0).

:::
The

::::::::
ambiguity

::::
with

::::::
smallest

:::::::
distance

::
to

::
k0:::::

gives
::
the

:::::::
distance

::::
value

::
at

:::
the

::::::
location

::
k0::

in
:::
the

:::
map

::
to

::
the

::::
left.

::
An

:::::::
example

::
of

:::
such

::
an

::::::::
ambiguity

:::::
search

:::::
result

:
is
:::::
shown

::
in

:::
the

:::::::
rightmost

::::
panel

:::
for

:
a
:::::::
particular

:::
k0.

:::::::
Overlaid

::
on

::::
these

::::
maps

:::
are

:::
red

:::::
crosses

::::::::
illustrating

:::
the

:::::
further

::::::::
examined

:::::
source

::::::::
directions

:::
and

::::::::
concentric

:::::::
elevation

::::
limits

:::::::
described

::
in
::::::
Section

::
5

.
:

To demonstrate the above methods we present results from numerical simulations. The next step will be applying them on

measurement data. We aim to implement these methods in our data analysis pipelines for meteor head echos
::::::
echoes measured

by the MU radar and the PANSY radar in the future, as well as classify the location probability of ambiguous meteor radar

trail echoes using Bayesian inference. However, the current study allows us to quantitatively evaluate how DOA determination490
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behave with respect to SNR and qualitatively evaluate if ambiguities are relevant or not. Such results are useful in configuration

and construction of pipelines.

For each of the radar systems described in Sect. 4 we have applied the methods described in Sect. 2 and 3. Three input

directions k0 were chosen as sources:

I. kI = Azimuth: 0◦, Elevation 75.5◦,495

II. kII = Azimuth: 0◦, Elevation 90◦,

III. kIII = Azimuth: 45◦, Elevation 40◦.

For each of these chosen sources the following steps were performed:

– Determine all ambiguities using 1000 starting conditions according to the method outlined in Sect. 2.1. This generates

the ΩX and ΩY sets.500

– Run an MC simulation of 500 samples for each input direction in ΩX at all SNR levels, according to the method outlined

in Sect. 2.4. An appropriate range of linearly spaced SNRs in decibel was used to capture the transition from stable DOA

determination to complete algorithm failure.

– Discretise the MC results into probability matrices Pij using the sets ΩX and ΩY according to Sect. 2.5, using an

inclusion radius of s= 0.07.505

– If applicable, simulate measurements according to Sect. 2.7 and calculate Bayesian inference distributions according to

Sect. 2.6.

:::
The

:::::::::
ambiguity

::::::::
dynamics

:::::::
change

::
as

::
a

:::::::
function

::
of

:::::
input

:::::
DOA

:::
for

:::
all

:::::::
systems

:::
but

:::
the

::::::
planar

:::::
Jones

:::::
2.5λ

::::::::::::
configuration.

::
A

:::::::
complete

::::::::
overview

::
of

:::
the

:::::::
distance

:::::::
function

::::::::
d(k,k0)

:
is
::::::::
therefore

::::
four

:::::::::::
dimensional.

::
To

::::::::
visualise

::
the

:::::::::
ambiguity

:::::::::
dynamics,

:
a
::::
grid

::
of

::::::::
k-vectors

::::
over

::
all

:::::::
possible

:::
k0::::

was
::::
used

:::
and

::::
only

:::
the

:::::
worst

:::::::::
ambiguity

:::
was

:::::
saved

:::
for

::::
each

::::
grid

:::::
point.

::::
I.e.,

::
on

::::
each

:::::::::
grid-point510

::
k0:::

all
:::::::::
ambiguities

:::::
were

::::::::
calculated

::::
and

:::
the

::::::::
minimum

:::::::
distance

:::::::::
ambiguity

:::
was

:::::
saved

:::
for

::::
that

::::::::
direction.

::::
This

::::
kind

::
of

::::
map

::::::
shows

:::::
which

::::::
source

:::::::::
directions

:::
the

::::
radar

::
is
::::
able

::
to
:::::::

resolve
::::
well

:::
and

::::::
which

::::::::
directions

::
it
::::::
cannot

::::::::
uniquely

::::::::
determine.

::::::
While

::
it

::::
does

:::
not

::::::::
illustrate

:::
the

::::::::::
morphology

::
of

:::::::::::
ambiguities,

:
it
:::::

does
::::
show

:::
the

:::::::::
qualitative

::::::::::
connection

:::::::
between

:::::
input

::::
DOA

::::
and

::::::
limiting

:::::
SNR.

::::
The

:::::
white

:::::
areas

::
are

:::::::
regions

:::::
where

:::
no

::::::::::
ambiguities

::::
were

:::::
found

:::::
using

:::
the

:::::::
selected

::::::::
algorithm

:::::::
settings.

:

:::
The

:::::::
analysis

::::::
results

:::
for

::::
each

:::
of

:::
the

:::::
radar

:::::::
systems

::::::
(except

:::
the

::::::
planar

:::::
Jones

:::::
2.5λ

:::::
radar)

:::
are

:::::::::
illustrated

::
in

::::
Fig.

::
6.

::::::::
Overlaid515

::
on

:::::
these

:::::
maps

:::
are

:::
red

::::::
crosses

::::::::::
illustrating

:::
the

::::::
chosen

::::::
source

:::::::::
directions

::::::
further

:::::::::
examined.

:::::
These

:::::
input

:::::
DOAs

::::::::
kI–kIII:::::

were

::::::
chosen

::
to

::::
cover

::
a
::::
wide

:::::
range

::
of

::::::
"worst

:::::::::
ambiguity"

::::
and

:::::::
elevation

::::::
angle.

:::
The

:::::
same

::::
three

::::::::
directions

:::::
were

:::::::
selected

::
for

:::
all

:::::::
systems

::
to

:::::
enable

:::::
cross

:::::::::::
comparisons.

:::
We

::::
did

:::
not

::::
take

:::::::::
population

::::::
models

::
or

::::::::
detection

:::::::::::
probabilities

::::
into

:::::::::::
consideration

:::::
when

::::::::
choosing

::::
these

:::::
input

:::::::::
directions.

::::::::::
Additionally,

:::
on

:::
the

:::::
maps

::
for

:::
the

::::
MU

:::::
radar

:::
and

:::
the

:::::::::::::
MAARSY-15ch

:::::
radar,

::::
two

::::::::
elevation

:::::
limits

:::
are

:::::
shown

::
as

::::
two

:::::::::
concentric520

::::::
circles.

:::
The

:::::
inner

:::::
circle

::::::::
represent

:::
the

::::::::
elevation

:::::
above

:::::
which

:::::
DOA

::::::::::::
determination

::
is

:::::::::
practically

:::::::::::
unambiguous.

::::
The

:::::
outer

:::::
circle

::::::::
illustrates

:::
the

:::::::
elevation

::::::
below

:::::
which

:::::::::::
unambiguous

:::::
DOA

::::::::::::
determination

::
is

:::::::::
practically

:::::::::
impossible.

:
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Figure 7.
:::
The

::::::::
discretised

:::::
output

:::::
DOA

::::::::
distribution

::
as

:
a
:::::::

function
::
of

::::
SNR

:::
and

::::
input

::::
DOA

:::
for

::
the

:::::
Jones

::::
2.5λ

::::
radar,

:::::
when

::::
using

::
kI::

to
:::::::
generate

:::
ΩX :::

and
:::
ΩY .

::::::
Output

:::
1–5

::::::
(⊂ ΩY )

:::::::::
correspond

::
to

::::
Input

::::
1–5

::::
(ΩX ),

:::::
while

::::::
Output

::::
6–29

::::::
(⊂ ΩY )

:::
are

:::::::
scattered

:::::::
according

::
to

:::
the

:::::
second

::::::
degree

:::::::::
ambiguities.

::::::::
Numerical

:::::
values

::
of

::::
Input

:::
1–5

:::
are

::::
given

::
in
:::::
Table

:
1,
:::::

Jones
::::
2.5λ,

:::::
I.1–5.

:::
The

:::::
DOA

:::::
outputs

:::
that

:::
do

:::
not

::
fall

::::
into

:::
any

::::::::::
discretisation

:::::
region

::
are

:::::::
classified

::
as
::::::::
algorithm

:::::
failure.

:::::
Before

::::::::::
application

:::
on

:::::::::::
measurement

::::
data

:::
one

::::::
should

:::::::
validate

::::
that

:::
the

:::
sets

::::
ΩX::::

and
:::
ΩY :::

are
:::::::::
predicting

:::
the

::::::::
behaviour

:::
of

:::
the

:::
MC

::::::::::
simulations

::
so

::::
that

:::::::::
unexpected

::::::::
dynamics

:::::::::
introduced

:::
by

:::
the

::::
DOA

::::::::::::
determination

::::::::
algorithm

:::::
itself

:::
are

:::
not

::::::::::
disregarded.

::
If

:::
the

:::::::::::
measurement

:::
data

::::::
cannot

:::
be

::::::::
explained

::
by

::::
MC

:::::::::
simulation,

:::
the

:::::
sensor

::::::::
response

:::::
model

::
or

:::
the

:::::::::::
phenomenon

::::::
model

::
are

:::::
most

:::::
likely525

:::
not

::::::::::::
representative.

5.1 Jones 2.5λ radar

Ambiguity analysis summary illustration for the Jones 2.5 λ radar. The three columns, from left to right, represent the source

DOAs kI , kII and kIII presented at the beginning of Sect. 5. For each of the three different source DOAs k0, the top row

consists of sensor response distance d(k) calculated using Eq. 6. Overlaid on the map are markings according to the legend: the530

reference DOA k0, the simulated input DOA set kj ∈ ΩX and the possible output DOA set ki ∈ ΩY . The sets are calculated

as described in Sect. 2.5. The bottom row shows an indexing map for Input-Output locations that will later be used to illustrate

the data.

Five MC simulations with 500 samples each using an inclusion radius of s= 0.07 for the Jones 2.5λ radar. Each panel

illustrates a simulation using an element of ΩX (marked with a red circle in each panel) as input. In all cases the SNR was535

set to 7.24 dB SNR after coherent integration over all channels. The DOA determination dynamics are different for each input

location in this example as the DOA determination depend on the channel SNR while the coherently integrated SNR was fixed
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Figure 8.
::::::::
Ambiguity

::::::
analysis

:::::::
summary

:::::::::
illustration

:::
for

:::
the

:::
MU

::::
radar

:::::
using

:::
the

:::::::
subgroup

::::::
model.

:::
The

:::::
three

:::::::
columns,

::::
from

:::
left

::
to

:::::
right,

:::::::
represent

::
the

::::::
source

:::::
DOAs

:::
kI ,

:::
kII::::

and
::::
kIII .

:::
For

::::
each

:::::::
column,

:::
the

:::
top

:::
row

::::::
consists

::
of
::::::

sensor
:::::::
response

::::::
distance

::::
d(k)

:::::
maps

::::::::
calculated

::::
using

:::
Eq.

::
6.

:::
The

::::
value

::
of
::::
d(k)

::::::
ranges

::::
from

:
0
::
to

:
2
::

as
:::

Eq.
::
6
::::::::
effectively

:::::::
describes

:::
the

::::::
distance

:::::::
between

:::
two

:::::
points

::
on

:
a
::::::::::

unit-sphere,
:::
thus

:::
the

:::::::
maximum

:::::::
distance

:
is
::
2.

:::::::
Overlaid

::
on

:::
the

:::
map

:::
are

::
the

:::::::
reference

:::::
DOA

:::
k0,

::
the

::::::::
simulated

::::
input

::::
DOA

::
set

:::::::
kj ∈ ΩX:::

and
:::

the
::::::
possible

:::::
output

:::::
DOA

::
set

:::::::
ki ∈ ΩY .

::::
The

:::::
bottom

:::
row

:::::
shows

::
an

:::::::
indexing

::::
map

::
for

::::::::::
Input-Output

:::::::
locations.

– the ratio between the coherently integrated SNR and the channel SNR depend on DOA. For each location, 500 simulated

noisy data sets were produced and analysed using MUSIC DOA determination. These DOA outputs are marked as transparent

blue dots and the expected possible output directions ΩY are marked in each panel by green circles.540

The discretised output DOA distribution as a function of SNR and input DOA for the Jones 2.5λ radar. The simulations

were made with respect to the ambiguity sets calculated for kI . Each panel corresponds to a certain simulated input DOA.

The curves in each panel correspond to the probability of the MUSIC DOA determination producing that DOA as an output.

The indexing of the Inputs and Outputs follows the bottom left Input-Output indexing map of Fig. ??. If discretised, the MC

simulation illustrated in Fig. ?? correspond to a vertical slice at around 7 dB SNR. Thus, the same slice also correspond to545

Table. ??. The DOA outputs that do not fall into any discretisation region are considered algorithm failure.

A simulated series of observed output locations based on the discretised MC DOA determination. A true input and an SNR

level is chosen, in this case Input 4 from the kII simulations at 5.52 dB SNR. The appropriate probability matrix Pij was then
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Figure 9.
:::::::::
Comparison

::
of

:::
the

::::
signal

:::::
phase

:::::::
measured

:::::
using

::
the

::::::::
subgroup

::::
model

:::
and

:::
the

:::::
phase

:::::
center

::::
model

::
of
::::
MU

::::
radar

::::::
channel

:
1
::::
(the

::::
outer

::::::::
asymmetric

::::::::
subgroup

:
to
:::

the
::::
west

::::::::
illustrated

:
in
::::

Fig.
::
4).

:::
The

::::::::
inclusion

::
of

::
the

:::::::::
asymmetric

::::::
antenna

:::::::
positions

::
in

:::
the

:::::::
subgroup

:::::
model

:::::
affects

:::
the

::::::
expected

:::::
phase

:::::::::::
measurements

::
of

:::
the

::::
signal

::
as
::

a
::::::
function

::
of

::::
wave

:::::
DOA.

::::
The

:::
two

:::
red

:::::
crosses

:::::
mark

:::
two

:::::::
direction

:::
that

:::
are

::::::::
ambiguous

::
in

:::
the

:::::::
subgroup

:::::
model

::
but

:::
not

::
in

:::
the

::::
phase

:::::
center

:::::
model.

:

chosen (similar to the example given in Table. ??) to generate random observations. The probability of observing Output N is

given by row N and column 4, the observations are thus drawn from a multinomial distribution equal to column 4. The indices550

follow the bottom left Input-Output map illustrated in Fig. ??. ΩY consists of 29 elements and "Algorithm failure" is labeled

as output F . The output is analysed using Bayesian inference according to Eq. 18 to find the probability of which input is the

true one.

Minimum SNR needed to correctly identify the true input direction in 99% of all cases using Bayesian inference, as a

function of number of observations. This is of course assuming the models represent reality. These curves are calculated555

by repeatedly simulating observations such as the ones illustrated in Fig. ??. Using this set of simulated observations and

subsequent analysis gives a probability of correct identification. For example, in Fig. ?? the correct input is identified with

>80% probability after the seventh observed output. This procedure is performed for all SNR levels and for the three cases

kI ,kII and kIII to compile the three curves illustrated here.

We begin with560

5.1
::::

Jones
:::::
2.5λ

:::::
radar
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::::
First,

:::
we

:::::
report

::::::
results

:::
for the Jones 2.5 λ radar as this is the simplest system examined in this study. We provide more detailed

results and examples for this system to illustrate the methodology. For the remaining systems we only provide summary results .

::
the

::::::
study.

::::::::::
Furthermore,

::::::
trivial

:::
and

:::::::::
previously

::::::::
published

:::::
results

::::
exist

:::
for

::::::::
reference

::::::::::::::::::::::::::::::::::::::::
(e.g. Jones et al., 1998; Chau and Clahsen, 2019).

565

Following the list outlined previously, for kI ,kII and kIII ::::
steps

:::::::
outlined

::::::
above,

:
the resulting DOA sets ΩX and ΩY are

illustrated in Fig. ??. Here the top row of color-maps indicates the normalized sensor response distance as defined in Eq. 6,

where the red dots indicate k0. The cyan crosses indicate the simulated input DOAs as described by ΩX . The large red circles

indicate the inclusion regions with radius s= 0.07 for discretisation determined by the output set ΩY . The bottom row consists

of maps of input-output locations where input indices refer to elements in ΩX and output indices refer to elements in ΩY .570

These indices are used in subsequent results.

::
for

:::::::
kI ,kII :::

and
:::::
kIII ::::

were
::::::::::
determined.

:
As expected, Fig. ??

::
the

:::::::::
generated

::::::::
ambiguity

:::::
maps

:
indicate that the Jones configu-

rations has prominent ambiguities at ±0.43 in the directional cosine along either
:::
both

:
of the array axis

:::
axes. As this is a simple

radar system, these ambiguities can be found with conventional methods equivalent to the Nyquist-Shannon sampling theorem

(?).575

Using the ΩX set, a series of MC simulations were performed. One of these simulations at SNR= 7.24 dB for kI is

illustrated in Fig. ??. discretising all the MC simulations produced a series of Pij matrices. The one corresponding to Fig. ??

is given as an explicit example in Table. ??
::::::::::::::::
(Jones et al., 1998).

::::::
These

::::::::::
ambiguities

:::
can

::::
also

::
be

::::::
found

::
by

::::::::::
analytically

:::::::
solving

:::
Eq.

:::
B1

::::
from

::::::::
Appendix

:::
B.

::::
Any

::::::::
ambiguity

::::
map

:::
for

:::
the

:::::
Jones

::::::
system

::
is
::::::
simply

::
a

:::::::::
translation

::
in

:
k
:::::
space

:::
of

:::
the

::::
map

::
at

::::::
zenith,

::
as

:::::
shown

::
in

:::::::::
Appendix

:
B.580

This table contains the Pij probability matrix calculated from a discretisation of the 500 samples MC simulation at around 7

dB SNR illustrated in Fig. ??. The discretisation was made according to the method outlined in Sect. 2.5 and using an inclusion

radius of s= 0.07. The first 5 output locations, i.e. rows, coincide with the 5 input locations, i.e. columns. Thus, the diagonal

in bold denote the probability of MUSIC determining the correct DOA at this SNR level. Each row and column counted from

the top-left correspond to the Input-Output index map illustrated in the bottom left axis of Fig. ??. One of these columns can585

be computed for any SNR. Drawing each row of that column as a function of SNR produces the illustration in Fig. 7. There,

each panel corresponds to a column in this matrix. Here "Other" refers to any output DOA not associated with an ambiguity

and considered as algorithm failure. 0.936 0 0.008 0.042 0.072 0 0.338 0.098 0.036 0 0 0.116 0.228 0.056 0 0.012 0.098 0.096

0.624 0.038 0.030 0.004 0.006 0.062 0.710 0 0.062 0.012 0 0 0 0 0 0 0 0 0.096 0.022 0.088 0.040 0 0.002 0 0.002 0.062 0

0.078 0.064 0 0 0.008 0.006 0.084 0.088 0 0 0.002 0.048 0 0 0.010 0 0 0 0.034 0 0.064 0.002 0 0 0 0 0 0 0 0.004 0 0 0 0 0 0 0590

0 0 0 0 0 0 0.036 0 0 0 0 0 0 0.002 0.016 0 0 0 0 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 0.010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.022 0 0 0 0.002 0.010 0 0 Other 0 0.120 0.282 0.002 0.008

Tables such as Table. ?? are not efficient at conveying the probabilistic information. Instead we illustrate the matrices

:
A
::::::

series
::
of

:::
MC

::::::::::
simulations

:::::
were

:::::::::
performed

:::::
using

:::
the

::
set

::::
ΩX ::

as
:::::
input

::::::
DOAs.

::::
The

:::::::::
probability

:
Pij :::

was
:::::::::
calculated

::
for

:::::
each

::::::::
simulated

::::
SNR

:::::
using

:::
the

:::
set

::::
ΩY .

:::
The

::::
Pij :::::

matrix
::::::::

elements
:
as a function of SNR

:::
are

::::::::
illustrated

:
in Fig. 7 for the source kI . In595

this figure one panel
::::
One

:::::
panel

::
in

::::
Fig.

:
7
:
illustrates a column of the Pij matrix as a function of SNR where

:::
and

:
each curve
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represents a row of the matrix, as described by the figure legend. The .
::::::
Output

::::
1–5

:::::::
(⊂ ΩY )

::::::::::
correspond

::
to

:::::
Input

:::
1–5

::::::
(ΩX ),

::::
while

:::::::
Output

::::
6–29

:::::::
(⊂ ΩY )

:::
are

:::::::
scattered

:::::::::
according

::
to

:::
the

::::::
second

::::::
degree

::::::::::
ambiguities.

:::::::::
Numerical

:::::
values

:::
of

::::
Input

::::
1–5

:::
are

:::::
given

::
in

::::
Table

::
1,
:::::
Jones

:::::
2.5λ,

:::::
I.1–5.

:

::
As

::::::::
expected,

:::
the

:
results for kII and kIII :::

(not
:::::
shown

:::::
here)

:
are practically identical

::
(as

:::
the

:::::::::
ambiguity

:::::
maps

:::
are

::::::::
identical) to600

the ones illustrated in Fig. 7, but shifted in SNR space. Their relative shift can be seen in the summary of all results
:::
The

:::::::
relative

::::
SNR

:::::
shifts

:::
are

:::
due

::
to

:::::
array

::::
gain

:::::::::
differences

:::
and

:::
are

:::::
given

::::::::::
numerically

:
in Table 1.

These illustrations show
:::
Fig.

::
7
:::::
shows

:
the region where noise-induced ambiguities are relevant. For example, for Input

:::
the

::::
DOA

:::
of

:::::
Input 1 in Fig. 7 the DOA is always correctly determined above 10 dB SNR. Noise-induced ambiguous solutions

appear between -10 dB and 10 dB SNR. At lower SNR, the algorithm returns approximately uniformly distributed results605

classified as algorithm failure. However, for Input 3 the onset of noise-induced ambiguities occurs below 18 SNR dB and total

failure below -3 SNR dB. This is partially due to the full array gain being 4.3 dB larger at Input 3, thus the individual channel

SNR is lower for this DOA.

As meteor trail echoes are generally not observed at the zenith, an array SNR of 10 dB is sufficient to determine the DOA

correctly for the majority of the observed events, as was reported also by ?. However, different
:::::::
Different

:
input directions610

have different thresholds
::
as

::::::
shown

::
in

:::::
Table

:
1. For most directions 10 dB

::::
array

::::
SNR

:
is not sufficient for 99% confidence. The

information provided by the simulations may be used to reliably determine the true input DOA of events much lower than

10 dB.

Following the method outlined in Sect. 2.6, we can generate
::::
have

::::::::
generated

:
a simulated series of observations and analyse

::
for

:::
the

:::::
Jones

::::
2.5λ

:::::
radar

:::
and

::::::::
analysed that series with Bayesian inference to find Px(kj). Such a simulation and analysis using615

source kI is illustrated in Fig. ??. Here, ten observations were generated by the probabilities from Input 4, i.e. column 4 of the

Pij matrix, at 5.52 dB SNR. Outputs labeled F indicate "algorithm failure".

The interesting aspect of this simulated example is how the Bayesian approach incorporates the information from the

simulations to make inferences. For example, already after three observed outputs we are able to quantitatively identify Input

4 as the most probable source with high certainty, even though it was directly observed as an output in just half of the ten620

samples. We cannot expect such perfect inference when applied to real data as models are not perfect at describing data, but

this approach should anyway provide a reasonable quantitative confidence of the true DOA. Once a probable true input location

has been identified, the DOA determination can be re-done but restricted to solutions in a non-ambiguous region, thus allowing

the originally "bad" output to be used.

Before application on measurement data one should validate that the ΩX and ΩY sets are predicting the behaviour of the625

MC simulations so that unexpected dynamics introduced by the DOA determination algorithm itself are not disregarded. If the

measurement data cannot be explained by MC simulation, the sensor response model or the phenomenon model are most likely

not representative.

Considering these examples, we examine
:::
We

::::
have

::::::::
examined

:
how often the Bayesian inference is

::::::
Px(kj)::::

was able to cor-

rectly identify the true input . This is done by repeating the simulation illustrated in Fig. ?? many times and calculating630

the probability that the true input is assigned the highest probability by Eq. 22. Repeating this
::
by

:::::::::
assigning

:
it
::::

the
::::::
largest
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:::::::::
probability.

::::
This

:::::
gives

::
an

:::::::::
estimation

:::
for

:::
the

:::::
ideal

:::::::
expected

:::::::
success

::
of

::::::::
applying

::::::::
Bayesian

::::::::
inference

::
on

::::::::::
ambiguous

::::::
echoes

:::
for

:::
that

:::::
SNR.

:::::::::
Repeating

:::
the

:
process for every SNR level that was simulatedwe find

:
,
:::
we

:::::
found

:
the probability of correct clas-

sification as a function of SNR and number of observed outputs. This relation is illustrated in Fig. ?? for the inputs kI , kII

and kIII , respectively. Here the DOAs kI = Input 4, kII = Input 2 and kIII = Input 3 were chosen as the true DOA for the635

measurement simulation. The illustration shows the minimum SNR needed for the inference to assign the largest probability

to the true DOA in 99% of all cases, as a function of observed outputs. This relationship indicates which type of events that

can be confidently analysed for this particular radar system. For example, consider a Jones 2.5 λ radar that observed seven

independent echoes at 6 dB SNR from the same meteor trail. In this case, Fig. ?? indicates that the direction given the largest

probability by Eq. 22 is a reliable choice.
::::::::
Generally,

:::
the

::::::::::
simulations

:::::::
showed

:::
that

:::
the

:::::
ideal

::::::
relation

::::::::
between

::::::
needed

::::
SNR

::::
and640

::::::
needed

::::::::::
observations

::::::::
followed

::
an

::::::
inverse

:::::::
relation

::::
with

:::
the

:::::::
number

::
of

:::::::::::
observations.

If one also considers population distributions, it is known that meteors occur mostly between 70–130 km altitude (Kero et al., 2019, and references therein).

Let us consider the ambiguities illustrated in the left column of Fig. ?? and assume the the target is at a range of 98 km. Then,

the k0 that is located at 75.5◦ elevation, marked with a sensor response distance d= 0.0 and a red dot, is at a height of 95

km. This range produces 96 km height at ambiguities of distance d= 0.96, and 86 km or 57 km height at distances d= 1.36.645

Thus, in such a scenario one could not rule out these ambiguities due to altitude. However, if instead k0 would be located at 70

km altitude, any other location would be improbable, yet still not impossible. Fireballs have been detected by standard meteor

radar systems (Schult et al., 2015). If such an event would appear with suitable geometrical alignment with respect to the radar,

it could be detected in a far side-lobe as low down in the atmosphere as 40 km where ablation typically ends.

In the case of a k0 in zenith, as illustrated in the middle column of Fig. ??, this is an unlikely event with respect to specular650

trail echos as this would require the meteor to travel perpendicular to the ground. In this case, if we assume that the target is

at a range and height of 95 km, then the ambiguities labeled d= 0.96 are located at 85 km height and are thus also reasonable

with respect to the population altitude distribution.

Lastly, we consider the ambiguities illustrated in the right column of Fig. ?? where k0 = Azimuth: 45◦, Elevation 40◦. If an

object is located at the k0,d= 0.0 direction and we assume a range of 132 km, the target is located at an altitude of 85 km.655

The ambiguities labeled d= 0.96 and d= 1.36 are then located at a height of 110 km and 130 km.

There are many arguments that can be made, similarly to the ones described above, to restrict the possible directions to

regions that do not include any ambiguities. But, while doing such considerations one should also take range aliasing into

account. If the commonly used pulse repetition frequency 2144 Hz of the SKiYMET radar systems is used, a range aliasing

of ' 70 km is present (Hocking et al., 2001). Such problems can of course easily be solved by coded transmission sequences660

thereby removing range aliasing (Vierinen et al., 2016).

5.2 MU radar

Ambiguity analysis summary illustration for the MU radar using the phase center model. A detailed explanatory caption is

given in Fig. ??.
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Ambiguity analysis summary illustration for the MU radar using the subgroup model. A detailed explanatory caption is665

given in Fig. ??.

Comparison of the signal phase measured between the subgroup model and the phase center model. Illustrated is the phase

measured for the MU radar channel 1, i.e. the outer asymmetric subgroup to the west illustrated in Fig. 4. The inclusion of

the asymmetric antenna positions in the subgroup model affects the expected phase measurements of the signal as a function

of wave DOA. The two red crosses mark two direction that are ambiguous in the subgroup model but not in the phase center670

model.

Summary results from running the ambiguity analysis outlined in Sect. 2.1. The ambiguity analysis ran using only first

order ambiguities for the dense grid of possible DOAs illustrated here. The mapping shows the minimum distance d from the

resulting ambiguous directions at that input DOA location. For reference, two elevation limits at 48◦ and 81◦ are added to the

illustration. These indicate above which elevations we expect DOA determination with the MU radar to be unambiguous and675

robust, respectively.

Nine MC simulations with 500 samples each using an inclusion radius of s= 0.07 for the phase center MU radar model. A

detailed explanatory caption is given in Fig. ??.

The discretised output DOA distribution as a function of SNR and input DOA for the MU radar. The simulations were made

with respect to the ambiguity sets calculated for kII using the phase center model. A detailed explanatory caption is given in680

Fig. 7.

In contrast to the Jones 2.5λ radar, the MU radar channels consists of subgroups of antennas. If all subgroups were identical

and had a reflection symmetry-line(this mathematically assures
:
,
:::
this

:::::
would

:::::::::::::
mathematically

::::::
assure that the subarray gain does

not have an imaginary component) it would be the same situation as with the antenna gain function γ which means
::::
gains

:::
do

:::
not

::::
have

::::::::
imaginary

:::::::::::
components

:::
and

::::
have

:::
the

:::::
same

::::::::::
dependence

:::
on

:::::
input

:::::
DOA.

:::::::::
Practically,

::
it
::::::
would

:::::
mean that the subarray gain685

patterns gj could be omitted. However, as is illustrated in Fig. 4, the MU radar has six outer subgroups that are not symmetric

:::
nor

:::::
equal. Thus, the subgroup gain will affect the normalized sensor response model and the DOA determination capabilities.

Therefore we consider both
:
of

:
the models described in Eqs. 30 and 31.

Given the MU asymmetric subgroups, one could consider the model in Eq. 30 unphysical. Nevertheless, the phase center

model has been successfully used to analyse meteor head echoes from the MU radar (Kero et al., 2012b). The reason is that the690

two models obviously converge towards the zenith and are very similar in the main lobe and first side-lobes as they are both

models of planar arrays. Most
:::::
Since

::::
most

:
meteor head echo detections occur in the main lobe of the radarso ,

:
only a small

portion of the events are affected by the difference between the two models.

The ambiguities formed for kI , kII and kIII using the phase center model and the resulting DOA sets ΩX and ΩY are

illustrated in the the top row of Fig. ??. Their Input-Output index relations are illustrated in the bottom row. The respective695

results using the subgroup model are illustrated in Fig. 8.

A few important observations regarding the ambiguities for the phase center model:
::
As

:::
the

:::::::::
ambiguity

::::::
results

:::
for

:::
the

:::::
Phase

:::::
centre

::::::
model

:::
are

::::
close

:::
to

:::::
trivial

:::
(cf.

:::::::::
Appendix

:::
B),

:::
we

:::
do

:::
not

:::::::
present

:::
any

:::::::::
ambiguity

:::::
maps

:::
for

:::
that

:::::::
model.

:
It
::

is
::::::::

sufficient
:::

to

:::
note

::::
that

:
there are no ambiguities with d= 0 , they are symmetrically spaced and co-moving with the source point. This is
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Figure 10. The discretised output DOA distribution as a function of SNR and input DOA for the MU radar. The simulations were made with

respect to the ambiguity sets calculated for kI , using the subgroup model
:::
and

::
kI::

to
:::::::
generate

:::
ΩX:::

and
:::
ΩY . A detailed explanatory caption is

:::
The

:::::::
numerical

:::::
values

::
of
:::::
Input

:::
1–7

::::
(ΩX :::

and
::::::::::
corresponding

::
to
::::::
Output

:::
1–7)

:::
are

:
given in Fig.

::::
Table 7

:
1,
::::
MU,

::::
I.1–7.

-10 0 10 20 30

0

0.5

1

Figure 11. The discretised output DOA distribution as a function of SNR and input DOA for the MU radar. The simulations were made

with respect to the ambiguity sets calculated for kII ,
:
using the subgroup model . A detailed explanatory caption

::::
where

::::
Input

::
1 is given in

Fig. 7
:::
kII::::

(ΩX )
:::
and

::::::
Output

:
1
::
is

:::
also

:::
kII:::::

(ΩY ).

expected when considering that 19 of the subgroups are positioned in a hexagonally symmetric pattern and thereby should form700

perfect ambiguities. These subgroups are the ones that create the symmetric pattern. The six asymmetric groups are
:::
due

::
to

:::
the

::::::::
geometric

::::::
centers

::
of

:::
the

:::
six

:::::
outer

::::::
groups breaking the symmetry sufficiently to distinguish between these perfect ambiguities,

thereby creating the patterns seen in the top row of
::
of

:::
the

::
19

::::::::::
hexagonally

:::::::::
symmetric

:::::
inner

::::::
groups.

:
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Figure 12. The discretised output DOA distribution as a function of SNR and input DOA for the MU radar. The simulations were made with

respect to the ambiguity sets calculated for kII :
, using the subgroup model

::
and

::::
kIII::

to
:::::::
generate

:::
ΩX :::

and
:::
ΩY . A detailed explanatory caption

is
::
The

::::::::
numerical

:::::
values

::
of

::::
Input

:::
1–6

::::
(ΩX:::

and
:::::::::::
corresponding

::
to

:::::
Output

::::
1–6)

:::
are given in Fig.

::::
Table 7

:
1,

::::
MU,

:::::
III.1–6.

:::
The

::::
MU

:::::
radar

::::::::
subgroup

:::::
model

::
is
::::::::
expected

::
to

::::
have

:::
an

:::::::::
ambiguity

::::
map

:::
that

::::::
varies

::
as

:
a
::::::::

function
::
of

:::::
input

:::::
DOA.

:::
We

:::::::
present

::::
maps

:::
for

:::
kI ,

::::
kII :::

and
:::::
kIII :::

and
:::
the

::::::::
resulting

:::::
DOA

:::
sets

::::
ΩX :::

and
::::
ΩY ::

in Fig. ??. This indicates that the noise in the respective705

symmetry-breaking subgroups determine if the DOA can be determined
:
8

::
to

:::::::::
exemplify

:::
the

::::::::
variability

:::
of

:::
the

:::::::::
ambiguity

::::
map

::::::::::
morphology

::
in

:::::::
addition

::
to

:::
the

:::::::::
variability

::
of

:::
the

:::::
worst

::::::::
ambiguity

:::
(cf.

::::
Fig.

::
6).

Comparing the phase center model with the subgroup model, the DOA determination situation improves slightly for kI

and kII as many ambiguities become less prevalent. This can be attributed to the fact that the two models diverge at lower

elevations, thereby making it easier to distinguish a low-elevation DOA from a DOA near the zenith. However, the closest710

ambiguities basically remain at the same distance d= 0.26. Furthermore, for kIII , there is even a close to perfect ambiguity

(d= 0.00474) as illustrated by the top right panel in Fig. 8. This may appear surprising but
::
as

::::::::
previously

:::::
there

::::
were

:::
no

::::::
perfect

::::::::::
ambiguities.

::::::::
However,

:::
the

::::::
change makes sense given the internal antenna configuration of the outer subgroups that differentiate

between the ambiguities formed by the 19 inner subgroups.

The phase output of subgroup 1, the outer subgroup to the west in Fig. 4, using the subgroup model versus the phase center715

model is illustrated in Fig. 9. The two red crosses correspond to the two directions labeled d= 0 in the top right panel in Fig. 8.

Here it is clearly seen that the phase have equal values for these two directions when including subgroup gain in the left panel,

while the phase values were very different when using the phase center approximation shown to the right. This channel is the

main contributor to differentiating between these two ambiguities that appear due to the 19 inner subgroups. This highlights
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the advantage of numerically investigating ambiguities, either by sensor response model distance maps or by MC simulation720

as this ambiguous DOA would probably have gone unnoticed otherwise.

The above results raise the question of which directions can be determined by the MU radar using the more realistic subgroup

model. To answer this question we performed a sweep of the ambiguity searching algorithm outlined in Sect. 2. Instead of only

using kI , kII and kIII , a grid of k-vectors over all possible directions was used. On each grid-point all ambiguities were

calculated and the minimum distance was saved for that direction. For example, for kI the distance d= 0.26 from the top left725

axis in Fig. 8 would be saved and for kIII we would save d= 0.00474, according to the top right axis in Fig. 8. The resulting

map is illustrated in Fig. ??. It shows which source directions the MU radar is able to resolve well and which directions it

cannot uniquely determine. The white areas are regions where no ambiguities were found using the selected algorithm settings.

Since a minimum distance of 0.6 was set for saving ambiguities, none are found if they all have distances larger then this

number. For convenience, two elevation limits are also drawn onto the minimum distance map. These show that any direction730

above 48◦ elevation can be determined, with varying robustness, and that any direction above 81◦ elevation is always very well

determined.

Figure ?? contains an MC simulation using the phase center model at an SNR value of 2.76 dB. This example illustrates the

good correlation between the ΩX and ΩY sets generated by the ambiguity analysis and the MC simulations.

In Fig. ?? the summary of the MC MUSIC DOA determinations is illustrated for kII . The Input and Output labels in these735

illustrations correspond to the map of locations in the bottom row of Fig. ??. The dynamics of the DOA determination shown

here is as expected when using the simplified model of the sensor response. The dynamics for kI and kIII are practically

identical but shifted in SNR space. The respective shift of each MC simulation can be seen in Table 1. It should be noted

that the SNR necessary to correctly determine the DOA differs between kI and kII up to 20 dB for many of the inputs. This

suggests that one should not adopt a single full array SNR threshold for discarding events but rather: a channel SNR threshold;740

a DOA output dependant threshold; a MUSIC peak value threshold; a combination of the above.

::
As

:::
the

:::::
phase

::::::
centre

:::::
model

:::
and

::::::::
subgroup

::::::
model

::::::::
converges

:::::::
towards

:::
the

:::::
zenith

:::
we

::::
only

::::::
present

::::
MC

::::::
results

::::
from

:::
the

::::::::
subgroup

::::::
model.

:

The phase center model results should only be viewed as informative simulations, not as a predictors for real behaviour.

To infer information about how real measurements behave we should focus on the MC simulations of the subarray model. In745

Figs. 10, 11 and 12 the
:::
The summary of the MC MUSIC DOA determinations for that model is illustrated for kI , kII and kIII

::
in

::::
Figs.

:::
10,

:::
11

:::
and

::
12, respectively.

Examining

::::
From

:
Fig. 10 and cross-referencing the input locations with the Input-Output map in Fig. 8 we note several interesting

results.750

Firstly, we see trouble determining directions uniquely if they are in the "dark-zone" indicated by
::
the

::::
MU

:::::
panel

::
in

:
Fig. ??,

i.e. panels labeled Input 1 trough 4. Here
:
6.

::::
The

:::::
Input

::::
and

::::::
Output

::::::::
locations

:::
are

:::::
given

:::
by

::::
Fig.

::
8.

:::::
Here,

:
the MUSIC DOA

determination is unable to select the correct output for Input 3 and 4 even though there is a small difference between the signals

(d= 0.00474 as mentioned previously). As these simulations were using a single starting point for the MUSIC gradient ascent,
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the behaviour could be caused by a narrow-peak problem. When using a fixed grid to select the start
::::::
starting point for the755

MUSIC gradient ascentit might ,
::
it

::::
may miss a narrow peak.

Secondly, for sources inside the unambiguous region, i.e. Input 5 through 7, the DOA determination works as expected,

with an algorithm failure onset slightly below 0 dB SNR. But compared to the results for the phase centre model, ambiguities

now seem irrelevant as there is hardly any ambiguous DOA that is assigned a high probability
::
To

::::
test

::
if

:
a
:::::::
narrow

::::
peak

::::
was

::::::
causing

:::::::::
problems,

::
we

:::::::
applied

:::
the

::::::
parallel

:::::::
gradient

::::::
ascent

::::::::
technique

::::::::
described

::
in

:::::
Sect.

:
3
:::::
when

::::::::::
performing

:::
MC

::::::::::
simulations

:::
for760

::::
kIII .

:::
We

::::::
chose

:::
the

:::::::
N = 20

:::::
largest

::::
grid

::::::
points

::::
with

:
a
:::::::::
minimum

:::::::::
separation

::
of

::::::::
δX = 0.1

::
as

::::::
initial

:::::::::
conditions

:::
for

:::
the

:::::::
gradient

::::::
ascents.

:::
We

::::
also

::::::::
increased

::::
the

::::::::
examined

::::
SNR

:::::
range

:::
to

:::
find

:::
the

::::::
region

::
in

::::::
which

:
a
:::::::::::
d= 0.00474

::::::::
ambiguity

::::::
could

::
be

::::::::
correctly

:::::::::
determined.

::::
The

::::::::
resulting

::::
MC

:::::::
statistics

:::
are

:::::::::
illustrated

::
in

::::
Fig.

:::
12.

:::
For

::::::
targets

::::
with

:::::
SNR

::::::
higher

::::
than

::
40

::::
dB,

::
an

::::::::::::
unambiguous

::::
DOA

::::::::::::
determination

::
in

::::
this

:::::
region

::
is
::::::::

possible.
::::::::::
Candidates

:::
for

::::::::
producing

:::::
such

:::::
strong

::::::
echoes

:::::::
include

::::::
bolides

::::
with

:::::
large

:::::
radar

::::
cross

::::::
section

::::
and

:::::
active

:::::::
satellite.765

As indicated by
::
the

::::
MU

:::::
panel

::
in Fig. ??

:
6, all directions located close to the zenith are very robustly determinable. Therefore,

no extensive MC simulations are needed for kII . Instead, we ran a set of sparse simulations in the SNR space to examine the

onset of algorithm failure, illustrated in Fig. 11. In this case the onset occurs below around 12 dB SNR.

The different input locations differ significantly in the SNR needed for stable DOA determination. This limit also differ

::::
SNR

::::
limit

::::
also

:::::
differs

:
with respect to the used sensor response model. As such, the MUSIC peak value is a more stable quality770

indicator than SNR for DOA determination. The MUSIC peak value directly describes how well the used sensor response

model matches the measured signal. The MUSIC peak distribution for the MU subarray model simulations is illustrated
:::::
given

in Fig. 13. These
::::
The

:::::::::
simulations

:
are the same simulations that are

::
as

:::::
those illustrated in Fig. 11. This distribution is useful

for validating sensor response models. If measured echoes deviate from this distribution, either the DOA was not correctly

determined or it indicates an erroneous sensor response model.
::
In

:::
the

::::
SNR

:::::
range

:::::::::
(SNR. 10

::::
dB)

:::::
where

:::
the

:::::::
MUSIC

::::
peak

:::::
value775

::::::
appears

::
to

:::
be

::::::::::
independent

:::
of

:::::
SNR,

:::
the

::::::::
algorithm

::::
can

:::
not

::::
find

:::
any

:::::::::
significant

::::::::
matches.

::::
The

:::::
SNR

:::::
region

::::
just

:::::
above

:::
the

::::
flat

::::::
section

::
of

:::
the

::::::::::
distribution

::
is

::::::
where

::::::::::
ambiguities

:::
can

::::::
occur.

::::::::
Measured

::::::
echoes

::::::::
deviating

:::::
from

:::
this

:::::::
relation

::::::::
between

::::
SNR

::::
and

::::::
MUSIC

:::::
peak

::::
value

:::::::
indicate

:::
an

::::::::
erroneous

::::::
sensor

:::::::
response

::::::
model.

:

As mentioned and shown by Inputs 1 through 4 in Fig. 10, there are problems with correctly determining DOA in the

ambiguous region even though it should in principle be possible at a high enough SNR. To test if launching several parallel780

gradient ascents as described in Sect. 3 would improve algorithm robustness, we have performed additional simulations for

kIII .

In the additional simulations we chose to take the N = 20 largest grid points with a minimum separation of δX = 0.1

as initial conditions for the gradient ascents. We also increased the examined SNR range to find the region within which a

d= 0.00474 ambiguity could be correctly determined. The resulting MC statistics are illustrated in Fig. 12.785

The DOA determination dynamics can be explained as follows: around and below -10 dBSNR the complex noise perturbs the

signal through the sensor response model surface and the distribution becomes uniform as a result of projection, i.e. algorithm

failure. Between around 0 and 20 dB SNR, the mean noise perturbation distance decreases and it penetrates less of the sensor

response model surface, except for two close output points. Thus, they follow in tandem until we reach a break-point, at around
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Distribution of MUSIC peak values as a function of SNR compiled from

all MC simulation with the zenith as the input DOA, i.e. from the simulations illustrated in Fig. 11. This example is for the MU radar using

the subarray model described in Eq. 31. When the MUSIC peak value flat-lines the algorithm can no longer find any significant matches and

the output DOA is approximately uniformly distributed. The region just before the flat section of the distribution is where ambiguities can

occur. As a reference, the stable DOA determination occurs for SNRs above 12 dB for this input DOA.

Figure 13.
:::::::::
Distribution

::
of

::::::
MUSIC

::::
peak

:::::
values

::
as

:
a
::::::
function

::
of

::::
SNR

:::::::
compiled

::::
from

::
all

::::
MU

:::::::
subgroup

:::::
model

:::
MC

:::::::::
simulations

:::
with

:::
the

:::::
zenith

:
as
:::

the
::::
input

:::::
DOA

::
(cf.

::::
Fig.

:::
11).

:

30 dB SNR. Above this SNR level the perturbation in sensor response space decreases below the d= 0.00474 limit. Finally,790

it stabilises above around 40 dB SNR when the perturbation is too small to reach any other surfaces of the sensor response

space. This example shows that for targets with SNR higher than 40 dB, an unambiguous DOA determination in this region is

possible. Candidates for producing such strong echoes include bolides with large radar cross section and active satellite.

As the MU radar is a more complex system then
:::
than

:
the Jones 2.5λ radar it might be misleading to simulate Bayesian

inference
:::
and

:::
we

::::
have

:::::::
therefor

:::
not

:::::
done

::
so. Also, the results indicate that for many directions ambiguities are not relevant.795

More information about how well the model in Eq. 31 describes the behaviour of the radar response at all elevations is required.

As a next step we intend to closely examine real data to determine if the models are realistic enough to allow Bayesian inference

of ambiguous events.

Since the sensor response models described in Eqs. 30 and 31 converge at zenith, the MC simulation results becomes an

indication of which sensor response model is the better choice. In Figs. ?? and 8, the subgroup model performs better as it800

differentiates between directions much better then the phase center model. In Fig. ??, the Input 5 is located at the zenith and

displays an algorithm failure onset below around 20 dB SNR. However, in Fig. 11 this onset only occurs below around 12 dB

SNR. This indicates a significant improvement in the SNR limit for analysing events if the subgroup model is used.
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5.3 MAARSY radar

The MAARSY radar system is limited to 16 output channels but with
:
a flexible subgroup configuration. Studies looking at805

interferometry of meteor echoes with MAARSY have predominantly used two different configurations. These configurations

are illustrated in Figs. 4 and 5 and we hereafter refer to the them as MAARSY-8ch (Schult et al., 2013) and MAARSY-15ch

(Schult et al., 2017).

Ambiguity analysis summary illustration for the MAARSY-8ch phase center model. The ambiguity analysis represent the source DOA

kII , i.e a DOA in zenith. The illustration consists of a sensor response distance d(k) map calculated using Eq. 6. Overlaid on810

the map are markings according to the legend: the reference DOA k0, the simulated input DOA set kj ∈ ΩX and the possible

output DOA set ki ∈ ΩY . The sets are calculated as described in Sect. 2.5.

The phase center model of the MAARSY-8ch configuration contain perfect ambiguities as illustrated in Fig. ??
:::::
many

::::::
perfect

:::::::::
ambiguities. In this antenna configuration all subgroups contain reflection-symmetry lines, which means that their individual

subgroup gains do not resolve ambiguities. However, the MAARSY-8ch configuration also contains the entire array as one of815

the channels. This channel has a significantly different gain pattern compared to the other channels. This creates a small shift

in the sensor response between different directions. We have not included an illustration of the ambiguity analysis of the
:::::
phase

:::::
centre

:::::
model

::::
nor

:::
the subgroup model for the MAARSY-8ch configuration . Its ambiguity map is similar to the one illustrated

in Fig. ?? with the main difference that most of the ambiguities have a distance between 0.07–0.25 while a few remain close at

d= 0.01 instead of being perfect.
::
as

::::
they

:::
are

:::::
trivial

::::
and

:::::::::
ambiguous.

:
820

Ambiguity analysis summary illustration for the MAARSY-15ch radar using the subgroup model. A detailed explanatory

caption is given in Fig. ??.

For the phase center model of the MAARSY-15ch configuration there are many close to perfect ambiguities and a few perfect

ones. The distribution of ambiguities is close to identical to the one illustrated in Fig. ??
::::::::::::
MAARSY-8ch

:::
one. The addition of

the smaller hexagonal subgroups, illustrated in Fig. 5, creates a decent basis for being able to determine a trajectory uniquely.825

In practice, the results indicate that this would work reliably for very high SNR targetsonly
::
But

:::
in

:::::::
practice,

::
if

::
no

:::::::::::
assumptions

::
are

:::::::
applied

::
to

::::::
restrict

:::
the

:::::
DOA,

:::
our

::::::
results

::::
such

::
as

::::
e.g.

:::
Fig

::
14

:::::::
indicate

::::
that

:
it
::::::
works

::::::
reliably

::::
only

:::
for

:::::::::
high-SNR

::::::
targets.

In the MAARSY-15ch configuration, half of the channels have vastly different antenna gain patterns. This fact makes the

configuration better when the subgroup model is applied. We do not present any MC simulations for the phase center model of

the MAARSY-15ch configuration but focus on the subgroup model.830

The ambiguity analysis for
:
In

:
the MAARSY-15ch subgroup model is illustrated in

:::::
panel

::
of

:
Fig. ??

:
6

:::
the

:::::
sweep

:::
of

:::::
worst

::::::::
ambiguity

::
as
::

a
:::::::
function

:::
of

:::::
input

:::::
DOA

::
is

::::::::
illustrated. There are still a significant amount of

::::
input

:::::::
DOA’s

:::
that

:::::::
produce

:
low-

distance ambiguities using this configuration, but
:
.
::::::::::
Considering

:::
the

:::::::
stability

:::::
inside

:::
the

::::
main

::::
lobe

::
as

::::::::
indicated

::
by

:::
the

:::::
inner

:::::
circle

:::
and the distribution and severity of these ambiguities are favorable enough to

::
at

:::::
lower

::::::::
elevations

:::
one

::::
can expect interferometric

capabilities for a majority
::::
large

::::::
portion

:
of all meteor head echo events.835

A significant complication was discovered regarding the application of the MUSIC algorithm on the MAARSY-15ch sub-

group model: the vast differences in gain between channels narrows down the peaks in the MUSIC spectrum significantly.
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This is usually a desirable property as it allows more precise DOA determination. However, if the narrowing is extreme, a sim-

ple grid search for a peak will become unreasonable
:::::::::::
unreasonably costly in terms of computations. As the difference in gain

between the channels increase with zenith angle, the narrowing is a function of elevation, thus making low elevation sources840

harder to determine with grid methods.

A peak at 45◦ elevation from a 10 dB SNR echo would have a peak-width that requires a 3× 105 by 3× 105 point grid (i.e.

9× 1010 points) to be robustly discovered, as opposed to the 200 by 200 point grid we have used for the MU radar.

To solve this problem
::
As

::::
such,

:
we applied the multiple gradient ascent method described in Sect. 3. Instead of only using the

maximum point from the grid search as a start value for the gradient ascent, we used the N largest values that were separated845

from each other by at least δX in kx,ky space. These N start positions were then explored by a gradient ascent and the largest

peak was chosen among these seeds. This proved to be successful for solving the narrow-peak problem of MAARSY with a

N = 50 and δX = 0.1 for all tested cases.

The most prominent problem for DOA determination of echoes in the zenith with the MAARSY-15ch configuration is

that they are ambiguous with many DOAs below 57◦ elevation. This is illustrated in the middle upper panel of Fig. ??. If850

one can restrict the DOA to above 57◦ elevation
:::
high

:::::::::
elevations, a DOA determination algorithm should be fairly robust at

correctly identify
::::::::
identifying

:
the correct direction. This is also supported by the MC simulations of this configuration. The

summary results for these simulations are illustrated in Figs. 14, ?? and ??
:::
As

:::
the

::::::
results

:::
are

::::
very

::::::
similar

:
for kI , kII and

kIII respectively.

More specifically, ,
::::
only

:::
the

::::::::
summary

::::::
results

::
for

:
the two Input cases in Fig. 14 illustrates that DOA determination is possible855

above 20 dB and 30 dB for Inputs 1 and 2, respectively, even for sources located outside the radar main lobe. For a source

located at the zenith, as illustrated in Fig. ??, much higher SNR is needed for robust DOA determination. The reason for the high

algorithm failure probability shown in Fig. ?? is that the bumpy "valley" that constitutes a ring in the sensor response distance,

as illustrated in the upper middle panel of
::
kI ::::::::::

simulations,
:::::::
without

:::
any

::::::::
elevation

:::::::::
restriction,

:::
are

:::::::::
illustrated

::
in

:
Fig. ??, causes

the DOA determination to find a local maximum on this ring, which is not included among the output location probabilities
::
14.860

However, we

:::
We also simulated a case where an elevation restriction was added to the DOA determination algorithm. It was found that if

the algorithm could be restricted to only accept matches above 70◦ elevation by some reasonable arguments or using a priori

data, DOA determination
::
for

:::
kI would be stable above 15 dB SNR.

For kIII , as illustrated in Fig. ??
:
6, the DOA determination suffers the same problem as the MU radar using the subgroup865

model: there are perfect ambiguities at low elevations. The general DOA determination performance is worse for the MAARSY-

15ch configuration then
:::
than

:
the MU radar, but they still display very similar behaviour for kIII . The actual distance for the

ambiguity in the upper right panel of Fig. ?? is d= 0.0002, i.e 22 times smaller than for the MU radar. It is unrealistic to expect

this ambiguity to be resolved within any reasonable SNR for low elevation DOAs.

The discretised output DOA distribution as a function of SNR and input DOA for the MAARSY-15ch radar. The simulations870

were made with respect to the ambiguity sets calculated for kII using the subgroup model. A detailed explanatory caption is

given in Fig. 7.
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Figure 14. The discretised output DOA distribution as a function of SNR and input DOA for the MAARSY-15ch radar. The simulations were

made with respect to the ambiguity sets calculated for kI :
, using the subgroup model

:::
and

::
kI::

to
::::::
generate

::::
ΩX :::

and
:::
ΩY . A detailed explanatory

caption is
:::
The

::::::::
numerical

:::::
values

::
of

::::
Input

:::
1–2

::::
(ΩX:::

and
:::::::::::
corresponding

::
to

:::::
Output

::::
1–2)

::
are

:
given in Fig.

::::
Table 7

::
1,

::::::::::::
MAARSY-15ch,

::::
I.1–2.

The discretised output DOA distribution as a function of SNR and input DOA for the MAARSY-15ch radar. The simulations

were made with respect to the ambiguity sets calculated for kIII using the subgroup model. A detailed explanatory caption is

given in Fig. 7.875

5.4 PANSY radar

The PANSY radar is a special and interesting case when it comes to DOA determination. Firstly, all antennas are distributed

in the Z-axis
::::::::
vertically,

:
ranging between -2 and +8 meters, the .

::::
The

:
distribution is asymmetric also within the subgroups

themselves. Secondly, as is illustrated in Fig. 4, the radar is split into 5 larger collections of subgroups. These disjoint col-

lections are of different sizes and shapes and located relatively far apart. This radar configuration would not be analysable880

with conventional ambiguity analysis methods due to its complexity. These reasons also make the subgroup gain patterns even

more important, a phase center approximation would be outright unphysical to consider. Thus we do not present any results for

the phase center modelexcept an ambiguity analysis of kI , which is illustrated in Fig. ??. Noteworthy in the sensor response

distance map is how "bumpy" the surface is. This indicates that there are many local maxima and minima that any gradient

ascent method could get stuck on. .
:

885

Examining the ambiguity results for the subgroup model illustrated in Fig. ?? for kI , kII and kIII shows that the "bumpiness"

is preserved. Although the inclusion of the subgroup gain rules out many of the previously low-distance ambiguities, a few of

them remain at similar distances as those of the phase center model shown in Fig. ??. This is a similar behaviour as for the

MU radar, where many of the phase center model ambiguities are resolved when utilising the asymmetry of the subgroups, and

a few may remain at the same distance. We
::::
show

::::
very

:::::::::
promising

::::
DOA

::::::::::::
determination

::::::::::
capabilities.

:::::::::
However,

::
we

:
can also see890

a potential problem with DOA determination algorithms due to the "bumpiness" . In our discretisation process, as outlined in
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Sect. 2, we need to choose an inclusion distance. The current distance includes all the local peaks illustrated in the example

given in Fig. ??. Thus, if one of the local peaks is found by the algorith, the discretising process is not affected. This example

contains the MUSIC response of a single simulated meteor head echo.

We have performed several meteor head echo observation campaigns with the PANSY radar system and intend to create an895

analysis pipeline for the radar system. During that future work,
::
of the results presented here and the experience of implementing

the DOA determination algorithm on simulated raw data for the PANSY system will be valuable.
:::::::
surface.

:::::::::
Therefore,

::
we

:::::
have

::::::
applied

:::
the

:::::::
scattered

:::::::
gradient

::::::
ascent

::::::
method

:::::
with

::
the

:::::
same

:::::::::::
configuration

::
as

:::
for

::::::::::
MAARSY.

The MC DOA determination simulation summaries are illustrated in Figs. ?? and 15for kI and
:::::::
summary

:::
for

:
kII :

is
:::::::::
illustrated

::
in

::::
Fig.

::
15. The results for

::
kI :::

and
:
kIII are practically identical to the results for kI :::

kII but shifted in SNR space. The900

corresponding Input-Output relation maps are illustrated in the bottom row of Fig. ??. Examining these summary results shows

that there is no need to perform the Bayesian analysis. Ambiguities are not prevalent enough and usually only one clustering

will form
:::::
forms in low SNR conditions. Instead of ambiguities affecting the quality of DOA determinations, sensor response

model errors appear
::::::
should to be most problematic for PANSY meteor head echo observations

::
as

:::
the

::::::
system

:::::
setup

:::::
varies

::::
over

::::
time

:::
due

::
to

::::::::
Antarctic

:::::::::
conditions.905

Ambiguity analysis summary illustration for the PANSY phase center model. The ambiguity analysis represent the source

DOA kI as defined in the beginning of Sect. 5. The illustration consists of a sensor response distance d(k) map calculated

using Eq. 6. Overlaid on the map are markings according to the legend: the reference DOA k0, the simulated input DOA set

kj ∈ ΩX and the possible output DOA set ki ∈ ΩY . The sets are calculated as described in Sect. 2.5.

Ambiguity analysis summary illustration for the PANSY radar using the subgroup model. A detailed explanatory caption is910

given in Fig. ??.

The discretised output DOA distribution as a function of SNR and input DOA for the PANSY radar. The simulations were

made with respect to the ambiguity sets calculated for kI using the subgroup model. A detailed explanatory caption is given in

Fig. 7.

Close-up view of the MUSIC function evaluated for a dense grid around a known peak. The MUSIC function was calculated915

using noisy simulated PANSY subgroup model data at an SNR of 10 dB. The multi-modal nature of the MUSIC function and

the widths of the peaks illustrates the difficulty in using a sparse grid to find the peak location without any a priori knowledge.

5.5 PANSY meteor radar

Ambiguity analysis summary illustration for the PANSY meteor radar using the phase center model. A detailed explanatory

caption is given in Fig. ??.920

We only present summary results for the PANSY 2.5λmeteor receiver system as the very similar standard Jones 2.5λ system

results have been covered in Sect. 5.1.

For kI , kII and kIII the resulting DOA sets ΩX and ΩY are illustrated in Fig. ?? together with the Input-Output index

maps. Since the antennas are placed at the appropriate distances for a Jones 2.5λ radar in the x-y plane, but displaced in the

z-direction, the actual distances between the antennas are slightly larger then
::::
than a standard Jones 2.5λ system. The ambiguity925
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Figure 15. The discretised output DOA distribution as a function of SNR and input DOA for the PANSY radar. The simulations were made

with respect to the ambiguity sets calculated for kII ,
:
using the subgroup model . A detailed explanatory caption

::::
where

::::
Input

::
1 is given in

Fig. 7
:::
kII::::

(ΩX )
:::
and

::::::
Output

:
1
::
is

:::
also

:::
kII:::::

(ΩY ).

analysis results in Fig. ?? shows that this has given a slightly negative impact on the severity of ambiguities, when compared

to the distances illustrated
:::::
Also,

::
as

::
it

::
is

:::
not

::
a
:::::
planar

::::::
array,

:::
the

:::::::::
ambiguity

:::::::
situation

::
is
:::::::::

dependant
:::

on
:::::
input

:::::
DOA,

:::
as

::::::
shown

::
in

::::::::
Appendix

:::
B.

::
As

:::::
such

:
it
::::

was
::::
also

::::::::
included

::
in

:::
the

:::::::::
ambiguity

::::::
sweeps

:
in Fig. ??. The smallest distance has decreased from

d= 0.43 to d= 0.32.

The discretised output DOA distribution as a function of SNR and input DOA for the PANSY meteor receiver. The simulations930

were made with respect to the ambiguity sets calculated for kI . A detailed explanatory caption is given in Fig. 7.
:
6.

:

::
To

:::::::::
summarize

:::
the

::::::::::
comparison

::::::::
between

:::
the

:::::::
standard

:::::
Jones

::::
2.5λ

::::
and

:::
the

:::::::
PANSY

::::
2.5λ

::::::::
receiver:

:::
the

::::::
system

::::::::
performs

:::::
better

:::
then

:::
the

::::::::
standard

::::::
system

:::
for

:::::
DOAs

:::::::::
originating

:::::
from

::::::::
south-east

:::
but

::::::::
performs

:::::
worse

:::
for

:::
the

:::::::
opposite

:::::::::
direction.

The MC simulations for this system is summarized in Fig. ?? for kI . Again, the DOA determination dynamics are very

similar for kII and kIII , only
:::::::
basically

:::::::::
equivalent

::
to

:::
the

:::::::
standard

:::::::
system,

:::
but

::::::
slightly

:
shifted in SNR space. The magnitudes935

of these shifts are equal to the differences of the SNR limits given in Table 1. The results are very similar to the standard Jones

2.5λ system, as expected. One exception is illustrated in the panel labeled Input 7 of Fig. ??. However, this input DOA is

located at an unreasonably low elevation (cf. the bottom left panel in Fig ??) and can be disregarded.

The minimum distance difference between the two systems, d= 0.43 for the standard Jones 2.5λ radar and d= 0.32 for the

PANSY receiver, should not impact the system performance significantly. For example, comparing Figs. 7 and ??, the algorithm940

stability threshold for Input 4 is located at 12 dB and 10 dB SNR, respectively. Comparing kII , there is no difference, both

systems give completely stable results above 23 dB SNR.

Minimum SNR needed as a function of observed outputs in order to correctly identify the true Input direction in 99% of

cases using Bayesian inference. A detailed explanatory caption is given in Fig. ??.
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We have also calculated a simulated Bayesian inference for comparison with the standard Jones system. The minimum945

needed SNR as a function of observation count is illustrated in Fig. ?? for kI , kII and kIII , respectively. This analysis shows

the impact of the height distribution of the antennas, where kI experiences a slight improvement of around 1-2 dB SNR while

kIII is worsened by approximately 4 dB SNR. The latter is consistent with the SNR shift of approximately 5 dB found when

comparing the DOA determination dynamics for kIII with the standard Jones 2.5λ configuration.

6 Conclusions950

The main purpose of the ambiguity analysis and the MC DOA determination simulations was to provide improved understand-

ing of DOA determination dynamicsand a simulated theoretical reference that is .
::::::
These

:::::
results

::::
and

:::::::
methods

::::::
provide

:::::::::
simulated

::::::::
theoretical

:::::::::
references

::::
that

:::
are useful when analysing real measurement data.

It is important to note that the results presented here do not take meteor populations into account. We have simply chosen

true directions (designated as input) for the simulations, regardless of their probability with respect to some population model.955

This was done on purpose to prevent disregarding the possibilities of new discoveries. For example, the existence of high

altitude radar meteors is still an open question (Gao and Mathews, 2015; Kero et al., 2019). This question could be further

addressed using these methods. A common assumption within meteor head echo studies is that the majority of events occur in

the main-lobe (e.g Gao and Mathews, 2015; Schult et al., 2013). Even though this is true, when meteor databases grow larger

so should the portion of detections in the side-lobes. For example, Vierinen et al. (2014) showed that high altitude meteor head960

echoes reported to have been observed with the monostatic EISCAT VHF radar were more likely miss-interpreted side-lobe

detections. With respect to other hard targets such as satellites, Vierinen et al. (2019) demonstrated that a majority of such

detection using the monostatic EISCAT radars are made in the side-lobes.

Using interferometric radar systems to perform meteor head echo measurements, the trajectory can be directly determined

(e.g. Kero et al., 2012b). Techniques like the ones presented here can be employed to avoid miss-classifying the DOA, and965

thereby avoid nonphysical results that are then used in consequent research.

One of the relevant results in this paper is the comparison between using
::
We

:::::::::
compared

::
the

:
phase center models or

:::
and sub-

group models for the MU, PANSY and MAARSY radars. For the MU radar, even though the subgroup model has ambiguities

at low elevations, this is the expected behaviour in real data as well. Using a simplified model that well approximates the real

behaviour close to the zenith is not improving the situation as it may introduce erroneous trajectories in databases. Instead,970

the known fact of a close to perfect ambiguity can be used as an indicator: if one have several measurements that distribute

themselves according to these ambiguities the event can be discarded or put into a special ambiguous category. When the signal

originates from the zenith
::
Its

:::::::::::
performance

::
in

:::::
terms

::
of

:::::::
limiting

:::::
SNR

::
is

::::
also

:::::
better

::::
than

:::
the

:::::
phase

::::::
center

::::::
model.

:::
As

::::
such, the

subgroup model will expose it to fewer ambiguities and remain stable at lower SNR levels.

:
is
::::::
overall

:::
the

:::::
better

::::::
choice.

:
For the PANSY radar the situation is similar as the phase center model is outright nonphysical and975

should not be used. In the case of MAARSY, the inclusion of the subgroup model is the only way to have a chance of resolving
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Table 1. Summary results for all input DOAs used to perform an MC DOA determination simulation. These are the ΩX sets for kI ,kII

and kIII . These limits show when the DOA determination with MUSIC for the respective radar system is stable to a level of 99% output

probability of the true input. Thus for the given DOA, echoes below the given SNR are possible ambiguous. In the column header Az stands

for Azimuth angle and El for Elevation angle in local radar coordinates. An empty SNR indicates that none of the simulations produced

a Input-Output correspondence of 99% or higher. For the MU, MAARSY and PANSY radars these results are using the model described

by Eq. 31. For the Jones 2.5λ and the PANSY 2.5λ the model in Eq. 30 was used. The index corresponds to the initial k vector and the

Input-Output maps illustrated for each radar system in Sect. 5.

Index Az [◦] El [◦] SNR [dB] Index Az [◦] El [◦] SNR [dB] Index Az [◦] El [◦] SNR [dB]

Jones 2.5λ MU PANSY 2.5λ

I.1 -60.25 59.70 8.97 I.1 26.70 30.28 3.10 I.1 -60.70 59.64 7.93

I.2 60.24 59.70 15.86 I.2 135.84 35.16 5.86 I.2 179.89 79.34 12.07

I.3 0 46.50 17.59 I.3 -16.93 27.81 - I.3 -0.50 47.17 17.59

I.4 0 75.50 12.41 I.4 -146.41 37.47 - I.4 0 75.50 10.69

I.5 180 79.18 12.41 I.5 87.16 72.13 -1.03 I.5 60.27 60.30 14.83

II.1 180 64.02 23.97 I.6 0 75.50 1.72 I.6 -33.53 35.73 12.07

II.2 0 90 23.97 I.7 -161.89 81.10 1.72 I.7 -152.88 7.22 -

II.3 90 64.02 23.97 II.1 0 90 16.67 II.1 90.44 64.50 23.10

II.4 -90 64.03 23.97 III.1 -162.24 20.67 35.59 II.2 -65.37 11.26 23.10

II.5 0 64.02 22.07 III.2 145.18 43.81 39.66 II.3 -0.33 64.23 21.72

III.1 10.84 56.53 12.41 III.3 45 40 34.24 II.4 -90.46 63.85 23.10

III.2 79.16 56.53 12.41 III.4 17.27 38.06 36.95 II.5 -28.23 15.29 21.72

III.3 45 40 12.41 III.5 -26.29 20.41 38.31 II.6 -45.84 51.65 21.72

MAARSY-15ch III.6 -138.92 25.43 36.95 II.7 -179.67 64.14 23.10

I.1 -139.11 67.37 23.10 PANSY II.8 0 90 23.10

I.2 0 75.50 30 II.1 0 90 3.28 III.1 11.52 55.73 16.21

II.1 0 90 - III.2 78.53 56.15 16.21

III.1 45 40 - III.3 5.55 13.09 14.83

III.2 -135 31.62 - III.4 45 40 16.21

DOA > 70◦ elevation

II.1 0 90 15

arbitrary DOAs unambiguously. However, if the DOA search was restricted to > 70◦ elevation, stable DOA determination

occurs above 15 dB SNR
:
is
::::::::
restricted

::
to
:::::
high

:::::::::
elevations,

:::::
either

:::::
model

::
is

::::::::
sufficient.

These
:::
The

:
simulations also provided insight into the construction of DOA determination algorithms, as

:
.
:
It
:
was shown for

the MAARSY, MU and PANSY systems where
:::
that an additional step

::
of

:
a
:::::::
scattered

:::::::
gradient

::::::
ascent had to be implemented due980
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to the topology of the MUSIC function. The success of this method suggests that there may be other optimization algorithms

that could further improve performance, such as the Bird Swarm Algorithm (Meng et al., 2016).

The comparison between a standard Jones 2.5λ system and the PANSY meteor radar could
::::::
showed

:::::
slight

:::::::::::
performance

:::::::::
differences,

:::::::::
especially

::
in
::::

the
:::::::
limiting

::::
SNR

:::
as

:
a
::::::::

function
::
of

:::::
input

::::::
DOA.

::::
This

:::::::::
knowledge

::::
can

:
help calibrate thresholds for

future data analysis pipelines. The comparison showed the advantage of doing ambiguity analysis and MC simulation prior to985

construction of such pipelines as it can reveal
:::::
reveals

:
the expected DOA determination performance of a system.

Considering the application of these methods and results on measurement data they provide a reference, not only for SNR

limits, but for model validation. If measurements do not follow the dynamics simulated here, and while
::
by

:::::
these

::::::::
methods,

assuming the pipeline itself is validated and stable, it would point
:::::
points

:
towards the models not representing reality. This

makes such simulations a good validation tool for analysis pipelines. For example, it has been frequently shown that multiple-990

receiver radar systems are in need of phase calibrations (e.g. Chau et al., 2014). In the case of the results presented here: the

dynamics would all be modified to some degree if one would add a constant phase to the receivers
:::::::
constant

:::::
phase

::::::
offsets

::
to

::::
each

:::::::
receiver in our models . This

:::
(cf.

::::::::
Appendix

:::
A).

::::
The framework of DOA determination simulation provides one with the

:
a possibility to test these matters.

We have explored the option of a Bayesian approach to determine the most probable DOA of a target given several measure-995

ments distributed among noise-induced ambiguities.
::::
Such

:::
an

::::::::
approach

:::
can

::
be

:::::::
applied

::
if

:
it
::
is

:::
not

:::::::
possible

::
to

:::::::
increase

:::
the

:::::
SNR

::::
using

::::::::
coherent

:::::::::
integration.

:
The results indicate that this is a suitable method for providing a quantitative probability for which

DOA is correct. Using the Bayesian method,
:

it appears possible to analyse echoes down to 4 dB SNR for both the standard

Jones 2.5λ radar and the PANSY meteor radar, given enough independent data points from the same target.

Lastly, the MC simulations in this paper demonstrated quantitatively that ambiguities are more or less relevant depending1000

on radar system configurations. In systems where ambiguities are not prevalent, the DOA determination failure onset is the

important variable to determine. In systems where noise-induced ambiguities are relevant, it is important to determine the SNR

range where they emerge. Our results show that the PANSY system is not affected by noise-induced ambiguities while the

MU radar has a small region of SNRs where they could be relevant. The Jones type systems and MAARSY all have relevant

noise-induced ambiguities.1005

Table 1 contains all the MC simulations performed in our study, collected in terms of limiting SNR and input DOA. Any

DOA determination on data with SNR above the limiting value will provide the correct output DOA with > 99% confidence.

:::::
Using

::::::::::::
interferometric

:::::
radar

:::::::
systems

::
to

:::::::
perform

::::::
meteor

:::::
head

::::
echo

::::::::::::
measurements,

:::
the

:::::::::
trajectory

:::
can

::
be

:::::::
directly

::::::::::
determined

::::::::::::::::::::
(e.g. Kero et al., 2012b).

:::::::::
Techniques

::::
like

:::
the

::::
ones

:::::::::
presented

::::
here

:::
can

:::
be

:::::::::
employed

::
to

:::::
avoid

::::::::::::::
miss-classifying

:::
the

:::::
DOA,

::::
and

::::::
thereby

::::::::
avoiding

::::::::::
nonphysical

:::::::
results.

:::
For

::::::::
example,

::::
the

::::::::
existence

::
of

:::::
high

:::::::
altitude

:::::
radar

:::::::
meteors

::
is

::::
still

::
an

:::::
open

::::::::
question1010

::::::::::::::::::::::::::::::::::::
(Gao and Mathews, 2015; Kero et al., 2019).

:::::
Some

::::::::
previous

::::::
studies

::::
have

:::::
been

:::::::
centered

:::
on

:::
the

::::
low

:::::::::
probability

:::
of

::::::::
side-lobe

::::::::
detections

::
as

:::
the

::::::::::
explanation

:::::::::::::::::::::
(e.g Vierinen et al., 2014).

:::::
With

::::::::::::
interferometric

::::::::
systems,

:::
this

:::::::
question

:::::
could

::
be

::::::
further

:::::::::
addressed

::::
using

:::::
these

::::::::
methods.
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Data availability. Simulation data is publicly available at the FAIR-aligned Swedish National Data Service repository under the title

"XXXXX". The repository can be accessed trough https://snd.gu.se/XXXXXX.1015

Appendix A:
::::::
Impact

::
of

::::::
known

::::::
phase

::::::
offsets

::
on

:::::::::::
ambiguities

::::::
Adding

:
a
:::::
phase

:::::
offset

:::
to

::::
each

::::::
element

:::
in

::
the

:::::::::
subgroups

:::::::
defined

::
in

:::
Eq.

::
32

:::::
gives

:

gj(k) =

Nj∑
l=1

ei(〈k,rj−ρjl〉R3+φjl).

::::::::::::::::::::::::::

(A1)

:::::::
Inserting

:::
the

:::::
phase

::::::
offset

::::::::
subgroup

:::::
model

:::::
from

:::
Eq.

:::
A1

::::
into

:::
Eq.

:::
31,

:::
the

:::::::
explicit

:::::
form

::
of

:::
the

:::::::
distance

::::::::::
calculation

::
in

:::
Eq.

::
6

:::::::
becomes1020

d(k)2 =

M∑
j

::::::::::

∣∣∣∣∣∣ 1

|Φ(k0)|

Nj∑
l

Ae−i(〈k0,ρjl〉+φjl)

:::::::::::::::::::::::::

− 1

|Φ(k)|

Nj∑
l

Ae−i(〈k,ρjl〉+φjl)

∣∣∣∣∣∣
2

.

:::::::::::::::::::::::::::

(A2)

::::
This

::::
form

::
is

::::
valid

:::
for

:::
all

:::::::
possible

:::::
phase

::::::
offsets,

::::::::
including

:::::
radars

::::
with

::::
and

::::::
without

::::::::::
subgroups.

:::::
Using

::::::
matrix

:::::::
algebra,

:::
Eq.

:::
A2

:::
can

::
be

::::::::
rewritten

::
to

d(k)2 =
::::::

M∑
j

w†j

(
vj(k0)v†j(k0)

|Φ(k0)|2
+

vj(k)v†j(k)

|Φ(k)|2
::::::::::::::::::::::::::::::::
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−
vj(k0)v†j(k) + vj(k)v†j(k0)

|Φ(k0)||Φ(k)|

)
wj ,

::::::::::::::::::::::::::::::

(A3)

:::::
where

42



wj =


eiφj1

...

eiφjNj

 ,
::::::::::::::

(A4)

vj(k) =A


e−i〈k,ρj1〉

...

e
−i〈k,ρjNj

〉

 .
::::::::::::::::::::::

(A5)

:
If
:::::::
Nj = 1,

:::
i.e.

:::::
single

:::::::
antenna

::::::::
channels,

::::
then

:::
the

::::::
vectors

::
in

:::
Eq.

:::
A3

:::::::
become

::::::
scalars

:::
and

:::
the

:::::
phase

::::::
offsets

:::
wj ::

are
::::::::::::
commutative.1030

:::::
Thus,

:::
w†j :::

and
:::
wj::::::

cancel
::
to

::
1.

::
As

::::
they

::::::
cancel,

:::
the

:::::
phase

::::::
offsets

:::
do

:::
not

::::::
impact

:::::
d(k).

::::::::
Therefore,

:::::
phase

::::::
offsets

:::
do

:::
not

::::::
impact

:::
the

::::::::
ambiguity

:::::::::
dynamics.

::::::::::
Additionally,

::
if
::::::::
φjl = φj ,:::

i.e.
:::::
phase

::::::
offsets

:::
are

::::::::::
independent

:::
of

::::::
antenna

::
in
::

a
::::::::
subgroup,

::::
then

:::::::::::
wj = eiφj1.

:::
The

::::
eiφj

::
is

::
a

:::::
scalar

:::
and

::
is

:::::::::::
commutative.

:::::
Thus,

::::
eiφj

:::
can

::
be

::::::
moved

::
to

::::::
cancel

:::::
e−iφj

:::
and

:::::
phase

::::::
offsets

::
do

:::
not

::::::
impact

:::::
d(k).

::
In

::
all

:::::
other

:::::
cases,

:::
the

:::::
phase

:::::
offsets

::::
will

:::::
affect

::::
d(k)

::::
and

::::::
change

:::
the

::::::::
ambiguity

::::::::
dynamics

:::
of

:
a
:::::::
system.1035

Appendix B:
::::::::::
Ambiguities

::
of

::::::
planar

:::::::
arrays

::::
with

:::::
single

::::::::
antenna

::::::::
channels

::::
What

:::::::
follows

::
is

::
a

::::::::
derivation

:::
of

:::
the

::::
fact

:::
that

::::::
planar

:::::
arrays

:::::
with

:::::
single

:::::::
antenna

::::::::
channels

:::
are

::::::::
uniquely

::::::::
identified

:::
by

:
a
::::::
single

::::::::
translated

::::::::
ambiguity

:::::
map.

:::::::
Inserting

:::
Eq.

:::
30

:::
into

:::
the

:::::::
distance

::::::::::
calculation

::
in

:::
Eq.

:
6
:::::
gives

:

d(k)2
::::

=

M∑
j

∣∣∣∣ 1

|Φ(k0)|
e−i〈k0,rj〉− 1

|Φ(k)|
e−i〈k,rj〉

∣∣∣∣2 =

:::::::::::::::::::::::::::::::::::::::
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= 2

A M∑
j

nj

−2 M∑
j

1− cos(〈k−k0,rj〉).

::::::::::::::::::::::::::::::::::::

(B1)

:::
Eq.

:::
B1

:::::
shows

::::
that

:::
for

:::
the

:::::
phase

:::::
centre

:::::::
model,

:
a
:::::::
singular

:::::::
function

::::
will

::::::
define

:::
the

::::::::::
morphology

::
of

:::
the

:::::::::
ambiguity

:::::
map,

::::
only

::::::::
translated

::
in

::
k

:::::
space.

::::
The

::
k

::::::
vectors

::::
only

:::::
move

::
on

:::
the

:::::::
surface

::
of

:
a
::::::
sphere

::
in

:::::
three

::::::::::
dimensions.

:::::
When

:::
the

:::
set

::
of

::
rj:::::::

vectors
:::
are

:::::
planar,

:::
the

::::::::::
translations

:::::::
become

:::::
linear

::
in

::::
two

::::::::::
dimensions.

::::::::
However,

::
if

:::
the

:::
set

::
of

::
rj:::

are
:::
not

::::::
planar,

:::
the

:::::::::
projection

:::::
down

::
to

::::
two

:::::::::
dimensions

::::::::
becomes

::::::::
non-linear

::::
and

:::
the

::::::::
ambiguity

:::::
maps

:::
are

::
no

::::::
longer

::::::
simple

::::::::::
translations

::
of

:::
the

::::
base

:::::::
function.

:
1045
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