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Abstract. This paper is motivated by the fact that, although temperature readings made by Vaisala RS41 radiosondes at

GRUAN sites (www.gruan.org) are given at 1 s resolution, for various reasons, missing data are spread along the atmospheric

profile. Such a problem is quite common with radiosonde data and other profile data. Hence, (linear) interpolation is often used

to fill the gaps in published data products. From this perspective, the present paper considers interpolation uncertainty, using a

statistical approach to understand the consequences of substituting missing data with interpolated data.5

In particular, a general frame for the computation of interpolation uncertainty based on a Gaussian process (GP) set-up

is developed. Using the GP characteristics, a simple formula for computing the linear interpolation standard error is given.

Moreover, the GP interpolation is proposed as it provides an alternative interpolation method with its standard error.

For the Vaisala RS41, the two approaches are shown to provide similar interpolation performances using an extensive

cross-validation approach based on the block-bootstrap technique. Statistical results about interpolation uncertainty at various10

GRUAN sites and for various missing gap lengths are provided. Since both approaches result in an underestimation of the

interpolation uncertainty, a bootstrap-based correction formula is proposed.

Using the root mean square error, it is found that, for short gaps, with an average length of 5 s, the average uncertainty is less

than 0.10 K. For larger gaps, it increases up to 0.35 K for an average gap length of 30 s and up to 0.58 K for a gap of 60 s. It is

concluded that this approach could be implemented in a future version of the GRUAN data processing.15

1 Introduction

The quality of climate variable profiles in the atmosphere is relevant in various scientific fields. In particular, it is important

for numerical weather prediction, satellite observation validation, and climate change understanding, including extreme events

such as droughts and tornadoes. In this frame, more than ten years ago, the GCOS (Global Climate Observing System) Ref-

erence Upper-Air Network (GRUAN, www.gruan.org) was established to provide reference measurements from the surface,20

through the troposphere, and into the stratosphere (Seidel et al., 2009; Bodeker et al., 2016). Immler et al. (2010) discussed

the concepts of reference measurements, traceability, full metadata description, a proper manufacturer-independent instrument

characterization, and the assessment of measurement uncertainties for upper-air observations.

GRUAN data processing for the Vaisala RS92 radiosonde was developed to meet the above criteria for reference measure-

ments (Dirksen et al., 2014). The related data product is characterised not only by the above-mentioned metrological require-25
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ments but also by high vertical resolution. After the introduction of the new Vaisala RS41 radiosonde, GRUAN is currently

developing the corresponding data processing for the new instrument (Dirksen et al., 2019).

Although temperature readings made by the Vaisala RS41 radiosonde at GRUAN sites are given at 1 s resolution, for various

reasons, missing data are sometimes present along the atmospheric profile. If interpolation is applied to fill in the missing

values, the uncertainty introduced through interpolation should be considered in the uncertainty budget.30

The literature has considered the interpolation of atmospheric profiles from various points of view. In some cases, interpo-

lation is applied to measurement uncertainty. For example, considering the AERONET Version 3 aerosol retrievals, Sinyuk et

al. (2020) obtained the uncertainty by interpolation of a lookup table.

A second and more relevant use of interpolation relates to the measurement itself. In this field, Ceccherini et al. (2018) used

interpolation for the data fusion of Ozone satellite vertical profiles. Interpolation uncertainty and, more generally, co-location35

uncertainty have been computed using simulated profiles. Similarly, for co-location uncertainty of the total ozone, Verhoelst et

al. (2015) used interpolation in the so-called OSSSMOSE simulator.

In the frame of radiosonde co-location uncertainty, considering relative humidity, Fassò et al. (2014) used a statistical ap-

proach based on the heteroskedastic functional regression model. Considering pressure, Ignaccolo et al. (2015) extended the

latter approach to 3D functional regression. In these two papers, interpolation uncertainty is implicitly assessed by means of40

model error variance.

Comparisons of radiosonde and satellite data are sometimes based on low-vertical-resolution radiosonde profiles, especially

for historical data. In some cases, interpolation is not required because of the higher vertical resolution of satellite profiles

(Sun et al., 2010). In other cases, interpolation is required. For example, Finazzi et al. (2019) considered the harmonisation

of low-vertical-resolution temperature and humidity radiosonde measurements and the corresponding atmospheric profiles45

derived from the Infrared Atmospheric Sounding Interferometer (IASI) aboard the Metop-A and Metop-B satellites. These

authors used spline interpolation of radiosonde profiles, and indirectly assessed the related uncertainty through a comparison

with GRUAN reference measurements.

As a common trait of the above literature, interpolation of atmospheric profiles is quite common, but a systematic analysis of

interpolation uncertainty per se is not yet available. A general approach to interpolation is the geostatistics approach (Cressie50

and Wikle, 2011) which is similar to the Gaussian Process (GP) approach (Rasmussen and Williams, 2006). Its value is due

to the fact that it gives optimal interpolation under some conditions. With some variations, the related optimal interpolation

algorithm is based on the autocovariance function or, equivalently, on the structure function (Sofieva et al., 2008). This approach

is often used to interpolate in spaces of increasing complexity, such as the Euclidean plane, the sphere (Alegria et al., 2017),

the three-dimensional Euclidean space, or the circular shell representing the atmosphere (Porcu et al., 2016). Interestingly, it55

can be shown that the spline interpolation is a special case of the GP interpolation (Kimeldorf and Wahba, 1970). Another

interesting point is that the GP approach comes with a formula for interpolation uncertainty estimation. It must be noted that

the formula is correctly used if the true data generation mechanism is a GP. If the GP is simply an approximation an additional

term must be added.
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In this paper, the uncertainty of the one-dimensional linear interpolation is discussed using two approaches. In the first stage,60

the closed-form formula of the linear interpolation uncertainty is presented under the assumption that the observed atmospheric

profile is generated by a GP. In the second stage, thanks to the availability of good profiles without missing data, the GP

assumption is relaxed, and a block-bootstrap correction of the uncertainty formula is constructed. This approach is valid for

any atmospheric profile data set. Considering the motivating application, which focuses on temperature readings of the Vaisala

RS41 at GRUAN sites, this paper’s objective is to contribute to the understanding of interpolation uncertainty expressed as a65

function of missing gap length, missing frequency, altitude, and site. This objective amounts to studying the feasibility of an

algorithm and/or a lookup table providing interpolation uncertainty in a future version of GRUAN data processing.

To achieve this objective, each good profile is divided into a learning set and a testing set. Firstly, data from the testing set are

considered as missing and are estimated by interpolation of the learning set data. Secondly, the comparison of estimated and

true data in the testing set is used for interpolation uncertainty assessment. This assessment is done for various missing patterns70

that resemble observed bad launches, which are characterised by many missing measurements. In particular, increasing gap

average lengths will be analysed. The testing sets will be extracted using a block-bootstrap approach (Politis and Romano, 1994;

Mudelsee, 2014). Hence, although the numerical results are specific to the Vaisala RS41 temperature data set, the approach is

quite general and may be applied to other sensors.

The rest of the paper is organised as follows. Section 2 motivates the paper by discussing the sources of gaps in data recep-75

tion and their impact in GRUAN data processing. Section 3 introduces the Gaussian Process (GP) set-up used to provide the

formal assessment of linear interpolation uncertainty and to introduce the GP interpolation with its standard deviation. Section

4 presents the data sets, which are related to Vaisala RS41 observations at seven GRUAN sites and are used in the empirical

analysis. Section 5 describes the re-sampling technique able to simulate random patterns of missing values of different du-

rations. Section 6 describes the cross-validation scheme essential for the uncertainty computations and the model selection,80

which is discussed in Section 7. Section 8 presents the results, compares the behaviour of the two interpolation techniques, and

proposes an empirically corrected formula for interpolation uncertainty. Finally, Section 9 draws some conclusions.

2 Data processing and interpolation

There are several possible reasons for temporary gaps in data reception. These include the presence of obstacles that may

interfere with radio transmission to the ground site (trees, buildings, local geography), extraordinary meteorological conditions,85

or instrument-related reasons. Considering an ascent as a trajectory, rather than a vertical profile, the probability of data gaps

occurrence increases with the horizontal distance from the launch site (weaker radio signal), which can significantly exceed

the vertical distance, depending on wind conditions.

A preliminary statistical analysis of the occurrence of data gaps in RS41 radiosonde soundings performed at 15 GRUAN

stations in the 2014-2019 period shows that gaps occur in more than 20 % of the soundings, virtually independent of the height90

ranges, with the majority (> 95%) having fewer than 15 gaps per 1,000 s. Up to 30 km, gaps >10 s only play a role in about
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Figure 1. Frequency distribution of temperature gaps in the stratospheric height section between 20 km and 25 km, based on 13’667 RS41

profiles, years 2014-2019. Top left: Frequency distribution of the number of data gaps (independent of gap length). Bottom left: Frequency

distribution of the length of the largest gap identified in a profile. The two right panels show the corresponding cumulative frequencies.

5 % of the ascents; however the occurrence of larger gaps generally increases with height (distance). Figure 1 gives an example

for the stratospheric height section between 20 km and 25 km, where 13,667 profiles are included.

The GRUAN data processing is based on the raw data from the physical radiosonde sensors, namely: temperature, relative

humidity, positioning data provided by the Global Navigation Satellite System (GNSS), and pressure if an on-board sensor95

is present. The raw data are corrected for known or experimentally evidenced systematic effects, such as adjustments from

pre-flight ground checks, corrections of sensor time lags, or solar radiative effects. Some intermediate variables are, in turn,

calculated (e.g. effective air speed or ventilation) as components of the correction algorithms. A number of secondary variables

are finally derived, for example: altitude, geopotential height, water vapour content, or wind components. At different pro-

cessing stages, smoothing filters are applied for estimation and separation of the signal’s noise components. Through all these100

steps, the regular grid of the measured raw data is maintained, that is, all variables and uncertainties in the product variables

are given with the original high resolution.
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This procedure inevitably leads to specific technical difficulties if data gaps occur randomly or intermittently. For example,

smoothing may introduce effects which are difficult to handle when running over gaps, especially for gap sizes comparable

to or exceeding the actual kernel length. The same difficulty applies to uncertainty estimates to be associated with the av-105

eraged (smoothed) values. Another example is related to magnitudes which are calculated cumulatively with height, such as

pressure derived from positioning, temperature, and humidity data, or the integrated water vapour content. As a consequence,

processing-related irregularities or deviations may occur in the profile data and uncertainty estimates, the systematics and ex-

tent of which are difficult to predict. Depending on the purpose for which the GRUAN data product is further used (e.g. process

studies based on high-resolution data, or average-based long-term studies for climate), such systematics may have a different110

impact.

3 Interpolation uncertainty

In this section, formulas of the uncertainty for both linear and stochastic interpolation are considered under some stochastic

assumptions about the data generation mechanism.

In particular, considering a radiosonde flight, we assume that t= 1, ...,T is the flying time in seconds from take-off and y(t)115

is the observed temperature in Kelvin, provided by the following measurement error equation:

y(t) = s(t) + ε(t). (1)

In Equation (1), s(t) is the unobserved true temperature, and ε(t) is the zero mean measurement error. In each atmospheric

layer, the former is assumed to follow a Gaussian Process (GP), characterised by a power exponential autocovariance function

(Cressie and Wikle, 2011; Rasmussen and Williams, 2006), and the latter is assumed to follow a white noise GP. Hence,120

conditionally on some unobserved time-dependent atmospheric conditions denoted by a(t), the GP y(t) has the following

autocovariance function:

γ(t− t′,a(t)) = σ2
s exp(−|t− t′|p/θp) +σ2

ε I(t= t′) (2)

where p= 1,2, the dependence on a(t) is omitted in the right-hand side for notational simplicity, and I is the indicator function,

that is I = 1 if t= t′ and zero else. It is worth observing that the model in Equation (2) is an important subset of the Matérn125

class, which is extensively used in statistics, machine learning and atmospheric sciences (Genton , 2002). For p= 2, the

unobserved true temperature has very smooth paths, since the corresponding GP has infinitely differentiable trajectories, while

for p= 1, the differentiability condition does not hold, and the correlation decreases faster at short distances.

From Equation (2), the (conditional) variance of y(t) is given by

σ2
y = σ2

s +σ2
ε (3)130

where σs > 0 is the standard error of s(t), and σε ≥ 0 is the measurement uncertainty, i.e. σ2
ε = E(ε2). For the instruments

installed on the Vaisala RS41, it is known that the sensor-intrinsic noise of a temperature sensor is very minimal (< 0.01 K),

hence, we expect to find a small σε for the data of this paper. In addition, θ > 0 represents the atmospheric persistence range.
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The GP is characterised by the parameter set Ψ = (θ,σs,σε), which is assumed to be slowly varying in time, hence, charac-

terising locally the atmospheric conditions a(t):135

Ψ = Ψa(t). (4)

Note that, from the practical point of view, the random error ε is a Gaussian white noise and σε represents the random un-

certainty, while (vertically) correlated errors could be confused with s(t). This point will be considered further in Section

8.

3.1 Linear interpolation140

Considering an observation gap in the interval (t−, t+), the linear interpolation at time t, with t in the gap interval t− ≤ t≤ t+,

is straightforwardly defined by the following formula:

m(t) = (1−α(t))y−+α(t)y+ (5)

where, y± = y(t±), and α(t) = t−t−
t+−t− .

In general, the interpolation uncertainty u(t) is based on the expected value of the squared interpolation error, namely:145

u(t)2 = E[(m(t)− s(t))2]. (6)

Clearly, it is defined in terms of the true signal s(t), and is related to the interpolation Mean Square Error, MSEy(t)2 =

E[(m(t)− y(t))2] by the well known relation

MSEy(t)2 = u(t)2 +σ2
ε . (7)

Since the measurement uncertainty σε is unknown in our case, estimating u(t) directly from the data is an issue, and a statistical150

modelling approach is needed.

Assuming that the true signal s is a GP, as discussed above, the Appendix shows that the linear interpolation uncertainty

given in Equation (6) may be computed by the following Standard Error (SE) formula:

SE(t)2 = 2σ2
y

{
1−α+α2

}
+ 2

{
α(1−α)γ(t+− t−)−αγ(t+− t)− (1−α)γ(t− t−)

}
(8)155

+ σ2
ε

where, with abuse of notation, α= α(t). Note that SE(t)2 = u(t)2 if the GP assumption is satisfied, but two different symbols

are used because, in Section 8, this assumption will be relaxed.

Equation (8) defines a function of t which depends on the atmospheric persistence modelled by γ and the gap size t+− t−.

Since γ is not continuous in zero, the same happens to SE(t) at the gap interval borders.160
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Figure 2. Linear interpolation SE, Equation (8), as a function of the gap time for a white noise process with σs = 0.5K and σε = 0.01K.

Three gap sizes are considered: 45, 15, and 5 s.

Figure 2 considers the case where s(t) is a white noise - that is γ(h) = 0 for h 6= 0 and γ(0) = σ2
y . At the gap borders, the

interpolation is error-free, m(t±) = y±, and the uncertainty is u(t±) = σε. For t strictly inside the gap interval, we have

3

2
σ2
y +σ2

ε ≤ u(t)2 < 2σ2
y +σ2

ε

where the minimum is achieved in the centre of the gap interval. In this particular case, the uncertainty range does not depend

on the gap size.165

The above thresholds may be overcome in the presence of correlation. In general, for a GP with θ > 0, the uncertainty

depends both on the GP characteristics and the gap size. As an illustration, using σs = 0.5K, σε = 0.01K, and θ = 3s, Figure

3 shows how the interpolation uncertainty depends on the gap size and on the distance from the observations in the presence of

a short correlation range. More interestingly for applications, Figure 4 shows that the linear interpolation uncertainty strongly

depends on the correlation range.170

3.2 Gaussian process interpolation

The assumption that the temperature profile y(t) is a realisation of a GP may be extended to cover for a non-constant mean so

that, using some basis functions h(), Equation (1) is rewritten as

y(t) = h(t)′β+ s(t) + ε(t)

with parameter set Ψ = (β,θ,σε,σs). In this context, Equation (3) defines the variance of y(t) conditional on h(t)′β, namely175

V ar(y(t)|h(t)′β). Let us denote the set of all non-missing observations during the radiosonde flight by Y , denote the matrix
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Figure 3. Linear interpolation SE, Equation (8), as a function of the gap time for a GP with σs = 0.5K, σε = 0.01K, and θ = 3s. Three gap

sizes are considered: 45, 30, and 15 sn.

Figure 4. Linear interpolation SE, Equation (8), as a function of the gap time for a GP with σs = 0.5K, σε = 0.01K, and θ =

3s,3min,9min, and 30min.
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of the corresponding basis functions by H , and assume that Ψ is known. Then, the GP interpolation of a missing observation

at time t∗ is given by the well-known conditional expectation formula

m(t∗) = E(y(t∗)|Y ) = h(t∗)′β+ Σ′y(t∗),Y Σ−1Y ,Y (Y −Hβ) (9)

where ΣY ,Y is the covariance matrix of the good observations Y |Hβ, and Σy(t∗),Y is the covariance vector between the180

missing observation y(t∗)|h(t+)′β and Y |Hβ. In addition to point estimation, the GP approach also provides the interpolation

standard error:

SE(t∗)2 = E(m− y)2 = σ2
y −Σ′y(t∗),Y Σ−1Y ,Y Σy(t∗),Y . (10)

This formula can be used as an estimate of the interpolation uncertainty, provided that the GP, with the autocovariance given

by Equation (2), is a good description of the problem under study and the true Ψ is approximately known.185

4 Data

Two data sets provided by the GRUAN Lead Centre (www.gruan.org/network/lead-centre), and related to the seven GRUAN

sites of Table 1, are considered here. One data set is named Few_nan in this paper and contains 276 temperature profiles

characterised by "little" missing data. The second data set, named Many_nan, contains 273 profiles with many missing data.

As a preliminary analysis of the bad data set Many_nan, Figure 5 shows the distribution of the fraction of missing data per190

launch. The average missing fraction is 0.13, and the average gap length is 3.6 s. These values will be used to set the parameters

of the simulated gap patterns in Section 5.

For further interpolation analysis, those profiles in Few_nan with very few missing data are selected. In particular, the

L=177 launches which have gaps shorter than 5 seconds, and a total of fewer then 10 missing values per profile, have been

used in this paper. The profile duration distribution is depicted in Figure 6, with an average profile duration of about 6,000195

seconds. This distribution gives a total of more than 1 million measurements, which will be amplified using the bootstrap

technique of Section 5.

5 Block-bootstrap cross-validation scheme

The block-bootstrap is a well-known technique (Politis and Romano, 1994; Mudelsee, 2014) for generating synthetic time

series replicates, and in this paper, is used to construct the cross-validation scheme. Let us consider a fully observed tem-200

perature profile - without missing values - and, hence, measurements y taken every second from take-off, t= 1, ...,T : Y =

(y(1), ...,y(T )).

This section presents a rule for partitioning each original profile Y as follows:

Y −→ [Y L,Y ∗] (11)
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Figure 5. Frequency distribution of missing data fraction in Many_nan data set.

Figure 6. Frequency distribution of profile duration in Few_nan data set.

10



Site Code Country Profiles Selected Profiles

Beltsville BEL USA 33 15

Lauder LAU NZ 32 32

Lindenberg LIN DE 54 45

Ny-Ålesund NYA DE/FR 35 35

Payerne PAY CH 100 30

Lamont SGP USA 18 16

Sodankylä SOD FI 4 4

276 177
Table 1. GRUAN sites included into the Few_nan data set with the respective number of profiles and the number of profiles selected for

the analysis, which have gaps shorter than 5 s, and a total of fewer then 10 missing values.

where Y L is the learning set – used for fitting – and Y ∗ is the validation set – used for testing the interpolation accuracy and205

bootstrap-correction. In order to construct the testing set, nG gap sequences of average duration µG [s] are extracted from the

temperature profile Y and moved to the testing set Y ∗. Observe that, if the testing size (average) fraction is denoted by f , then

nG = T × f/µG.

The gap scheme is obtained by randomly generating and sorting the nG gap starting points 1≤ t∗1 ≤ ...≤ t∗nG
≤ T and by

building, for each of them, a gap sequence210

t∗j , ..., t
∗
j + gj

where the gap duration gj is a Geometric random variable with mean µG. In particular, the length gj is truncated at t∗j+1−
t∗j − 1 to avoid overlapping among different gap sequences. Let the resulting testing set index be denoted by t∗. Ignoring the

above truncation, t∗ has the random dimension n∗ = nG +
∑nG

j=1 gj and the expected dimension E(n∗) = T × f . Hence, the

partitioning rule in (11) is defined by the testing set Y ∗ = (y(t), t ∈ t∗) and the learning set Y L = (y(t),1≤ t≤ T,t /∈ t∗).215

We are interested in collecting information about the interpolation error in a dense vertical grid, even if the testing fraction f

is small. To accomplish this aim, in the application developed below, the above random extraction process is repeated B times,

so that for each observed profile Y , B replications are generated, namely:

[Y L
b ,Y

∗
b ], b= 1, ...,B.

These replications provide a statistical basis to assess the interpolation uncertainty at all altitudes, especially for those sites220

with a limited number of available profiles.

6 Cross-validation

The main results of the next section are obtained using linear interpolation of temperature versus time, based on the neighbour-

ing values, and GP interpolation given by the expectation of Y ∗ conditionally on Y L. As in the previous section, let us denote
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temperature, in Kelvin, by y and flying time, in seconds, by t= 1, ...,T . The total flying time T depends on the single profile225

and site, but suffixes are not used here for notational simplicity. For each site s= 1, ...,S and launch l = 1, ...,Ls, we have the

interpolated values

ŷ(t∗|s, l) =mj(t
∗|s, l)

where j = 1 denotes the linear interpolation of Equation (5), and j = 2 denotes the GP interpolation of Equation (9).

Each bootstrap replicate [Y L
b ,Y

∗
b ], b= 1, ...,B is used first to estimate the GP model coefficients Ψ by the maximum230

likelihood method, as explained in the next section and denoted by Ψ̂. Then, the interpolated values ŷ(t∗) =m2(t∗|Ψ̂) are

computed for the simulated missing times t∗ in the test data set, Y ∗b , and the cross-validation interpolation errors are computed

as follows:

e= e(t∗|s, l, b) = ŷ(t∗|s, l, b)− y(t∗|s, l).

Note that each single measurement y and error e are taken at certain altitude, say alt= alt(s, l, b), which is known with good235

precision. As a result, the interpolation MSE and the corresponding Root MSE (RMSE) are classified by site, altitude, and gap

length:

MSE(ALT,s,µG) = avg(e2|ALT,s,µG) (12)

where ALT identifies a layer of the atmosphere with a thickness between 2 and 7 km, depending on height. The quantity

avg(·|s,ALT,µg) is the average of all testing set terms in the layer ALT , launched from site s and generated using gap size240

µG. We call ALT the output layering to differentiate from the model-related layering of the next section.

7 Modelling details

The GP interpolator depends on the local structure m2(t) =m2(t|Ψa(t)), where Ψa(t) is as in Equation (4). In order to

make the local GP modelling feasible and computationally efficient, a block-partitioning structure has been assumed. This

assumption amounts to dividing the atmosphere into layers, which may differ from the output layers of the previous section.245

Each atmospheric layer identifies a block, and the variance-covariance matrix for the entire profile is assumed block-diagonal

with a constant parameter set Ψa in each layer block. This technique is a special case of the spatial partitioning approach

(Heaton et al. , 2019), but continuity at the layer borders is ignored here because borders have been deliberately located far

from the gaps.

The GP model selection considered the two autocovariance functions γ in Equation (2), various basis functions h(), and250

various layering’s of the atmosphere to define the appropriate concept of local model Ψa(t) of Equation (4). For each layer a,

local estimation has been performed using the maximum likelihood method. The above alternatives have been optimised using

the RMSE applied to the block-bootstrap replicates of Section 5.

Considering the choice of layering resolution, the results were little sensitive to layer-size variations, and a 400 s layer-

size is used since it provides both a reasonable computing time and a satisfactory atmospheric adaptation. The exponential255
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autocovariance function with p= 1 resulted in a smaller cross-validation RMSE, compared to the squared exponential one

(p= 2).

The best results for the basis functions were obtained with a piecewise linear function of time. In this regard, other predictor

set-ups were also considered: a piecewise quadratic function of time and vector predictor set-ups, including altitude, coordi-

nates, and wind. Using these more complex models did not result in any relevant improvement to RMSE; still worse, it resulted260

in problems concerning the singularity of the information matrix at various combinations of sites and layers. Hence, invoking

Occam’s razor and looking for a robust and general model set-up, we settled on using the simplest piecewise linear function of

time.

8 Results

This section’s bootstrap campaign aims to assess the uncertainty of the linear interpolation, Equations (5) and (8), and of the265

GP interpolation, Equations (9) and (10). The cross-validation design is based on a 4× 3 combination of gap sizes µG and

missing fractions f , centred on the characteristics of the Many_nan data set. In detail, we use µG = 4,10,30, and 60 s and

f = 0.05,0.13, and 0.20. Moreover, for uncertainty estimates with a high vertical density, the block-bootstrap validation of

Section 5 is replicated B = 50 times, giving a data set with more than 51 million measurements for each combination of µG

and f .270

Table 2 summarises the RMSEs of both the linear and GP interpolations. Overall, the average interpolation uncertainty is

smaller than 0.1K for little gaps (µG = 4s), increases to about 0.16 K for medium gaps (µG = 10s), and increases further to

0.35 K and 0.58 K for large and very large gaps (µG = 30s and 60 s), respectively.

When comparing the two interpolation approaches, Table 2 shows that they have very close RMSEs. Indeed, not only do the

linear and GP interpolations have close performances but also, for any practical purposes, they are also exchangeable since the275

mean absolute difference between the two is smaller than 0.01 K. Hence, in the rest of this paper, we will not replicate figures

and results for both interpolation methods.

Figure 7 depicts the linear interpolation uncertainty at each GRUAN site using the RMSE based on Equation (12). Here and

in the rest of this section, for simplicity, the largest average gap size µG = 60 s is omitted. The clustered pattern of the nine

curves clearly shows that the missing fraction f has a minor influence on uncertainty in the range 0.05−0.20, which is the range280

of interest for meaningful practical applications. Hence, for the rest of the paper, we will consider only the missing fraction

f = 0.13. Moreover, considering jointly Figure 7 and Table 2, Lamont, Payerne, and Lauder have slightly larger RMSEs at all

gap sizes.

Figure 8 depicts the vertical behaviour of the linear interpolation uncertainty at GRUAN sites, with average gap size increas-

ing from top to bottom panel. As expected the uncertainty’s minimum is near the tropopause. Moreover, after a fast increase, it285

stabilizes at a value which is often larger than the lower atmosphere uncertainty level. The various sites have globally similar

values, but again, Lamont, Payern, and Lauder typically have the largest values.
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µG = 4s µG = 10s µG = 30s µG = 60s

Site Profiles GP Linear GP Linear GP Linear GP Linear

BEL 15 0.084 0.088 0.159 0.160 0.338 0.363 0.590 0.604

LAU 32 0.106 0.107 0.180 0.184 0.370 0.389 0.599 0.612

LIN 45 0.073 0.074 0.145 0.145 0.314 0.324 0.548 0.542

NYA 35 0.072 0.073 0.127 0.130 0.269 0.269 0.463 0.460

PAY 30 0.098 0.098 0.180 0.181 0.370 0.391 0.659 0.658

SGP 16 0.107 0.109 0.189 0.187 0.401 0.420 0.703 0.698

SOD 4 0.074 0.076 0.137 0.138 0.281 0.363 0.426 0.478

Average 177 0.087 0.088 0.159 0.160 0.334 0.349 0.574 0.576

Table 2. Comparison of cross-validation RMSEs between GP and linear interpolation for increasing average gap length µG = 4,10,30 and

60s. Cross-validation is based on B = 50 block-bootstrap replications, each with missing fraction f = 0.13. The last line reports the total

number of profiles and the average RMSE.

Figure 7. Linear interpolation uncertainty by GRUAN site and average gap size µG = 4,10 and 30s. The cross-validation uncertainty (y-

axis) is based on the Root Mean Square Error (RMSE) for missing fractions f = 0.05,0.13, and 0.20.
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Figure 8. Linear interpolation uncertainty of GRUAN sites. The cross-validation uncertainty (x-axis) is based on the Root Mean Square

Error (RMSE) and missing fraction f = 0.13. Top panel: average gap size is µG = 4s; central panel: average gap size is µG = 10s; bottom

panel: average gap size is µG = 30s.
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In order to re-interpret the GP-based linear interpolation uncertainty formula of Figures 3 and 4, we consider the ensemble

of all the estimated local GP model parameters set Ψ from the entire cross-validation exercise. Coherently with the known

small intrinsic error declared by Vaisala, the top panel of Figure 9 shows very small values of σε. Moreover, from the second290

panel of the same figure, we see that the values σs < 1K are common and, in particular, σs = 0.5K used in Figures 3 and 4 is

quite plausible. Eventually, the bottom panel of Figure 9 shows that the correlation range θ may be easily between one and 15

minutes.

8.1 Interpolation distance

In general, the connection between the uncertainty curves of Figures 3 and 4 and the cross-validation evidence are worth295

studying. Considering both the gap size and the distance from the observations at various altitudes gives rise to hard-to-manage

curve plots and a multiplicity of results. For this reason, the subsequent analysis is based on the interpolation distance in

seconds, which is denoted by d and given by the geometric mean of the temporal distances of each missing data from the

closest observations y− and y+ in the notation of Section 3.

Figure 10 depicts the cross-validation RMSEs of the linear interpolation as a function of interpolation distance by altitude,300

namely:

MSE(d|ALT ) = avg(e2|d,ALT ) (13)

where avg(·|ALT,d) is the average of all the cross-validation terms with altitude in the layer ALT and interpolation distance

d. We note that, in order to have high sampling information for both low and high interpolation distances, the graph is obtained

by merging the results obtained for µG = 10 and 30 s. We also note that, thanks to the geometric distribution used in the305

block-bootstrap procedure in Section 5, we are able to consider distances larger than 30 s. In particular, Figure 10 only depicts

interpolation distances up to 70 s. Indeed, the block-bootstrap with an average distance of µG = 30s provides little testing data

at larger distances, especially at high altitudes. Of course, using the same approach, longer interpolation distances may be

easily explored by generating testing sets with larger µG.

In addition, Figure 11 depicts the corresponding graph for the linear interpolation SE(t∗) = SE(t∗|s, l, b), given by Equation310

(8), and quadratically averaged over site s, launch l, and bootstrap replication b, namely:

SE(d|ALT ) =
√
avg(SE(t∗|s, l, b)2|d,ALT ). (14)

The corresponding graph for the GP-SE of Equation (10) is not reported here because it gives very close results. Indeed, not

only are the two interpolation methods exchangeable, as noticed above, but their SE’s are also very close, with a mean absolute

difference between the two of less than 0.005 K.315

Figures 10 and 11 have similar increasing behaviour, but the average linear interpolation SE is generally smaller than the

corresponding RMSE and approximately equal at the very short distance d= 1s. From Equation (7), we expect that they differ

by a quantity depending on the measurement error uncertainty, σε. Recalling Figure 9, the latter is very small, and it is not

enough to explain such a discrepancy. Indeed, Equation (7) would hold exactly if i) the used GP were a perfect model for our
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Figure 9. Frequency distribution of estimated GP model parameters from all bootstrapped profiles and all model-related atmospheric layers.

Top panel: σε [K]; centre panel: σs [K]; bottom panel: correlation range θ [min]. The average gap size is µG = 10s and the missing fraction

is f = 0.13.
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Figure 10. Each line shows the cross-validation Root Mean Square Error (RMSE) of linear interpolation as a function of the interpolation

distance [s], for a specific atmospheric layer in the range of 2-37 km. The interpolation distance (x-axis) is given by the geometric mean of

the distances of each missing data from the closest good data, y− and y+. The graph is obtained my merging the block-bootstrap simulations

with average gap sizes µG = 10 and 30s.

data, ii) its coefficients Ψ were known exactly, and iii) the cross-validation estimation of the RMSE was exact. The latter two320

conditions hold approximately due to the large data set used. Hence, the SE underestimates the "true" interpolation uncertainty,

primarily due to the GP model approximation.

For the above reasons, we propose a bootstrap-corrected interpolation uncertainty estimate by merging the information of

the single profile (s, l) captured by the corresponding GP and the average off-set of the uncertainty given by the RMSE:

u(t|s, l)2 = SE(t|s, l)2 + (MSE(d|ALT )−SE(d|ALT )
2
). (15)325

In practice, the first summand, SE, must be computed for every single profile, while the term based on MSE may be imple-

mented as a lookup table.

8.2 Practical aspects

As an illustration of the method, the profile of the Sodankylä site on 2017-03-03 12:00 is considered in Figure 12, left panel.

This profile has T=4,722 measurements and no original missing values. Using the block-bootstrap, 563 measurements have330

been deleted (pseudo-missing), generating gap lengths between 1 and 24 s. From a practical point of view, such missing rates

and gap lengths can be considered a relatively common, yet serious, case for interpolation. In the right panel of Figure 12, the
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Figure 11. Each line shows the linear interpolation Standard Error (SE) as a function of the interpolation distance [s], for a specific atmo-

spheric layer in the range of 2-37 km. The depicted SE is the quadratic average of Equation (8) for each altitude and interpolation distance

in the validation data set. The interpolation distance (x-axis) is given by the geometric mean of the distances of each missing data from the

closest good data, y− and y+. The graph is obtained my merging the block-bootstrap simulations with average gap sizes µG = 10 and 30s.

results of the previous subsection, based on the entire data set, are used to show both ± the GP uncertainty of Equation (8),

and ± the bootstrap uncertainty of Equation (15), computed at the interpolated pseudo-missing values. The result is that the

bootstrap-corrected interpolation uncertainty never exceeds 0.3 K along this profile. In doing this computation, formulas (13)335

and (14) are implemented as lookup tables with entries geometric distance and altitude.

Figure 13 zooms in on the above profile at around 22.5 km height and shows in detail the interpolation of a single point gap

(C), two small gaps (A,B), and three larger gaps (D-F). For Gap C, the uncertainty is almost negligible using both methods. As

far as the gap size increases, both the uncertainty and the difference between the two methods increase. In the most extreme

case, Gap D, the bootstrap uncertainty is about twice the uncorrected amount. Of course, this is the case where any interpolation340

method but Delphi’s oracle would fail. Nonetheless, the error (interpolated minus observed) is approximately 3u in absolute

value, where u is the bootstrap-corrected uncertainty of Equation (15). Hence, also in this difficult interpolation case, our

bootstrap-corrected approach provides a sensible estimate of the uncertainty.

It follows that the implementation of a GRUAN data processing providing interpolated temperature profiles along with

their uncertainty requires some effort divided into two different phases. First, a massive GP off-line computation is needed to345

prepare the lookup table related to Equations (13) and (14). Second, for each profile, an on-line local GP calibration is needed
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Figure 12. RS42 temperature profile at Sodankylä site on 2017-03-03 12:00. Left panel: observation is in blue and block-bootstrap pseudo-

missing are in red. Right panel: ± linear interpolation uncertainty of pseudo-missing values; GP uncertainty (8) is in dark blue; Bootstrap

uncertainty (15) is in orange.

to provide the SE (8) for the interpolated values. After this processing, Equation (15) easily gives the corrected interpolation

uncertainty.

9 Conclusions

This paper offers a multifaceted assessment of the interpolation uncertainty of Vaisala RS41 temperature profiles at various350

altitudes, using an extensive data set from seven GRUAN sites. Moreover, it provides a general frame for the interpolation of

generic atmospheric profiles.

Two complementary uncertainty approaches have been developed and integrated. The first is a cross-validation approach

based on block-bootstrap, which shows that the average of the root mean square error of linear interpolation is about 0.1 K for

small gaps, which increases up to 0.58 K for gaps of an average duration of 60s. These results may be made operational as355

lookup tables characterising interpolation uncertainty with entry altitude and interpolation distance. The resulting lookup table

could be made available to the scientific community.
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Figure 13. Detail of RS42 temperature profile at Sodankylä site on 2017-03-03 12:00, around 22.5 km altitude. Observations are in blue,

block-bootstrap pseudo-missing are in red, and the corresponding five gaps are labelled A-F; linear interpolation is in black; ± GP uncertainty,

Equation (8), is in dashed blue; ± Bootstrap-corrected uncertainty, Equation (15), is in orange.

Since the cross-validation outputs are averages, the individual profile contribution to the uncertainty is not considered.

Hence, the second approach addresses interpolation uncertainty using Gaussian process assumptions. This approach allows for

obtaining a formula for the interpolation uncertainty which depends on the autocorrelation structure of each single profile.360

Integrating the above two approaches, a bootstrap-corrected formula for the individual interpolation uncertainty is proposed.

Based on these results, a future version of GRUAN data processing could implement interpolated temperature profiles, uncer-

tainty included.

The extension of this approach to other essential climate variables (ECVs) and/or other instruments requires some considera-

tion. From the modelling point of view, provided that enough field data are available, the extension is relatively straightforward.365

Indeed, the approach is quite general, and model selection and optimisation are data-driven. Hence, similar results may be ex-

pected for temperature profiles obtained by other instruments, provided that vertical resolution and instrumental error are

comparable to the present case. Further, similar results are also expected for other smooth variables, such as pressure.

On the other hand, the interpolation uncertainty could be greater for ECVs which are known to have large variations in the

small scale. For example, relative humidity commonly shows highly intermittent profiles in the troposphere with very large370

and very fast-changing gradients. In these cases, we can expect that the cross-validation uncertainty could be high even for
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small gaps. In addition, the vertical autocorrelation could have a shorter range, and the corresponding GP model could provide

interpolation uncertainties close to the white noise case considered in Section 3.

Code and data availability. The underlying MATLAB code is available from the corresponding author upon request. The data are available

from the GRUAN Lead Center, www.gruan.org.375

Appendix A: Linear interpolation uncertainty

To see Equation (8), let us rewrite the interpolation error of Equation (6) as follows:

m(t)− s(t) = αy+ + (1−α)y−− (y(t) + ε(t)) = a′u

where α(t) = t−t−
t+−t− as in Section 3.1, a′ = (α(t),1−α(t),−1,+1) is a vector of constants for fixed times t− ≤ t≤ t+ and

u′ = (y(t+),y(t−),−y(t),+ε(t)) is a stochastic vector. With these symbols, Equation (8) may be written as:

SE(t)2 = E(m(t)− s(t))2 = a′Σua

where Σu is the variance-covariance matrix of u given by

Σu =


σ2
y γ(t+− t−) γ(t+− t) 0

σ2
y γ(t−− t) 0

σ2
y 0

σ2
ε

 .

The conclusion follows by straightforward algebra.
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